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[PAPER

Memory Organization for Low-Energy Processor-Based

Application-Specific Systems

SUMMARY  This paper presents a novel low-energy memory
design technique based on variable analysis for on-chip data mem-
ory (RAM) in application-specific systems, which called VAbM
technique. It targets the exploitation of both data locality and ef-
fective data width of variables to reduce energy consumed by data
transfer and storage. Variables with higher access frequency and
smaller effective data width are assigned into a smaller low-energy
memory with fewer bit lines and word lines, placed closer the pro-
cessor. Under constraints of the number of memory banks, VAbM
technique use variable analysis results to perform allocating and
assigning on-chip RAM into multiple banks, which have different
size with different number of word lines and different number of
bit lines tailored to each application requirements. Experimental
results with several real embedded applications demonstrate sig-
nificant energy reduction up to 64.8% over monolithic memory,
and 27.7% compared to memory designed by memory banking
technique.

key words: Low Energy, Memory Organization, Variable Anal-
ysis, Application-Specific System

1. Introduction

Memory-processor integration on System-on-Chips of-
fers new opportunities for reducing the energy of em-
bedded systems. Omne of the key issues in the design
of energy-efficient processor-based architectures for em-
bedded systems is the power consumed by memories [1].
Several researchers have pointed out that the power
consumption in memories can take a dominant frac-
tion on the power budget of a whole embedded sys-
tem for data-dominated applications [2] [3]. Embed-
ded processor-based systems allow for customization
of on-chip memory configuration based on application-
specific requirements [4]. Memory size including not
only the number of word lines, but also the num-
ber of bit lines can be tailored to application require-
ments. Therefore, application-specific memory archi-
tectures can be developed to minimize energy consump-
tion for a given embedded application.

Several researchers have analyzed the power dis-
sipation of different memory architectures for a given
application. Paper[5] presented power reduction tech-
nique for instruction memories in application specific
systems. Paper[6] presented a methodology for devel-
oping models of on-chip SRAM memory organization.
Paper[7] proposed a power-minimization approach to
simultaneous register and memory allocation in behav-
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ior synthesis. The allocation problem is formulated as a
minimum-cost network flow that can be solved in poly-
nomial time. The rationale behind this approach is to
map variables that have nonoverlapping lifetimes.

On-chip caches are well known architectural opti-
mization technique for memory design [8]. Our work
moves from the observation that cache memories are
not the most power-efficient architecture. Informa-
tion storage/retrieval into/from a cache is much more
power-consuming than accessing a memory containing
the same amount of data. In embedded systems, on-
chip SRAM (scratch-pad SRAM) is a valid alternative
to caches. In this architecture, the most frequently ac-
cessed addresses are statically mapped onto scratch-pad
SRAM to guarantee power and performance efficiency.
The main difference between the scratch-pad SRAM
and data cache is that the SRAM guarantees a single-
cycle access-time, whereas access to the cache is subject
to cache misses.

The problem of efficiently utilizing memory banks
in DSPs was addressed. Techniques for partition-
ing variables for simultaneous access into two mem-
ory banks of the Motorola 56000 DSP processor are
reported in [9] and [10]. Paper[11] [12] focused on-
chip SRAM bank partitioning for low energy consump-
tion. They started from the dynamic execution profile
of an embedded application running on a given proces-
sor core, and synthesize a multi-banked SRAM archi-
tecture optimally fitted to the execution profile.

As far as we known, this paper first focuses on
memory organization (allocation and assignment) for
low-energy on-chip memory with respect to the mem-
ory utilization considering not only memory access fre-
quency but also effective data width of variables. We
first present an exploration technique for determining
efficient on-chip memory architecture, characterized by
the size of Scratch-pad memory with different number
of bit lines and word lines, based on variable analysis
for a given application, targeting to reduce energy con-
sumption of memory.

In application-specific design, because the entire
application is to some extent statically known, and this
knowledge let us perform memory allocation and as-
signment more intelligently to reduce the memory en-
ergy consumption. We generate an application-specific
hierarchical memory architecture that exploits the lo-



cality, which caused by non-uniform access to memory.
The more important, we allocate memory also consid-
ering effective data width of variables, because in many
applications, there are a lot bits in variables, which are
never used during program execution. The rationale of
our memory organization technique is to assign those
variables with higher access frequency and smaller effec-
tive data width into a smaller low-energy application-
specific memory with fewer numbers of bit lines and
word lines, which is placed closer the processor. Our
experiments show that the exploration results can pro-
vide critical feedback to the designer about the optimal
memory configuration for a given application. This pa-
per focuses only on the data memory organization be-
cause for many embedded applications, the volume of
data being processed far exceeds the number of instruc-
tions.

The rest of this paper is organized as follows. Sec-
tion 2 gives preliminaries. Section 3 describes vari-
able analysis. Section 4 presents our technique for low-
energy memory organization. Experiments and results
are reported in section 5. Finally, Section 6 concludes
and gives our future work.

2. Preliminaries

This paper focuses on a customized memory organiza-
tion for low energy on-chip memory in data-dominated
applications. The power consumption related to mem-
ory transfer and storage dominates overall system
power [3]. Hence, we perform memory allocation and
assignment considering both memory access frequency
and effective data width of variables to explore low-
energy memory organization.

2.1 Motivation

The task of memory energy optimization
for application-specific systems is to create low-energy
memory architectures customized for a given applica-
tion. Low levels of hierarchy are small, fast, and en-
ergy efficient memories, while high levels of hierarchy
are relatively large, slow, and energy hungry memories.
The motivation for hierarchical memory organization is
exploitation of temporal and spatial storage locality to
reduce the total energy dissipation of the memories.
Energy consumption strongly depends on the size
of physical memory (both of the number of bit lines
and word lines). Memories with smaller size consumed
lower energy. Therefore, we try to allocate variables
with higher access frequency and smaller effective data
width into a smaller memory with fewer numbers of bit
lines and word lines, which leads significant energy re-
duction. However, allocating too many memory banks
leads increase of energy consumption because of ad-
dressing complexity and severe wiring overheads. For
a given embedded application program, our goal is to
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Fig. 1 Bit width and word count vs. energy consumption of
read access for SRAM

determine the memory allocation and assignment by
mapping each variable into on-chip Scratch-Pad SRAM,
while minimizing the application’s overall memory en-
ergy consumption.

2.2 Size-Energy Correlation of Memory

Because a static random access memory(SRAM) does
not require additional fabrication steps and dedicated
technology, it can be easily integrated onto the same
chip with the processor and other logic circuits. There-
fore, embedded SRAMs are much more common in SoC
design than non-volatile memories and DRAMs. In this
work, we focus on on-chip SRAMs, because it will prob-
ably become mainstream in the next few years [13].

For memories, we assume that the power dissipated
for charging the global bit line is in proportional to the
number of partitioned segments, and the power dissi-
pated in a single segment is in proportional to the size
of the segment. Under these assumptions, the memory
power consumption can be approximated by formula-
tion(1), where Nseg, Nuword, 1, A, and 7y denote the num-
ber of segments, the number of words, and coefficients
for each term, respectively.

Nword
Nseg

Erem :n'Nseg"‘)\' + v (1)

In formulation(1), the first and second terms rep-
resent the energy dissipated for charging the global bit
line and the energy dissipated in a single memory seg-
ment respectively. The last term represents a constant
factor in memory power consumption. From formula-
tion(1), it is easy to derive that the number of memory
segments which minimizes the memory power consump-
tion is v/(A/N) - Nword. We generated some SRAM
models by Alliance CAD System Ver.4.0 with 0.5um
double metal CMOS technology, and using the SPICE
simulation of these memories with the different config-
urations, we obtained the estimation models of SRAM
as follows:

er = 24.9- /b Nyora + 56[pJ/cycle] (2)
ew = 197 /b Nyorda + 369[pJ/cycle] (3)
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Fig. 2 Variable distribution for effective data width in

MPEG-2 decoder

Where The access energy of memories for read/write
operations is expressed as e, and e, respectively. b is
the bit width of memory and Ny g is the number of
words.

Figurel shows the bit width and the number of
words VS. energy consumption of read access for our
SRAM modules. It demonstrates that the energy con-
sumption in SRAMs strongly depends on the bit width
and the number of words. The energy consumption of
SRAM reduces with the decrease of the number of bit
lines and word lines.

3. Variable Analysis

In application-specific design, to some extent, the entire
application is statically known. Therefore, by analyzing
effective data width of variables we can reduce unused
bits to reduce memory storage and more over by an-
alyzing the lifetime of variables, we can make efficient
use of memory storage. In addition, we reduce memory
access energy by analyzing variable access frequency.

3.1 Data Width Analysis

In many cases, there are a lot of bits of a variable are
never used during execution of a program. Therefore,
the effective data width of each variable in an appli-
cation program needs to be analyzed in order to use
memory efficiently [14], which results in reduction of
energy consumption.

This section describes methods to analyze effective
data width of variables in C programs, because C lan-
guage is familiar for most designers. In this paper, we
define effective data width as the smallest size which can
hold both maximum and minimum values of a variable
[15] [16]. If a variable x of unsigned integer type whose
value is in [0, 2000], then the number of necessary bits
of x is 11, because the 11-bit size is large enough to hold
any value in [0, 2000]. We use two methods to analyze
effective data width of variables, one is static analysis,
and the other is dynamic analysis.

3
50M ——
susi .
0 45
% 40N 1 ;ﬂwr I
.8 tens
5 3M
2 30M
S
g 25M
O 20
@)
»n 15
[%]
&10
Q
< 5M
0 -
1 4 7 10 13 16 19 22 25 28 31bit
Effective data width
Fig. 3 Access count of variables for MPEG-2 decoder

For static analysis, when the maximum value of an
unsigned integer variable x is Nyq., the effective data
width of z, e(z), is given as follows:

e(x) = logy(nmas + 1) (4)

For a signed integer z with a maximum value 7,4, and
a minimum value 7 pin, e(x) is defined as follows:

e(x) = [logy N +1 (5)
where
N = max(|nmaz| + 1, [0min]) (6)

Static analysis is an efficient method to analyze
the effective data width of variables. However, in many
cases when we can not predict the assigned value of
a variable unless we execute the program, such as the
case of unbounded loops, static analysis becomes in-
sufficient. As a solution to this problem, we adopted
dynamic analysis. In dynamic analysis, we execute the
program and monitor the values assigned to each vari-
able, and then analyze the required data width of the
variable.

We analyzed the C source program of MPEG-2
video decoder using our developed variable analyzer
and got the variable analysis results of effective data
width depicted in figure2. This figure shows that
there are a lot of variables having many unused bits
in MPEG-2 decoder, which originally declared as “int”

type.
3.2 Lifetime Analysis

The lifetime of a variable, defined as the period between
its definition and last use [17]. It is an important metric
affecting register allocation, where variables with dis-
joint lifetimes can be stored in the same register. Just
like this, we analyze lifetime of variables [18], so that
we can cluster them to share same memory. Therefore,
by analyzing lifetime of variables, we can make efficient
use of memory to achieve energy reduction.



3.3 Access Frequency Analysis

It is well known that only a few parts of programs
are frequently executed in many application programs.
Therefore, to profile the access frequencies of the vari-
ables in theses programs and assign them into a small
memory is a effective way for low energy design. The
main purpose of this step is to find a memory organiza-
tion with good storage locality for frequently accessed
memory locations. We have built a profiler, and use
it by simulation, we got the figure3 shown the profiled
results for the access frequencies of variables with effec-
tive data width in MPEG-2 decoder. From the figure,
we can see that there are “hot spots” for variable access
in MPEG-2 decoder.

4. Memory Organization for Low Energy

Memory organization can be divided into two steps.
First, several memories are chosen from the available
memory modules with different number of bit lines and
word lines. This is called memory allocation; second,
the variables are assigned into these allocated memo-
ries. The step is called memory assignment. When vari-
ables are assigned into memories, the size of variables
determines the required memory size and the maximal
data width determines the required bit width of mem-
ories. With the decision of memory allocation and as-
signment, the memory organization is fully determined.

Our target is to find an optimal allocation and
assignment for low-energy application-specific memory.
The target system assumed as the follows: Data mem-
ories are organized by several on-chip SRAMs having
different size with different number of bit lines and word
lines, a hierarchical memory.

The memory model is shown in Figure 4. Various
memory allocation and assignment can be seen as spe-
cializations of the structure. In the hierarchical model,
low hierarchy levels are made of small memories with
few numbers of bit lines and word lines, close to pro-
cessor, and tightly coupled with it. Memories at high
hierarchy levels are made of increasingly size with in-
creasing number of bit lines and word lines, far from
processor. Roughly speaking, the distance between a
processor and a memory hierarchy level represents the
effort needed to fetch (or store) a given amount of data
from (to) the memory. Effort can be expressed in units
of energy. On the other hand, memory levels increases
addressing complexity and has a sizable area overhead.
Both these factors reduce the power savings.

As a concrete example of a memory architecture
that can be modeled with the template of Figure 4, the
hierarchy has three levels. The first level N1 has 16
bytes lines with 8 bit width, the second level N2 has
64 bytes with 16 bit width, and the third level N3 has
128 bytes with 32 bit width. Similarly, memory size
increases with level. Average energy consumption per
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Fig. 4 (a) Monolithic memory (b) Allocated and assigned

memory using our technique

cycle for read accessing a N1 memory is approximately
337pJ; for N2 memory access is 852pJ; and for N3 ac-
cess is 1132pJ.

Our memory optimization technique is based on
the following facts:

e The smaller memory size becomes, the less energy
will be consumed. We consider not only the num-
ber of words but also the bit width of memories.

e Access to memory are highly non-uniform.

e There are a lot of variables, whose many bits are
never used during program executions.

e Variables with disjoint lifetime can share same
memory space.

4.1 Our Approach

The main purpose of memory allocation and assign-
ment is to minimize overall energy cost within perfor-
mance and memory size constraints. Hierarchical orga-
nizations derived from the generic template of Figure4
reduce memory energy consumption by exploiting not
only the nonuniformities in access frequencies but also
effective data width of variables. We generate a hier-
archy memory, whose frequently accessed locations are
placed in low hierarchy levels with small size (few num-
bers of bit lines and word lines).

The procedure of our memory allocation and as-
signment approach for low energy consists of the fol-
lowing phases:

e Phase 1: For a given application program, analyze
variables, report effective data width and access
frequency of variables.

e Phase 2: Formulate energy dissipation of SRAM
modules as the function of memory size including
bit width and the number of words. In this pa-
per we use formulation (2) and (3) as the SRAM
energy models.

e Phase 3: Use analysis results including lifetime,
access frequency and effective data width of vari-
ables, perform memory allocation and assignment
considering not only the number of words but also
the bitwidth of memory, in order to minimize mem-
ory energy consumption.

Detail will be explained in section 4.4, VAbM tech-
nique.
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4.2 Energy Cost Metrics

The energy cost function employed for estimating mem-
ory energy is shown as following. Memory energy dissi-
pation per cycle requires energy models. We adopt the
model shown in section 2, formulation (2) and (3) are
empirically derived from simulation and, unlike other
analytical models, they are expressed in terms of high-
level parameters, the number of words and bit width.
The total energy consumption of memories is the sum-
mation of the memory banks. For each memory bank,
we estimate its energy consumption for read and write

respectively. thin space
TEm =Y (TEm(j) + TEms(j)) (7)
N

TEm(j) = TEm:(j) + TEmuw(j) (®)
TEm,.(j) = Z er(x;) X TNa,(x;) (9)

T, €Q;
TEmw(j) = Y ew(wi) x TNay(z;) (10)

T, €Q;
TEms(j) = Emon x 6(j) (11)

where

TEm : Total energy consumption of memory

N : Total number of memory banks

TEm(j) : Energy consumption of memory bank j

TEms(j) : Energy overhead for added bank j

Emon : Energy consumption of monolithic mem-

ory
TEm,;(j) : Energy consumption of memory
bank j for read(write) access
X : A finite set of variables in a given application
program, X = {x1,xa,...,xs}
x; : A variable, z; € X
er(zi)(ew (i) : Energy consumption per read
(write) access for variable x;

TNa,(x;)(TNay(z;)) : The number of read
(write) accesses for variable z;

Q(4) : the subset of variables assigned into bank j

QU) S X
d(j) : Overhead coefficient for added bank j,
caused by addressing complexity.

4.3 Problem Formulation

This section gives some assumptions and notations, and
then formulates the problem of low-energy memory al-
location and assignment.
Assumption
e We assume that we can generate arbitrary size of
SRAM. The size of the Scratch-Pad SRAM is lim-
ited by the total area available on-chip.
e We assume that register allocation, which assigns
frequently accessed variables such as loop indices

to processor registers, has already been performed.

e In order to determine the optimal memory alloca-
tion and assignment for a given global variable, we
should observe its references over all procedures,
but normally a compiler generates code one proce-
dure at a time. For parameters are similar when
they are passed as pointers. This problem can
be addressed by using inter-procedural data-flow
analysis. In this paper, we assume that all global
variables and parameters can be statically assigned
into on-chip memory.

e During the address register allocation phase, ar-
rays and other aggregate variables become com-
plicated, in this paper we simply treat each array
element as a distinct variable.

Notation

o X ={x1,29,...,xy} : A finite set of variables

e EWd = {EWd(z1), EWd(z2),..., EWd(z,)} : A
set of effective data width for variables x;

o TNa={TNa(z1),TNa(zz),...,TNa(z,)} : A set
of total memory access for variables x;

® Npsgr : The maximum number of allowed memory
banks

e §(j), TEm, N, TEm(j), TEms(j), Q(j) : Defined
in previous section.

Problem Formulation
Given X, EWd, TNa and Njpsqz
To find N and Q(j)
So that TEm = )\ (TEm(j) + TEms(j)) is
minimized
Subject to
N § NMax; Q(]) gX
X =Q)UQR)- UQ(N)
QLNQE@).-NQWN) = ¢
Allocated and assigned memory
N banks, each bank has b(j) x m(j) size (the num-
ber of bit lines and word lines are b(j), m(j) respec-
tively)
where
b(j) = max,,equ) EWd(x:), m(j) = Q)
Given all these definition, our memory allocation
and assignment approach will be given in detail in our
VAbM technique.

4.4 VADbM Technique

This section presents VAbM technique for application-
specific memory organization in detail. VAbM receives
a given application program AP as input, and generates
the customized memory architecture having N banks
along with the assignment of the variable subset Q(j)
into each memory bank with size of b(j) x m(j) bits
as output, which have optimized energy consumption.
Each variable will be served by only one local memory
module, determined statically.

The goal of VAbM technique is that under the
constraints of the maximum number of memory banks



Input:
source program : AP
(variables : z; € Xorg = {z1,22,..;zn}, 1 £ <

n
input data : Dy,
the maximum number of banks : N psq.
overhead coefficient : §(j) (1 £j < N)
Variable:
the number of memory banks N < Njsq.
the subset of variables Q(j) C X
Output:
the optimized number of banks N
the optimized subset of variables Q(5)
the optimized energy consumption TEm opt
the optimized memory with size b(j) x m(j)(bits)
Step 1 : Variable Analysis

analyzer (AP, D;p);
LT = {LT(z1), LT(x3), ..., LT (zn)},
TNa={TNa(z1),TNa(z2),...,TNa(zn)},
return(EWd = {EWd(z1), EWd(z2), ..., EWd(zn)});

Step 2 : Memory Allocation and Assignment

X — CompactVar(Xorg, LT);

Xs «— SortVarl(X,LT);

I1(j) « InitPart(Xs, Nafao);

P(3) < GetopP(I(j), LT);

C(j) « SortVar2(P(j), EWd);

Q(j) «— GenQ(C(j), TNa, EWd);
TDm =y (TDm(j) + TDma(j));
TEm = (TEm(j) + TEms(j));
TEmopt — GetOpt(TEm,TDm);
b(j) = MaXy, cQ(j) EWd(CL’Z),

m(3) = 1QG)];

return(N, Q(3), TEmopt, T Dm, b(3), m(j));

Fig. 5 Pseudo code of VAbM technique

and the memory delays, to find the optimal number of
banks N and the assignment of those variables Q(j)
in each bank to optimize memory energy consumption.
If we select the characteristics of the memory modules
such as bit width b(j) and word count m(j) considering
all possible patterns to optimize memory, it will be a
NP-hard problem. An exhaustive-search algorithm to
solve the memory assignment problem would have to
first generate clusters of all combinations of compati-
ble variables(variables that can share the same SRAM
space) using lifetime analysis results and then generate
all possible combinations of these clusters and pick the
combination with total size fitting into the SRAM that
minimize the total energy consumption. This procedure
requires O(22")time, which is unacceptably expensive,
since the function y = 22" grow very rapidly, even for
small values of n.

However, the memory assignment problem domain
for practical applications are restricted to a smaller
range of bit-widths(the bit-width of a memory mod-
ule typically lies between 4 and 128) and the maximum
number of memory banks constraint is smaller (usually
Nyraz < 4). Thus, we can apply an exhaustive search
(enumeration) scheme to find the optimal solution. We
propose VAbM technique, considering variable analysis
results of lifetime, access frequency and effective data
width, which is evaluated by our experiments shown in

X= {Xl, X2, X3, X4, Xs, Xs, X7, Xs, X9}

SlelclelCiclGlele

(a) Variables in an example

Xs= {Xs, Xa, Xs, Xs, X1, X7, Xs, X7, X9}
Min

Max
HEOEOOEO®®

(b) Sorted variables by TNa from Max to Min

TNa(x)

& @ E N3

(c)Initial partition I(j) with

HE® @ @ N3

(d)Optimized partition

Nmax groups from Xs P(j) from 1(j)
EWd(x)
Min Max

H®OE® Ns

(F)Optimized partition
Q(j) from C(j)

@@ @ G N3

(e)Sorted variables C(j) by
EWd in each bank from P(j)

(g)Allocated and assigned memory by VAbM

Fig. 6 VAbM Technique

section 5.

For VAbM technique, we use the SRAM models
shown in section 2, formulation (2), (3) and (5). We
assume that we can use the arbitrary number of bit
lines and word lines. Figureb is the pseudo-code of
VAbM technique composed of two steps. In the first
step, variables are analyzed, effective data width LT,
access frequency T Na and lifetime EWd of variables
are reported. This information will be used to cus-
tomize the memory architecture.

In the second step, memory allocation and assign-
ment based on variable analysis results are performed,
and energy consumption of the allocated and assigned
memory is optimized. In our solution to the memory
allocation and assignment problem, we first group vari-
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ables that could share SRAM space into clusters us-
ing lifetime analysis results of variables to minimize
memory storage. We formulate this problem as clique-
partitioning problem [19] [20]. Then we customize
memory for a given application considering access fre-
quency and effective data width of variables. Variables
with high frequency of access and small effective data
width are good candidates to store in a small memory
with few numbers of bit lines and word lines to reduce
energy consumption of memory. However, in many ap-
plications the variables with small effective data width
may have low access frequency. Because in real applica-
tion, the access frequencies are far bigger than effective
data width of variables (TNa >> EWd), we partition
memory considering access frequency of variables first.
For example, we have a given application program with
the variables, X = {x1,x2,...,210} ( assume that vari-
ables have been compacted by lifetime analysis results
of variables) shown in Figure 6(a) and a given constraint
number of memory banks which is 3 (Npsae = 3).

For VAbM technique, firstly we do not do any par-
tition and we can compute the energy consumption
Emon for monolithic memory. Secondly, we add the
access frequency TNa(z;) to each variable z; in X,
and then sort these variables, generate a sorted vari-
able set X, which is arranged from maximum access
count to minimum access count shown in Figure 6(b).
Thirdly, we do the initial partition, namely the num-
ber of variables sorted in X, is divided by the maxi-
mum number constraint of memory banks, Nz, , then
we get I(j) 6(c). Fourthly, optimize partition I(j) by
access count of variables. In the example, we move
the variables by access count (from maximum to min-
imum) from I(2) to I(1) until the total energy con-
sumption TEm is minimized or P(1) = ¢, then re-
peat the same thing with I(3) and I(2). At last, we
get optimized memory banks configuration P(j) 6(d).
Fifthly, we sort the variables by effective data width
EWd(z;) in P(j) into C(j) 6(e), and pick the maximum
and minimum of TEn(j), we mark them C g, (j) and
CEmin(j) respectively, then from Cgpaz(j) move the
variables by effective data width EWd(z; (from min-
imum to maximum), until total energy consumption
TEM is minimized, or Cgmae = 0. Therefore, from
C(j), we get Q(j) 6(f). And then, variables in Q(j) are
assigned to each bank, energy consumption TEm(j)
of different memory banks, overhead values of energy
penalty TEmg(j) for adding banks and the total en-
ergy consumption T Em of memories are estimated, at
last the optimized memory allocation and assignment
is achieved shown in Figure6(g).

5. Experiments and Results
This section presents experiments and results to eval-

uate the proposed VAbM technique. We use real em-
bedded applications as our benchmarks. Our target is

N3 Mem
N1 Mem 8
BRd
Ctl %
Proc
<
Add
Data|
Bl
N2 Mem

Fig. 7 Physical model of the allocated and assigned
memory using VAbM

to customize memory suitable to a given application.
We assume that the physical model of the processor-
based system with allocated and assigned memory is
that the processor is placed facing the memory system.
The memory address and data buses are between two
levels of memory banks facing each other. Memory se-
lection and decode logic is placed between memory and
processor shown in figure 7. This is a simple physical
model used as a basis for assuming the values for en-
ergy penalty coefficient § = {4(1),6(2),...,6(N)}, and
the maximum number of allocation banks N4z .

In our experiments, Njsqr = 3 is assumed. This
is a conservative bound on allocation and assignment.
d is assumed to 6 = [0,0.15,0.10]. Overhead penalty
§(2) = 0.15 means that the overhead energy is 15% of
the energy consumed by the monolithic memory, which
is the largest because of a sizable penalty caused by the
selection control logic, the routes of the buses and con-
trol wires from the unpartitioned memory to the parti-
tioned solution. §(3) = 0.10 is still big, because when
one bank is added from two banks to three banks, a
bus stub to the right of the rest pair of banks is needed.
The simplified physical model is obviously just one of
the many possible choices. Our technique is completely
independently from it. Furthermore, the values of §
we set is fairly conservative. In fact, the penalties can
be tightened to use appropriate layout techniques,, and
more aggressive partitioning (Max > 3) could be con-
sidered in a real design.

Table 1 shows the results of the experiments em-
ployed our low-energy memory design technique based
on variable analysis(VAbM). To illustrate the effec-
tiveness of our technique, we compare the experimen-
tal results to not only monolithic memory, but also
memory designed by banking technique, which is usu-
ally used by most of memory designers. We use five
real embedded applications as benchmarks, which are
calculator, Lempel-Ziv algorithm, ADPCM encoder,
MPEG-2 AAC audio decoder, and MPEG-2 video de-
coder. The first column Emon shows the total energy
consumption of monolithic memory. The next three
columns show the results of memory banking technique.
Con figuration shows the details on how the various
memory banks are organized, in which bit width of



each memory bank is 32bits, T Eb is the total energy
consumption of memory banks. Saving shows the re-
duction compared to monolithic memory. The alloca-
tion and assignment results obtained by VAbM tech-
nique are listed in the last three columns, where Col-
umn Con figuration provides the details on how the
various memory banks are organized, while T Em gives
the total energy consumption of the optimized mem-
ory. Finally, column Saving reports the percentage of
energy reduction for the optimal organization over the
monolithic one. Our approach achieved drastically en-
ergy reduction up to 64.8%, the average energy savings
is of 46.4%. The energy results also include the wiring
and logic energy overhead given by §. Compared to the
memory designed by memory banking technique, our
experimental results show that we can get up to 27.7%
energy reduction, average 15.9% for the experimental
applications shown in figure 8.

By considering not only access frequencies but also
effective data width of variables, we combine the mem-
ory banking technique with variable analysis technique
to perform memory allocation and assignment for a
given application. The memory storage is managed
more judiciously, resulting in significant energy reduc-
tion, without sacrificing cycles.

6. Conclusions

In this paper, we proposed a low-energy memory orga-
nization technique based on variable analysis (VAbM),
which presents the optimum solution under a given con-
straint of the maximum number of banks. The hard-
ware and wiring overhead due to additional memory
banks is properly taken into account as a penalty fac-
tor. We have demonstrated significant energy savings
average about 46.4%, based on several real embedded
applications with respect to monolithic memory and
27.7% to memory designed by memory banking tech-
nique. We will work on integration of customizing both
processors and memories based on variable analysis for
low-energy application-specific systems.
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