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Optimization: what and why

[ Technology of devising effective decisions or predictions J

Formal definition

Choose variables from within an allowed set that minimize a cost

Applications

* Engineering design: plants, building, circuits

* Resource allocation: logistics, finance, communications

® Machine learning: (un)supervised learning, regression

® Signal processing: compressed sensing, signal estimation

® Control: autonomous systems, path planning, tracking, navigation
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Optimization: what and why

Examples — Recommender system

* Which items you might like based on rating database X;; (i,)) € Q

® Ratings depend on few “latent features”

minimize [|(X — X)o||> + 1 rank X
XERan

J
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Optimization: what and why

Examples — Back/foreground extraction

® Separate fore/background from N many m X n video frames

e S=[frame1, ... ,frame N] € R">N
® Foreground X: moving objects = sparse
® Background Y: constant over time = low rank

minimize X + Y — S|I* + 1nnz(X) subject torank ¥ < k
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Optimization: what and why
Examples — Deep NNs

e “Learn” weights W, defining a classifying function

® by “training”

Wi..Wy

N
minimize £ 3 €/,5) where §' = Wao(Wsor(Waor(W1o(:))))
i=1

® on a training set (x', y")

Input Hidden Hidden Hidden Output
layer layer 1 layer 2 layer 3 layer
Wi - W . W3 Wy

1 o

g g i1
T o

7 7 92
T3 o

o o
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Optimization: what and why

Optimization in control

process

controller

reference input !
r(t) E u(t)

¢ j
T measurements

A controller is a decision-making mechanism
who decides & actuates inputs to steer the plant/process/system
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Optimization: what and why

Optimization in control

Optimizer

Reference !
.

Input

Measurements

Plant
(system)

Output

’Conceptual example
Goal

® Fastest trajectory
Constraints

® Stay on road

® Avoid other vehicles

® Physical limits (speed,...)
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Optimization: what and why

Optimization in control

Output

Optimizer
Reference ’ Input Plant
(system)
.
Measurements

Conceptual example
Problem
minimize  circuit time

considering  car dynamics

road conditions
while  avoiding other cars
staying on road
E-COSM 2021
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Optimization: what and why

Optimization in control

Optimizer

Reference !
.

Input

Measurements

Plant
(system)

Output

Conceptual example
Input actuation

® Apply optimal input

® Check car/environment again!
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Optimization for real-time control with limited resources

6.3 (10/69)



Optimization: what and why

Optimization in control

Optimizer

Reference !
.

Input

Measurements

Plant
(system)

Output

Conceptual example
Feedback

® Discard the long-term prediction

® Restart based on new

info/measurements

E-COSM 2021
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Optimization: what and why

Optimization in control — MPC

Model
Objectives l Constraints
Optimizer
Reference Input | Plant | Output
’ (system)
S
Measurements
Plan |

Plan |
Plan |
Time

Feedback granted by receding horizon strategy
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Optimization: what and why

Optimization in control — MPC in a nutshell

Use a dynamical model of the process to predict its evolution and choose
control actions

process

embedded model-based optimizer

reference

r(t)

2 = output
—_—
y(t)

measurements I
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Optimization: what and why

Optimization in control — MPC in a nutshell

Use a dynamical model of the process to predict its evolution and choose
control actions by recursively solving finite discrete-time optimal control
problems in a receding horizon fashion

process

embedded model-based optimizer
output

y(t)

reference

(t)

measurements I

Optimal control problem

N_
mlmmlzez €O, u)+En(xy)

S.txp1 =Fi (X, uyp)
u; €U,
x €X;
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Optimization: what and why

Challenges — Fast sampling rates

New optimization problems must be solved within sampling time

ns

us Power systems

MR Traction control 2

Seconds Buildings

o

Refineries Minutes
Hours Nurse rostering
Train scheduling Days
Weeks Production planning %—

High-computing power required
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Optimization: what and why
Challenges — Embeddability

Some applications can’t afford high computing

&)

Algorithms must be embeddable on low-power chipsets
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Optimization: what and why

Challenges — Nonsmoothness

Constraints = nonsmooth problem

[On paper]

no big deal for modern optimization

<
S
°

A

[In practice]

fast algorithms (IP, SQP...) too heavy
for low-power chipsets
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Optimization: what and why

Challenges — Nonconvexity

Nonlinear dynamics = nonconvex problem

=1 e
v/ convex o linear = convex \/

(bl = 1)

X convex o nonlinear = ?

 Local VS global minima @

...let’s live with it
® Much theory not applicable
X Duality .
X Monotone operators @

X Fejér monotonicity
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Optimization: what and why

Challenges — Summary

ms-fast

< sampling time

Reliable

ill-scaling
nonsmoothness

nonconvexity

"WANTED!

OPTIMIZATION ALGORITHM

past | future ot

“redicted outputs

manipulated inputs

e or N 8

* for Nonlinear MPC *

FAST & EMBEDDABLE

Extra feat.: Integrable in generic OPT solver

REWARD: o¥

Embeddable

simple operations
only

& more(?)

v warm-startable
v multi-purpose

E-COSM 2021
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Problem setting & toolbox
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Problem setting & toolbox

Functions, variables, constraints
N-1

minimize E Co(x, uy) + Oy (xn)
u, x
=0

Requirements
e ¢, F, smooth (e.g. C?)

® input constraints U, easy
to project onto (boxes, balls...)

Xet = Fi(xp, up)
subject to u; € U,
X € Xt

can be relaxed

no need for convex constraints,
but typical in practice
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Problem setting & toolbox

Functions, variables, constraints

N-1 Xew1 = Fixe, uy)
minimize Z €00, up) + Ev(xy) subject to u; € U,
o =0 x € X,
Requirements
* (., F, smooth (e.g. C?) can be relaxed
® input constraints U, easy no need for convex constraints,
to project onto (boxes, balls...) but typical in practice

o VE.ir i Example: holonomic land vehicle with trailer
/ @ ® steer to reference pos./orient. (py, P )
' ® avoid obstacles
Dynamics MPC problem  Given current pos. p, & head. angle ¢,

Pr = iy + LY sin N

. ! P Cy Cy Cu

Py = tty = Li cos minimize 3 S lps = palP + S0, = 941 + G -1l

9= F(uycosd — uysin ) AP
(input) velocity u (P41, 0r41) = Fi(Dr, O, ty) F discretized dynamics (e.0. RK4)

(state) trailer pos. p & head. angle ¢

subject to { Umin < Uy < U,
(const) trailer arm length L d min t max

p: ¢ obstacles area
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Problem setting & toolbox

Functio

ns, variables, constraints
N-1

minimize Z € (x uy) + En(xy)

u, x

t=0

Requirements

e ¢, F, smooth (e.g. C?)

® input constraints U, easy
to project onto (boxes, balls...)

X1 = FiCe, up)
subject to u; € U,
Xt (S X;

can be relaxed

no need for convex constraints,
but typical in practice

(.

Multiple shooting

Treat x as variable
(keep dynamics as constraints)

® 3x larger variable

© sparse formulation

® dynamics not respected
© easy state constraints

E-COSM 2021
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Problem setting & toolbox

Functions, variables, constraints

N-1
minimize Z €0, (1), up) + €y(oy (1)) subject to u; € U,
S x(u) € X;
Requirements
® (., F, smooth (e.g. C?) can be relaxed
® input constraints U, easy no need for convex constraints,
to project onto (boxes, balls...) but typical in practice
- N

Single shooting
Express x in terms of u
(keep only u as optim. variable)
© smaller variable
® densely nested nonlinearities
®© dynamics inherently satisfied
L ® complicated state constraints

E-COSM 2021 Optimization for real-time control with limited resources 13.4 (24/69)



Problem setting & toolbox

Simplest formulation
® Single shooting approach (keep only inputs u)
Fort=1,...,N, recursively express

X = x;(uo, . . ., Ur—1)

= Ft—l(-xt—l(MOs oo Ud), ut—l)

[AA

* For now, discard state constraints  (we’ll fix this later) N
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Problem setting & toolbox

Simplest formulation
® Single shooting approach (keep only inputs u)
Fort=1,...,N, recursively express

X = x;(uo, . . ., Ur—1)

= Ft—l(xt—l(MOs oo Ud), ut—l)

2l
>\

® For now, discard state constraints  (we’ll fix this later)
® Problem becomes
minimize f(u; xo) subjectto u € Uy x - X Uy
u | I e —
smooth easy to project onto (e.g. umn < ur < umax)
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Problem setting & toolbox

Simplest formulation

minimize f(u; xo) subjectto u € Uy x - x Uy,
u | I e —

smooth easy to project onto (e.g. umn < ur < umax)

(Projected) gradient method (Cauchy, 1847)

gradient descent step
.
iterate  u « Mg (u—yVf (w))
(I

projection on constraints

Augustin-Louis Cauchy (1789-1857)

A. Cauchy, Méthode générale pour la résolution des d’équati Itanées, Comp. Rend. Sci. Paris 25:536-538, 1847
E-COSM 2021 Optimization for real-time control with limited resources 15
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Problem setting & toolbox

Simplest formulation

minimize f(u; xo) subjectto u € Uy x - x Uy,
u —_ 1 L |

smooth easy to project onto (e.g. umn < ur < umax)

(Projected) gradient method (Cauchy, 1847)

gradient descent step
.
iterate u « Tlg (u—yVf(n))
(I

projection on constraints

Augustin-Louis Cauchy (1789-1857)
Arguably the simplest possible method

Unreliable for real-time applications

© Embeddable ® Slow
®© Minimal assumptions ® Sensitive to conditioning

A. Cauchy, Méthode générale pour la résolution des systemes d’équations simultanées, Comp. Rend. Sci. Paris 25:536-538, 1847
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Problem setting & toolbox

Simplest formulation (but also slowest)

(Unconstrained) example e
Fix c > 1 minimize 1x* + 5y’
2 2
(x.y)ER?

Gradient method VF(x.y)

C) ) (;C) ) 7@ / (<(11—_ yy);y)

ing f 0 Oy = (3.5
Starting from (%™ = (. 3), e Ify ¢ (0,2/c) no convergence

A ((1-y)x e lfye ) “,yY) —(0,0)
YOI A = ey 3 but very slowly!

E-COSM 2021 Optimization for real-time control with limited resources

16

(29/69)



Problem setting & toolbox

Simplest formulation (but also ) I—

(Unconstrained) example e
Fix c > 1 minimize 1x* + 5y’
2 2
(r.y)eR?

Gradient method — E==————=—-—

C) ) (;) ‘7@ / (<(11—_ yy);y)

; ) Oy — (% 5
Starting from (7, y'2) = (%), ® Ify ¢ (0,2/c) no convergence

XY ((1=y)x o Ifye (0,2 xN,y0) = (0,0)
(1= oy but very slowly!

y(k)
® Take y =1/, (x,y) =(1,1)

o then x® = (1 -1/ and y® =0
* to be e-close to the solution, log’% ~ clog?! iterations needed

¢ = 3-10°, >1million iterations needed to reach & = 0.1 accuracy
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Problem setting & toolbox
Speeding up (textbook attempt I)

Let’'s keep things unconstrained. ..
miniglize f(u)  f (twice) smooth
ueR”

Newton’s method
® Suppose V2f(u) > 0,

l/l+ =uy— V2f(u)_1Vf(u) Isaac Newton (1642-1727)

Ex. f(x,y) = $x% + §y* = convergence in 1 iteration!

1. Newton, Philosophiae Naturalis Principia Mathematica, London, 1687
E-COSM 2021 Optimization for real-time control with limited resources 17 (31/69)



Problem setting & toolbox
Speeding up (textbook attempt I)

Let’'s keep things unconstrained. ..
miniglize f(u)  f (twice) smooth
ueR”

Newton’s method
® Suppose V2f(u) > 0,

wh = u— V) Vi w)

Isaac Newton (1642-1727)

But
applied to

f(x) = xarctanx — § log(1 +x?)

(convex, C*, Lipschitz differentiable)

Xo = —1.3: converges

<

Xo

=

xo = —1.4: diverges!

1. Newton, Philosophiae Naturalis Principia Mathematica, London, 1687
E-COSM 2021 Optimization for real-time control with limited resources
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Problem setting & toolbox
Speeding up (textbook attempt I)

Let’'s keep things unconstrained. ..
miniglize f(u)  f (twice) smooth
ueR”

Damped Newton’s method
® Suppose V2f(u) > 0,

l/l+ =uy— Tv2f(u)—lvf(u) Isaac Newton (1642-1727)

® Convergence only close to a solution
® In general, need 7 small enough to guarantee f(u*) < f(u)

1. Newton, Philosophiae Naturalis Principia Mathematica, London, 1687
E-COSM 2021 Optimization for real-time control with limited resources 17.3 (33/69)



Problem setting & toolbox
Speeding up (textbook attempt I)

Let’'s keep things unconstrained. ..
miniglize f(u)  f (twice) smooth
ueR”

Damped Newton’s method
® Suppose V2f(u) > 0,

l/l+ =uy— Tv2f(u)—lvf(u) Isaac Newton (1642-1727)

® Convergence only close to a solution
® In general, need 7 small enough to guarantee f(u*) < f(u)
® Linesearch:

Vf(w),d) <0 = f(u+71d)=f)+ (Vf(w),d) +o(r) < f(u)

for 7 small enough!

1. Newton, Philosophiae Naturalis Principia Mathematica, London, 1687
E-COSM 2021 Optimization for real-time control with limited resources
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Problem setting & toolbox
Speeding up (textbook attempt II)

Let’s continue keeping things unconstrained. ..

mini]glizef(u) f (twice) smooth
ueR”

Quasi-Newton methods
* Computing V?f impractical
® Newton direction —V2f~!(u)Vf (1) approximated with linear algebra

E-COSM 2021 Optimization for real-time control with limited resources 18 (35/69)



Problem setting & toolbox
Speeding up (textbook attempt II)

Let’s continue keeping things unconstrained. ..
mini]%nize f(u)  f (twice) smooth
ucR”
Quasi-Newton methods

e Computing V?f impractical
® Newton direction —V2f~!(u)Vf (1) approximated with linear algebra

Key idea:
Vi) = Vi ) 2 V2 @®) @® - u*D)
y©) ~Biy1 sk

® Update estimate B, — By, by enforcing the “secant condition”
BkH.S‘(k) = »\'\/“

® “Limited memory” variants (e.g. L-BFGS)
need vector-vector products only!

® Can ensure convergence with suitable linesearch

E-COSM 2021 Optimization for real-time control with limited resources
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E-COSM 2021

Problem setting & toolbox
Speeding up — Summary

Projected grandient method

®© Cheap(est) ‘ ® Slow
®© Constraints v/

Newton method

© Fast (very!) ® Expensive

® Constraints X

Quasi-Newton methods

®© Cheap

© Fast ‘ ® Constraints X

J

Optimization for real-time control with limited resources
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Problem setting & toolbox
Speeding up — Summary

® Cheap(est)
®© Constraints v/

Projected grandient method

‘ ® Slow

© Fast (very!)

Newton method

® Expensive
® Constraints X

© Fast
® Cheap

Quasi-Newton methods

‘ ® Constraints X

J

E-COSM 2021

Linesearch methods
ut =u+d

all require
* (Vf(w,d) <0
® (in particular f smooth)

Optimization for real-time control with limited resources
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Novel speedup

® Novel speedup
Fast directions
Globalization



Novel speedup

Fast update directions — for nonsmooth problems

~
i ROAD
minimize f(u; xo) subjectto u € Uy x - x Uy CLOSED
u [ J
smooth easy to project onto (e.g UMI‘ < g < unax)

~

Optimality conditions

u local minimum = u—Tg(u—-yVf(w) =0

® |f ¢ = R" (unconstrained), reduces to Vf(u) = 0

E-COSM 2021 Optimization for real-time control with limited resources
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Novel speedup

Fast update directions — for nonsmooth problems

minimize f(u; xo) subjectto u € Uy x - x Uy, I
u —_ 1

smooth easy to project onto (e.g uML < Uy < Uunax) ‘ l

-l

Optimality conditions .
R(u)

—_—
u local minimum = u— Il (u—yVi(u) =0

\

® |dea for “fast” directions

Quasi-Newton on R

RuY) = R@™) = By @ — D)
—,—————  —

0 5®

E-COSM 2021 Optimization for real-time control with limited resources 20.2 (41/69)



Linesearch methods
ut =u+d

Novel speedup

Fast update directions — for nonsmooth problems

all require
* (Yf(w),d) <0
(

C . . in particular / smooth
minimize f(u; xo) subjectto u € Uy x - X ox, P / )
u —_ 1

| -
smooth easy to project onto (e.g uML < Uy < Uunax)

&

Can’t use (classical) linesearch

The true cost u - {f(”) e U is nonsmooth

oo fuegU

E-COSM 2021 Optimization for real-time control with limited resources 20.3 (42/69)



Novel speedup

Globalization — A novel nonsmooth LS

-
i ROAD;\!
minimize f(u; x)) subjectto u € Uy x - x Uy CLOSED |, !
u —_ 1 \—1 et )
smooth easy to project onto (e.g uMl‘ < up < uax) ‘l I
P

New tool: for v > 0, define
() 1= min { ) + (V@)oo = u) + 3 = ulP)

Remarks
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Novel speedup

Globalization — A novel nonsmooth LS

-
i ROAD;\!
minimize f(u; x)) subjectto u € Uy x - x Uy CLOSED |, !
u —_ 1 \—1 et )
smooth easy to project onto (e.g uMl‘ < up < uax) ‘l I
P

New tool: for v > 0, define

0 2= min{ f(u) + (T, 0 =) + 551 = ul’)

55 lhv—wry S alP- 3 IR

Remarks
® The minimizer is it = Iq/(u — yVf(u))

@) = f ) + (), 11 = u) + 5[l = ull?
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Novel speedup

Globalization — A novel nonsmooth LS

Y |

ROAD| |

minimize f(u; xo) subjectto u € Uy x - x Uy | ' - CLOSED |
u [ L e —1
smooth easy to project onto (e.g i < ur < uwax) I

New tool: for v > 0, define
() 1= min { ) + (V@)oo = u) + 3 = ulP)

Remarks
® The minimizer is it = Iq/(u — yVf(u))

@y () = f(u) + (Vfw), 11 = ) + 2|l =l

*uelU = ¢ u) < f(u

E-COSM 2021 Optimization for real-time control with limited resources 21.3 (45/69)



Novel speedup

Globalization — A novel nonsmooth LS

Y |

ROAD| |

minimize f(u; xo) subjectto u € Uy x - x Uy | ' - CLOSED |
u [ L e —1
smooth easy to project onto (e.g i < ur < uwax) I

i

New tool: for v > 0, define
() 1= min { ) + (V@)oo = u) + 3 = ulP)

Remarks
® The minimizer is it = Iq/(u — yVf(u))

@y () = f(u) + (Vfw), 11 = ) + 2|l =l

*uelU = ¢ u) < f(u

® ¢, is continuous

E-COSM 2021 Optimization for real-time control with limited resources 21.4 (46/69)



Novel speedup

Globalization — A novel nonsmooth LS

‘ ROAD]

minimize f(u; xo) subjectto u € Uy x - x Uy CLOSEE
u [ L

smooth easy to project onto (e.g. umf < ur < umax) I

New tool: for v > 0, define
() 1= min { ) + (V@)oo = u) + 3 = ulP)
Remarks
® The minimizer is it = Iq/(u — yVf(u))
@y () = f(u) + (Vfw), 11 = ) + 2|l =l

CuelU = ¢y <[
® ¢, is continuous
o ) <f@) +(w), i —uy + 5 lliz = ul?, then

@) < py(u) - 12‘—;’||n —ulP?

E-COSM 2021 Optimization for real-time control with limited resources 215 (47/69)



Novel speedup

Globalization — A novel nonsmooth LS

ROAD) |

minimize f(u; xo) subjectto u € Uy x - x Uy | ' - CLOSED |
u | S I | (e T MR
smooth easy to project onto (e.g. umf < ur < umax) I

New tool: for v > 0, define
() 1= min { ) + (V@)oo = u) + 3 = ulP)

Remarks
® The minimizer is it = Iq/(u — yVf(u))

@y () = f(u) + (Vfw), 11 = ) + 2|l =l

cueUU = ¢,(u) <f(u
® ¢, is continuous
o L) < fQ) + (@), it —uy + £l - ul?, then

() < f(0) < @y () = 2]l = ul?

E-COSM 2021 Optimization for real-time control with limited resources 216 (48/69)



Novel speedup

Globalization — A novel nonsmooth LS

i ROAD I
minimize f(u; x)) subjectto u € Uy x - x Uy CLOSE !
u —_ 1 e —

smooth easy to project onto (e.g uMl‘ < g < unax) |

|

Recap

it = Hq(u = yVf(u))
uloc.min. = u—u=0

@y (u) = fu) + (Vf(u), i1 — u) + %/Ilft —ul?
© ¢, continuous
® o< (0,1), ysmall enough

@y () < @y ) = 2N = ul> Vu

E-COSM 2021 Optimization for real-time control with limited resources 22 (49/69)



Novel speedup

Globalization — A novel nonsmooth LS

(‘] ROA D
minimize f(u; xo) subjectto u € Uy x - x Uy CLOSED |, !
u | S I | 258
smooth easy to project onto (e.g ,/Ml‘ < Uy < Uunax) I
Al .
Recap Novel linesearch
it = qu(u—yVf(u)) u=u¥7d
uloc.min. = u—u=0 uwt=0-Da+7u+d
@y (u) = f(u) +(Vf(w), it — uy + %/IID —ulf? reducing 7 until
© ¢, continuous oy Uh) <@y )~ ... (%)
® «<(0,1), ysmall enough @+ ® = (x) passed for small enough +
@y () < @y ) = 2N = ul> Vu
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Embeddable ms-fast NMPC solvers

9 Embeddable ms-fast NMPC solvers
Handling state constraints
Experiments



Embeddable ms-fast NMPC solvers

(still free states...) S ) = E0x(u),w))
N-1
minimize Z Ci(xs, up) + Cy(xy)  subject tou, € U,
u
=0

Require € (0,1), y >0, o < 12_—7", initial u = (ug .. . uy_1)
Iterate until [ju — ]| < €01

1. Compute Vf(u)

2. u =Ty (u — yVf(u))
3. Choose a direction d
4

.ut = -Dia+1t(u+d)
reducing T until

0y (") < @) = orllu — >
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(still free states...)

() = 0x(u),u))

r
N-1

1

minimize Z Ci(xe, up) + Cy(xy)  subject tou; € U,
u

t=0

Require € (0,1), y >0, o <

Iterate until [ju — ]| < €01

1.

Compute V()

2. i =Hq(u—yVf(u)
3.
4

Choose a direction d

.ut = -Dia+1t(u+d)

reducing T until

0y (") < @) = orllu — >

E-COSM 2021

initial u = (ug...uy_1)

& casADi Automatic Differentiation tool

Optimized C code for (backward) AD

J. Andersson, A general-purpose software framework for dynamic optimiza-

tion. KU Leuven, 2013
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Embeddable ms-fast NMPC solvers

(still free states...) S ) = E0x(u),w))
N-1 '
minimize Z Ci(xp, up) + Cny(xy)  subject tou, € U,
u

t=0
Require € (0,1), y >0, o < 12_—7", initial u = (ug .. . uy_1)
Iterate until [ju — ]| < €01
1. Compute Vf(u) Uy X --- X Uy- is separable

LU= H(L((Lt — ’)/Vf(Ll)) ﬁl — H'ZI,(Mz _ ,yvuj(u))

2

3. Choose a direction d .
N projections in parallel

4. ww =N -tu+7(u+d)

reducing T until

0y (") < @) = orllu — >
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Embeddable ms-fast NMPC solvers

(still free states...) S ) = E0x(u),w))
N-1
minimize Z Ci(xs, up) + Cy(xy)  subject tou, € U,
u
=0

Require € (0,1), y >0, o < 12_—7", initial u = (ug .. . uy_1)
Iterate until [ju — ]| < €01

1. Compute Vf(u) Optimality conditions R(u) = 0

2. it = Ty (u — yVf(u) e

3. Choose a direction d R(u) = u — Haq(u — yVf(u))

4. ut =1 -7+ 7t(u+d Idea: quasi-Newton method on R
reducing 7 unti e.g., L-BFGS (only scalar products)
o) < o)) = ollu — ulf
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Embeddable ms-fast NMPC solvers
(still free states...) Su) = E(x(u),u)
V-1

minimize E Ci(x, ur) + On(xy)  subject tou, € U,
u
t=0

Require 2 € (0,1), y>0, o < 1,;—7" initial u = (ug . .. un_1)
Iterate until [ju — ]| < €01

1. Compute Vf(u)

2. u=TIlgy(u - yVf(w)
3. Choose a direction d
4

ut =0 -Da+1t(u+d)
reducing 7 until

@, ") < @, () — ollu — all?

lllustrative (toy) example
) = 3 dist?(u, 1)
lis a line intersecting a circumference U
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Embeddable ms-fast NMPC solvers
(still free states...) Su) = E(x(u),u)
V-1
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Embeddable ms-fast NMPC solvers

Handling state constraints

* novel obstacle avoidance constraints encoding
® uses a single equality constraint!

x¢0 ={z|h(x)>0,i=1,...,m}
k3

i suchthat h;(x) <0

()
i suchthat max{h;(x),0} =0

()’
Y(x) = | | max (i), 01 = 0
i=1

W) = 12, max (hi(x), 0}
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Embeddable ms-fast NMPC solvers

Handling state constraints

* novel obstacle avoidance constraints encoding
® uses a single equality constraint!

/
\ 7 !

x¢O0:={z|h(x)>0,i=1,...,m}

3
i suchthat h;(x) <0

)
i suchthat max{h;(x),0} =0
()
Y(x) = | | max (i), 01 = 0

i=1

Quadratic penalty
Soften obstacle avoidance by adding
¥’ () = [T, max {;(x), 0}’ wy? to cost function (u > 0)
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Embeddable ms-fast NMPC solvers

Handling state constraints

E-COSM 2021

® Quadratic penalty method: gradually increase penalty u

® Solve subproblems, warm starting with previous solution

® Helps avoiding local minima (getting stuck to obstacles)

15

1.5

-0.5

[] start

< Destination
s Obstacle:
— — - Enlarged obstacle

[] start
< Destination
s Obstacle 1hy
— — — Enlarged obstacle o
Vi
g/ o5
’
E o
>
0.5
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0.5 1 15 15 -1 05
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Embeddable ms-fast NMPC solvers ™ 1

Comparisons — Obstacle avoidance 041 77§
Goals ol 7
® steer vehicle to reference pos./orient. (py, ) o : :
* avoid obstacles T o5 1z 1%

Nonlinear system
Dx = Uy + LYsin®g u: velocity
Dy = uy — LY cos? p: position
& = 1(uycos ¥ — uysing¥) ¥:head. angle

== PANOC Proj. Grad.
Implementation 102 — IPOPT S --- IPOPT MS
- —— SQP SS -- SQP MS

¢ discretized with RK4

® horizon N = 50

¢ 10Hz NMPC control rate
® lullo < 0.8m/s

Runtime (s)

® soft-constrained enlarged obstacles 0 10 20 30 10 50
with adaptive penalty Time instant &
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Conclusions

The end of the journey

We ended up explaining how PANOC algorithm works

Lorenzo Stella

Amazon Berlin
e ¢ Efficient, QP-free, NMPC line-search algorithm
Y
J ® Giveitatry
® Embeddable NMPC C code generator (Matlab & Python interfaces)
https://github.com/kul-optec/nmpc-codegen
® Standalone Julia version %"
https://github.com/kul-optec/PANOC. jl F’an‘gij gglg:;akis

® More than NMPC:
engine of generic optimization solvers

® OpEn (embedded Optimization Engine)
https://alphaville.github.io/optimization-engine/
® ALM solver
https://github.com/tttapa/PANOC-ALM ‘

Panos Patrinos
KU Leuven
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Conclusions

Take-home message

+ hew

Oild " is gold

More info on PANOC (shameful self-advertisement)

® AT, L. Stella and P. Patrinos, Forward-backward envelope for the sum of two nonconvex functions: Further properties and nonmonotone

linesearch algorithms, SIAM J Opt 28(3):2274-2303, 2018

L. Stella, AT, P. Sopasakis and P. Patrinos, A simple and efficient algorithm for nonlinear model predictive control, In: IEEE 56th CDC, 2017

A. Sathya, P. Sopasakis, R. Van Parys, AT, G. Pipeleers and P. Patrinos, Embedded nonlinear model predictive control for obstacle
avoidance using PANOC, In: IEEE ECC, Jun 2018
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