九州大学学術情報リポジトリ Kyushu University Institutional Repository

OPTIMIZATION FOR REAL-TIME CONTROL WITH LIMITED RESOURCES

Themelis, Andreas Kyushu University

https://hdl.handle.net/2324/6790350

出版情報:2021-08-22

バージョン: 権利関係:

OPTIMIZATION FOR REAL-TIME CONTROL WITH LIMITED RESOURCES

Andreas Themelis

Kyushu University

andreas.themelis@ees.kyushu-u.ac.jp

Real time optimization for control: basics and recent progress

August 22, 2021 @ E-COSM 2021

 Optimization: what and why Examples
 Optimization in control
 Challenges

Problem setting & toolbox Functions, variables, constraints Simplest formulation Speeding up (textbook attempts)

Novel speedup Fast directions Globalization

4 Embeddable *ms*-fast NMPC solvers Handling state constraints Experiments

6 Conclusions

Technology of devising effective decisions or predictions

Formal definition

Choose variables from within an allowed set that minimize a cost

Applications

- Engineering design: plants, building, circuits
- Resource allocation: logistics, finance, communications
- Machine learning: (un)supervised learning, regression
- Signal processing: compressed sensing, signal estimation
- Control: autonomous systems, path planning, tracking, navigation

Examples — Recommender system

- Which items you might like based on rating database $\bar{X}_{i,i}$ $(i,j) \in \Omega$
- Ratings depend on few "latent features"

$$\underset{X \in \mathbb{R}^{m \times n}}{\operatorname{minimize}} \|(X - \bar{X})_{\Omega}\|^2 + \underset{\lambda}{\lambda} \operatorname{rank} X$$

Examples — Back/foreground extraction

- Separate fore/background from N many $m \times n$ video frames
- $S = [\text{frame 1}, \dots, \text{frame } N] \in \mathbb{R}^{mn \times N}$
- Foreground X: moving objects \Rightarrow sparse
- Background Y: constant over time ⇒ low rank

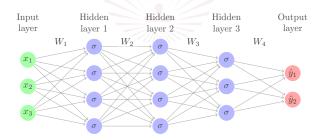
$$\underset{X,Y}{\text{minimize}} ||X + Y - S||^2 + \lambda \operatorname{nnz}(X) \quad \text{subject to rank } Y \le k$$

Examples — Deep NNs

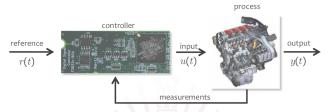
- "Learn" weights W_j defining a classifying function
- by "training"

$$\underset{W_1...W_4}{\operatorname{minimize}} \ \frac{1}{N} \sum_{i=1}^{N} \ell(y^i, \hat{y}^i) \quad \text{where} \quad \hat{y}^i = W_4 \sigma \Big(W_3 \sigma \Big(W_2 \sigma \Big(W_1 \sigma(x^i) \Big) \Big) \Big)$$

• on a training set (x^i, y^i)

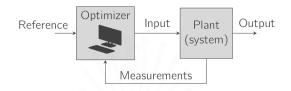


Optimization in control



A controller is a decision-making mechanism who decides & actuates inputs to steer the plant/process/system

Optimization in control



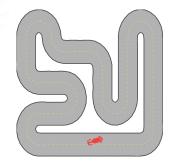
Conceptual example

Goal

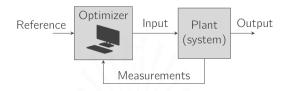
Fastest trajectory

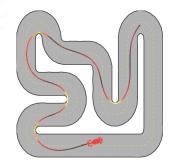
Constraints

- Stay on road
- Avoid other vehicles
- Physical limits (speed,...)

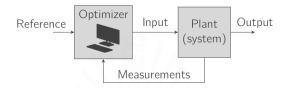


Optimization in control



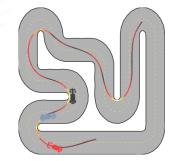


Optimization in control

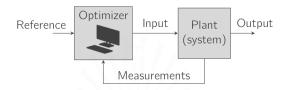


Conceptual example Input actuation

- · Apply optimal input
- · Check car/environment again!



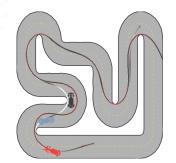
Optimization in control



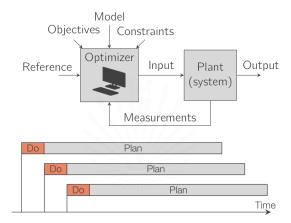
Conceptual example

Feedback

- **Discard** the long-term prediction
- Restart based on new info/measurements



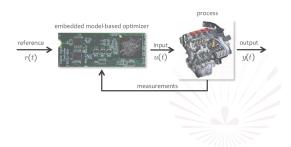
Optimization in control - MPC



Feedback granted by receding horizon strategy

Optimization in control — MPC in a nutshell

Use a dynamical model of the process to predict its evolution and choose control actions



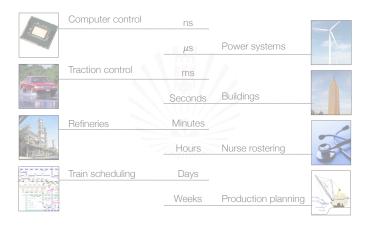
Optimization in control — MPC in a nutshell

Use a dynamical model of the process to predict its evolution and choose control actions by recursively solving finite discrete-time optimal control problems in a receding horizon fashion

Optimal control problem $\underset{u,x}{\text{minimize}} \sum_{t=1}^{N-1} \ell_t(x_t, u_t) + \ell_N(x_N)$ s.t. $x_{t+1} = F_t(x_t, u_t)$ $u_t \in \mathcal{U}_t$ $x_t \in X_t$

Challenges — Fast sampling rates

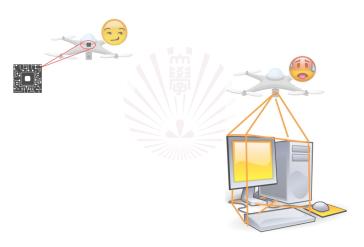
New optimization problems must be solved within sampling time



High-computing power required

Challenges — Embeddability

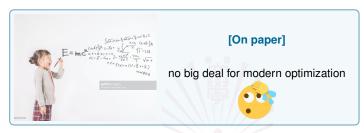
Some applications can't afford high computing



Algorithms must be **embeddable** on low-power chipsets

Challenges — Nonsmoothness

Constraints ⇒ nonsmooth problem

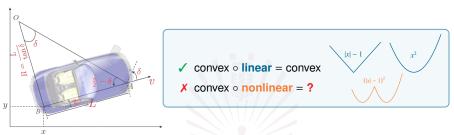


[In practice]

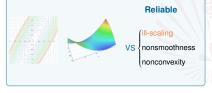
fast algorithms (IP, SQP...) too heavy for low-power chipsets

Challenges — Nonconvexity

Nonlinear dynamics ⇒ nonconvex problem



Challenges — Summary



 Optimization: what and why Examples
 Optimization in control Challenges

Problem setting & toolbox Functions, variables, constraints Simplest formulation Speeding up (textbook attempts)

Novel speedup Fast directions Globalization

4 Embeddable *ms*-fast NMPC solvers Handling state constraints Experiments

5 Conclusions

Functions, variables, constraints

$$\underset{u, \mathbf{x}}{\text{minimize}} \sum_{t=0}^{N-1} \ell_t(x_t, u_t) + \ell_N(x_N) \qquad \text{subject to} \begin{cases} x_{t+1} = F_t(x_t, u_t) \\ u_t \in \mathcal{U}_t \\ x_t \in \mathcal{X}_t \end{cases}$$

Requirements

- ℓ_t , F_t smooth (e.g. C^2)
- input constraints \mathcal{U}_t easy to project onto (boxes, balls...)

can be relaxed

no need for convex constraints, but typical in practice

Functions, variables, constraints

minimize
$$\sum_{t=0}^{N-1} \ell_t(x_t, u_t) + \ell_N(x_N)$$
 subject to
$$\begin{cases} x_{t+1} = F_t(x_t, u_t) \\ u_t \in \mathcal{U}_t \\ x_t \in \mathcal{X}_t \end{cases}$$

Requirements

- ℓ_t, F_t smooth (e.g. C^2)
- input constraints \$\mathcal{U}_t\$ easy to project onto (boxes, balls...)

can be relaxed

no need for convex constraints, but typical in practice

Example: holonomic land vehicle with trailer

- steer to reference pos./orient. (p_⋆, ϑ_⋆)
- avoid obstacles

Dynamics

$$\begin{aligned}
\dot{p}_x &= u_x + L\dot{\vartheta}\sin\vartheta \\
\dot{p}_y &= u_y - L\dot{\vartheta}\cos\vartheta \\
\dot{\vartheta} &= \frac{1}{L}(u_y\cos\vartheta - u_x\sin\vartheta)
\end{aligned}$$

(input) velocity u (state) trailer pos. p & head. angle ϑ (const) trailer arm length L

MPC problem Given current pos. p_0 & head. angle θ_0 ,

$$\begin{aligned} & \underset{u_{t-1}, (p_t, \vartheta_t)}{\text{minimize}} \sum_{t=1}^{N} \frac{C_{\mathbf{x}}}{2} \|p_t - p_{\star}\|^2 + \frac{C_{\mathbf{x}}}{2} \|\vartheta_t - \vartheta_{\star}\|^2 + \frac{C_{u}}{2} \|u_{t-1}\|^2 \\ & = \sum_{t=1...N} \left\{ (p_{t+1}, \theta_{t+1}) = \underbrace{F_t}(p_t, \vartheta_t, u_t) \right. \underbrace{F_t} \text{ discretized dynamics (e.g. RK4)} \\ & \text{subject to} \left\{ u_{\min} \leq u_t \leq u_{\max} \right. \end{aligned}$$

Functions, variables, constraints

$$\underset{u, x}{\text{minimize}} \sum_{t=0}^{N-1} \ell_t(x_t, u_t) + \ell_N(x_N)$$

subject to
$$\begin{cases} x_{t+1} = F_t(x_t, u_t) \\ u_t \in \mathcal{U}_t \\ x_t \in \mathcal{X}_t \end{cases}$$

Requirements

- ℓ_t, F_t smooth (e.g. C^2)
- input constraints \$\mathcal{U}_t\$ easy to project onto (boxes, balls...)

can be relaxed

no need for convex constraints, but typical in practice

Multiple shooting

Treat *x* as variable (keep dynamics as constraints)

- ⊗ 3× larger variable
- sparse formulation
- (S) dynamics not respected
- constraints

Functions, variables, constraints

$$\underset{u, \star}{\text{minimize}} \sum_{t=0}^{N-1} \ell_t(x_t(u), u_t) + \ell_N(x_N(u)) \quad \text{subject to} \begin{cases} u_t \in \mathcal{U}_t \\ x_t(u) \in \mathcal{X}_t \end{cases}$$

Requirements

- ℓ_t , F_t smooth (e.g. C^2)
- input constraints \mathcal{U}_t easy to project onto (boxes, balls...)

can be relaxed

no need for convex constraints. but typical in practice

Single shooting

Express x in terms of u

(keep only u as optim. variable)

- smaller variable
- densely nested nonlinearities
- dynamics inherently satisfied
- complicated state constraints

Simplest formulation

• **Single shooting** approach (keep only inputs *u*)

For t = 1, ..., N, recursively express

$$x_t = x_t(u_0, \dots, u_{t-1})$$

= $F_{t-1}(x_{t-1}(u_0, \dots, u_{t-2}), u_{t-1})$

• For now, discard state constraints (we'll fix this later)

Simplest formulation

Single shooting approach (keep only inputs u)

For t = 1, ..., N, recursively express

$$x_t = x_t(u_0, \dots, u_{t-1})$$

= $F_{t-1}(x_{t-1}(u_0, \dots, u_{t-2}), u_{t-1})$

• For now, discard state constraints (we'll fix this later)

Problem becomes

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ easy to project onto (e.g. $u_{\text{MIN}} \le u_t \le u_{\text{MAX}}$)

Simplest formulation

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ easy to project onto (e.g. $u_{\text{MNN}} \le u_t \le u_{\text{MAX}}$)

(Projected) gradient method (Cauchy, 1847)

gradient descent step

iterate
$$u \leftarrow \Pi_{\mathcal{U}}(u - \gamma \nabla f(u))$$

projection on constraints

Augustin-Louis Cauchy (1789-1857)

(27/69)

Simplest formulation

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ easy to project onto (e.g. $u_{\text{MMN}} \le u_t \le u_{\text{MAX}}$)

(Projected) gradient method (Cauchy, 1847)

gradient descent step

iterate
$$u \leftarrow \prod_{\mathcal{U}} (u - \gamma \nabla f(u))$$

Augustin-Louis Cauchy (1789-1857)

Arguably the simplest possible method

Unreliable for real-time applications

- **Embeddable**
- Minimal assumptions

- Slow
- Sensitive to conditioning

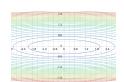
(28/69)

Simplest formulation (but also slowest)

(Unconstrained) example

Fix
$$c \gg 1$$

$$\underset{(x,y)\in\mathbb{R}^2}{\text{minimize}} \frac{f(x,y)}{\frac{1}{2}x^2 + \frac{\epsilon}{2}y^2}$$



Gradient method

$$\begin{pmatrix} x^+ \\ y^+ \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - \gamma \begin{pmatrix} x \\ cy \end{pmatrix} = \begin{pmatrix} (1 - \gamma)x \\ (1 - c\gamma)y \end{pmatrix}$$

Starting from
$$(x^{(0)}, y^{(0)}) = (\bar{x}, \bar{y}),$$

$$\begin{pmatrix} x^{(k)} \\ y^{(k)} \end{pmatrix} = \begin{pmatrix} (1 - \gamma)^k \bar{x}^k \\ (1 - c\gamma)^k \bar{y} \end{pmatrix}$$

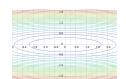
• If
$$\gamma \notin (0, 2/c)$$
 no convergence

$$\begin{pmatrix} x^{(k)} \\ y^{(k)} \end{pmatrix} = \begin{pmatrix} (1-\gamma)^k \bar{x} \\ (1-c\gamma)^k \bar{y} \end{pmatrix}$$
• If $\gamma \in (0, 2/c)$ $(x^{(k)}, y^{(k)}) \to (0, 0)$ but **very slowly!**

Simplest formulation (but also slowest)

(Unconstrained) example Fix $c \gg 1$

$$\underset{(x,y)\in\mathbb{R}^2}{\text{minimize}} \frac{f(x,y)}{\frac{1}{2}x^2 + \frac{c}{2}y^2}$$



Gradient method

$$\begin{pmatrix} x^+ \\ y^+ \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - \gamma \begin{pmatrix} x \\ x \\ y \end{pmatrix} = \begin{pmatrix} (1 - \gamma)x \\ (1 - c\gamma)y \end{pmatrix}$$

Starting from
$$(x^{(0)}, y^{(0)}) = (\bar{x}, \bar{y}),$$

$$\begin{pmatrix} x^{(k)} \\ y^{(k)} \end{pmatrix} = \begin{pmatrix} (1 - \gamma)^k \bar{x} \\ (1 - c\gamma)^k \bar{y} \end{pmatrix}$$

• If
$$\gamma \notin (0, 2/c)$$
 no convergence

$$\begin{pmatrix} x^{(k)} \\ y^{(k)} \end{pmatrix} = \begin{pmatrix} (1-\gamma)^k \bar{x} \\ (1-c\gamma)^k \bar{y} \end{pmatrix}$$
• If $\gamma \in (0, 2/c)$ $(x^{(k)}, y^{(k)}) \to (0, 0)$ but **very slowly!**

- Take $\gamma = 1/c$, $(\bar{x}, \bar{y}) = (1, 1)$
- then $x^{(k)} = (1 1/c)^k$ and $y^{(k)} = 0$
- to be ε -close to the solution, $\frac{\log \varepsilon}{\log 1 1/\varepsilon} \approx c \log \frac{1}{\varepsilon}$ iterations needed
- $c = 3 \cdot 10^5$, >1million iterations needed to reach $\varepsilon = 0.1$ accuracy

Speeding up (textbook attempt I)

Let's keep things unconstrained...

$$\underset{u \in \mathbb{R}^n}{\operatorname{minimize}} f(u) \qquad f \ \ \text{(twice) smooth}$$

Newton's method

• Suppose $\nabla^2 f(u) > 0$,

$$u^+ = u - \nabla^2 f(u)^{-1} \nabla f(u)$$

Ex. $f(x,y) = \frac{1}{2}x^2 + \frac{c}{2}y^2 \Rightarrow$ convergence in 1 iteration!

Isaac Newton (1642-1727)

Speeding up (textbook attempt I)

Let's keep things unconstrained...

$$\underset{u \in \mathbb{R}^n}{\operatorname{minimize}} f(u)$$

$$\underset{u \in \mathbb{R}^n}{\operatorname{minimize}} f(u) \qquad f \ \ \text{(twice) smooth}$$

Newton's method

• Suppose $\nabla^2 f(u) > 0$,

$$u^+ = u - \nabla^2 f(u)^{-1} \nabla f(u)$$

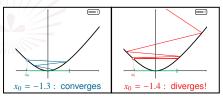
Isaac Newton (1642-1727)

But

applied to

$$f(x) = x \arctan x - \frac{1}{2} \log(1 + x^2)$$

(convex, C^{∞} , Lipschitz differentiable)



Speeding up (textbook attempt I)

Let's keep things unconstrained...

$$\underset{u \in \mathbb{R}^n}{\operatorname{minimize}} f(u) \qquad f \quad \text{(twice) smooth}$$

Damped Newton's method

• Suppose $\nabla^2 f(u) > 0$,

$$u^{+} = u - \tau \nabla^{2} f(u)^{-1} \nabla f(u)$$

Isaac Newton (1642-1727)

- Convergence only close to a solution
- In general, need τ small enough to guarantee $f(u^+) < f(u)$

Speeding up (textbook attempt I)

Let's keep things unconstrained...

$$\underset{u \in \mathbb{R}^n}{\operatorname{minimize}} f(u) \qquad f \quad \text{(twice) smooth}$$

Damped Newton's method

• Suppose $\nabla^2 f(u) > 0$.

$$u^+ = u - \tau \nabla^2 f(u)^{-1} \nabla f(u)$$

Isaac Newton (1642-1727)

- Convergence only close to a solution
- In general, need τ small enough to guarantee $f(u^+) < f(u)$
- Linesearch:

$$\langle \nabla f(u), d \rangle < 0 \quad \Rightarrow \quad f(u + \tau d) = f(u) + \tau \langle \nabla f(u), d \rangle + o(\tau) < f(u)$$

for τ small enough!

Speeding up (textbook attempt II)

Let's continue keeping things unconstrained...

$$\underset{u \in \mathbb{R}^n}{\operatorname{minimize}} f(u) \qquad f \quad \text{(twice) smooth}$$

Quasi-Newton methods

- Computing $\nabla^2 f$ impractical
- Newton direction $-\nabla^2 f^{-1}(u)\nabla f(u)$ approximated with linear algebra

Problem setting & toolbox

Speeding up (textbook attempt II)

Let's continue keeping things unconstrained...

$$\underset{u \in \mathbb{R}^n}{\operatorname{minimize}} f(u) \qquad f \ \ \text{(twice) smooth}$$

Quasi-Newton methods

- Computing $\nabla^2 f$ impractical
- Newton direction $-\nabla^2 f^{-1}(u) \nabla f(u)$ approximated with linear algebra

Key idea:

$$\underbrace{\nabla f(u^{(k)}) - \nabla f(u^{(k-1)})}_{y^{(k)}} \approx \underbrace{\nabla^2 f(u^{(k)})}_{\approx B_{k+1}} \underbrace{\left(u^{(k)} - u^{(k-1)}\right)}_{s^{(k)}}$$

• Update estimate $B_k \mapsto B_{k+1}$ by enforcing the "secant condition"

$$B_{k+1}s^{(k)} = y^{(k)}$$

- "Limited memory" variants (e.g. L-BFGS) need vector-vector products only!
- Can ensure convergence with suitable linesearch

Problem setting & toolbox

Speeding up — Summary

Projected grandient method

- Cheap(est)
- Constraints ✓
- Slow

Newton method

- © Fast (very!)
- Expensive
- Constraints X

Quasi-Newton methods

- Fast
- Cheap
- Constraints X

Problem setting & toolbox

Speeding up — Summary

Projected grandient method

- Cheap(est)
- Constraints
- Slow

Newton method

- Fast (very!)
- Expensive
- Constraints X

Quasi-Newton methods

Fast

Cheap

Constraints X

Linesearch methods

$$u^+ = u + \tau d$$

all require

- $\langle \nabla f(u), d \rangle < 0$
- (in particular f smooth)

 Optimization: what and why Examples Optimization in control Challenges

Problem setting & toolbox
Functions, variables, constraints
Simplest formulation
Speeding up (textbook attempts

- 3 Novel speedup Fast directions Globalization
- 4 Embeddable ms-fast NMPC solvers Handling state constraints Experiments
- 5 Conclusions

Fast update directions — for nonsmooth problems

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ easy to project onto (e.g. $u_{t_0} \times u_t \leq u_{t_0} \times u_t \leq u_{$

Optimality conditions

$$u$$
 local minimum $\Rightarrow u - \Pi_{\mathcal{U}}(u - \gamma \nabla f(u)) = 0$

• If $\mathcal{U} = \mathbb{R}^n$ (unconstrained), reduces to $\nabla f(u) = 0$

Fast update directions — for nonsmooth problems

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ closed easy to project onto (e.g. $u_{MN} \le u_t \le u_{MAX}$)

Optimality conditions

$$u \text{ local minimum} \quad \Rightarrow \quad \underbrace{u - \Pi_{\mathcal{U}}(u - \gamma \nabla f(u))}^{\mathcal{R}(u)} = 0$$

• Idea for "fast" directions

Quasi-Newton on R

$$\underbrace{\mathcal{R}(u^{(k)}) - \mathcal{R}(u^{(k-1)})}_{y^{(k)}} = B_{k+1} \underbrace{(u^{(k)} - u^{(k-1)})}_{s^{(k)}}$$

Fast update directions — for nonsmooth problems

all require • $\langle \nabla f(u), d \rangle < 0$ (in particular f smooth) minimize $f(u; x_0)$ subject to $u \in \mathcal{U}_0 \times \cdots \times$ easy to project onto (e.g. $u_{MIN} \le u_t \le u_{MAX}$)

Linesearch methods $u^+ = u + \tau d$

Can't use (classical) linesearch

The true cost
$$u \mapsto \begin{cases} f(u) & \text{if } u \in \mathcal{U} \\ \infty & \text{if } u \notin \mathcal{U} \end{cases}$$
 is nonsmooth

Globalization — A novel nonsmooth LS

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ easy to project onto (e.g. $u_{MN} \le u_t \le u_{MAX}$)

New tool: for $\gamma > 0$, define

$$\varphi_{\gamma}(u) := \min_{w \in \mathcal{U}} \left\{ f(u) + \langle \nabla f(u), w - u \rangle + \tfrac{1}{2\gamma} ||w - u||^2 \right\}$$

Remarks

Globalization — A novel nonsmooth LS

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ closed easy to project onto (e.g. $u_{total} \le u_{total} \le u_{total}$

New tool: for $\gamma > 0$, define

$$\varphi_{\gamma}(u) := \min_{w \in \mathcal{U}} \left\{ f(u) + \langle \nabla f(u), w - u \rangle + \frac{1}{2\gamma} ||w - u||^2 \right\}$$

$$\frac{1}{2\gamma} ||w - u + \gamma \nabla f(u)||^2 - \frac{\gamma}{2} ||\nabla f(u)||^2$$

Remarks

• The minimizer is $\bar{u} = \Pi_{\mathcal{U}}(u - \gamma \nabla f(u))$

$$\varphi_{\gamma}(u) = f(u) + \langle \nabla f(u), \overline{u} - u \rangle + \frac{1}{2\gamma} ||\overline{u} - u||^2$$

Globalization — A novel nonsmooth LS

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ easy to project onto (e.g. $u_{M_1} \le u_1 \le u_{MAX}$)

New tool: for $\gamma > 0$, define

$$\varphi_{\gamma}(u) := \min_{w \in \mathcal{U}} \left\{ f(u) + \langle \nabla f(u), w - u \rangle + \frac{1}{2\gamma} ||w - u||^2 \right\}$$

Remarks

• The minimizer is $\bar{u} = \Pi_{\mathcal{U}}(u - \gamma \nabla f(u))$

$$\varphi_{\gamma}(u) = f(u) + \langle \nabla f(u), \overline{u} - u \rangle + \frac{1}{2\gamma} ||\overline{u} - u||^2$$

• $u \in \mathcal{U} \implies \varphi_{\gamma}(u) \leq f(u)$

Globalization — A novel nonsmooth LS

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ easy to project onto (e.g. $u_{t_0} \times u_t \leq u_{t_0} \times u_t \leq u_{$

New tool: for $\gamma > 0$, define

$$\varphi_{\gamma}(u) \coloneqq \min_{w \in \mathcal{U}} \left\{ f(u) + \langle \nabla f(u), w - u \rangle + \tfrac{1}{2\gamma} ||w - u||^2 \right\}$$

Remarks

• The minimizer is $\bar{u} = \Pi_{\mathcal{U}}(u - \gamma \nabla f(u))$

$$\varphi_{\gamma}(u) = f(u) + \langle \nabla f(u), \overline{u} - u \rangle + \frac{1}{2\gamma} ||\overline{u} - u||^2$$

- $u \in \mathcal{U} \Rightarrow \varphi_{\gamma}(u) \leq f(u)$
- φ_{γ} is continuous

Globalization — A novel nonsmooth LS

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ easy to project onto (e.g. $u_{MN} \le u_I \le u_{MAX}$)

New tool: for $\gamma > 0$, define

$$\varphi_{\gamma}(u) \coloneqq \min_{w \in \mathcal{U}} \left\{ f(u) + \langle \nabla f(u), w - u \rangle + \frac{1}{2\gamma} ||w - u||^2 \right\}$$

Remarks

The minimizer is $\bar{u} = \prod_{\mathcal{U}} (u - \gamma \nabla f(u))$

$$\varphi_{\gamma}(u) = f(u) + \langle \nabla f(u), \overline{u} - u \rangle + \frac{1}{2\gamma} ||\overline{u} - u||^2$$

- $u \in \mathcal{U} \Rightarrow \varphi_{\gamma}(u) \leq f(u)$
- φ_{γ} is continuous
- If $f(\overline{u}) \le f(u) + \langle \nabla f(u), \overline{u} u \rangle + \frac{\alpha}{2\alpha} ||\overline{u} u||^2$, then

$$f(\bar{\boldsymbol{u}}) \leq \varphi_{\gamma}(\boldsymbol{u}) - \tfrac{1-\alpha}{2\gamma} \|\bar{\boldsymbol{u}} - \boldsymbol{u}\|^2$$

Globalization — A novel nonsmooth LS

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ easy to project onto (e.g. $u_{MN} \le u_I \le u_{MAX}$)

New tool: for $\gamma > 0$, define

$$\varphi_{\gamma}(u) := \min_{w \in \mathcal{U}} \left\{ f(u) + \langle \nabla f(u), w - u \rangle + \frac{1}{2\gamma} ||w - u||^2 \right\}$$

Remarks

The minimizer is $\bar{u} = \prod_{\mathcal{U}} (u - \gamma \nabla f(u))$

$$\varphi_{\gamma}(u) = f(u) + \langle \nabla f(u), \overline{u} - u \rangle + \frac{1}{2\gamma} ||\overline{u} - u||^2$$

- $u \in \mathcal{U} \Rightarrow \varphi_{\gamma}(u) \leq f(u)$
- φ_{γ} is continuous
- If $f(\bar{u}) \le f(u) + \langle \nabla f(u), \bar{u} u \rangle + \frac{\alpha}{2\gamma} ||\bar{u} u||^2$, then

$$\varphi_{\gamma}(\bar{u}) \leq f(\bar{u}) \leq \varphi_{\gamma}(u) - \tfrac{1-\alpha}{2\gamma} \|\bar{u} - u\|^2$$

Globalization — A novel nonsmooth LS

minimize
$$f(u; x_0)$$
 subject to $u \in \mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ easy to project onto (e.g. $u_{M_N} \le u_t \le u_{MAX}$)

Recap

$$\bar{u} = \Pi_{\mathcal{U}}(u - \gamma \nabla f(u))$$
 $u \text{ loc. min. } \Rightarrow u - \bar{u} = 0$

$$\varphi_{\gamma}(u) = f(u) + \langle \nabla f(u), \overline{u} - u \rangle + \frac{1}{2\gamma} ||\overline{u} - u||^2$$

- $\mathbf{0}$ φ_{γ} continuous
- 2 $\alpha \in (0,1), \ \gamma$ small enough

$$\varphi_{\gamma}(\bar{u}) \le \varphi_{\gamma}(u) - \frac{1-\alpha}{2\gamma} ||\bar{u} - u||^2 \quad \forall u$$

Globalization — A novel nonsmooth LS

minimize
$$f(u; x_0)$$
 subject to $u \in \underbrace{\mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}}_{\text{easy to project onto (e.g. } u_{N-1} \times u_{L} \le u_{MAX})}$

Recap

$$\begin{split} & \bar{u} = \Pi_{\mathcal{U}}(u - \gamma \nabla f(u)) \\ & u \text{ loc. min. } \Rightarrow u - \bar{u} = 0 \\ & \varphi_{\gamma}(u) = f(u) + \langle \nabla f(u), \bar{u} - u \rangle + \frac{1}{2\gamma} ||\bar{u} - u||^2 \end{split}$$

- $\mathbf{1}$ φ_{γ} continuous
- $\begin{array}{c} \boldsymbol{2} \ \, \alpha \in (0,1), \ \, \gamma \ \text{small enough} \\ \\ \varphi_{\gamma}(\bar{\boldsymbol{u}}) \leq \varphi_{\gamma}(\boldsymbol{u}) \frac{1-\alpha}{2\gamma} \|\bar{\boldsymbol{u}} \boldsymbol{u}\|^2 \quad \forall \boldsymbol{u} \end{array}$

Novel linesearch

$$u^{+} = u + \tau d$$

$$u^{+} = (1 - \tau)\bar{u} + \tau(u + d)$$

reducing τ until

$$\varphi_{\gamma}(u^+) < \varphi_{\gamma}(u) - \dots$$
 (*)

1 + 2 \Rightarrow (\star) passed for small enough τ

 Optimization: what and why Examples
 Optimization in control Challenges

Problem setting & toolbox
 Functions, variables, constraints
 Simplest formulation
 Speeding up (textbook attempts)

Novel speedup Fast directions Globalization

- 4 Embeddable *ms*-fast NMPC solvers Handling state constraints Experiments
- **5** Conclusions

$$\underset{u}{\text{minimize}} \sum_{t=0}^{f(u) = \ell(x(u), u)} \sum_{t=0}^{N-1} \ell_t(x_t, u_t) + \ell_N(x_N) \quad \text{subject to } u_t \in \mathcal{U}_t$$

Require
$$\alpha \in (0,1), \ \gamma > 0, \ \sigma < \frac{1-\alpha}{2\gamma}, \ \text{initial } u = (u_0 \dots u_{N-1})$$
 Iterate until $||u - \bar{u}|| \le \varepsilon_{\text{tol}}$

- **1.** Compute $\nabla f(u)$
- 2. $\bar{u} = \Pi_{\mathcal{U}}(u \gamma \nabla f(u))$ 3. Choose a direction d
- 4. $u^+ = (1 \tau)\bar{u} + \tau(u + d)$ reducing τ until $\varphi_{\gamma}(u^+) \le \varphi_{\gamma}(u) \sigma||u \bar{u}||^2$

$$\varphi_{\gamma}(u^{+}) \leq \varphi_{\gamma}(u) - \sigma ||u - \bar{u}||^{2}$$

minimize
$$\sum_{t=0}^{N-1} \ell_t(x_t, u_t) + \ell_N(x_N) \quad \text{subject to } u_t \in \mathcal{U}_t$$

Require
$$\alpha \in (0,1), \ \gamma > 0, \ \sigma < \frac{1-\alpha}{2\gamma}, \ \text{initial } u = (u_0 \dots u_{N-1})$$

Iterate until $||u - \bar{u}|| \le \varepsilon_{\text{tol}}$

- **1.** Compute $\nabla f(u)$
- 2. $\bar{u} = \Pi_{\mathcal{U}}(u \gamma \nabla f(u))$ 3. Choose a direction d
- 4. $u^+ = (1 \tau)\bar{u} + \tau(u + d)$ reducing τ until $\varphi_{\gamma}(u^+) \le \varphi_{\gamma}(u) \sigma||u \bar{u}||^2$

CasADi Automatic Differentiation tool

Optimized C code for (backward) AD

J. Andersson. A general-purpose software framework for dynamic optimization. KU Leuven, 2013

(still free states...)

$$\underset{u}{\text{minimize}} \sum_{t=0}^{f(u) = \ell(x(u), u)} \ell_{t}(x_{t}, u_{t}) + \ell_{N}(x_{N}) \quad \text{subject to } u_{t} \in \mathcal{U}_{t}$$

Require
$$\alpha \in (0,1), \ \gamma > 0, \ \sigma < \frac{1-\alpha}{2\gamma}, \ \text{initial} \ u = (u_0 \dots u_{N-1})$$
Iterate until $||u - \bar{u}|| \le \varepsilon_{\text{tol}}$

- **1.** Compute $\nabla f(u)$
- ū = Π_U(u − γ∇f(u))
 Choose a direction d
- 4. $u^+ = (1 \tau)\bar{u} + \tau(u + d)$ reducing τ until $\varphi_{\gamma}(u^+) \le \varphi_{\gamma}(u) \sigma ||u \bar{u}||^2$

 $\mathcal{U}_0 \times \cdots \times \mathcal{U}_{N-1}$ is separable

$$\bar{u}_t = \Pi_{\mathcal{U}_t}(u_t - \gamma \nabla_{u_t} f(u))$$

N projections in parallel

(still free states...)

Require
$$\alpha \in (0,1), \ \gamma > 0, \ \sigma < \frac{1-\alpha}{2\gamma}, \ \text{initial } u = (u_0 \dots u_{N-1})$$

Iterate until $||u - \bar{u}|| \le \varepsilon_{\text{tol}}$

- **1.** Compute $\nabla f(u)$
- 2. $\bar{u} = \Pi_{\mathcal{U}}(u \gamma \nabla f(u))$ 3. Choose a direction d
- 4. $u^+ = (1 \tau)\bar{u} + \tau(u + d)$ reducing τ until $\varphi_{\gamma}(u^+) \le \varphi_{\gamma}(u) \sigma ||u \bar{u}||^2$

Optimality conditions $\Re(u) = 0$ where

$$\mathcal{R}(u) := u - \Pi_{\mathcal{U}}(u - \gamma \nabla f(u))$$

Idea: quasi-Newton method on \mathcal{R} e.g., L-BFGS (only scalar products)

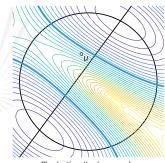
$$\underset{u}{\text{minimize}} \sum_{t=0}^{f(u) = \ell(x(u), u)} \ell_t(x_t, u_t) + \ell_N(x_N) \quad \text{subject to } u_t \in \mathcal{U}_t$$

Require
$$\alpha \in (0,1), \ \gamma > 0, \ \sigma < \frac{1-\alpha}{2\gamma}, \ \text{initial } u = (u_0 \dots u_{N-1})$$

Iterate until
$$||u - \bar{u}|| \le \varepsilon_{tol}$$

- **1.** Compute $\nabla f(u)$
- **2.** $\bar{u} = \Pi_{\mathcal{U}}(u \gamma \nabla f(u))$
- 3. Choose a direction d
- 4. $u^+ = (1 \tau)\bar{u} + \tau(u + d)$ reducing τ until

$$\varphi_{\gamma}(u^{+}) \leq \varphi_{\gamma}(u) - \sigma ||u - \bar{u}||^{2}$$



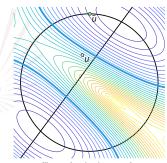
Illustrative (toy) example $f(u) = \frac{1}{2}\operatorname{dist}^2(u, l)$ l is a line intersecting a circumference $\mathcal U$

Require
$$\alpha \in (0,1), \ \gamma > 0, \ \sigma < \frac{1-\alpha}{2\gamma}, \ \text{initial } u = (u_0 \dots u_{N-1})$$

Iterate until
$$||u - \bar{u}|| \le \varepsilon_{tol}$$

- **1.** Compute $\nabla f(u)$
- **2.** $\bar{u} = \Pi_{\mathcal{U}}(u \gamma \nabla f(u))$
- 3. Choose a direction d
- 4. $u^+ = (1 \tau)\bar{u} + \tau(u + d)$ reducing τ until

$$\varphi_{\gamma}(u^{+}) \leq \varphi_{\gamma}(u) - \sigma ||u - \bar{u}||^{2}$$



Illustrative (toy) example $f(u) = \frac{1}{2}\operatorname{dist}^2(u, l)$ l is a line intersecting a circumference $\mathcal U$

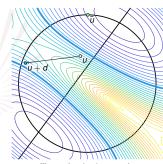
(still free states...)

Require
$$\alpha \in (0,1), \ \gamma > 0, \ \sigma < \frac{1-\alpha}{2\gamma}, \ \text{initial } u = (u_0 \dots u_{N-1})$$

Iterate until
$$||u - \bar{u}|| \le \varepsilon_{tol}$$

- **1.** Compute $\nabla f(u)$
- **2.** $\bar{u} = \Pi_{\mathcal{U}}(u \gamma \nabla f(u))$
- 3. Choose a direction d
- 4. $u^+ = (1 \tau)\bar{u} + \tau(u + d)$ reducing τ until

$$\varphi_{\gamma}(u^+) \le \varphi_{\gamma}(u) - \sigma ||u - \bar{u}||^2$$



Illustrative (toy) example $f(u) = \frac{1}{2}\operatorname{dist}^2(u, l)$ l is a line intersecting a circumference $\mathcal U$

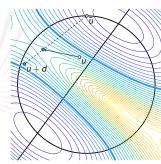
$$\underset{u}{\text{minimize}} \sum_{t=0}^{f(u) = \ell(x(u), u)} \ell_t(x_t, u_t) + \ell_N(x_N) \quad \text{subject to } u_t \in \mathcal{U}_t$$

Require
$$\alpha \in (0,1), \ \gamma > 0, \ \sigma < \frac{1-\alpha}{2\gamma}, \ \text{initial } u = (u_0 \dots u_{N-1})$$

Iterate until
$$||u - \bar{u}|| \le \varepsilon_{tol}$$

- **1.** Compute $\nabla f(u)$
- **2.** $\bar{u} = \Pi_{\mathcal{U}}(u \gamma \nabla f(u))$
- 3. Choose a direction d
- 4. $u^+ = (1 \tau)\bar{u} + \tau(u + d)$ reducing τ until

$$\varphi_{\gamma}(u^{+}) \leq \varphi_{\gamma}(u) - \sigma ||u - \bar{u}||^{2}$$



Illustrative (toy) example $f(u) = \frac{1}{2}\operatorname{dist}^2(u, l)$ l is a line intersecting a circumference $\mathcal U$

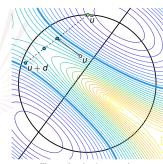
$$\underset{u}{\text{minimize}} \sum_{t=0}^{f(u) = \ell(x(u), u)} \sum_{t=0}^{N-1} \ell_t(x_t, u_t) + \ell_N(x_N) \quad \text{subject to } u_t \in \mathcal{U}_t$$

Require
$$\alpha \in (0,1), \ \gamma > 0, \ \sigma < \frac{1-\alpha}{2\gamma}, \ \text{initial } u = (u_0 \dots u_{N-1})$$

Iterate until
$$||u - \bar{u}|| \le \varepsilon_{tol}$$

- **1.** Compute $\nabla f(u)$
- **2.** $\bar{u} = \Pi_{\mathcal{U}}(u \gamma \nabla f(u))$
- 3. Choose a direction d
- 4. $u^+ = (1 \tau)\bar{u} + \tau(u + d)$ reducing τ until

$$\varphi_{\gamma}(u^+) \le \varphi_{\gamma}(u) - \sigma ||u - \bar{u}||^2$$



Illustrative (toy) example $f(u) = \frac{1}{2}\operatorname{dist}^2(u, l)$ l is a line intersecting a circumference $\mathcal U$

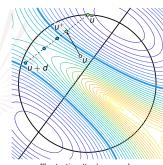
$$\underset{u}{\text{minimize}} \sum_{t=0}^{f(u) = \ell(x(u), u)} \ell_t(x_t, u_t) + \ell_N(x_N) \quad \text{subject to } u_t \in \mathcal{U}_t$$

Require
$$\alpha \in (0,1), \ \gamma > 0, \ \sigma < \frac{1-\alpha}{2\gamma}, \ \text{initial } u = (u_0 \dots u_{N-1})$$

Iterate until
$$||u - \bar{u}|| \le \varepsilon_{tol}$$

- **1.** Compute $\nabla f(u)$
- **2.** $\bar{u} = \Pi_{\mathcal{U}}(u \gamma \nabla f(u))$
- 3. Choose a direction d
- 4. $u^+ = (1 \tau)\bar{u} + \tau(u + d)$ reducing τ until

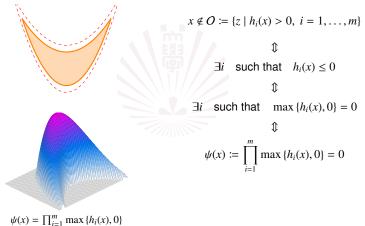
$$\varphi_{\gamma}(u^{+}) \leq \varphi_{\gamma}(u) - \sigma ||u - \bar{u}||^{2}$$



Illustrative (toy) example $f(u) = \frac{1}{2}\operatorname{dist}^2(u, l)$ l is a line intersecting a circumference $\mathcal U$

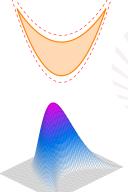
Handling state constraints

- novel obstacle avoidance constraints encoding
- uses a single equality constraint!



Handling state constraints

- novel obstacle avoidance constraints encoding
- · uses a single equality constraint!



$$\psi^{2}(x) = \prod_{i=1}^{m} \max\{h_{i}(x), 0\}^{2}$$

$$x \notin O \coloneqq \{z \mid h_i(x) > 0, \ i = 1, \dots, m\}$$

$$\updownarrow$$

$$\exists i \quad \text{such that} \quad h_i(x) \le 0$$

$$\updownarrow$$

$$\exists i \quad \text{such that} \quad \max\{h_i(x), 0\} = 0$$

$$\updownarrow$$

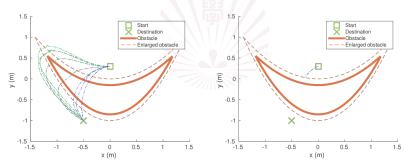
$$\psi(x) \coloneqq \prod^m \max\{h_i(x), 0\} = 0$$

Quadratic penalty

Soften obstacle avoidance by adding $\mu\psi^2$ to cost function ($\mu > 0$)

Handling state constraints

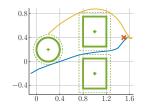
- Quadratic penalty method: gradually increase penalty μ
- Solve subproblems, warm starting with previous solution
- Helps avoiding local minima (getting stuck to obstacles)



Comparisons — Obstacle avoidance

Goals

- steer vehicle to reference pos./orient. $(p_{\star}, \vartheta_{\star})$
- avoid obstacles



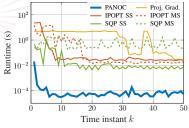
Nonlinear system

$$\begin{cases} \dot{p}_x = u_x + L\dot{\vartheta}\sin\vartheta \\ \dot{p}_y = u_y - L\dot{\vartheta}\cos\vartheta \\ \dot{\vartheta} = \frac{1}{L}(u_y\cos\vartheta - u_x\sin\vartheta) \end{cases}$$

u: velocity p: position ϑ : head. angle

Implementation

- discretized with RK4
- horizon N = 50
- 10Hz NMPC control rate
- $||u||_{\infty} \le 0.8m/s$
- soft-constrained enlarged obstacles with adaptive penalty



 Optimization: what and why Examples
 Optimization in control Challenges

Problem setting & toolbox
Functions, variables, constraints
Simplest formulation
Speeding up (textbook attempts)

Novel speedup Fast directions Globalization

4 Embeddable ms-fast NMPC solvers Handling state constraints Experiments

5 Conclusions

The end of the journey

We ended up explaining how PANOC algorithm works

- Efficient, QP-free, NMPC line-search algorithm
- Give it a try
 - Embeddable NMPC C code generator (Matlab & Python interfaces) https://github.com/kul-optec/nmpc-codegen
 - Standalone Julia version https://github.com/kul-optec/PANOC.jl

Lorenzo Stella Amazon Berlin

Pantelis Sopasakis

- More than NMPC: engine of generic optimization solvers
 - OpEn (embedded Optimization Engine) https://alphaville.github.io/optimization-engine/
 - ALM solver https://github.com/tttapa/PANOC-ALM

Panos Patrinos KU Leuven

Take-home message

More info on PANOC (shameful self-advertisement)

- AT, L. Stella and P. Patrinos, Forward-backward envelope for the sum of two nonconvex functions: Further properties and nonmonotone linesearch algorithms, SIAM J Opt 28(3):2274-2303, 2018
- L. Stella, AT, P. Sopasakis and P. Patrinos, A simple and efficient algorithm for nonlinear model predictive control, In: IEEE 56th CDC, 2017
- A. Sathya, P. Sopasakis, R. Van Parys, AT, G. Pipeleers and P. Patrinos, Embedded nonlinear model predictive control for obstacle avoidance using PANOC, In: IEEE ECC, Jun 2018

Take-home message

More info on PANOC (shameful self-advertisement)

- AT, L. Stella and P. Patrinos, Forward-backward envelope for the sum of two nonconvex functions: Further properties and nonmonotone linesearch algorithms, SIAM J Opt 28(3):2274-2303, 2018
- L. Stella, AT, P. Sopasakis and P. Patrinos, A simple and efficient algorithm for nonlinear model predictive control, In: IEEE 56th CDC, 2017
- A. Sathya, P. Sopasakis, R. Van Parys, AT, G. Pipeleers and P. Patrinos, Embedded nonlinear model predictive control for obstacle avoidance using PANOC, In: IEEE ECC, Jun 2018