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Abstract 

We have studied harmonic signals caused by the nonlinear AC magnetization (M–H) curve of 

magnetic nanoparticles (MNPs) suspended in solution. First, numerical simulations were performed 

for wide ranges of the MNP parameters and the excitation fields that are commonly used in biosensing 

applications. As an example, the third harmonic signal was mainly studied. Because the AC M–H 

curve for the suspended MNPs is affected by both Brownian and Néel relaxations, we demonstrated 

the condition that determines the dominant relaxation. We emphasize that the MNP’s behavior 

changes from Brownian-dominant to Néel-dominant relaxation when the amplitude of the excitation 

field is increased, even when the MNP parameters are fixed. The properties of the harmonic signals in 

the Brownian- and Néel-dominant cases were compared, and the differences between the two cases 

were clarified. The relationships among the higher harmonic signals were also presented. Next, an 

analytical expression for the third harmonic signal was obtained for both the Brownian- and Néel-

dominant cases. In the Néel-dominant case, the alignment of the easy axes caused by the AC field was 

taken into account. We demonstrated good agreement between the simulation and the analysis results. 

Finally, harmonic signals were measured using a commercial MNPs sample. Reasonable agreement 

was obtained between experiment and analysis. The results obtained will be useful for biosensing 

applications.  
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1. Introduction 

Harmonic signals caused by the nonlinear AC magnetization (M–H) curve of magnetic 

nanoparticles (MNPs) have been studied widely for biosensing applications. These signals have been 

used to develop a magnetic particle imaging (MPI) system, where the three-dimensional positions of 

the MNPs can be detected with high temporal resolution for medical diagnosis [1-5]. The signals are 

also used in magnetic biosensing, where disease-related biological targets can be detected using bio-

functionalized MNPs [6-13].  

In biosensing applications, the MNPs are used in three states, i.e., suspended in solution, 

immobilized, and fixed on biological targets. When the MNPs are immobilized, physical rotation of 

the MNPs caused by Brownian relaxation is prohibited. In this case, the AC M–H curve is determined 

by Néel relaxation alone. When the MNPs are fixed on targets whose size is very much larger than the 

MNPs, e.g. for the case of cells, the MNPs can also be approximated by the immobilized ones. This is 

because physical rotation of the fixed MNPs is determined by the Brownian relaxation time of the cell, 

which can be estimated as long as 10 s for the 3 µm-size cell. In this case, the AC M–H curve is also 

determined by Néel relaxation alone. For suspended MNPs, however, both Brownian and Néel 

relaxations affect the AC M–H curve. This also occurs when the MNPs are fixed on targets whose size 

is comparable or smaller than the MNPs, such as disease-related proteins. In these cases, the MNP 

parameters and the excitation conditions determine which relaxation type occurs faster and thus 

becomes dominant. As a result, the magnetic properties of the suspended MNPs are considerably more 

complex when compared to the immobilized MNPs case.  

 The dominant relaxation for the suspended MNPs is determined by the magnitude relationship 

between their two relaxation times [14, 15]. There are two limiting cases for this relationship. The first 

is τN(H) >> τB(H), where τN(H) and τB(H) are the field-dependent Néel and Brownian relaxation times, 

respectively. In this case, the AC M–H curve is determined by the Brownian relaxation [16]. The 

second case is τN(H) << τB(H). In this case, dynamics of the magnetic moment vector m of the 

suspended MNPs is primarily dominated by Néel relaxation. In addition, successive physical rotation 

of MNPs occurs partially for high field amplitude, which causes rotation of the easy axis of 

magnetization in suspended MNPs. Due to this two-step relaxation process, partial alignment of the 

easy axes is caused by the AC field [17-19]. The effect of easy axes alignment on the AC M–H curve 

has been studied both experimentally and theoretically [20-27].  
In our previous paper, we showed that the MNP’s behavior changes from Brownian-dominant to 

Néel-dominant when the amplitude of the excitation field H is increased, even when the MNP 

parameters are fixed [15]. This occurs because the reduction in τN with increasing H is much more 

significant than the reduction of τB. Because the change in the dominant relaxation mechanism causes 

the difference in the harmonic signals, it is necessary to quantitatively clarify the differences between 

the properties of the Brownian- and Néel-dominant cases. This characterization is very important when 
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MNPs are used in biosensing applications. 

In this paper, we study the extent to which Brownian or Néel relaxation contributes to the harmonic 

signals of the suspended MNPs. First, we discuss the condition under which either the Brownian or 

Néel relaxation becomes dominant. Then, numerical simulations are performed for wide ranges of the 

MNP parameters and excitation fields that are commonly used in biosensing. As an example, the third 

harmonic signal was mainly studied. The dependences of the third harmonic signal on the MNP 

parameters and the excitation field were obtained, and the differences between the Brownian- and 

Néel-dominant cases were clarified. The relationships among the higher harmonic signals were also 

demonstrated. Next, analytical expressions for the third harmonic signal were obtained for both the 

Brownian- and Néel-dominant cases. In the Néel-dominant case, the alignment of the easy axes caused 

by the AC field was taken into account. Finally, the properties of the harmonic signals were measured 

using a commercial MNPs sample. Reasonable agreement was obtained between experiments and 

analyses.  

2. Materials and methods 

Numerical simulations of the AC M–H curves are performed for both the immobilized and 

suspended MNPs when the sinusoidal excitation field H(t) = Hacsin(2πft) is applied, where Hac and f 

are the amplitude and frequency of the excitation field, respectively. In the simulation, we assumed 

that concentration of the MNPs is low, and neglected the magnetic dipole-dipole interactions among 

the MNPs. For the immobilized MNPs, where the easy axes are fixed regardless of time and are 

randomly oriented, we solved for the dynamics of the magnetic moment vector m using the Fokker-

Planck equation. For the suspended MNPs, we solved for both the dynamics of m and the unit vector 

along the easy axis n simultaneously using the stochastic Landau–Lifshitz–Gilbert equation and an 

equation from Usov et al. [28]. Net magnetization of an ensemble of MNPs in the direction of the 

excitation field was calculated to obtained M(t). Details of the simulation procedure are given in our 

previous papers [21, 23].  
Numerical simulations were performed for wide ranges of the MNP parameters and the excitation 

fields that are normally used for biosensing. We considered the case when the MNPs are operated at 

room temperature, and fixed the absolute temperature as T = 300 K. When we assume a homogeneous 

magnetic core, MNP parameters are the saturation magnetization Ms, the effective magnetic anisotropy 

constant K, and diameter of the magnetic core dc. It is well known that the dynamic behavior of the 

MNPs is determined by the values of σ = KVc/(kBT) and ξac= µ0Hacm/(kBT), where Vc = (π/6)dc3 and m 

=MsVc are the volume of the magnetic core and magnetic moment of the MNP, respectively, and kB is 

the Boltzmann constant. Note that σ represents the energy ratio between anisotropy energy and thermal 

energy, while ξac represents the ratio between magnetic energy and thermal energy. We note that ξac 

can be expressed as ξac=2σhac, where hac = Hac/Hk is the field normalized by Hk = 2K/(µ0Ms). 
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In the simulation, the σ value was varied from 7 to 20.  For each σ, the hac value was varied from 

0.1 to 0.5. Because ξac=2σhac, the ξac value was varied from 0.2σ to 1.0σ for each σ value. We note 

that the ratio between anisotropy energy and magnetic energy, which is given by λ= 

(KV)/(µ0Hacm)=1/(2hac), was varies from 5 to 1. If we assume that Ms = 350 kA/m and K = 10 kJ/m3, 

the simulation is then performed for 17.7 nm < dc < 25.1 nm and 5.7 mT < µ0Hac < 28.6 mT. The 

frequency was varied from f = 1 kHz to 50 kHz. The hydrodynamic diameter of an MNP is fixed as 

dH = 50 nm. The Brownian relaxation time is given by τB,0 = 3ηVH/(kBT), where η is the liquid viscosity, 

and VH = (π/6)dH3 is the hydrodynamic volume of the MNP; we note that τB,0 can be interpreted by 

using an energy ratio as τB,0 = (Τm/kBT) /ω, where Τm=3ηVHω is the mechanical torque, and ω is the 

angular velocity of the MNP. We obtain τB,0 = 48 µs for η = 1 mPa∙s, dH = 50 nm and T = 300 K.   

From the numerical simulations, the waveform of M(t) is obtained. Then, the harmonic signals 

were obtained by expanding M(t) into a Fourier series. In this study, the third harmonic signal was 

mainly studied. This approach was used because the fundamental component is usually excluded from 

biosensing applications to avoid interference from the excitation field. Note that the imaginary part of 

the fundamental component, which gives the hysteresis area in the M-H curve, was studied in our 

previous paper for hyperthermia applications [15, 27].  

In the experiment, we used a commercial MNPs sample called Synomag (micromod GmbH, 

Germany). Synomag consists of maghemite (γ-Fe2O3) cores covered with a dextran shell with nominal 

value of dH = 50 nm. We choose the Synomag sample because it has been used for MPI. This sample 

is also suitable for comparison between experiment and analysis because the distributions of dc and dH 

are relatively small. The magnetic parameters were estimated to be Ms = 345 kA/m and K = 9.7 kJ/m3 

[15]. In the experiments, 150 µg-Fe of MNPs were dispersed in 150 µL of water for the suspended 

sample. For the immobilized samples, 150 µg-Fe of MNPs were dispersed in 150 µL of epoxy resin 

and then solidified with randomly oriented easy axes [22]. The AC M–H curves were measured using 

a homemade measurement system, which we described in detail in our previous paper [29].  

3. Numerical simulations 

3.1 Conditions for the Néel- and Brownian-dominant regions  

First, we show the condition under which either the Brownian or Néel relaxation becomes 

dominant. As discussed in our previous paper [15], the condition can be obtained by comparing the 

field dependent relaxation times τB(H) and τN(H). The expression for τB(H) is given by [16, 30]: 

𝜏𝜏𝐵𝐵(𝐻𝐻) =
𝜏𝜏𝐵𝐵,0

�1 + 0.07𝜉𝜉𝑎𝑎𝑎𝑎2
 . (1) 

The expression for τN(H) is given by [31]: 

𝜏𝜏𝑁𝑁(𝐻𝐻) =
𝜏𝜏0√𝜋𝜋

√𝜎𝜎(1− ℎ2)
1

(1 + ℎ)e−𝜎𝜎(1+ℎ)2 + (1− ℎ)e−𝜎𝜎(1−ℎ)2  , (2) 
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where h = H/Hk is the normalized field. In this study, we use Eq. (2) for simplicity, although Eq. (2) is 

obtained when the easy axis lies parallel to the applied field. We also set h = hac = Hac/Hk in Eq. (2) to 

study the Néel relaxation time when AC field was applied. 

As can be seen from Eqs. (1) and (2), τB(H) and τN(H) are determined by σ and hac because 

ξac=2σhac. Therefore, we can discuss the condition under which either the Brownian or Néel relaxation 

becomes dominant using the σ–hac plane [15].  
Fig. 1 shows the four regions in the σ–hac plane that determine the dominant relaxation. Fig. 1(a) 

was calculated for f = 20 kHz and dH = 50 nm, while Fig. 1(b) was calculated for f = 3 kHz and dH = 

50 nm. As shown in Fig. 1(a), the σ–hac plane can be divided into four regions for f = 20 kHz and dH 

= 50 nm. 

 
Fig. 1. Four regions in the σ–hac plane that determine the dominant relaxation. (a) f = 20 kHz and dH 

= 50 nm, and (b) f = 3 kHz and dH = 50 nm. In regions (I) and (II), Néel relaxation becomes dominant. 

In region (III), both Brownian and Néel relaxations contribute. In region (IV), Brownian relaxation 

becomes dominant. Blue and red lines represent hac = hac,th and hac = hac,BR given in Eqs. (4) and (5), 

respectively. Green line is given by 2σhac = 1. The boundary for each region is given by σth, hac,th, 

hac,BR, and hac,III.  
 

 

Region (I) in Fig. 1(a) is determined by the condition that σ < σth; here, σth =10.3 for f = 20 kHz. 

The value of σth is given by the condition that 2πfτN,0(σth) = 1, where τN,0 is the Néel relaxation time 

given by 𝜏𝜏𝑁𝑁,0(𝜎𝜎) = �𝜋𝜋/𝜎𝜎𝜏𝜏0 exp(𝜎𝜎)/2, and τ0=10−9 s is the characteristic time [27]. The value of σth 

is determined by the frequency f, and an explicit expression for σth can be obtained in an approximate 

form as:  

𝜎𝜎th = 0.86− 1.05 × ln(2𝜋𝜋𝜋𝜋𝜏𝜏0).   (3) 

In region (I), the condition 2πfτN,0 < 1 is satisfied, and Néel relaxation thus dominates the MNPs 

dynamics for all hac values. 
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When σ > σth, three regions, i.e., regions (II)-(IV), exist depending on the value of hac. The 

boundaries between the regions are given by hac,th and hac,BR, as shown below.  

The field hac,th is given by the condition τN(hac,th) =1/(2πf), and is determined by σ and f. An explicit 

expression was obtained as follows [27]: 

ℎac,th = �
0            for 𝜎𝜎 ≤ 𝜎𝜎th,      

0.6 �1−
𝜎𝜎th
𝜎𝜎 �  for 𝜎𝜎 > 𝜎𝜎th   (4) 

The field hac,BR is given by the condition τN(hac,BR) =τB(hac,BR), and an approximate expression for 

this field can be given as:  

ℎac,BR = 1− �
ln(2 × 109𝜏𝜏𝐵𝐵.0)

𝜎𝜎
�
0.62

 (5) 

Note that hac,BR depends on both σ and τB,0, but is independent of f. 

As shown in Fig. 1(a), the hac,th–σ and hac,BR–σ curves intersect at hac = hac,III. Note that the 

following condition is satisfied at hac = hac,III:   

1
2𝜋𝜋𝜋𝜋

= 𝜏𝜏𝑁𝑁�ℎac,III� = 𝜏𝜏𝐵𝐵�ℎac,III� (6) 

Region (II) in Fig. 1(a) is determined by the field that satisfies both hac > hac,th and hac > hac,BR. For 

this field, the conditions τN(H) < 1/(2πf) and τN(H) < τB(H) are satisfied. In region (II), therefore, Néel 

relaxation is dominant, and the magnetic moment of the MNP changes its polarity by passing the 

anisotropy energy barrier when the AC field is applied. Note that hac,th in Eq. (4) gives the threshold 

field for this magnetic moment reversal over the anisotropy energy barrier. We also noted that the AC 

field causes successive Brownian (physical) rotation in suspended MNPs, and the easy axes are 

partially aligned along the AC field for the case where τN(H) < 1/(2πft) < τB(H) [23, 27]. When partial 

alignment occurs, the angle of the easy axis with respect to the applied field, β, converges around a 

specific value. This is in contrast to the case of the randomly oriented easy axis, where β is distributed 

uniformly from β = 0 to π/2. 

Region (IV) is determined by the field hac < hac,BR. In this case, the condition τB(H) < τN(H) is 

satisfied, and Brownian relaxation thus becomes dominant. Note, however, that the effect of Brownian 

relaxation only becomes large for hac > hac,III because the condition τB(H) < 1/(2πf) can be satisfied for 

this case. When hac < hac,III, τB(H) > 1/(2πf) and the effect of the Brownian relaxation is small.  

Region (III) is determined by the condition that hac,BR < hac < hac,th. This region only appears for 

hac < hac,III. In this region, both the Brownian and Néel relaxations affect the AC M–H curve of the 

suspended sample in a complex manner. 

In Fig. 1(a), the line given by ξac = 2σhac = 1 is also shown. Note that the nonlinearity of the M–H 

curve becomes large when ξac >> 1. Therefore, the field hac must satisfy the condition that 2σhac >> 1 
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to obtain rich harmonic signals. 

Fig. 1(b) shows the result for f = 3 kHz. In this case, σth = 12.2, and hac,BR > hac,th for all values of 

σ. As a result, hac,III does not exist, and region (III) disappears in this case. In region (IV), the condition 

that τB(H) < 1/(2πf) is satisfied for all hac values. Therefore, the effect of the Brownian relaxation 

becomes large for all hac values when f = 3 kHz.  

3.2 Third harmonic signal 

Next, we study the amplitude of the third harmonic signal, M3, for regions (I)–(IV) in Fig. 1. As 

examples, we selected values of σ = 7 to study M3 in region (I) and σ = 20 in regions (II)–(IV). Fig. 2 

shows the M3–hac curves obtained for the different sets of σ and f (kHz): (σ, f) = (7, 20), (7, 3), (20, 

20) and (20, 3). The rectangles represent the simulation results for the immobilized MNPs with 

randomly oriented easy axes. The circles represent the results obtained for the suspended MNPs, where 

we selected dH = 50 nm; τB,0 = 48 µs for η = 1 mPa∙s. The lines represent the analytical results that 

will be obtained in Sec. 4.  

Fig. 2(a) shows the M3–hac curves obtained for σ = 7 and f = 20 kHz. As shown, the value of M3 

for the immobilized MNPs increased gradually with increasing hac. The M3 characteristic for the 

suspended MNPs was almost the same as that for the immobilized MNPs when hac < 0.2. However, in 

the case where hac > 0.2, the difference in M3 values between the two cases increased with increasing 

hac. When hac = 0.5, M3 for the suspended case was 1.5 times that of the immobilized case.  

Note that the condition τN,0 <1/(2πf) << τB,0 is satisfied for σ = 7 and f = 20 kHz. In this case, the 

MNPs dynamics are determined by the Néel relaxation for all hac values, and partial alignment of the 

easy axes is caused in the suspended MNPs. Therefore, the difference in the M3 characteristics between 

the suspended and immobilized cases was caused by the alignment of the easy axes. The red line 

represents the analytical M3,NR–hac curve for the immobilized case [Eqs. (12)–(15)], while the blue line 

represents the M3,NA–hac curve for the aligned case [Eqs. (16)–(19)]. As shown in the figure, the 

simulation results agreed well with these two curves. 

Fig. 2(b) presents the M3–hac curve for σ = 7 and f = 3 kHz. In this case, the M3 characteristic for 

the immobilized MNPs was almost the same as that at f = 20 kHz (c.f. Fig. 2(a)). However, the M3 

characteristic for the suspended MNPs became smaller than the case for f = 20 kHz. This result 

indicates that the degree of alignment of the easy axes becomes smaller at f = 3 kHz. Note that 2πfτB,0 

= 0.89 for f = 3 kHz, while 2πfτB,0 >> 1 for f = 20 kHz. Therefore, we can expect the degree of 

alignment of the easy axes to be dependent on the value of 2πfτB,0. We will discuss the frequency 

dependence of the alignment of the easy axes in Sec. 4.    
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Fig. 2. M3–hac curves. (a) σ = 7 and f = 20 kHz, (b) σ = 7 and f = 3 kHz, (c) σ = 20 and f = 20 kHz, 

and (d) σ = 20 and f = 3 kHz. The symbols represent the simulation results. The red line represents the 

analytical M3,NR–hac curve for the immobilized case [Eqs. (12)–(15)]. The blue line represents the 

M3,NA–hac curve for the aligned case [Eqs. (16)–(19)]. The green line represents the M3,BR–hac curve 

for the Brownian-dominant case [Eqs. (10) and (11)]. 

 

 

Fig. 2(c) shows the M3–hac curve for σ = 20 and f = 20 kHz. In this case, we obtained hac,th = 0.29 

and hac,BR = 0.30. Therefore, for hac < hac,BR = 0.3, the MNPs operate in region (IV) and the Brownian 

relaxation becomes dominant. However, because 1/(2πf) << τB,0 for f = 20 kHz, the Brownian 

relaxation does not affect M3 for the suspended MNPs. As a result, the difference in M3 characteristics 

between the suspended and immobilized cases was very small for hac < 0.3. When hac > 0.3, however, 

the MNPs operate in region (II). In this case, the Néel relaxation becomes dominant and alignment of 

the easy axes occurs. As a result, M3 for the suspended case became greater than that for the 

immobilized case for hac > 0.3.  

Fig. 2(d) shows the M3–hac curve for σ = 20 and f = 3 kHz. In this case, we obtained hac,th = 0.23 

and hac,BR = 0.30. For hac < hac,BR = 0.3, M3 for the suspended case became much greater than that for 

the immobilized case. This occurs because 1/(2𝜋𝜋𝜋𝜋) ≈ 𝜏𝜏𝐵𝐵,0  for f = 3 kHz, and the Brownian 

relaxation affects M3 strongly in the suspended case. The green line shows an analytical M3,BR–hac 

curve for the Brownian-dominant case [Eqs. (10) and (11)], and matched the simulation result well. 
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When hac > 0.3, the simulated value of M3 existed between the corresponding values of M3,BR and 

M3,NA. 

Next, we study the frequency dependence of M3 for the suspended MNPs. Fig. 3 shows the M3–f 

curves obtained when f is varied from 3 to 20 kHz (0.89 < 2πfτB.0 < 6). Fig. 3(a) was obtained for σ = 

7 (i.e., the Néel-dominant case). In this case, M3 increased gradually with increasing f for all hac. The 

solid lines represent the analytical M3,NA–f curves for the aligned case [Eqs. (16)–(19)], and agreed 

well with the simulation results. 

Fig. 3(b) shows the results obtained for σ = 20. In this case, the frequency dependence of M3 varied 

with hac. For hac = 0.2, M3 decreased significantly with increasing f. Note that MNPs operate in region 

(IV) (the Brownian dominant region) for hac = 0.2, as shown in Fig. 1. The broken line shows the 

analytical M3,BR–f curve for the Brownian-dominant case [Eqs. (10) and (11)], which matched the 

simulation result well for hac = 0.2. For high values of hac > 0.3, however, M3 became weakly dependent 

on f. This is because the MNPs operate in region (II) (the Néel-dominant region) for hac > 0.3, and the 

frequency dependence is given by the M3,NA–f curve. For hac = 0.3, the frequency dependence of M3 

was given by the dependences of M3,BR and M3,NA for f < 5 kHz and f > 5 kHz, respectively. We will 

discuss the frequency dependence of M3 in more detail in Sec. 4. 

 
Fig. 3.  Frequency dependence of M3 for the suspended MNPs. (a) σ =7 and (b) σ = 20. The symbols 

represent simulation results. The solid and broken lines represent M3,NA and M3,BR, respectively.  

 

 

Finally, we study the dependence of M3 on σ, corresponding to the case where dc varies. As shown 

in Fig. 1, the operating point of the MNPs moves from region (I) to regions (II)–(IV) when σ is 

increased. Fig. 4(a) presents the M3–σ relationship for different values of hac when f = 20 kHz. Note 

that the MNPs operate in region (I) for σ < σth = 10.3. In this region, M3 increased with increasing σ 

(or dc) for all values of hac. When σ  becomes greater than σth, M3 then decreases significantly with 

increasing σ for hac < 0.3. However, when  hac > 0.3, M3 is weakly dependent on σ. The solid lines 

represent the analytical M3,NA–σ curves for the Néel-dominant and aligned-easy-axes case [Eqs. (16)–
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(19)], and agreed well with the simulation results. This agreement indicates that the effect of the 

Brownian relaxation is small at f = 20 kHz. 

 
Fig. 4. Dependence of M3 on σ. (a) f =20 kHz and (b) f = 3 kHz. Results are shown for different values 

of hac. The symbols represent simulation results. The solid and broken lines represent M3,NA and M3,BR, 

respectively. 

 

 

Fig. 4(b) presents the M3–σ relationship for f = 3 kHz, where σth = 12.2. In this case, M3 increased 

with increasing σ, even when σ > σth and hac < 0.3, which is in contrast to the case when f = 20 kHz. 

This is because the Brownian relaxation causes M3 to increase greatly for the suspended case when 

1/(2𝜋𝜋𝜋𝜋) ≈ 𝜏𝜏𝐵𝐵,0. The broken lines represent the analytical M3,BR–σ curves [Eqs. (10) and (11)], and 

these lines explained well the large M3 values for the case where σ > σth and hac < 0.3. We will discuss 

the M3–σ relationship in more detail in Sec. 4. 

We note that the properties of M3 differ considerably between the Néel- and Brownian-dominant 

regions, as shown in Figs. 2–4. These differences must therefore be taken into account when harmonic 

signals are used in biosensing applications. 

3.3 Higher harmonics 

We studied the correlations among the harmonic signals for the suspended MNPs. We considered 

the case of the relatively large hac, where rich harmonic signals can be obtained. Fig. 5(a) presents the 

correlation between M5 and M3 for different values of σ, hac, and f. The closed symbols represent the 

results obtained when the MNPs are operated in the Néel-dominant region, i.e., when the condition 

τN(H) <1/(2πf) << τB(H) is satisfied. As shown in the figure, all the simulation results fall on a single 

curve. The open symbols represent the results obtained when the MNPs are operated in the Brownian-

dominant region, i.e., when the conditions hac < hac,BR and 1/(2πf) ≈ τB(H) are satisfied. Once more, 

all the simulation results fall on a different single curve. These correlations can be expressed as:  
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𝑀𝑀5

𝑀𝑀𝑠𝑠
= 𝑎𝑎5

𝑀𝑀3

𝑀𝑀𝑠𝑠
+ 𝑏𝑏5 �

𝑀𝑀3

𝑀𝑀𝑠𝑠
�
2

 (7) 

The coefficient values are given by a5 = 0.12 and b5 =1.35 for the Néel-dominant case, while a5 = 

0.01 and b5 = 1.30 hold for the Brownian-dominant case. The solid lines in Fig. 5(a) were calculated 

using Eq. (7) for these two cases. Note that an M5–M3 curve exists between these two limiting cases 

for general values of σ, hac, and f. 

We also obtained a similar correlation between M5 and M7. This correlation can be expressed as:  

𝑀𝑀7

𝑀𝑀𝑠𝑠
= 𝑎𝑎7

𝑀𝑀5

𝑀𝑀𝑠𝑠
+ 𝑏𝑏7 �

𝑀𝑀5

𝑀𝑀𝑠𝑠
�
2

  (8) 

where a7 = 0.31 and b7 = 2.2 for the Néel case, and a7 = 0.1 and b7 = 3.1 for the Brownian case.  

Fig. 5(b) presents the correlation of phases among the harmonic signals, including the θ5–θ3 and 

θ7–θ3 relations. The closed and open symbols represent the results obtained for the Néel- and 

Brownian-dominant cases, respectively. As shown in the figure, linear relationships were obtained in 

all cases, and the relationship can be expressed as:  

𝜃𝜃5 = 1.7𝜃𝜃3,𝜃𝜃7 = 2.5𝜃𝜃3 (9) 

   The coefficients in Eq. (9) can be understood as follows. When the delay time of M with respect 

to H is Td, the phase lag of the nth harmonic of M is then given approximately by θn =2πnfTd. Therefore, 

we can expect θ5/θ3 = 5/3 =1.67 and θ7/θ3 =7/3 = 2.33. These values are consistent with the coefficients 

used in Eq. (9). 

 

Fig. 5. Correlations among the harmonic signals for the suspended MNPs. (a) M5–M3 relation, and (b) 

θ5–θ3 and θ7–θ3 relations. Here, Mn is the amplitude, and, θn is the phase lag of the nth harmonics, 

respectively. The symbols represent simulation results, while the lines were calculated using Eqs. (7) 

and (9).  
 

 

4. Analysis of the third harmonic signal  
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   Now we obtain an analytical expression for the third harmonic signal of the suspended MNPs. We 

consider the two limiting cases here, i.e., the Brownian- and Néel-dominant cases. 

4.1 MNPs dominated by Brownian relaxation 

   An expression for M3 in the Brownian-dominant case, which we denote by M3,BR, was given in 

[16]: 
𝑀𝑀3,𝐵𝐵𝐵𝐵

𝑀𝑀𝑠𝑠
=

𝜉𝜉𝑎𝑎𝑎𝑎3

180 + 16𝜉𝜉𝑎𝑎𝑎𝑎 + 12𝜉𝜉𝑎𝑎𝑎𝑎2 + 2.36𝜉𝜉𝑎𝑎𝑎𝑎3
×

1

1 + �2𝜋𝜋𝜋𝜋𝜏𝜏𝐵𝐵,0𝑘𝑘𝑚𝑚3�
2  (10) 

 with 

𝑘𝑘𝑚𝑚3 = 2.15−
0.145𝜉𝜉𝑎𝑎𝑎𝑎2

1 + 0.187𝜉𝜉𝑎𝑎𝑎𝑎 + 0.0683𝜉𝜉𝑎𝑎𝑎𝑎2
   (11) 

4.2 Immobilized MNPs with randomly oriented easy axes  

Based on the simulation results, we obtained an empirical expression for M3 for the immobilized 

MNPs with randomly oriented easy axes, as show below. We performed numerical simulations for 7 

< σ < 20, 0.1 < hac < 0.5 and 1 kHz < f < 50 kHz, and clarified the dependences of the third harmonic 

signal on MNP parameters and excitation conditions. The symbols in Fig. 6(a) show the simulation 

results for the case hac > hac,th. Vertical axis represents the amplitude of the third harmonic signal, 

which is denoted as M3,NR, while the horizontal axis represents the parameter ξe given by 

𝜉𝜉𝑒𝑒 =
𝜉𝜉𝑎𝑎𝑎𝑎

3.6 × 10−5𝛼𝛼2 − 3.2 × 10−3𝛼𝛼 + 1.05
   (12) 

where α = σln(f). Note that ξe is determined using ξac and α. 
In Fig. 6(a), different symbols correspond to different values of f. For each f value, σ and hac were 

varied to change ξe. As shown in the figure, all the simulation results fall on a single curve if we use 

the parameter ξe. We approximated the M3,NR–ξe curve as follows: 

𝑀𝑀3,𝑁𝑁𝑁𝑁

𝑀𝑀𝑠𝑠
=

𝜉𝜉𝑒𝑒3

120 + 2𝜉𝜉𝑒𝑒 + 11𝜉𝜉𝑒𝑒2 + 4.32𝜉𝜉𝑒𝑒3
× 𝑔𝑔𝑀𝑀   (13) 

 The function gM in Eq. (13) is given by: 

𝑔𝑔𝑀𝑀 =
1

1 + exp[−2𝜎𝜎(ℎ𝑎𝑎𝑎𝑎 − ℎ1)]   (14) 

with 

ℎ1 = 0.12�ℎac,th�
2 + 0.72ℎac,th + 0.06, (15) 

where hac,th is given in Eq. (4) 

   Fig. 6(a) shows the M3,NR–ξe curve when hac > hac,th. Note that gM = 1 for hac >> hac,th. The solid 
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line in Fig. 6(a) was calculated using Eq. (13) with gM = 1 and agrees well with the simulation results.  

Fig. 6(b) shows the M3,NR–ξac curve obtained for f = 20 kHz. The symbols represent the simulation 

results for different values of σ. For each σ, ξac was changed by varying hac. As shown in the figure, 

M3,NR increased gradually with increasing ξac for σ = 7 and 10. However, for larger values of σ, M3,NR 

increased sharply when ξac exceeded a certain value. The solid lines in Fig. 6(b) were calculated using 

Eq. (13). As the figure shows, we obtained good agreement between the simulation results and Eq. 

(13). Note that the sharp increase in M3,NR is given by the function gM in Eq. (14).  

 
Fig. 6. M3,NR characteristics for the immobilized MNPs. (a) M3,NR–ξe curve for the case where hac > 

hac,th. The symbols show the simulation results obtained for the different values of f, σ, and hac. The 

solid line was calculated using Eq. (13) with gM = 1. (b) M3,NR–ξac curve obtained for f = 20 kHz and 

for different values of σ. The symbols represent the simulation results, while the solid lines were 

calculated using Eq. (13). 

 

 

4.3. Immobilized MNPs with partially aligned easy axes 

In regions (I) and (II) in Fig. 1, the MNPs dynamics are determined by Néel relaxation, and partial 

alignment of the easy axes is caused in the suspended MNPs. In this case, we showed that the AC M-

H curve of the suspended MNPs can be approximated well by that for the immobilized MNPs with 

partially aligned easy axes [23, 27]. In the same way as used in Ref. (27), we express M3 for this case, 

denoted by M3,NA, as  

𝑀𝑀3,𝑁𝑁𝑁𝑁 = 𝑅𝑅𝑀𝑀3𝑀𝑀3,𝑁𝑁𝑁𝑁 (16) 

where M3,NR is the third harmonic signal for the immobilized MNPs given in Eq. (13), and RM3 

represents the increase caused by the alignment of the easy axes. We clarified the dependences of RM3 

on MNP parameters and excitation conditions using numerical simulation for 7 < σ < 20, 0.1 < hac < 

0.5, and 1 kHz < f < 50 kHz. Based on the simulation results, we obtained an empirical expression as 
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𝑅𝑅𝑀𝑀3 = 1 + 1.2tanh �
𝑐𝑐3
√2

𝑘𝑘eff𝜉𝜉𝑎𝑎𝑎𝑎� (17)  

with 

𝑘𝑘eff = �
ℎ𝑎𝑎𝑎𝑎

1.15�1− √𝜅𝜅�
[0.28 + 0.009(𝜎𝜎𝜎𝜎)2]  for ℎ𝑎𝑎𝑎𝑎 < 1.15�1− √𝜅𝜅�

0.28 + 0.009(𝜎𝜎𝜎𝜎)2 for ℎ𝑎𝑎𝑎𝑎 ≥ 1.15�1− √𝜅𝜅� ,        (18)
, 

𝑐𝑐3 = 0.1
0.55 + exp �−6.25𝜎𝜎

𝜎𝜎th
+ 7.8�

1 + exp �−6.25𝜎𝜎
𝜎𝜎th

+ 7.8�
× �1 − exp�−2𝜋𝜋𝜋𝜋𝜏𝜏𝐵𝐵,0/1.7�� (19) 

where κ = (−1/σ)ln(4ξacfτ0) is a parameter that characterizes the Néel-dominant behavior [28, 32]. In 

Eq. (18), we note that keff = 1 for κ > 1.  

   Note that c3 affects RM3 as shown in Eq. (17). The term 1 − exp(−2πfτB,0/1.7) in Eq. (19) gives the 

frequency dependence of c3. We also note that c3 is slightly dependent on σ/σth. When σ << σth and σ 

>> σth, c3 can be simplified to be c3 = 0.1[1 − exp(−2πfτB,0/1.7)] and c3 = 0.055[1 − exp(−2πfτB,0/1.7)], 

respectively.  

   As shown above, M3 for the suspended MNPs can be calculated using M3,BR in Eq. (10) and M3,NA 

in Eq. (16) for the Brownian- and Néel-dominant cases, respectively. Next, we compare the analytical 

results with those from the numerical simulations. First, we compare the M3–hac curves for the 

suspended MNPs. Figs. 2(a) and 2(b) show the results obtained for the Néel-dominant case (σ = 7). In 

this case, the simulation results for M3 agreed with M3,NA in Eq. (16) for all hac values. Note, however, 

that M3,NA for f = 3 kHz became smaller than that for f = 20 kHz. This difference can be explained 

using the term 1 − exp(−2πfτB,0/1.7) in c3 [Eq. (19)]. This term becomes 1 for f = 20 kHz because 

2πfτB,0 >> 1. However, the term becomes smaller than 1 for f = 3 kHz because 2πfτB,0 = 0.89 in that 

case. As a result, c3 becomes small for f = 3 kHz. This small c3 results in a small M3,NA, as can be seen 

from Eq. (17).  

Figs. 2(c) and 2(d) show the results for σ  = 20. In this case, M3 agreed with M3,NA or M3,BR, 

depending on the values of hac and f. M3 for f = 20 kHz agreed well with M3,NA for all hac. When f = 3 

kHz, M3 agreed well with M3,BR for hac < hac,BR, while M3 was between M3,BR and M3,NA when hac > 

hac,BR.  

Fig. 3 shows the M3–f relationship. As shown in Fig. 3(a), the results for σ = 7 agreed well with 

the M3,NA–f relationship calculated using Eqs. (16)–(19). Note that the frequency dependence of M3,NA 

is mainly given by the term 1 − exp(−2πfτB,0/1.7) in c3 [Eq. (19)]. For σ = 20, the frequency 

dependence varied considerably with hac, as shown in Fig. 3(b). For hac = 0.2, M3 decreased 

significantly with increasing f, with a dependence that agreed with the M3,BR–f relationship calculated 

using Eq. (10). Note that the frequency dependence of M3,BR is mainly given by the term [1 + 

(2πfτB,0km3)2]−1 in Eq. (10). For hac > 0.3, however, the frequency dependence of M3 can be better 
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explained using the M3,NA–f curve.  

Fig. 4 presents the M3–σ relationship. As shown in Fig. 4(a), the simulation results for f = 20 kHz 

can be explained well by the M3,NA–σ curves for all values of σ and hac because the effect of the 

Brownian relaxation can be neglected in this case. For f = 3 kHz, however, M3 becomes large even for 

the cases where hac is low (hac < 0.3) and σ is high (σ > σth), as shown in Fig. 4(b). This is because the 

Brownian relaxation contributes greatly to M3 when f = 3 kHz. In these cases, the M3–σ relations 

approached those of the M3,BR–σ curves (represented by the broken lines).  

4.4 Phase 

When the MNPs are operated in the Brownian-dominant region, i.e., in region (IV), the following 

expression for θ3, which is denoted by θ3,BR, was obtained in [16]: 

𝜃𝜃3,𝐵𝐵𝐵𝐵 = 3tan−1�2𝜋𝜋𝜋𝜋𝜃𝜃3𝑓𝑓𝜏𝜏𝐵𝐵,0�   (20) 

with 

𝑘𝑘𝜃𝜃3 = 1.31−
0.0496𝜉𝜉𝑎𝑎𝑎𝑎2

1 + 0.222𝜉𝜉𝑎𝑎𝑎𝑎 + 0.0435𝜉𝜉𝑎𝑎𝑎𝑎2
   (21) 

When the MNPs are operated in the Néel-dominant region, i.e., in regions (I) and (II), it has been 

demonstrated that the parameter κ = (−1/σ)ln(4ξacfτ0) affects the delay time of M with respect to H 

[28, 32]. Therefore, we studied the relationship between θ3 and κ in this case. In the simulation, κ is 

changed by varying σ, hac, and f. Based on the simulation results, we obtained an empirical expression 

for θ3 for the immobilized MNPs, denoted by θ3,NR, as follows.  

𝜃𝜃3,𝑁𝑁𝑁𝑁 = �
1.7(1− 𝜅𝜅0.6)ℎ𝑎𝑎𝑎𝑎−1.25 × 𝑔𝑔𝑃𝑃       for 𝜅𝜅 < 0.6 

1.2exp �− �
𝜅𝜅

0.6�
2.3
� ℎ𝑎𝑎𝑎𝑎−1.25 × 𝑔𝑔𝑃𝑃 for 𝜅𝜅 > 0.6

  (22) 

with 

𝑔𝑔𝑃𝑃 =
1

1 + exp[−25(ℎ𝑎𝑎𝑎𝑎 − ℎ1/2)]   (23) 

Note that gP = 1 for hac >> hac,th. Fig. 7(a) shows the θ3–κ relation when hac >> hac,th. Open circles 

represent the results obtained for the immobilized MNPs for different values of σ, hac, and f. The 

vertical axis is expressed in terms of θ3hac1.25. As shown, the simulation results all fall on a single curve. 

The two lines were calculated using Eq. (22) with gP = 1 for κ < 0.6 and κ > 0.6. As shown in the 

figure, the simulation results can be calculated using Eq. (22). 

Fig. 7(b) shows the θ3–hac curves for the immobilized MNPs. The symbols represent the simulation 

results obtained for different values of σ and f = 20 kHz. As shown, θ3 decreased gradually with 

increasing hac for σ = 10 and 13. However, for σ = 16 and 20, θ3 showed peaks at specific values of 

hac. The solid lines in Fig. 7(b) were calculated using Eqs. (22) and (23) and match the θ3–hac curves 

well.   



16 
 

The closed symbols shown in Fig 7(a) were the results obtained for the suspended MNPs. As 

shown, the θ3hac1.25–κ relations are almost on the same curve between the immobilized and suspended 

MNPs. This result indicates that θ3 for the suspended MNPs, i.e., θ3,NA, can be approximated with that 
of the immobilized MNPs, i.e., 𝜃𝜃3,𝑁𝑁𝑁𝑁 ≈ 𝜃𝜃3,𝑁𝑁𝑁𝑁. Note, however, that the error of this approximation 

increases with decreasing κ.  

 
Fig. 7. (a) Relationship between θ3 and κ for hac > hac,th. The open and closed symbols represent the 

simulation results for the immobilized and suspended MNPs, respectively. The two lines were 

calculated using Eq. (22) with gP = 1. (b) θ3–hac curves for the immobilized MNPs. The symbols show 

the results for different σ and f = 20 kHz, and the lines were calculated using Eqs. (22) and (23). 

 

 

5. Experimental 

We now compare the theoretical results with the experimental results obtained using the Synomag 

sample. The magnetic parameters of the sample were estimated to be Ms = 345 kA/m and K =9.7 kJ/m3 

[15]. Note that dc is distributed within the sample. Fig. 8(a) presents the dc distribution that was 

estimated from the DC M-H curve using the procedure presented in our previous paper [15]. In Fig. 

8(a), the horizontal axis is expressed in terms of σ rather than dc; the value of K = 9.7 kJ/m3 was then 

used to obtain σ from dc. The left-hand side of the vertical axis represents the value of n(dc)Vc, where 

n(dc) is the number density of the MNPs with dc per unit of MNPs volume. As shown in Fig. 8(a), σ 

was mainly distributed from 2 to 25, and n(dc)Vc had a peak value at σ = 7; in other words, dc was 

distributed from 12 to 28 nm, and n(dc)Vc had a peak value at dc = 18 nm. The right-hand side of the 

vertical axis represents the fraction VF given by 

𝑉𝑉𝐹𝐹 = � 𝑛𝑛(𝑑𝑑𝑐𝑐′ )
𝑑𝑑𝑐𝑐

0
𝑉𝑉𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐′    (24) 

 We consider the case where the sample is excited at f = 20 kHz. In this case, we obtain σth = 10.3 

from Eq. (3). As shown in Fig. 1, MNPs with σ < σth operated in region (I) (a Néel-dominant region), 
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while MNPs with σ  > σth operated in regions (II)–(IV) (Néel- or Brownian-dominant regions). As 

shown in Fig. 8(a), we obtained VF = 0.76 at σ = σth= 10.3. Therefore, the volume fraction of MNPs 

in region (I) is 0.76, while the fraction of the MNPs in regions (II)–(IV) is 0.24. This means that the 

magnetic properties of the Synomag sample are primarily affected by Néel relaxation. 

 
Fig. 8. Comparison between results of the experiments and the analysis for the Synomag sample. (a) 

Distribution of the magnetic core size dc. (b) M3,samp–Hac relationship for f = 20 kHz. (c) Frequency 

dependence of M3,samp. (d) Relationship between M3,samp and Mn,samp (where n = 5 and 7). The symbols 

in (b)-(d) represent the experimental results, while the lines represent the analytical results. 

 

 

In this study, we use a two-particle approximation for simplicity, and make a semi-quantitative 

comparison between experiment and the analysis. In Fig. 8(a), MNPs with σ < σth are represented by 

an MNP with σ = 7; n(dc)Vc showed a peak value at σ = 7. MNPs with σ > σth are represented by an 

MNP with σ = 15. In this approximation, the third harmonic signal of the sample is given by: 

𝑀𝑀3,samp���������������⃗ = 𝑎𝑎𝑀𝑀3(7)������������⃗ + 𝑏𝑏𝑀𝑀3(15)���������������⃗   (25) 

where 𝑀𝑀3,samp���������������⃗ = �𝑀𝑀3,sampcos𝜃𝜃3,samp,𝑀𝑀3,sampsin𝜃𝜃3,samp�  is a vector that represents the real and 

imaginary parts of the third harmonic signal of the sample, and 𝑀𝑀3�����⃗ (7) and 𝑀𝑀3�����⃗ (15) are the harmonic 
signals for the MNP with σ = 7 and 15, respectively. The parameters a and b represent the volume 

fractions of the two particles. Note that the real and imaginary parts of 𝑀𝑀3,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠����������������⃗  can be obtained using 
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Eq. (25) and the amplitude M3,samp can then be calculated.   

 First, we measured the AC M–H curve for various Hac when f = 20 kHz. The circles and rectangles 

in Fig. 8(b) represent the M3,samp–Hac relations for the suspended and immobilized samples, 

respectively. As shown in the figure, the difference in M3,samp between the two samples increases 
with increasing Hac, and this result resembles the simulation result presented in Fig. 2(a).  

The lines in Fig. 8(b) were calculated using Eq. (25). The red line represents the result for the 

immobilized sample. In the calculations, the real and imaginary parts of 𝑀𝑀3�����⃗ (7) and 𝑀𝑀3�����⃗ (15) were 
calculated using the amplitude M3,NR in Eq. (13) and the phase θ3,NR in Eq. (22). The values of a and 

b were taken as adjustable parameters. As shown in Fig. 8(b), we obtained reasonable agreement 

between the experiments and the analysis for a = 0.8 and b = 0.1. The value of a = 0.8 is consistent 

with the volume fraction of 0.76 for the MNPs in region (I). However, the value of b = 0.1 is smaller 

than the volume fraction of 0.24 for the MNPs in regions (II)–(IV). 

The blue lines in Fig. 8(b) represent the results for the suspended sample. In this case, 𝑀𝑀3�����⃗ (7) was 
calculated using M3,NA in Eq. (16) and θ3,NR in Eq. (22); note that we approximated 𝜃𝜃3,𝑁𝑁𝑁𝑁 ≈ 𝜃𝜃3,𝑁𝑁𝑁𝑁, as 

shown in Fig. 7(a). For 𝑀𝑀3�����⃗ (15), we considered two cases. The first was the case where an MNP with 

σ = 15 is operating in the Néel-dominant region, and 𝑀𝑀3�����⃗ (15) is calculated using M3,NA in Eq. (16) 
and θ3,NR in Eq. (22). The broken line in Fig. 8(b) represents the result calculated for this case with a 

= 0.8 and b = 0.1. As shown, we obtained reasonable agreement between the experiments and the 

analysis. 

The second is the case where an MNP with σ = 15 is operating in the Brownian-dominant region, 

and 𝑀𝑀3�����⃗ (15) is calculated using M3,BR in Eq. (10) and θ3,BR in Eq. (20). The solid line represents the 
calculated result for this case. In the calculation, the value of dH was taken as an adjustable parameter. 

As shown in Fig. 8(b), we obtained good agreement between the experiments and the analysis when 

we took dH = 30 nm.  

Next, Fig. 8(c) shows the frequency dependence of M3,samp when f was varied from 1 to 20 kHz. The 

results for µ0Hac = 10, 15 and 20 mT are shown. The broken lines were obtained when 𝑀𝑀3�����⃗ (15) was 
calculated using M3,NA and θ3,NR (the Néel-dominant case). In this case, the analytical value of M3,samp 

was almost independent of f. The solid lines were obtained when 𝑀𝑀3�����⃗ (15) was calculated using M3,BR 
and θ3,BR (the Brownian-dominant case). In this case, the analytical value of M3,samp decreased with 

increasing f, and agreed well with the experimental characteristic. This result suggests that the 

representative MNP with σ = 15 operates in the Brownian-dominant region. 

We note that the value of dH = 30 nm obtained in Figs. 8(b) and 8(c) was smaller than the nominal 

value of dH = 50 nm given by the supplier. We measured the dH distribution for the Synomag sample 

using dynamic light scattering (DLS) measurement. Intensity distribution measured with DLS had a 

peak value at dH=51 nm, which is in good agreement with the nominal value of dH=50 nm. We note 

that the intensity distribution gives the n(dH)(VH)2 vs dH curve, where n(dH) is the number density of 
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the MNPs with dH. On the other hand, the volume distribution, i.e., the n(dH)VH vs dH curve, had a 

peak value at dH=37 nm. The number distribution, i.e., the n(dH) vs dH curve, had a peak value at dH=33 

nm, which is close to the value dH=30 nm obtained in Figs. 8(b) and 8(c). This is reasonable because 

the dH value affects only the frequency dependence of M3,BR through τB,0 as shown in Eq. (10), and the 

Brownian relaxation of MNPs is affected by the n(dH) vs dH curve when dH distributes, as discussed 

in ref. (33). 

Finally, Fig. 8(d) shows the correlation between M3,samp and Mn,samp (where n = 5 and 7). The 

symbols represent the experimental results, while the lines represent the analytical results calculated 

using Eqs. (7) and (8). In the calculations, we used the coefficients a5, b5, a7, and b7 for the Néel-

dominant case because the magnetic properties of the Synomag sample are primarily affected by the 

Néel relaxation, as indicated in Fig. 8(a). As shown, we obtained good agreement between the 

experiments and the analysis. 

As shown above, the experimental results can be explained semi-quantitatively using a two-

particle approximation. For a more quantitative analysis, however, we will have to take the 

distributions of both dc and dH into account. For the MNPs sample dominated by Néel relaxation, 

accurate estimation of the dc distribution is sufficient. For the MNPs samples dominated by Brownian 

relaxation, accurate estimation of the dH distribution is also necessary, as discussed in Refs. (33) and 

(34). It will be our future work to make quantitative comparison for samples with different degree of 

Brownian and Néel relaxation.  

 

6. Conclusions 

We studied the harmonic signals of MNPs suspended in solution. First, we presented the condition 

that determines whether Brownian or Néel relaxation becomes dominant. We emphasized that the 

MNP’s behavior changes from Brownian-dominant to Néel-dominant when the field amplitude H is 

varied, even for fixed MNP parameters. The different properties of the third harmonic signal for the 

Brownian- and Néel-dominant cases were clarified. The relationships among the higher harmonic 

signals were also presented. Next, analytical expressions for the third harmonic signal were obtained 

for both the Brownian- and Néel-dominant cases. In the Néel-dominant case, the alignment of the easy 

axes caused by the AC field was taken into account. The obtained expressions explain well the 

dependence of the third harmonic signal on the MNP parameters and the excitation conditions. Finally, 

the analytical results were compared semi-quantitatively with experimental results, and reasonable 

agreement was obtained between them. The results obtained in this work will be useful for biosensing 

applications of MNPs. 
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