
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Energy-Efficient Instruction Scheduling
Utilizing Cache Miss Information

Chiyonobu, Akihiro
Kyushu Institute of Technology

Sato, Toshinori
Kyushu University

https://hdl.handle.net/2324/6794488

出版情報：ACM SIGARCH Computer Architecture News. 34 (1), pp.65-70, 2006-03. Association for
Computing Machinery
バージョン：
権利関係：

Energy-Efficient Instruction Scheduling
Utilizing Cache Miss Information

Akihiro Chiyonobu
Kyushu Institute of Technology

680–4 Kawazu, Iizuka
Fukuoka, 820–8502 Japan

chiyo@mickey.ai.kyutech.ac.jp

Toshinori Sato
Kyushu University

3–8–33–3F, Momochihama, Sawara–ku
Fukuoka, 814-0001 Japan

toshinori.sato@computer.org

ABSTRACT
Current microprocessors require both high performance and
low-power consumption. In order to reduce energy consump-
tion with maintaining computing performance, we propose
to utilize the information regarding instruction criticality.
Microprocessors we are proposing have two types of func-
tional units distinguished in terms of their execution latency
and power consumption. Only critical instructions are exe-
cuted on power-hungry functional units, and thus the total
energy consumption can be reduced without severe perfor-
mance loss. In order to achieve large energy reduction, it
is required to execute instructions on power-efficient units
as frequently as possible. In this paper, we propose a new
instruction scheduling method utilizing cache miss informa-
tion over the above mentioned scheduling technique. As a
performance gap between microprocessors and main mem-
ories is increasing, it is possible that critical instructions
are executed in power-efficient units as well as non-critical
ones while main memory access is occurring. Our simu-
lation results reveal that the modified instruction schedul-
ing achieves 27.3% ED2P reduction with 1.4% performance
degradation.

Keywords
Memory Wall, Critical Path, Microprocessor, Instruction
Scheduling

1. INTRODUCTION
Traditionally, microprocessor performance is improved with-
out considering the increase in its power and energy con-
sumption. One of the ways to improve performance is to
utilize a lot of functional units by speculative execution. If
a branch miss-prediction occurs, useless energy is wasted.
Large cache and large instruction window consume much
energy. Today, power and temperature on a chip become a
critical problem. It can be said that future microprocessors
require both high performance and low-power consumption.

Most current microprocessors execute instructions in an out-
of-order fashion in order to reduce the execution time of a
program. The execution time is determined by the micro-
processor’s computing power and by dependences between
instructions executed on the microprocessor. The critical
path is the longest path in a data flow graph (DFG), where
each node represents an instruction and each arc represents
a dependence between instructions, and it determines the
execution time of the program[9]. Figure 1 shows an exam-

I : 2

I : 4I : 1

I : 3 I : 6 I : 7

I : 0

I : 8

I : 5

Figure 1: Critical Path

ple of a DFG. In this example, its critical path consists of
instructions I:0->I:3->I:6->I:7->I:8 when every instruc-
tion’s latency is assumed to be one cycle. However, in an
actual execution of the program, we concern that main mem-
ory access latency impacts critical path.

As well known, there is a tremendous performance gap be-
tween main memory and microprocessor. It is called the
memory wall problem[17]. Figure 2 shows how the gap
is increasing[7]. In this figure, vertical axis shows perfor-
mance improvement on a logarithmic scale and horizontal
axis shows years. As you can see, microprocessor perfor-
mance is improved by 55% per year, but the improvement
in memory performance is only 7% per year. If a load in-
struction is a hit in a cache, the requested data is delivered
to the microprocessor immediately. If it is a miss, a memory
access occurs and the microprocessor is stalled. We concern
that the memory access latency strongly affects critical path.
Because instructions dependent on a cache miss instruction
cannot start until the requested data are delivered from the
main memory.

Microprocessors can continue to execute until their instruc-
tion window becomes full. In other words, there are a lot of
in-flight instructions in the microprocessor, even when the
memory access occurs. Instruction criticality depends on
every load instruction. When it is a hit in the cache, the
critical path statically identified is still dynamically criti-
cal. Otherwise, the weight of each arc in the DFG changes,
and thus the other path becomes critical. Instructions de-
pendent upon the missed load can not be executed. Only
instructions independent of the missed load are executed
during the memory access. As the speed gap between pro-

ACM SIGARCH Computer Architecture News 65 Vol. 34, No. 1, March 2006

1

10

100

1000

10000

100000

1000000

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

Year

P
e

rf
o

rm
a

n
c
e

CPU

DRAM

Figure 2: Performance Gap Between Memory and
Microprocessor[7]

Load and Miss

Load and Hit

I : 2

I : 3 I : 6 I : 7

I : 0

I : 8

I : 5

I : 4I : 1

Figure 3: Exchange of the Critical Path

cessors and memories is significantly large, the dependent
instructions are on the critical path and the independent
ones are not. An example is shown in Figure 3. In this
figure, I:0 and I:1 are load instructions. Critical path con-
sists of I:0->I:3->I:6->I:7->I:8, when both I:0 and I:1

are a hit in the data cache as we have seen in Figure 1. But
if I:1 is a miss the critical path turns into I:1->I:4->I:8.

Considering these situations, in this paper, we propose a new
instruction scheduling method utilizing cache miss informa-
tion. The remainder of this paper is organized as follows:
Section 2 explains how critical path information is created
and proposes our instruction scheduling techniques. Sec-
tion 3 describes the evaluation methodology, and Section 4
presents simulation results. Section 5 surveys related works.
Lastly, Section 6 provides our conclusions.

2. ENERGY–EFFICIENT INSTRUCTION
SCHEDULING METHODS

We proposed that a microprocessor has several functional
units distinguished in terms of their execution latency and
power consumption, and that instructions on the critical
path, which determines the execution time of the program,
are executed in fast and power-hungry units and instructions
on the non-critical path are executed in slow and power-
efficient units[3]. Using this scheduling strategy, we can re-
duce microprocessor energy consumption while maintaining
its performance.

2.1 Path Information Table
In order to identify if each instruction is critical or not, we
utilize path information table (PIT) proposed by Kobayashi
at el.[9]. PIT is shown in Figure 4, where instructions in

I : 0

I : 2

I : 5

I : 1

I : 4

I : 3

I : 6

I : 7

I : 8

C 0 C 2C 1

3

2

1

0 (0 , 0)

B 0 B 2B 1

3

2

1

0

Tail Instruction Register
(2 , 3)

Path Length Register
5

Figure 4: Path Information Table

Figure 1 are registered. PIT consists of two tables, each
of which has several FIFOs. Here, we call the first table
chain table, and the other one branch table. As we can
guess from their names, each FIFO in the chain table ex-
presses a chain of dependent instructions. Each entry in
the FIFO has a pointer to its corresponding instruction in
the instruction window. The pointer is kept in the table
until the instruction leaves the instruction window. When
a branch is found in the DFG or when the current FIFO
is full, the next FIFO is used to express the succeeding in-
struction chain. The branch table keeps a pointer which
connects the branch with the root tree as shown in Figure
4. In this figure, (0, 0) in B2 means that I:3 in C2 is a
branch from I:0 in C0. In B0 and B1, there are no pointers.
This means their corresponding instruction chain in C0 and
C1 are independent of other instruction chains. Every entry
in the branch table is also released when its corresponding
instruction is issued. There are two registers in PIT. One
is the tail instruction register. It keeps which instruction in
the chain tables is the tail instruction in the current critical
path. The other is path length register. It keeps the length
of the critical path. In other words, referring these registers,
we can find when the tail instruction finishes. The contents
in these registers are updated every time when new instruc-
tions are dispatched. From the explanations above, we can
see that critical path is identified by referring PIT.

2.2 Dynamic Functional Units Gating
We propose an energy-efficient instruction scheduling tech-
nique, which we call dynamic functional units gating (DFUG).
It exploits performance imbalance between microprocessor
and main memory as explained in Section 1. Critical path
information is utilized by our baseline scheduling technique[3].
Instructions on critical path are executed on fast and power-
hungry functional units, while non-critical instructions are
executed on slow and power-efficient ones. In this paper, we
improve this scheduling strategy to be more power-efficient.

We are interested in main memory access, because it strongly
affects instruction criticality. DFUG exploits its character-
istics and switches over two modes. One is normal mode. In
this mode, one from two different functional units is selected
according to instruction criticality as explained above. The
other is DFUG mode. In this mode only slow and power-
efficient units are utilized. In other words, fast and power-
hungry units are gated. Every L2 cache miss turns the pro-
cessor into DFUG mode from normal mode. When the re-

ACM SIGARCH Computer Architecture News 66 Vol. 34, No. 1, March 2006

Table 1: Processor Configuration
Fetch Bandwidth 8 instructions
Branch Predictor 1K-set 4-way set-associative BTB, 4K-entry 8-history-length gshare predictor,

64-entry return address stack, 6-cycle miss penalty, updated at commit stage
Insn. Windows 64-entry instruction queue, 32-entry load/store queue
Issue Width 8 instructions
Commit Width 8 instructions
Functional Units 6 Int, 4 FP, 2 Ld,St
Latency fast iALU 1/1, slow iALU 2/1, iMUL 3/1, iDIV 20/19, fADD 2/1, fCMP 2/1, fCVT 2/1,
(total/issue) fMUL 4/1, fDIV 12/12, fSQRT 24/24,
Insn. Cache 64KB, 2-way, 64B blocks, 1-cycle latency
Data Cache 64KB, 2-way, 64B blocks, non-blocking load, hit under miss,

3-cycle latency
L2 Cache unified, 1MB, 8-way, 64B blocks, 11-cycle latency
Bus Width 8B
Main Memory Latency 130-cycle latency

quested data are delivered from main memory, the mode re-
turns into the normal mode from DFUG mode. The mode
transition is shown in Figure 5. We have two switching poli-
cies. One is the baseline DFUG, which is already explained.
Under this policy, every L2 cache miss and every cache re-
fill change the instruction scheduling mode. The other is
the enhanced DFUG (E-DFUG). Pipelined microprocessors
that allow out-of-order execution need not stall on a cache
miss. They can continue to fetch instructions from instruc-
tion cache while waiting for the data cache to return the
missing data. A non-blocking cache[5] allows the data cache
to continue to supply cache hits during a miss. This opti-
mization reduces the miss penalty by being helped during
a miss instead of ignoring the requests of microprocessor.
Under such optimization, multiple L2 cache misses can be
occur. In such case, DFUG mode continues until the last
missing data is obtained.

Normal mode

DFUG or E-DFUG mode

L2 cache missL2 cache miss

Execution start!

L2 cache miss resolveL2 cache miss resolve

Normal modeNormal Mode

DFUG or E-DFUG-DFUG Mode

L2 cache missL2 cache missL2 cache missL2 cache miss

Execution start!Execution Start!

L2 cache miss resolveL2 cache miss resolveL2 cache miss resolveL2 cache miss resolve

Figure 5: Mode Transition

3. EVALUATION METHODOLOGY
This section describes our processor model and benchmark
programs, which are used in simulations.

We use SimpleScalar Tool Set[1] for our base simulation
environment. Since accurate memory hierarchy simulation
is required, we use the SimpleScalar memory extension[2].
Each instruction scheduling method explained in Section 2
is implemented in detail. Table 1 shows the processor config-
uration. The fast functional units can execute most integer
operations in one cycle, while the slow functional units ex-
ecute operations in two cycles. In the rest of this paper,
functional units means integer units (ALU). In this evalu-
ation, we assume the followings. Our processor model has
two fast and four slow ALUs, which is the best configura-
tion when processor has six ALUs. It is revealed in our

previous work[4]. Both the fast and slow ALUs can share
their circuit design, while each transistor’s size and thresh-
old voltage might be optimized independently. According to
the data-sheet of Intel Pentium M processor[8], we assume
two configurations of the supply voltages for the fast and
slow ALUs. Table 2 shows those combinations. Power con-
sumption due to leakage current is out of consideration. It
is remained for the future study.

Table 2: The Combinations of Supply Voltage and
Clock Frequency[8]

Config A
Processor Clock 1.6GHz 800MHz
Processor Core Vdd 1.484V 1.036V

Config B
Processor Clock 1.2GHz 600MHz
Processor Core Vdd 1.276V 0.956V

Instruction set architecture (ISA) is the SimpleScalar/PISA
ISA, which is an extension of MIPS R10000 ISA. We use
seven programs from SPEC CPU2000 benchmark suite using
ref input set. There are listed in Table 3. We fast forward
two billion instructions and simulate 500 million instructions
for each program. We do not count NOP instructions.

Table 3: Benchmark Programs
Benchmark input set

gzip input.source
vpr net.in arch.in
gcc 166.i

parser ref.in
vortex lendian1.raw
bzip2 input.source
mcf inp.in

4. EVALUATION RESULTS
We use processor performance and energy-delay-square prod-
uct (ED2P) as metrics for our evaluation. For performance,
higher bar means higher processor performance. For ED2P ,
lower bar indicates higher power efficiency. We evaluate four
models, 0f/6s, DFUG, E-DFUG, and PIT. 0f/6s means
that all ALUs are slow.

ACM SIGARCH Computer Architecture News 67 Vol. 34, No. 1, March 2006

Table 4: Cache Miss Rate
gzip vpr gcc parser vortex bzip2 mcf average

DL1 cache 3.5% 6.4% 17.1% 4% 1.8% 3.5% 40% 10.9%
L2 cache 3.4% 5.6% 8.2% 16.7% 1.7% 20.1% 52.3% 15.3%

4.1 Miss Rates of the Benchmark Programs
First, we evaluate cache miss rate of each benchmark pro-
gram. We show the miss rate of each cache in Table 4. mcf,
bzip2, and parser are programs whose cache miss rate is
relatively higher than that of the others. We expect that
there are many opportunities where DFUG and E-DFUG
are applied. gcc has large DL1 cache miss rate, but its L2
cache miss rate is small. Therefore, it is expected that there
are few opportunities where DFUG and E-DFUG are ap-
plied. For other programs which have small cache miss rate,
it is expected that our techniques might be useless.

4.2 The Impact on Performance
Second, we evaluate processor performance when DFUG and
E-DFUG are used. This section investigates how DFUG and
E-DFUG affect processor performance. Figure 6 shows pro-
cessor performance. In this figure, vertical axis shows pro-
cessor performance and horizontal axis shows each bench-
mark program and the average of results. Each performance
is normalized by the result when all ALU in the processor
are fast. Each program has different performance degra-
dation. In the case of 0f/6s, the performance is degraded
by up to 24%, and on the average of 3%. When instruc-
tions are only scheduled by PIT, processor performance is
degraded by 7.7% in the worst case and by 1.2% on aver-
age. In DFUG, the worst performance degradation is 7.7%
and the average is 1.2%. E-DFUG degrades processor per-
formance by 7.7% in the worst case and by 2.4% on the
average. As you can see, performance degradation of 6s/0f
varies, and thus we can say that 0f/6s is not a good choice
for improving energy efficiency. In the case of mcf, proces-
sor performance is almost maintained. Table 4 shows that
mcf originally has large cache miss rate. Hence, processor
performance is dominated by the cache miss behavior. Also
for other programs, performance degradations from PIT is
very small. Therefore, it can be said that our scheduling
techniques do not have any serve impact on performance.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

gzip vpr gcc parser vortex bzip2 mcf AVE

P
e
rf

o
rm

a
n
c
e

0f/6s DFUG E-DFUG PIT

Figure 6: Performance Result

4.3 Instruction Breakdown
Third, we investigate which ALU is used by each instruction.
The breakdown is shown in Figures 7–9. In those figures,
cp fast indicates the percent of instructions that are iden-
tified as critical and are executed on fast ALU. ncp fast
indicates the percent of instructions that are identified as
non-critical and are executed on fast ALU. cp slow indi-
cates the percent of instructions that are identified as criti-
cal and are executed on slow ALU. ncp slow indicates the
percent of instructions that are identified as non-critical and
are executed on slow ALU. DFUG slow indicates the per-
cent of instructions that are executed on slow ALU while
L2 cache miss occurs. In the case of DFUG, compared with
PIT, the utilization of fast ALU is reduced by 3.7% on av-
erage. As expected in Section 4.1, our techniques are most
effective for mcf and the utilization of fast ALU is reduced
by 12.9%. In the case of bzip2 and parser, the utilization
of fast ALU is reduced by 4.4% and by 3.2%, respectively.
As for E-DFUG, the utilization of fast ALU is reduced by
4.8% on average. The largest reduction in the utilization
of fast ALU is found in mcf and it is 18.9%. In the case
of bzip2 and parser, it is decreased by 5.2% and by 3.4%,
respectively.

As the utilization of fast ALU is reduced, our scheduling
techniques are applied correctly to improve energy efficiency.
As we have already seen, the reduction in the utilization of
fast ALU does not diminish processor performance.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gzip vpr gcc parser vortex bzip2 mcf AVE

B
re

a
k
d
o
w

n

cp_fast ncp_fast cp_slow ncp_slow

Figure 7: Instruction Breakdown of PIT

4.4 The Impact on Energy Efficiency
Lastly, we evaluate how our scheduling techniques affect
ED2P . Figure 10 shows ED2P . In Figure 10, right part
shows results when Config A in Table 2 is used, and the
left part shows results when Config B in Table 2 is used.
First, we focus on Config A. In the comparison with PIT,
ED2P is reduced by 1.5% and by 2% in the cases of DFUG
and E-DFUG, respectively. In the case of mcf, ED2P is
reduced by 6.8%, and 10% in DFUG and E-DFUG, re-

ACM SIGARCH Computer Architecture News 68 Vol. 34, No. 1, March 2006

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gzip vpr gcc parser vortex bzip2 mcf AVE

B
re

a
k
d
o
w

n
cp_fast ncp_fast cp_slow ncp_slow DFUG_slow

Figure 8: Instruction Breakdown of DFUG

spectively. As we have seen, the reduction in the utilization
of fast ALU is largest. On the contrary, in the case of bzip2,
ED2P is not reduced at all. In the case of parser, ED2P
is reduced by 2.7% and by 3% in DFUG and E-DFUG,
respectively. As expected in Section 4.1, ED2P is reduced
in mcf and parser. However, it is not reduced in bzip2.
This is because DFUG and E-DFUG affect the execution
in the normal mode. When the scheduling mode returns
to the normal mode from DFUG mode, a lot of instructions
identified by PIT as critical are executed on slow units. This
seriously diminishes performance as shown in Figure 6. This
degrades ED2P .

Next, we consider Config B. In this configuration, DFUG
reduces ED2P by 1.1% and E-DFUG improves it by 1.6%.
In the case of mcf, ED2P is decreased by 6% and by 8.6%
in comparison with PIT. In the case of bzip2, ED2P is
increased by 0.5%. In the case of parser, ED2P is reduced
by 2.5% and 2.8% in DFUG and E-DFUG, respectively.
We think that the reason of the increase in ED2P is same
with the one explained above.

For both Config A and Config B, we confirm that ED2P
is improved on average. We are currently investigating why
ED2P is degraded for some benchmarks.

5. RELATED WORK
The critical path is a chain of dependent instructions, which
determines the number of cycles executing the program.
And thus, the performance of the processor is limited by
the speed at which it executes the instructions along the
critical path. If we can identify which instructions are criti-
cal, we can accelerate their execution by any means. Criti-
cal path prediction[3, 6, 16] is the technique for identifying
critical instructions dynamically. Exploiting information re-
garding instruction criticality is effective not only for im-
proving processor performance but also for reducing power
consumption[14, 15]. Pyreddy et al.[14] use the profile-based
heuristics proposed by Tune et al.[16] for identifying crit-
ical instructions. From a profile run, each instruction is
marked as critical or non-critical. When the program is ex-
ecuted, the critical instructions are executed on fast and
power-hungry functional units while the non-critical ones
are executed on slow and power-efficient units. They con-
cluded that dual pipeline had the potential for low power

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gzip vpr gcc parser vortex bzip2 mcf AVE

B
re

a
k
d
o
w

n

cp_fast ncp_fast cp_slow ncp_slow DFUG_slow

Figure 9: Instruction Breakdown of E-DFUG

without suffering performance loss, but did not make any
measurement of power savings. In contrast, Seng et al.[15]
utilized a dynamic mechanism. They proposed to use the
critical path predictor to identify non-critical instructions,
and reported significant gains in the ratio of performance
and power density. However, they only utilized critical path
information and did not use L2 cache miss information for
instruction scheduling.

Marculescu [13] proposed cache miss driven Dynamic Volt-
age Scaling (DVS) technique where the supply voltage is
lowered when the processor detects L2 cache misses. Li et
al. [11] proposed Variable Supply–Voltage scaling (VSV).
VSV scales down the supply voltage and carries out inde-
pendent computations at lower speed during an L2 cache
miss. In VSV, the supply voltage is not scaled down when
instruction level parallelism (ILP) is high. DVS method
can be applied for Multiple Clock Domain microarchitecture
[12]. It divides processor chip into individual clock domains
exploiting globally asynchronous locally synchronous tech-
nique. Kondo et al. proposed dynamic processor throttling
(DPT) for power efficient computations[10]. DPT dynami-
cally detects the performance imbalance between the proces-
sor and main memory. They scale down the supply voltage
and clock frequency to redress the imbalance. However, they
did not mention critical path.

6. CONCLUSIONS
A performance gap between microprocessors and main mem-
ories is increasing. That gap often makes the microprocessor
stalled. On the other hand, current microprocessors require
both high performance and energy efficiency. Considering
those, we are investigating to reduce energy consumption
exploiting the performance imbalance between microproces-
sor and main memory. In this paper, we proposed the in-
struction scheduling techniques, which we call DFUG and
E-DFUG, to reduce energy consumption with maintaining
processor performance.

We evaluated the effect of our techniques using the Sim-
pleScalar tool set and SPEC CPU2000 benchmark programs.
Our evaluation results showed that ED2P can be reduced
by 27.3% (Config A) while performance is degraded by 1.4%
on the average. From our evaluation results, it is concluded
that our techniques can reduce energy consumption with

ACM SIGARCH Computer Architecture News 69 Vol. 34, No. 1, March 2006

0

0.2

0.4

0.6

0.8

1

1.2

1.4

gzip vpr gcc parser vortex bzip2 mcf AVE

E
D

2
P

0f/6s DFUG E-DFUG PIT

0

0.2

0.4

0.6

0.8

1

1.2

1.4

gzip vpr gcc parser vortex bzip2 mcf AVE

E
D

2
P

0f/6s DFUG E-DFUG PIT

Figure 10: Energy–Efficiency Results

maintaining computing performance.

7. ACKNOWLEDGMENTS
The authors thank Doug Burger for providing them with
the SimpleScalar Memory Hierarchy Extensions kit. This
work is supported in part by the grants from Japan Society
for the Promotion of Science (No.16300019, No.176549).

8. REFERENCES
[1] D. Burger, T. M. Austin, “The SimpleScalar Tool Set,

Version 2.0”, Technical Report CS-TR-97-1342,
Computer Science Department, University of
Wisconsin Madison, June 1997.

[2] D. Burger, A. Kagi, M. Hrishikesh, “Memory
Hierarchy Extensions to the SimpleScalar Tool Set”,
Technical Report TR99-25, Department of Computer
Science, University of Texas at Austin, April 1999.

[3] A.Chiyonobu, T.Sato, I.Arita, “Correlation-based
Critical Path Predictors for Low Power
Microprocessors”, International Workshop on
Innovative Architecture for Future Generation
High-Performance Processors and Systems, January
2003.

[4] A. Chiyonobu, T. Sato, “Investigating Heterogeneous
Combination of Functional Units for a
Criticality-based Low-power Processor Architecture”,
3rd International Symposium on Information and
Communication Technologies, June 2004.

[5] K. I. Farkas and N. P. Jouppi,
“Complexity/performance tradeoffs with non-blocking
loads”, 21st International Conference on Computer
Architecture, April 1994.

[6] B. Fileds, S. Rubin, R. Blodik, “Focusing Processor
Policies via Critical-Path Prediction”, 28th
International Symposium on Computer Architecture,
July 2001

[7] J. L. Hennessy, D. A. Patterson,“Computer
Architecture: A Quantitative Approach”, Morgan
Kaufmann, May 2002.

[8] Intel Corporation, “Intel Pentium M Processor
Datasheet”, April 2004.

[9] R.Kobayashi, H.Ando, T.Shimada, “Instruction- Issue
Mechanism for a Clustered Superscalar Processor
Focusing on a Critical Path in a Data Flow Graph”,
13th Joint Symposium on Parallel Processing, June
2001 (in Japanese).

[10] M. Kondo and H. Nakamura, “Dynamic Processor
Throttling for Power Efficient Computations”,
Workshop on Power-Aware Computer Systems, Dec
2004.

[11] H. Li, C-Y. Cher, T. N. Vijaykumar, K. Roy, “VSV:
L2-Miss-Driven Variable Suppl-Voltage Scaling for
Low Power”, 36th International Symposium on
Microarchitecture, December 2003.

[12] G. Magklis, M. L.Scott, G. Semeraro, D. Albonesi, S.
Dropsho, “Profile-based Dynamic Voltage and
Frequency Scaling for a Multiple Clock Domain
Microprocessor”, the 30th International Symposium
on Computer Architecture, June 2003.

[13] D. Marculescu, “On the Use of
Microarchitecture-Driven Dynamic Voltage Scaling”,
Workshop on Complexity-Effective Design, June 2000.

[14] R. Pyreddy, G. Tyson, “Evaluating Design Tradeoffs
in Dual Pipelines”, Workshop on Complexity-Effective
Design, June 2001.

[15] J. S. Seng, E. S. Tune, D. M. Tullsen, “Reducing
Power with Dynamic Critical Path Information”, 34th
International Symposium on Microarchitecture,
December 2001.

[16] E. Tune, D. Liang, D. M. Tullsen, B. Calder,
“Dynamic Prediction of Critical Path Instructions”,
7th International Symposium on High Performance
Computer Architecture, January 2001.

[17] W. A. Wulf and S. A. McKee, “Hitting the Memory
Wall: Implications of the Obvious”, Computer
Architecture News, March 1995.

ACM SIGARCH Computer Architecture News 70 Vol. 34, No. 1, March 2006

