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Abstract 

We study the difference in AC magnetization (M–H) curves between suspended and immobilized 

magnetic nanoparticles (MNPs). We use three commercial MNP samples that are often used for 

biomedical application. First, we measure the hysteresis area of the AC M–H curve, A, when the 

amplitude of the excitation field, Hac, is changed. The A vs. Hac curve is compared with previously 

obtained analytical results by taking account of the MNP size distribution in the sample. We show that 

they quantitatively agree for both suspended and immobilized samples. From the comparison, we 

clarify the mechanism that determines the AC M–H curve of a suspended sample. For high Hac, the 

Néel relaxation becomes dominant in the suspended sample, and alignment of easy axes caused by the 

AC field increases the hysteresis loss compared to the immobilized case. The effect of Brownian 

relaxation in the suspended sample increases with decreasing Hac and gives additional loss at low field. 

The portion of Néel-relaxation- and Brownian-relaxation-dominant MNPs in the sample is 

quantitatively evaluated. We also clarify the difference in harmonic signals between suspended and 

immobilized samples. Finally, we discuss the condition for the MNP parameters and excitation field 

that determines the dominant relaxation mechanism in a suspended sample.  

 

 

 

Key words 

Magnetic nanoparticle; Néel relaxation; Brownian relaxation; hysteresis loss; harmonic signals; easy 

axis alignment  

  



2 
 

1. Introduction 

The AC magnetization (M–H) curve of magnetic nanoparticles (MNPs) has been widely studied for 

biomedical application. For example, MNP hysteresis loss has been studied for magnetic hyperthermia, 

where the loss is used to raise the temperature of cancer cells to kill them [1-9]. Harmonic signals 

caused by nonlinear magnetization have been studied for magnetic particle imaging (MPI), where the 

three-dimensional position of MNPs is detected with high temporal resolution for medical diagnosis 

[10-13]. Harmonic signals are also used for magnetic biosensing, where disease-related biological 

targets are detected using bio-functionalized MNPs [14-18]. 

These magnetic properties are different between suspended and immobilized MNPs. The difference 

in these properties can also be used to magnetically distinguish the suspended and immobilized MNPs 

when they coexist in a sample. For immobilized MNPs, the dynamic behavior is determined by Néel 

relaxation. The easy axis of magnetization is fixed regardless of time, and only the magnetic moment 

vector rotates owing to Néel relaxation when an AC field is applied. However, for MNPs suspended 

in liquid, both the Brownian and Néel relaxations affect the AC M–H curve. Both the easy axis and 

magnetic moment vector rotate owing to Brownian and Néel relaxation, respectively. 

The extent to which Brownian or Néel relaxation contributes to the AC M–H curve of suspended 

MNPs considerably depends on MNP parameters and excitation conditions. As a result, the AC M–H 

curve of suspended MNPs becomes very complicated. Thus far, theoretical studies have been done for 

two limiting cases. One is τN(H) >> τB(H), where τN(H) and τB(H) are the field-dependent Néel and 

Brownian relaxation times, respectively. In this case, the AC M–H curve of suspended MNPs is 

determined by linear or nonlinear Brownian relaxation [4, 19]. The other case is τN(H) << τB(H). In 

this case, the dynamic behavior of suspended MNPs is primarily dominated by Néel relaxation. The 

magnetic moment rotation is caused by Néel relaxation. In addition, when the field H becomes strong, 

successive Brownian (or physical) rotation of suspended MNPs occurs, causing partial alignment of 

easy axes [20-25]. We note that the mechanism that gives the difference in AC M–H curves between 

suspended and immobilized MNPs is different for the two cases.  

The condition under which these two cases can be applied is determined not only by the MNP 

parameters but also by the amplitude and frequency of the excitation field H. This is because τB and 

τN depend on H. As a result, H determines whether MNP behavior is Néel-relaxation-dominant or 

Brownian-relaxation-dominant even when MNP parameters are fixed. Therefore, it is necessary to 

quantitatively clarify the condition for each of these two cases in a suspended sample. When this 

condition is obtained, we can clarify the mechanism that results in the different AC M–H curves 

between suspended and immobilized MNPs.   

 In this paper, we study the difference in the AC M–H curves between suspended and immobilized 

MNPs. We use three commercial MNP samples that are often used for biomedical application. First, 

we evaluate the magnetic parameters such as the saturation magnetization, Ms, anisotropy constant, K 
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and distribution of magnetic core size dc in each sample. Next, the hysteresis area of the AC M–H 

curve, A, is measured when the amplitude of the excitation field, Hac, is changed. The measured A vs. 

Hac curve is compared with analytical results. We show quantitative agreement between them for both 

suspended and immobilized samples. From the comparison, we clarify how the Brownian and Néel 

relaxations contribute to the hysteresis loss in a suspended sample. For our samples, easy axis 

alignment caused by the AC field increases the loss at high fields, while Brownian relaxation increases 

the loss at low fields. We also show the difference in harmonic signals between suspended and 

immobilized samples. Finally, we discuss the condition for the MNP parameters and excitation field 

that determines the dominant relaxation in a suspended sample.  

2. Materials and methods 

We used three commercial MNP samples: synomag (micromod GmbH, Germany), MS1 (Meito, 

Japan) and perimag (micromod GmbH, Germany), hereafter denoted as SY, MS and PE, respectively. 

The samples are multi-core based magnetic nanoparticles, and consist of elementally particles and 
crystallized agglomerates of elementary particles. We emphasize that the agglomerates are 
crystallized and can thus be regarded as an effective single core with size dc, as discussed in 
previous papers [26, 27].  

Synomag consists of maghemite (γ-Fe2O3) cores covered by a dextran shell, and their 

hydrodynamic diameter is nominally dH = 50 nm [28]. Riahi et al presented a transmission electron 

microscope (TEM) image of synomag, and obtained physical size of particles as dTEM = 9 and 24.3 

nm for elementary particles and agglomerates, respectively [29]. They also obtained dH = 66.5 nm 

using the dynamic light scattering (DLS) measurement. MS1 are carboxydextran-coated nanoparticles 

of a mixture of magnetite (Fe3O4) and maghemite, and are magnetically fractionated from Resovist 

(FUJIFILM RI Pharma, Japan) so as to have large core size [30]. The values of dH = 55.2 nm and dTEM 

= 4.6 nm for elementary particles were reported for Resovist in ref. [29], but the dTEM value for 

agglomerates was unknown. Perimag consists of maghemite cores covered by a dextran shell with dH 

= 130 nm [28]. Tay et al obtained dTEM = 5.5 nm for elementary particles of perimag [31], but the 

dTEM value for agglomerates was not reported.  

 We first measured the DC M–H curve of each sample suspended in water up to µ0Hdc = 1 T using 

a homemade measurement system based on vibrating sample magnetometer (VSM) method. The 

distribution of dc was estimated by analyzing the DC M–H curve.  

Then, the AC M–H curves were measured for both the suspended and immobilized samples. For 

the suspended sample, 150 µg-Fe of MNPs were dispersed in 150 µL of water. For the immobilized 

sample, 150 µg-Fe of MNPs were dispersed in 150 µL of epoxy resin. The epoxy resin was initially 

liquid and began to solidify after 10 min, and almost completely solidified in about 1 h. When the 

epoxy resin is in liquid state, Brownian rotation of MNPs occurs, and the easy axes of MNPs become 
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randomly oriented. Then, solidification of the epoxy resin occurs. Therefore, MNPs are immobilized 

with randomly oriented easy axes when solidification of the epoxy resin completes [24]. 

The AC M–H curves were measured using a homemade measurement system, whose details were 

mentioned in our previous paper [32]. The excitation field frequency was f = 20 kHz, and the amplitude 

was changed from µ0Hac = 8 to 20 mT. 

3. Results 

3.1. Evaluation of MNP parameters 

In the present paper, we assume that Ms and K are constant in sample, i.e., they are independent of 

core size dc. Table I lists the parameters of the three MNP samples, obtained as follows. First, we 

measured the DC magnetization (Mdc-Hdc) curve. The Mdc value was almost saturated at µ0Hdc = 1 T. 

For simplicity, therefore, Ms was obtained from Mdc measured at µ0Hdc = 1 T. We obtained Ms = 345, 

360 and 295 kA/m for synomag, MS1 and perimag, respectively. We note that the linear relationship 

between Mdc and 1/Hdc was observed at high fields µ0Hdc > 0.3 T, as expected from the Langevin 

function (see Eq. (A3) in Appendix A). The Ms value can also be estimated by extrapolating the linear 

Mdc vs 1/Hdc relation to 1/Hdc = 0 [33], and we obtained Ms = 348, 366 and 298 kA/m for synomag, 

MS1 and perimag, respectively. These values were almost the same as the Ms values obtained from 

Mdc measured at µ0Hdc = 1 T. 

The distribution of the core size dc in an MNP sample was obtained by analyzing the measured 

Mdc–Hdc curve [34] (see Appendix A). The distribution was expressed as a dc vs. n(dc)Vc curve, where 

n(dc) is the number density of MNPs with a core diameter dc per unit of MNP volume, and Vc = (π/6)dc3 

is the volume of the magnetic core. Fig. 1 presents the results for the three samples. The dc vs. n(dc)Vc 

curve has two peaks for all three samples. The peak at small dc (near dc = 6 nm) corresponds to 

elementary particles, while the peak at large dc corresponds to crystallized agglomerates. The portion 

of agglomerates is much larger than that of elementary particles. The agglomerate dc value is 

distributed from 12 to 30 nm for synomag. For MS1 and perimag, dc for the agglomerates ranged from 

10 to 45 nm. The typical agglomerate dc value, dc,typ, that gives the peak of n(dc)Vc is dc,typ = 17.8, 23.7 

and 24.6 nm for synomag, MS1 and perimag, respectively. 

 

Table I. Parameters of the three MNP samples 

sample Ms  

(kA/m) 

K  

(kJ/m3) 

µ0Hk  

(mT) 

dc,typ  

(nm) 

mtyp 

(10-18 Am2) 

σtyp 

synomag 345 9.7 56.2 17.8 1.02 6.9 

MS1 360 7.0 38.9 23.7 2.51 11.8 

perimag 295 5.8 39.3 24.6 2.30 10.9 
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Fig. 1. Core size distribution for the three MNP samples: synomag (SY), MS1 (MS) and perimag (PE). 

 

 

Examples of the AC M–H curves are shown in Fig. 2(a). They were measured for immobilized 

(solid) and suspended (water) MS1 samples when f = 20 kHz and µ0Hac = 20 mT. The M value and 

hysteresis of the suspended sample were larger than those of the immobilized sample.  

The anisotropy constant K was estimated by analyzing the coercive field <Hc> of the AC M–H 

curve for the immobilized sample. An analytical expression for <Hc> accounting for the dc distribution 

has been obtained in ref. [35] [Eq. (B4) in Appendix B]. This expression was compared with the 

measured <Hc>– Hac curve taking K as an adjustable parameter. The value of K was determined to 

obtain the best fit between experiment and analysis. Fig. 2(b) presents the <Hc>– Hac curve obtained 

for the three samples. Symbols represent the experimental results, while the solid lines are the 

analytical results. The value of K was chosen as 9.7, 7.0 and 5.8 kJ/m3 for synomag, MS1 and perimag, 

respectively. We obtained good agreement between analysis and experiment for synomag. For MS1 

and perimag, agreement was good at high fields, but deviation occurred at low fields. We note that the 

K values obtained for synomag and MS1 were a little larger than those reported in ref. [35]. This will 

be because magnetic parameters are slightly different for each product lot. 

From Ms and K, the field Hk is defined as 

𝐻𝐻𝑘𝑘 =
2𝐾𝐾
𝜇𝜇0𝑀𝑀𝑠𝑠

 .  (1) 

Synomag has highest Hk, while MS1 and perimag have similar Hk values, as shown in Table I. 

 Using the dc,typ values in Table I, we also estimated the typical values of mtyp=MsVc,typ and σtyp = 

KVc,typ/(kBT), where kB is the Boltzmann constant and T is the absolute temperature. These values 

increase in the order synomag, perimag and MS1, as shown in Table I. 
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Fig. 2. (a) AC M–H curve of the MS1 sample measured at f = 20 kHz and µ0Hac = 20 mT. (b) <Hc>– 

Hac curves for the three immobilized MNP samples. Symbols are experimental results, while the solid 

lines are analytical results obtained from Eq. (B4). The calculation used the values K = 9.7, 7.0 and 

5.8 kJ/m3 for synomag, MS1 and perimag, respectively.   

 

 

3.2. Hysteresis loss 

We consider the case when the AC excitation field 

𝐻𝐻(𝑡𝑡) = 𝐻𝐻𝑎𝑎𝑎𝑎 sin(2𝜋𝜋𝜋𝜋𝜋𝜋)  (2)  
is applied to an MNP sample. The hysteresis loss per unit cycle, <A>, is given by 

〈𝐴𝐴〉 = −�𝜇𝜇0𝑴𝑴 ∙ 𝑑𝑑𝑯𝑯 = 𝜋𝜋𝜇𝜇0𝐻𝐻𝑎𝑎𝑎𝑎Im[𝑀𝑀1] , (3) 

where Im[M1] is the imaginary part of the fundamental component M1 when M(t) is expressed as a 

Fourier series. We obtained Im[M1] from the measured M(t), and then obtained <A> using Eq. (3). 

3.2.1. Immobilized MNPs with randomly oriented easy axes 

We first study <A> for an immobilized MNP sample, where the AC M–H curve is determined by 

Néel relaxation. Fig. 3 shows the dependence of <A> on Hac. Red circles represent the measured <A> 

vs. Hac curves for immobilized (solid) MNP samples. The results for synomag, MS1 and perimag are 

shown in Fig. 3(a), 3(b) and 3(c), respectively. 
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Fig. 3. <A> vs. Hac curve for (a) synomag, (b) MS1 and (c) perimag. Circles and rectangles represent 

the experimental results for the immobilized (solid) and suspended (water) samples, respectively. The 

lines are calculated from Eqs. (11) and (19). 

 

We compare these experimental results with analysis. When MNPs have the same core size dc and 

their easy axes are randomly oriented, an empirical expression for A, which we denote as ANR, was 

obtained based on numerical simulation, and is given by [36] 

𝐴𝐴𝑁𝑁𝑁𝑁(𝑑𝑑𝑐𝑐) = �
1.92𝐾𝐾(1 − 1.08𝜅𝜅) × 𝑔𝑔𝑁𝑁𝑁𝑁 for 𝜅𝜅 < 0.63         

1.92𝐾𝐾exp �−�
𝜅𝜅

0.6�
2.2
�× 𝑔𝑔𝑁𝑁𝑁𝑁 for 𝜅𝜅 > 0.63,   (4)

 

with 

𝜅𝜅 =
1
𝜎𝜎

ln �
1

4𝜉𝜉𝑎𝑎𝑎𝑎𝑓𝑓𝜏𝜏0
� , (5) 

where σ = KVc/(kBT), ξac = µ0mHac/(kBT) and m = MsVc is the magnetic moment. τ0 is the characteristic 

time and was set as τ0 = 10–9 s. 

   The value of gNR in Eq. (4) is given by 
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𝑔𝑔𝑁𝑁𝑁𝑁 =
exp �ℎ𝑎𝑎𝑎𝑎 − ℎ1

Δℎ �

1 + exp �ℎ𝑎𝑎𝑎𝑎 − ℎ1
Δℎ �

, (6) 

with  

ℎ1 = 0.12�ℎ𝑎𝑎𝑎𝑎,𝑡𝑡ℎ�
2 + 0.72ℎ𝑎𝑎𝑎𝑎,𝑡𝑡ℎ + 0.06, (7) 

ℎ𝑎𝑎𝑎𝑎,𝑡𝑡ℎ = �
0             for 𝜎𝜎 ≤ 𝜎𝜎𝑡𝑡ℎ ,

0.6 �1 −
𝜎𝜎𝑡𝑡ℎ
𝜎𝜎 �  for 𝜎𝜎 > 𝜎𝜎𝑡𝑡ℎ  (8) 

Δℎ = 0.025 ,   (9) 

where hac = Hac/Hk is the normalized field amplitude. The value of σth in Eq. (8) is determined by the 

frequency f of the applied field that satisfies the condition 

2𝜋𝜋𝜋𝜋𝜋𝜋𝑁𝑁(0) =
𝜋𝜋
3
2

�𝜎𝜎𝑡𝑡ℎ
𝑓𝑓𝑓𝑓0exp(𝜎𝜎𝑡𝑡ℎ) = 1.  (10) 

When dc is distributed in the sample, the hysteresis loss of the sample, <ANR>, is given by  

〈𝐴𝐴𝑁𝑁𝑁𝑁〉 =
1

∫ 𝑛𝑛𝑉𝑉𝑐𝑐
∞
0 𝑑𝑑𝑑𝑑𝑐𝑐

 � 𝑛𝑛𝑉𝑉𝑐𝑐
∞

0
𝐴𝐴𝑁𝑁𝑁𝑁(𝑑𝑑𝑐𝑐)𝑑𝑑𝑑𝑑𝑐𝑐 .  (11) 

  The red lines in Fig. 3 represent <ANR> calculated with Eq. (11) for the three samples. In the 

calculation, the value of nVc was obtained from the dc vs. n(dc)Vc curve in Fig. 1. The values of Ms, K 

and Hk in Table I were used, and the value of σth was obtained from Eq. (10) as σth=10.3 for f = 20 

kHz. As shown in Fig. 3, we obtained good agreement between experiment and analysis for the three 

MNP samples, indicating the validity of Eq. (11). We emphasize that there is no adjustable parameter 

in the calculation.  

3.2.2. Suspended MNPs 

Next, we study <A> for MNP samples suspended in water. In Fig. 3, blue rectangles represent the 

measured <A> vs. Hac curve for suspended (water) MNP samples. As shown, <A> for the water sample 

was much larger than for the solid sample. 

We compare these experimental results with analysis. For suspended MNPs, analytical expressions 

for hysteresis loss were obtained for two limiting cases, as shown below.  

3.2.2.1. Hysteresis Loss due to Brownian relaxation 

An analytical expression for Im[M1] in Eq. (3) has been obtained for the dynamics of suspended 

MNPs dominated by Brownian relaxation [19]. The hysteresis loss in this case, ABR, is given by   

𝐴𝐴𝐵𝐵𝐵𝐵(𝑑𝑑𝑐𝑐,𝑑𝑑𝐻𝐻) =
𝜋𝜋𝜇𝜇0𝐻𝐻𝑎𝑎𝑎𝑎𝑀𝑀𝑠𝑠

3
𝜉𝜉𝑎𝑎𝑎𝑎𝑘𝑘"(𝜉𝜉𝑎𝑎𝑎𝑎)𝑔𝑔𝐵𝐵𝐵𝐵(𝜉𝜉𝑎𝑎𝑎𝑎)

2𝜋𝜋𝜋𝜋𝜏𝜏𝐵𝐵(𝐻𝐻)
1 + [2𝜋𝜋𝜋𝜋𝜏𝜏𝐵𝐵(𝐻𝐻)]2    (12) 
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with 

𝑘𝑘"(𝜉𝜉𝑎𝑎𝑎𝑎) = 1 +
0.024𝜉𝜉𝑎𝑎𝑎𝑎2

1 + 0.18𝜉𝜉𝑎𝑎𝑎𝑎 + 0.033𝜉𝜉𝑎𝑎𝑎𝑎2
 , (13) 

𝑔𝑔𝐵𝐵𝐵𝐵(𝜉𝜉𝑎𝑎𝑎𝑎) = 1 −
𝜉𝜉𝑎𝑎𝑎𝑎3

10 + 9𝜉𝜉𝑎𝑎𝑎𝑎 + 3.81𝜉𝜉𝑎𝑎𝑎𝑎2 + 𝜉𝜉𝑎𝑎𝑎𝑎3
 . (14) 

   The quantity τB(H) in Eq. (12) is the field-dependent Brownian relaxation time given by [19, 37] 

𝜏𝜏𝐵𝐵(𝐻𝐻) =
𝜏𝜏𝐵𝐵,0

�1 + 0.07𝜉𝜉𝑎𝑎𝑎𝑎2
 , (15) 

where τB,0 =3ηVH/(kBT), η is the liquid viscosity (0.86 mPa s for water), and dH and VH = (π/6)dH3 are 

the hydrodynamic diameter and hydrodynamic volume of an MNP, respectively. 

3.2.2.2. Hysteresis loss due to Neel relaxation with easy axis alignment 

We consider the case τN(H) < 1/(2πft) << τB(H), where the MNP dynamics is primary dominated by 

Néel relaxation. In addition, the AC field causes successive Brownian (physical) rotation of suspended 

MNPs, and the easy axes are partially aligned along the applied field [20, 25]. The empirical 

expression for A in this case, ANA, is [38] 

𝐴𝐴𝑁𝑁𝑁𝑁 = 𝐴𝐴𝑁𝑁𝑁𝑁 × 𝑅𝑅𝐴𝐴 , (16) 

where ANR is the hysteresis loss when MNPs are immobilized with randomly oriented easy axes and 

is given in Eq. (4). RA represents the increase in loss due to easy axis alignment and is given by  

𝑅𝑅𝐴𝐴 = 1 + 1.2tanh�0.12𝜉𝜉𝑒𝑒𝑒𝑒𝑒𝑒�, 𝜉𝜉𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
√2

𝜉𝜉𝑎𝑎𝑎𝑎  , (17) 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = �
ℎ𝑎𝑎𝑎𝑎

1.15�1− √𝜅𝜅�
[0.28 + 0.009(𝜎𝜎𝜎𝜎)2]  for ℎ𝑎𝑎𝑎𝑎 < 1.15�1− √𝜅𝜅�

0.28 + 0.009(𝜎𝜎𝜎𝜎)2 for ℎ𝑎𝑎𝑎𝑎 ≥ 1.15�1− √𝜅𝜅� ,        (18)
, 

 

where keff = 0 for κ >1, and keff = 1 when the right side of Eq. (18) is greater than 1. 

3.2.2.3. Hysteresis loss for a suspended MNP sample  

   We combine ABR in Eq. (12) and ANA in Eq. (16) to obtain the hysteresis loss for the suspended 

sample, <AW>. As shown in Fig. 4, ANA becomes dominant for smaller dc, while ABR becomes 

dominant for larger dc. We obtain the following approximate expression for <Aw> when dc is 

distributed in the sample: 

〈𝐴𝐴𝑤𝑤〉 =
1

∫ 𝑛𝑛𝑉𝑉𝑐𝑐
∞
0 𝑑𝑑𝑑𝑑𝑐𝑐

 �� 𝑛𝑛𝑉𝑉𝑐𝑐
𝑑𝑑𝑐𝑐,𝐵𝐵

0
𝐴𝐴𝑁𝑁𝑁𝑁(𝑑𝑑𝑐𝑐)𝑑𝑑𝑑𝑑𝑐𝑐 + � 𝑛𝑛𝑉𝑉𝑐𝑐

∞

𝑑𝑑𝑐𝑐,𝐵𝐵

𝐴𝐴𝐵𝐵𝐵𝐵(𝑑𝑑𝑐𝑐)𝑑𝑑𝑑𝑑𝑐𝑐� , (19) 

where dc,B is the value of dc that distinguishes the two cases.  

   An example of the dc vs. nVcA curve is shown in Fig. 4. The blue and red lines show the dc vs. 
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nVcANA and dc vs. nVcABR curves, respectively. These curves are calculated for the MS1 sample with 

dH = 60 nm when f = 20 kH and µ0Hac = 14 mT. We obtained dc,B= 31 nm for this case. In Eq. (19), 

therefore, we use ANA for dc < dc,B and ABR for dc > dc,B. 

 
Fig. 4. dc vs. nVcANA and dc vs. nVcABR curves. The curves are calculated for the MS1 sample with dH 

= 60 nm when f = 20 kH and µ0Hac = 14 mT. 

 

 

   In Fig. 3, the solid blue lines represent the <AW> vs. Hac curves calculated from Eq. (19) for the 

suspended samples. In the calculation, we neglected the dH distribution in the sample for simplicity. 

We took dH as an adjustable parameter and set dH = 50, 60 and 70 nm for synomag, MS1 and perimag, 

respectively. The dH values were consistent with the nominal ones for synomag and MS1, while dH 

was smaller than the nominal value for perimag. We obtained good agreement between experiment 

and analysis for the three samples. These agreements indicate the validity of Eq. (19).  

For comparison, the broken lines in Fig. 3 are the <ANA> vs. Hac curves calculated by setting 

𝑑𝑑𝑐𝑐,𝐵𝐵 = ∞ in Eq. (19). We note that the difference between <AW> and <ANA> represents the effect of 

Brownian relaxation. In Fig. 3(a), the difference between <AW> and <ANA> is small for the synomag 

sample, indicating that the effect of Brownian relaxation is negligible. For the MS1 and perimag 

samples, <AW> was almost the same as <ANA> for µ0Hac > 16 mT. However, the difference between 

them increased with decreasing Hac for µ0Hac < 16 mT. These results indicate that the effect of 

Brownian relaxation is small at high fields but becomes larger at low fields.  

   We now study the value of dc,B in Eq. (19) that separates the Néel-relaxation-dominant and 

Brownian-relaxation-dominant MNPs in the sample; dc,B can be calculated from Eqs. (12) and (16) 

with the condition ABR = ANA. We note that dc,B becomes dependent on Hac, indicating that the portion 

of Néel-relaxation- and Brownian-relaxation-dominant MNPs changes when Hac changes. Fig. 5(a) 

shows the dependence of dc,B on Hac, whereby dc,B increases with increasing Hac. Because Néel 

relaxation becomes dominant for MNPs with dc < dc,B, this result indicates that the portion of Néel-
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relaxation-dominant MNPs in the sample increases with Hac. The volume fraction of these MNPs, 

VFNeel, is estimated as 

𝑉𝑉𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = � 𝑛𝑛𝑉𝑉𝑐𝑐
𝑑𝑑𝑐𝑐,𝐵𝐵

0
𝑑𝑑𝑑𝑑𝑐𝑐 � 𝑛𝑛𝑉𝑉𝑐𝑐

∞

0
𝑑𝑑𝑑𝑑𝑐𝑐� . (20) 

   Fig. 5(b) presents the increase in volume fraction with Hac. The volume fraction becomes larger 

than 90% at high fields. This result means that the AC M–H curve of the suspended sample is almost 

dominated by Néel relaxation at high fields. However, the volume fraction decreases with decreasing 

Hac, corresponding to the increase in Brownian-relaxation-dominant MNPs at low fields. Therefore, 

the contribution of Brownian relaxation increases at lower fields. From Fig. 5(b), we see that the 

volume fraction of Brownian-relaxation-dominant MNPs at µ0Hac = 8 mT was 30% for MS1 and 17% 

for synomag. Therefore, the effect of Brownian relaxation is largest for MS1 and smallest for synomag.  

 

Fig. 5. (a) dc,B vs. Hac curves. (b) Change in volume fraction of Néel-relaxation-dominant MNPs in the 

three samples when Hac is varied. The broken lines are for the eyes.  

 

 

3.3. Comparison between immobilized and suspended samples 

3.3.1. Hysteresis loss and coercive field 

   We first compare <A> between suspended (water) and immobilized (solid) samples. The ratio R<A> 

is defined as 

𝑅𝑅〈𝐴𝐴〉 =
〈𝐴𝐴(water)〉
〈𝐴𝐴(solid)〉

 .  (21) 

   Fig. 6(a) presents the dependence of R<A> on Hac for the three samples. For µ0Hac > 16 mT, the 

R<A> values for MS1 and perimag were almost the same and were much larger than that for synomag. 

From Eq. (17), R<A> depends on ξac (or m). In Table I, the typical value of m, mtyp, is estimated as 1.02, 

2.51 and 2.30 aAm2 for synomag, MS1 and perimag, respectively. Therefore, the small value of R<A> 



12 
 

for synomag was caused by the low mtyp. 

   For µ0Hac < 16 mT, R<A> increased with decreasing Hac. The increase was largest for MS1 and 

smallest for synomag. We note that Brownian relaxation is responsible for these properties because 

the fraction of Brownian-relaxation-dominated MNPs increases with decreasing Hac, and the fraction 

is smallest for synomag, as shown in Fig. 5(b).  

  Next, we compare <Hc> between suspended and immobilized samples. The ratio of <Hc> for a 

suspended sample to the value for an immobilized sample is  

𝑅𝑅〈𝐻𝐻𝐻𝐻〉 =
〈𝐻𝐻𝑐𝑐(water)〉
〈𝐻𝐻𝑐𝑐(solid)〉

 .  (22) 

   Fig. 6(b) presents the dependence of R<Hc> on Hac for the three samples. The value of R<Hc> was 

much smaller than R<A>. Furthermore, R<Hc> depended weakly on Hac. Therefore, the difference in the 

coercive field was much smaller between the suspended and immobilized cases than the hysteresis 

loss. 

 
Fig. 6. (a) R<A> vs. Hac and (b) R<Hc> vs. Hac curves for the three MNP samples. 

 

 

We note that the parameter κ in Eq. (5) satisfies the condition κ > 0.4 for the present sample 

parameters and excitation conditions. In our previous paper [38], we studied the dependence of Hc on 

the easy-axis angle β, and showed that the dependence becomes small for κ > 0.4.  In this case, 

therefore, <Hc> increases only slightly even when alignment of β occurs in suspended sample. As a 

result, the difference in <Hc> is small between the suspended and immobilized cases in the present 

experiment. We note, however, that the dependence of Hc on β becomes stronger with decreasing κ. 

Therefore, the difference in <Hc> will become large between the suspended and immobilized cases 

when κ becomes much smaller. 

 

3.3.2. Harmonic signals 
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Finally, we compare the harmonic signals between suspended and immobilized samples. The 

amplitude of the harmonic signal, Mi (i = 1, 3, 5…), was obtained by expanding the measured 

waveform M(t) into a Fourier series. The Mi ratio between the two cases is 

𝑅𝑅𝑀𝑀𝑀𝑀 =
𝑀𝑀𝑖𝑖(water)
𝑀𝑀𝑖𝑖(solid) , 𝑖𝑖 = 1, 3, 5 ….  (23) 

   We studied the 3rd and 5th harmonics as examples. These harmonics are used for biosensing [14, 

16, 18]. Fig. 7(a) presents the dependences of RM3 on Hac for the three samples. These dependences 

are similar to the R<A> vs. Hac curves in Fig. 6(a). Specifically, RM3 increases in the order synomag, 

perimag and MS1. For MS1, RM3 considerably increases with decreasing Hac. However, RM3 is almost 

independent of Hac for synomag. This difference is due to the fact that the portion of Brownian-

relaxation-dominated MNPs was small for the synomag sample.  

   Fig. 7(b) presents the relationship between RM5 and RM3. The relation RM5 vs. RM3 is almost on the 

same curve for all three MNP samples. This indicates a strong correlation between RM3 and RM5 among 

the three samples, though the physical mechanism for this correlation is not clear at present. The solid 

line in Fig. 7(b) represents the correlation given by  

𝑅𝑅𝑀𝑀5 = 0.8𝑅𝑅𝑀𝑀3 + 0.3𝑅𝑅𝑀𝑀32 .   (24) 

   We note that similar behavior was obtained for the relationship between RM7 and RM5. However, 

the relation RM3 vs. RM1 was different among samples. It will be our future work to clarify the 

relationship between harmonies signals. 

 
Fig. 7. Relationship (a) between RM3 and Hac and (b) between RM5 and RM3 for the three samples. The 

broken lines in (a) are for the eyes. The solid line in (b) is calculated using Eq. (24).  

 

4. Discussion 

4.1 Condition for the Néel- and Brownian-dominant regions  

The AC M–H curve of suspended MNPs is affected by both Brownian and Néel relaxations. We 

will study the condition that determines the dominant relaxation. First, we study τB(H) and τN(H). The 
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expression for τB(H) is given in Eq. (15). The expression for τN(H) is [39] 

𝜏𝜏𝑁𝑁(𝐻𝐻) =
𝜏𝜏0√𝜋𝜋

√𝜎𝜎(1− ℎ2)
1

(1 + ℎ)e−𝜎𝜎(1+ℎ)2 + (1− ℎ)e−𝜎𝜎(1−ℎ)2  , (25) 

where h = H/Hk is the normalized field. In this study, we use Eq. (25) for simplicity, though Eq. (25) 

is obtained when the easy axis is parallel to the applied field.  

   Fig. 8(a) shows examples of τB(H) and τN(H). In the calculation, we used the parameters 

corresponding to the MS1 sample: Ms = 360 kA/m, K = 7.0 kJ/m3, µ0Hk = 38.9 mT and dH = 60 nm. 

The value dc = 28 nm was chosen because nVcA has a peak value at approximately dc = 28 nm for 

MS1, as shown in Fig. 4. As shown in Fig. 8(a), τN >> τB at low fields. Therefore, Brownian relaxation 

becomes dominant in the low-field region. However, τN rapidly decreases with increasing H, and τN = 

τB at H = Hac,BR; µ0Hac,BR = 10.2 mT for dc = 28 nm. As a result, τN << τB for H > Hac,BR, and Néel 

relaxation dominates the dynamics of suspended MNPs at high fields. 

   For comparison, Fig. 8(a) also shows τN(H) calculated for dc = 25 nm. The value of Hac,BR becomes 

very small in this case, and Néel relaxation becomes dominant for almost all fields. 

 

Fig. 8. (a) Field-dependent Brownian relaxation time τB(H) and Néel relaxation time τN(H). (b) Four 

regions in the σ–hac plane. The boundary between regions (II) and (III) is determined by hac,th 
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calculated from Eq. (8). The boundary between regions (III) and (IV) is determined by hac,BR, which 

satisfies the condition τN(hac,BR) =τB(hac,BR). (c) A/(2K) vs. Hac curves for dc = 28 nm. Lines show the 

results for ANR, ABR and ANA calculated using Eqs. (4), (12) and (16), respectively. Symbols represent 

the simulation results for suspended MNPs. (d) A/(2K) vs. f curves for dc = 28 nm and two values of 

Hac. For µ0Hac = 7.8 mT, line shows ABR calculated using Eq. (12). For µ0Hac = 19.4 mT, line shows 

ANA calculated using Eq. (16). 

 

 

We now study the condition that determines the dominant relaxation in suspended MNPs using the 

σ–hac plane, as shown in Fig. 8(b). The σ–hac plane is calculated for f = 20 kHz and can be divided 

into four regions. Region (I) is determined by the condition σ < σth, where σth in Eq. (10) becomes 

10.3 for f = 20 kHz. In this region, the condition 2πfτN(0) < 1 is satisfied, and Néel relaxation dominates 

the MNP dynamics. The hysteresis loss in this region is ANR in Eq. (4). For sufficiently low σ, linear 

theory can be applied using the AC susceptibility of MNPs [4].  

Region (II) is determined by the condition hac > hac,th, where hac,th is given in Eq. (8). We note that 

hac,th gives the threshold field for the magnetic moment reversal over the anisotropy energy barrier [25, 

38]. In this region, the condition τN(H) < 1/(2πft) << τB(H) is satisfied, and Néel relaxation becomes 

dominant. When the AC field is applied, the magnetic moment changes its polarity by passing the 

anisotropy energy barrier. Furthermore, the AC field causes successive Brownian (physical) rotation 

in suspended MNPs, and easy axes are partially aligned along the AC field. The hysteresis loss in this 

region is ANA in Eq. (16). 

Region (IV) is determined by the condition hac < hac,BR, where hac,BR is the field satisfying τN(hac,BR) 

=τB(hac,BR). In this region, τB(H) < τN(H), and therefore, Brownian relaxation becomes dominant. The 

hysteresis loss in this region is ABR in Eq. (12). We note that ABR strongly depends on 2πfτB(H), as 

shown in Eq. (12). Namely, the effect of Brownian relaxation is largest for 2π𝑓𝑓𝜏𝜏𝐵𝐵(H) ≈ 1, but can 

be neglected at high frequencies satisfying 2πfτB(H) >>1.  

Region (III) is determined by the condition hac,BR < hac < hac,th. In this region, both Brownian and 

Néel relaxations affect the AC M–H curve of the suspended sample in a complicated way. 

  We note that the range of hac for regions (II) and (IV) changes with σ, as shown in Fig. 8(b). As σ 

decreases, the range of hac increases in region (II) and decreases in region (IV). This means that the 

effect of Brownian relaxation decreases for MNPs with lower σ (or dc). We also note that hac,th in Fig. 

8(b) increases with increasing f, as can be seen from Eq. (8). This means that region (II) moves to a 

higher hac value for higher f. However, hac,BR is independent of f, and region (IV) does not change when 

f is changed.  

We now show the A vs. Hac curve calculated for each region. The lines in Fig. 8(c) represent the 

results calculated for parameters Ms = 360 kA/m, K = 7.0 kJ/m3, µ0Hk = 38.9 mT, dc = 28 nm and dH 
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= 60 nm. The results for ANR, ABR and ANA are calculated using Eqs. (4), (12), and (16), respectively. 

From Fig. 8(b), we obtained µ0Hac,BR = 10.2 mT and µ0Hac,th = 11.4 mT for dc = 28 nm (σ=19.4). Using 

these values, the field Hac can be divided into regions (IV), (III) and (II), as shown in Fig. 8(c). In 

region (IV), Brownian relaxation is dominant and A is given by ABR. In region (II), Néel relaxation is 

dominant and A is given by ANA. In Region (III), we take the larger of ABR and ANA as the hysteresis 

loss. We note that region (I) does not exist because σ > σth in this case.  

For comparison, the AC M–H curve of suspended MNPs was numerically simulated for dc = 28 

nm and f = 20 kHz. The symbols in Fig. 8(c) represent the simulated A/(2K) vs. Hac curves. In the 

simulation, both the dynamics of the magnetic moment m and the unit vector along the easy axis, n, 

were solved simultaneously via the stochastic Landau–Lifshitz–Gilbert equation and an equation from 

Usov et al. [22, 25]. We obtained good agreement between simulation and analysis, indicating the 

validity of the analysis. 

Finally, we discuss the frequency dependence of ABR in region (IV) and ANA in region (II). As shown 

in Fig. 8(c), Brownian relaxation is dominant at µ0Hac = 7.8 mT (hac = 0.2), and A is given by ABR in 

Eq. (12). The blue line in Fig. 8(d) shows the frequency dependence of ABR calculated for µ0Hac = 7.8 

mT. As shown, ABR strongly depends on f. Namely, ABR becomes large for 2π𝑓𝑓𝜏𝜏𝐵𝐵(𝐻𝐻) ≈

1 (𝑓𝑓 ≈ 4.5 kHz), but becomes very small at high frequencies satisfying 2πfτB(H) >>1.  On the other 

hand, Néel relaxation is dominant at µ0Hac = 19.4 mT (hac = 0.5) as shown in Fig. 8(c), and A is given 

by ANA in Eq. (16). The green line in Fig. 8(d) shows the frequency dependence of ANA calculated for 

µ0Hac = 19.4 mT.  As shown, frequency dependence of ANA is very weak. Therefore, frequency 

dependence is very different between ABR and ANA.  

4.2. Degree of easy axis alignment 

As shown in Fig. 3, hysteresis loss increased owing to easy axis alignment in the suspended sample 

when Hac was high. We will discuss the degree of easy axis alignment using the <A> vs. Hac curve. 

Fig. 9(a) presents the measured <A> vs. Hac curve, where the vertical axis is normalized by 2K and the 

horizontal axis is normalized by Hk. The open and closed symbols are the results for the immobilized 

and suspended cases, respectively. In the immobilized case, the <A>/(2K) vs. hac curves become similar 

among the three MNP samples. In the suspended case, MS1 and perimag have similar <A>/(2K) vs. 

hac curves, while <A>/(2K) is smaller for synomag.  

   The degree of easy axis alignment can be expressed using the mean orientation of the easy axes 

through 〈cos𝛽𝛽〉, where β is the easy axis angle, and 〈 〉 means the average over time and the MNP 

ensemble [20, 22, 38]. When easy axes are aligned, β becomes small and 〈cos𝛽𝛽〉 becomes large. We 

expect the AC M–H curve to depend on 〈cos𝛽𝛽〉𝐻𝐻𝑎𝑎𝑎𝑎. This is because the AC M–H curve is determined 

by the distribution of β, and its distribution function, WEA(β), is determined by the value of Haccosβ 

[25, 38]. Therefore, we define the effective field  
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ℎ𝑎𝑎𝑎𝑎,𝑒𝑒𝑒𝑒𝑒𝑒 = � ℎ𝑎𝑎𝑎𝑎    for the immobilized case,      
𝑎𝑎ℎ𝑎𝑎𝑎𝑎 for the suspended case , (26) 

where a represents the increase in 〈cos𝛽𝛽〉 caused by the easy axis alignment in a suspended sample. 

  
Fig. 9. (a) <A>/(2K) vs. hac relations. Open and closed symbols represent the results for immobilized 

and suspended cases, respectively. (b) <A>/(2K) vs. hac,eff  relations. The value of hac,eff was calculated 

from Eq. (26). Broken lines are for eyes. The inset shows the relation between 𝑎𝑎 = 2〈cos𝛽𝛽〉 and R<A>. 

 

 

The <A>/(2K) vs. hac relations in Fig. 9(a) were replotted as the <A>/(2K) vs. hac,eff relations using 

Eq. (26). The results are shown in Fig. 9(b). To calculate Eq. (26), we used a = 1.35, 1.65 and 1.62 for 

synomag, MS1 and perimag, respectively. The value of a for each MNP sample was determined so 

that the <A>/(2K) vs. hac,eff relations for both immobilized and suspended cases would fall on the same 

curve, as shown by the broken lines in Fig. 9(b).  

We note that a in Eq. (26) is the ratio of 〈cos𝛽𝛽〉 between immobilized and suspended cases. It has 

been shown that 〈cos𝛽𝛽〉 = 0.5  (or effective angle β = 60 deg) for the immobilized case with 

randomly oriented easy axes [22, 38]. Therefore, a is given by 𝑎𝑎 = 2〈cos𝛽𝛽〉. Using the obtained value 

of a, we can estimate 〈cos𝛽𝛽〉 = 0.675, 0.825 and 0.810 (or β = 48, 34 and 36 deg) for synomag, 

MS1 and perimag, respectively. These results indicate that the degree of easy axis alignment is smallest 

for synomag. However, the degree of alignment is almost the same for MS1 and perimag. 

We also study the relationship between 〈cos𝛽𝛽〉 and R<A> in Fig. 6(a). The symbols in the inset of 

Fig. 9(b) show the relationship between R<A> at µ0Hac = 20 mT and 𝑎𝑎 = 2〈cos𝛽𝛽〉 for the three MNP 

samples. The solid line is the analytical result calculated as follows. The expression for RA is given in 

Eq. (17) for MNPs with dc (or ξeff), and the following expression for 〈cos𝛽𝛽〉 is obtained [38]:  

〈cos𝛽𝛽〉 = 1 +
1
𝜉𝜉𝑒𝑒𝑒𝑒𝑒𝑒

�
1 − cosh𝜉𝜉𝑒𝑒𝑒𝑒𝑒𝑒

sinh𝜉𝜉𝑒𝑒𝑒𝑒𝑒𝑒
� .  (27) 

Combining Eqs. (17) and (27), we obtain the relationship between RA and 𝑎𝑎 = 2〈cos𝛽𝛽〉, which is 

shown by the solid line in the inset of Fig. 9(b). The analytical result is consistent with the experimental 



18 
 

one, though the core size distribution is not taken into account in the analysis.  

Finally, we note that the effect of the magnetic dipole–dipole interaction between MNPs is 

neglected in the present analysis. In our experiment, sample contained 150 µg-Fe in 150 µL sample 

volume. If we assume that MNPs consist of Fe3O4, volume concentration of MNPs becomes as low as 

c = 0.027 % for the present samples. Form this concentration, we can estimate that the mean distance 

between particles is about 10 times larger than the diameter of particle. Therefore, dipole–dipole 

interaction will be small in the present experiment. However, because the dipole–dipole interaction 

increases with increasing MNP concentration, it is necessary to take account of this effect when the 

MNP density is much increased [40-42]. We also note that the hysteresis loss can be increased when 

linear chains of MNP are formed [42, 43]. 

5. Conclusion 

We studied the effect of Néel and Brownian relaxation on the AC M–H curve of suspended MNP 

samples. First, the <A> vs. Hac curves were measured for suspended and immobilized cases using three 

commercial MNP samples. The experimental results can be quantitatively explained with the 

previously obtained analytical results when the core size distribution in a sample is taken into account. 

We showed that Néel-relaxation- and Brownian-relaxation-dominant MNPs coexist in each sample, 

and that the portion of each changes when Hac changes. At high fields, almost all MNPs became Néel-

relaxation-dominant, and easy axis alignment caused by the AC field increased the hysteresis loss for 

a suspended sample. The portion of Brownian-relaxation-dominant MNPs increased with decreasing 

Hac, and the Brownian relaxation gave additional loss at low fields. We can use the four regions in the 

σ–hac plane in Fig. 8(b) to determine the dominant relaxation mechanism in a suspended sample. We 

also clarified the difference in harmonic signals between suspended and immobilized samples. 
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Appendix A: Estimation of core size distribution 

The DC M–H curve of a suspended sample can be expressed as 

𝑀𝑀𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑠𝑠� 𝑛𝑛(𝑑𝑑𝑐𝑐)𝑉𝑉𝑐𝑐𝐿𝐿(𝜉𝜉𝑑𝑑𝑑𝑑)𝑑𝑑𝑑𝑑𝑐𝑐
∞

0
, (𝐴𝐴1) 

where L is the Langevin function given by 

𝐿𝐿(𝜉𝜉𝑑𝑑𝑑𝑑) = coth(𝜉𝜉𝑑𝑑𝑑𝑑)−
1
𝜉𝜉𝑑𝑑𝑑𝑑

   (𝐴𝐴2) 

with ξdc =µ0MsVcHdc/(kBT).   

The dc vs. n(dc)Vc curve was obtained by numerically solving the inverse problem in Eq. (A1) 

using the nonlinear non-negative least squares (NNLS) method [34]. 

We also note that the Langevin function can be approximated as L(ξdc) = 1- 1/ξdc for ξdc > 3. In 

this high field region, Eq. (A1) can be expressed as 

𝑀𝑀𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑠𝑠 −
𝑘𝑘𝐵𝐵𝑇𝑇
𝜇𝜇0𝐻𝐻𝑑𝑑𝑑𝑑

� 𝑛𝑛(𝑑𝑑𝑐𝑐)𝑑𝑑𝑑𝑑𝑐𝑐  𝑓𝑓𝑓𝑓𝑓𝑓 𝜉𝜉𝑑𝑑𝑑𝑑 > 3
∞

0
.  (𝐴𝐴3) 

Therefore, linear relationship can be obtained between Mdc and 1/Hdc at high fields satisfying the 

condition ξdc > 3. We note that the Ms value can be estimated by extrapolating the linear Mdc vs 1/Hdc 

relation to 1/Hdc = 0 [33]. 

Appendix B: Expression for Hc for the AC M–H curve 

For immobilized MNPs with core diameter dc and randomly oriented easy axes, the expression for 

coercive field Hc is empirically obtained as [35] 

𝐻𝐻𝑐𝑐(𝑑𝑑𝑐𝑐) = �
0.48𝐻𝐻𝑘𝑘(1− 𝜅𝜅0.88) × 𝑔𝑔𝑐𝑐   for 𝜅𝜅 < 0.66,          

0.48𝐻𝐻𝑘𝑘exp �−�
𝜅𝜅

0.61�
2.1
� × 𝑔𝑔𝑐𝑐 for 𝜅𝜅 > 0.66,   (𝐵𝐵1)

 

with 

𝑔𝑔𝑐𝑐 =
exp �ℎ𝑎𝑎𝑎𝑎 − ℎ1𝑐𝑐

Δℎ �

1 + exp �ℎ𝑎𝑎𝑎𝑎 − ℎ1𝑐𝑐
Δℎ �

, (𝐵𝐵2) 

ℎ1𝑐𝑐 = 1.19�ℎ𝑎𝑎𝑎𝑎,𝑡𝑡ℎ�
2 + 0.346ℎ𝑎𝑎𝑎𝑎,𝑡𝑡ℎ + 0.037  (𝐵𝐵3) 
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where hac,th and ∆h are given in Eqs. (8) and (9), respectively. 

When dc is distributed in a sample, the coercive field <Hc> of the sample is approximately given 

by the volume-weighted average of Hc of each MNP: 

〈𝐻𝐻𝑐𝑐〉 =
1

∫ 𝑛𝑛𝑉𝑉𝑐𝑐
∞
𝑑𝑑𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑𝑑𝑑𝑐𝑐
 � 𝑛𝑛𝑉𝑉𝑐𝑐

∞

𝑑𝑑𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚

𝐻𝐻𝑐𝑐(𝑑𝑑𝑐𝑐)𝑑𝑑𝑑𝑑𝑐𝑐 , (𝐵𝐵4) 

where Hc(dc) and nVc are given in Eq. (B1) and Fig. 1, respectively. We note that the present sample 

consists of elementary particles and agglomerates, as shown in Fig. 1. In Eq. (B4), the integral is 

performed from dc = dc,min to neglect elementary particles because they do not contribute to Hc near 

room temperature owing to their very small σ values. We tentatively set dc, min = 10 nm from Fig. 1 for 

all samples. 
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