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We investigate critical phenomena of a spin-1 chain in the vicinity of the SU(3) symmetric critical point,
which we already specified in a previous study [Mashiko and Nomura, Phys. Rev. B 104, 155405 (2021)].
We numerically diagonalize a Hamiltonian combining the bilinear-biquadratic Hamiltonian with the trimer
Hamiltonian. We then discuss the numerical results based on the conformal field theory and the renormalization
group. As a result, we first verify that the critical point found in our previous study is the tricritical point among
the Haldane phase, the trimer phase, and the the trimer-liquid (TL) phase. Second, with regard to the TL-trimer
transition and the TL-Haldane transition, we find that the critical phenomena around this tricritical point belong
to the Berezinskii-Kosterlitz-Thouless-like universality class. Third, we find the boundary between the Haldane
phase and the trimer phase, which is illustrated by the massive self-dual sine-Gordon model.

DOI: 10.1103/PhysRevB.107.125406

I. INTRODUCTION

In quantum many-body physics, phase transitions and crit-
ical phenomena are interesting topics. In low-dimensional
quantum systems with continuous symmetry, quantum fluctu-
ation is so strong that it prevents the long-range order, which
makes critical phenomena complicated. Elucidating the prop-
erties of the critical phenomena provides some insights into
experiments of ultracold atomic systems in an optical lattice
[1–3]. Especially in the case of the SU(3) symmetric spin-1
chains, there have been several studies [4–7] that investigated
the massless trimer-liquid (TL) state. On the other hand, sev-
eral researchers proposed the SU(3) trimer model [8–10] as
a generalization of the SU(2) Majumdar-Ghosh model [11]
of the spin-1/2 dimer ground state. In a previous study [12],
the authors investigated the TL-trimer phase transition of the
SU(3) symmetric spin-1 chain to specify the critical point. But
there remain unsolved problems about the non-SU(3) sym-
metric case. Thus, in this paper we numerically investigate the
critical phenomena by expanding our previous study [12] to
the non-SU(3) symmetric case, based on the theory of Itoi and
Kato [13]. We research it by combining two Hamiltonians,
the bilinear-biquadratic (BLBQ) Hamiltonians and the trimer
Hamiltonians, as described later.

We review here a well-known spin-1 model, the BLBQ
model,

ĤBLBQ =
N∑

i=1

[cos θ Ŝi · Ŝ j + sin θ (Ŝi · Ŝ j )
2], (1)

where Ŝi is the spin-1 operator at site i, j ≡ i + 1. The re-
gion −π/4 < θ < π/4 is the Haldane phase [14,15]. This
phase is translationally invariant and massive [16,17]. The re-
gion π/4 < θ < π/2 is the massless trimer-liquid (TL) phase
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without long-range order. The point θ = π/4, which is SU(3)
symmetric, is known as the Uimin-Lai-Sutherland (ULS)
point [4–7], which is exactly solvable with the Bethe ansatz.
The system at the ULS point is critical, whose universality
class is described by the level-1 SU(3) Wess-Zumino-Witten
[SU(3)1 WZW] model [18–20]. Around the ULS point, nu-
merical studies were carried out [21,22] to determine the
universality class by calculating the central charge c and the
scaling dimension x. Itoi and Kato analyzed [13] systems
around the ULS point with the renormalization group (RG) by
mapping the ULS model to the general SU(3)1 WZW model.
They found [13] that the phase transition at the ULS point
belongs to the Berezinskii-Kosterlitz-Thouless (BKT) -like
universality class. In the BKT-like transition, the system is
characterized by the quasi-long-range order described by the
correlation functions [8,13,21,23]

〈Ŝi · Ŝi+r〉 ∝ cos

(
2π

3
r

)
r−2x(ln r)σ , (2)

where 2x and σ are critical exponents. Due to the logarithmic
correction in Eq. (2), it has been difficult to calculate the scal-
ing dimension. We calculate them by removing logarithmic
corrections utilizing the theory of Itoi and Kato [13], which is
the expansion of the level spectroscopy [24].

Next, the trimer states |ψT〉 with the long-range order on a
spin-1 chain were proposed [25,26], which is given by

|ψT〉 =
⎧⎨
⎩

{◦ ◦ ◦}{◦ ◦ ◦} · · · {◦ ◦ ◦},
◦{◦ ◦ ◦} · · · {◦ ◦ ◦} ◦ ◦,

◦ ◦ {◦ ◦ ◦} · · · {◦ ◦ ◦}◦,
(3)

under the periodic boundary conditions (PBCs). Here {◦ ◦ ◦}
is the singlet state of the three adjacent spins (trimer). The
state of the trimer is given as

{◦ ◦ ◦} ≡ 1√
6

(|1, 0,−1〉 + |0,−1, 1〉 + | − 1, 1, 0〉

− |1,−1, 0〉 − |0, 1,−1〉 − | − 1, 0, 1〉), (4)
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FIG. 1. Phase diagram in the vicinity of the tricritical point
(φ, θ ) = (0.223 365π, π/4).

where 1, 0, −1 are spin magnetic quantum numbers, Sz.
Hamiltonians whose ground state is the pure trimer state
were proposed [8–10]. In the trimer phase, there exists an
excitation gap [10] between the threefold-degenerate ground-
state energy and the elementary excitation spectrum. Also,
the long-range order of the trimer state is illustrated by the
correlation function [8,13] of the trimer order parameter T̂i

(see Sec. V C).
In this study, we numerically diagonalize the Hamiltonian

combining the BLBQ Hamiltonian with the trimer Hamilto-
nian defined as

Ĥ ≡ cos φĤBLBQ + sin φĤtrimer, (5)

by changing two parameters φ and θ , under PBCs to inves-
tigate the critical phenomena in the vicinity of the SU(3)
symmetric critical point [12]. As a result, we obtain the phase
diagram (Fig. 1), which shows that the SU(3) symmetric
critical point is the tricritical point among three phases: the
TL phase, the Haldane phase, and the trimer phase. In later
sections, we describe the details that led to the phase diagram,
which numerically calculates the phase boundaries of the
Haldane-trimer transition and the TL-trimer transition in the
non-SU(3) symmetric cases. We write the details of the model
Eq. (5), especially focusing on the definition of the trimer
model Hamiltonian Ĥtrimer in Sec. II. Section III shows the
discussion on the basis of the conformal field theory (CFT)
and the renormalization group (RG) by reviewing the paper
by Itoi and Kato [13]. In Sec. IV, our numerical results of
the phase transitions are shown by comparing the theory in
Sec. III. The conclusion and a discussion are presented in
Sec. V.

II. MODEL

To investigate critical phenomena in the vicinity of the
SU(3) symmetric critical point [12], we calculate low-energy
eigenvalues of the Hamiltonian Eq. (5). Here, the parameters
φ and θ are in the range of 0 � φ, θ � π/2, and Ĥtrimer will
be defined in the next paragraph.

We introduce the Hamiltonian of the trimer ground state by
reviewing Ref. [10]. We first let ĉ†

iγ (ĉiγ ) denote an operator

that creates (annihilates) a fermion with Sz = γ = −1, 0, 1 at
site i, and then we define the operators Ĵa

i as

Ĵa
i ≡ 1

2

∑
γ ,γ ′=−1,0,1

ĉ†
iγ �a

γ γ ′ ĉiγ ′ , a = 1, . . . , 8, (6)

Ĵi ≡ (
Ĵ1

i , Ĵ2
i , Ĵ3

i , Ĵ4
i , Ĵ5

i , Ĵ6
i , Ĵ7

i , Ĵ8
i

)T
, (7)

where the �a are the Gell-Mann matrices. The operators
Eq. (6) satisfy the commutation relations[

Ĵa
i , Ĵb

i′
] = δii′ f abcĴc

i , a, b, c = 1, . . . , 8, (8)

where f abc are the structure constants of SU(3), and we utilize
the Einstein summation convention. Also, we define Ĵ

(ν)
i as

Ĵ
(ν)
i ≡

i+ν−1∑
i′=i

Ĵi′ , (9)

where ν is an integer. With regard to the trimer states Eq. (4)
on the four neighboring sites, there are only two possible
situations as

{◦ ◦ ◦}◦,
{◦◦}{◦◦}, (10)

where {◦◦} is the triplet state of the two adjacent spins, whose
state vectors are defined as

{◦◦} =

⎧⎪⎪⎨
⎪⎪⎩

1√
2
(|1, 0〉 − |0, 1〉),

1√
2
(|1,−1〉 − | − 1, 1〉),

1√
2
(|0,−1〉 − | − 1, 0〉).

(11)

The eigenvalues of the quadratic Casimir operator for these
two representations Eq. (10) are 4/3 and 10/3, respectively
[10]. Therefore, we obtain the auxiliary operators as

Ĥi = [(
Ĵ

(4)
i

)2 − 4
3

][(
Ĵ

(4)
i

)2 − 10
3

]
. (12)

The trimer Hamiltonian is

Ĥtrimer ≡
N∑

i=1

Ĥi. (13)

Furthermore, utilizing the exchange operator P̂ii′ , which swaps
spins at site i with that at site i′, there is an equation [10]

ĴiĴi′ =
{

4
3 (i = i′),
1
2

(
P̂ii′ − 1

3

)
(i 	= i′).

(14)

From Eqs. (12)–(14), we obtain the trimer Hamiltonian as

Ĥtrimer =
N∑

i=1

[
P̂i j + 2

3
P̂ik + 1

3
P̂il + P̂i j P̂ik + P̂ikP̂i j

+ 1

2
(P̂i j P̂il + P̂il P̂i j + P̂ikP̂il + P̂il P̂ik )

+ 1

3
(P̂i j P̂kl + P̂ikP̂jl + P̂il P̂jk )

]
, (15)

where we define j ≡ i + 1, k ≡ i + 2, l ≡ i + 3.
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FIG. 2. Trajectory gained by solving Eqs. (18) and (19). This
figure is taken from Fig. 1 of Ref. [13].

III. RENORMALIZATION DISCUSSION ON THE SU(3)1

WZW MODEL

In this section, we review the analytic calculation of the
perturbative RG by Itoi and Kato [13] to discuss the critical
phenomena around the fixed point described by the level-1
SU(3) Wess-Zumino-Witten [SU(3)1 WZW] model [18–20].

First of all, we let x0 and x1 be the time and the position of
the field, respectively. We then define z and z̄ as

z ≡ x0 + ix1, z̄ ≡ x0 − ix1. (16)

We define the action Â as

Â ≡ ÂSU(3)1 +
2∑

i=1

gi

∫
d2z

2π
�̂(i)(z, z̄). (17)

Here ÂSU(3)1 is the action of the free fields in the SU(3)1

WZW model [18–20]. Both �̂(1) and �̂(2) are operators of
the marginal or relevant field with rotational symmetry and
chiral Z3 symmetry. In particular, �̂(1) is SU(3) symmetric,
and �̂(2) is SO(3) symmetric. The scaling variables g1 and g2

are perturbational parameters, which are both functions of φ

and θ in Eq. (5), respectively. Note that the case of θ = π/4
corresponds to the case of g2 = 0, where the system remains
SU(3) symmetric regardless of the value of g1 which depends
on φ only. If g2 	= 0, the SU(3) symmetry of the system is
broken. According to Itoi and Kato [13], the renormalization-
group equations are

dg1(l )

dl
= 1

2
√

2

[
3g2

1(l ) + 2g1(l )g2(l )
]
, (18)

dg2(l )

dl
= − 1

2
√

2

[
3g2

2(l ) + 2g1(l )g2(l )
]
, (19)

where l ≡ ln N . By solving Eqs. (18) and (19), Itoi and Kato
obtained [13] the flows shown in Fig. 2.

Secondly, we review the finite-size scaling based on the
RG of a marginal operator. For later discussions, we define

the excitation energy as

�EST (q) ≡ EST (q) − Eg, (20)

where q is the wave number, ST is the total of the spin quantum
number S, and EST (q) is the lowest energy at q and ST . Under
the finite-size scaling on an infinitely long strip with finite
width N [27–29], we obtain

�EST

(
±2π

3

)
= v0ξ

−1
ST

(g1(0), g2(0), N−1)

= v0e−l ′ξ−1
ST

(g1(l ′), g2(l ′), N−1el ′ ), (21)

where ξST is the correlation length at ST , and v0 is the
spin-wave velocity. Choosing l ′ = l ≡ ln N , we can rewrite
Eq. (21) as

�EST

(
±2π

3

)
= v0ξ

−1
ST

(
g1(0), g2(0), N−1

)
= v0

N
ξ−1

ST
(g1(l ), g2(l ), 1)

≡ v0

N
�ST (g1(l ), g2(l )), (22)

where �ST (g1(l ), g2(l )) is a universal function. By expanding
�ST (g1(l ), g2(l )) in a Taylor series up to O(g1(l ), g2(l )), we
obtain [27,30]

�EST

(
±2π

3

)
≈ 2πv0

N
[xST + AST g1(l ) + BST g2(l )], (23)

where xST is the scaling dimension at ST . In the SU(3)1 WZW
model, the scaling dimension is x = 2/3. The coefficients AST

and BST will be determined in later subsections.

A. The case of g2(l ) = 0

In the case of g2(l ) = 0, the system is SU(3) symmetric as
described previously, and Eqs. (18) and (19) are reduced to

dg1(l )

dl
= 3

2
√

2
g2

1(l ), (24)

whose solution is

g1(l ) = g1(0)

[
1 − 3

2
√

2
g1(0)l

]−1

. (25)

As shown in Fig. 2, if g1(0) < 0, the flow is absorbed into the
fixed point corresponding to the SU(3)1 WZW model. On the
other hand, if g1(0) > 0, the flow diverges as g1 → ∞, which
illustrates the trimer long-range order [10,25,26].

Also, Eq. (23) can be rewritten as

�EST

(
±2π

3

)
≈ 2πv0

N
[xST + AST g1(l )]. (26)

By solving Eq. (24), Itoi and Kato derived [13] the coefficients
AST as

A0 = − 4

3
√

2
, A1 = 1

6
√

2
, A2 = 1

6
√

2
. (27)

If g1(0) 
 −1, which is corresponding to the ULS model,
Eq. (25) becomes g1(l ) ≈ −2

√
2/(3 ln N ). By substituting
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this for Eq. (26), we obtain

�EST

(
±2π

3

)
≈ 2πv0

N

(
xST − AST

2
√

2

3 ln N

)
. (28)

The logarithmic correction in Eq. (28) is corresponding to that
of the correlation function Eq. (2).

B. The case of g1(l ) + g2(l ) = 0

In the case of g1(l ) + g2(l ) = 0, Eqs. (18) and (19) are
reduced to

dg1(l )

dl
= 1

2
√

2
g2

1(l ),
dg2(l )

dl
= − 1

2
√

2
g2

2(l ), (29)

with the solution

g1(l ) = −g2(l ) = g1(0)

[
1 − 1

2
√

2
g1(0)l

]−1

. (30)

As shown in Fig. 2, if g1(0) < 0, the flow is absorbed
into the fixed point corresponding to the SU(3)1 WZW
model. On the other hand, if g1(0) > 0, the flow diverges
as (g1, g2) → (∞,∞), which is corresponding to the self-
dual sine-Gordon (SDSG) model [31] with massive excitation.
This massive SDSG model is equivalent [31] to a level-2
SO(3) Wess-Zumino-Witten [SO(3)2 WZW] model perturbed
by a marginal current-current interaction, which is also de-
scribed by the fermion model of Andrei and Destri [32]
exactly solvable with the Bethe ansatz.

Also, Eq. (23) can be rewritten as

�EST

(
±2π

3

)
≈ 2πv0

N
[xST + CST g1(l )], (31)

where CST ≡ AST − BST . By solving Eqs. (29), Itoi and Kato
derived [13] the coefficients CST as

C0 = − 1√
2
, C1 = − 1

2
√

2
, C2 = 1

2
√

2
, (32)

which we interpret as the Clebsch-Gordan coefficients of
SO(3) × SO(3) [31] (see Sec. V B). If g1(0) 
 −1, the TL
phase, Eq. (30) becomes g1(l ) ≈ −2

√
2/ ln N . By substitut-

ing this for Eq. (31), we obtain

�EST

(
±2π

3

)
≈ 2πv0

N

(
xST − CST

2
√

2

ln N

)
. (33)

C. The case of g1(l ) = 0

In the case of g1(l ) = 0, Eqs. (18) and (19) are reduced to

dg2(l )

dl
= − 3

2
√

2
g2

2(l ), (34)

with the solution

g2(l ) = g2(0)

[
1 + 3

2
√

2
g2(0)l

]−1

. (35)

As shown in Fig. 2, if g2(0) > 0, the flow is absorbed into the
fixed point corresponding to the SU(3)1 WZW model. On the
other hand, if g2(0) < 0, the flow diverges as g2 → ∞, which
explains the Haldane gap [14,15].

FIG. 3. Elementary excitation energy �E (±2π/3) in the case of
θ = 7π/18 and φ = 0 as a function of N−1. The dashed line and
the red solid line show the extrapolation with N = 9–18 and 12–18,
respectively.

Also, Eq. (23) can be rewritten as

�EST

(
±2π

3

)
≈ 2πv0

N
[xST + BST g2(l )]. (36)

By substituting Eqs. (27) and (32) for CST = AST − BST , we
obtain

B0 = − 1

3
√

2
, B1 = 2

3
√

2
, B2 = − 1

3
√

2
. (37)

If g2(0) � 1, the TL phase, Eq. (35) becomes g2(l ) ≈
2
√

2/(3 ln N ). By substituting this for Eq. (36), we obtain

�EST

(
±2π

3

)
≈ 2πv0

N

(
xST + BST

2
√

2

3 ln N

)
. (38)

IV. PHASE TRANSITION AND CRITICAL PHENOMENA

In this section, we show our numerical results of the critical
phenomena around the SU(3) symmetric critical point [12].
Here, we make use of the conservation of the magnetization
and the translational symmetry for our numerical calculations.
For later discussions, in addition to Eq. (20), we define the
dispersion curve as

�E (q) ≡ E (q) − Eg, (39)

where E (q) is the lowest energy at the wave number q.

A. TL phase–trimer phase transition

In this subsection, we discuss the phase transition between
the TL phase and the trimer phase in the SU(3) asymmetric
case (θ 	= π/4). We investigate the phase transition by chang-
ing φ and fixing θ at θ = 7π/18, which is the parameter in
the TL phase of the BLBQ model (see Fig. 1).

1. Dispersion curves

As for the dispersion curves, we explain the numerical
results with N = 9–18. Here, we obtain Eg = E (0) = E0(0).
There are soft modes at q = 0,±2π/3 for all system sizes.
Considering the fact that soft modes appear at q = 0,±2π/3,
one should carry out numerical calculations only in cases in
which N is a multiple of 3.

Figure 3 illustrates �E (±2π/3) = �E0(±2π/3) replot-
ted for N = 9–18. The elementary excitation energy
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FIG. 4. �Esq(±2π/3) as a function of φ in the case of θ =
7π/18 with N = 9–18.

�E (±2π/3) seems to depend linearly on N−1. We extrapolate
�E (±2π/3) with the function �E (±2π/3) = a0 + a1N−1,
where a0 and a1 are constants. When we extrapolate it with
N = 9–18 (dashed line in Fig. 3), we obtain a0 = 1.2 × 10−3.
Extrapolating it with N = 12–18 (red solid line in Fig. 3), we
obtain a0 = 1.4 × 10−3. Although it seems that a small gap
remains, this should be massless considering the logarithmic
corrections shown in Eqs. (28), (33), and (38).

Lastly, we describe the spin-wave velocity, which we uti-
lize for later calculations of the central charge and scaling
dimension. Note that the spin-wave velocity and the central
charge are valid only in the case of the massless TL phase.
The spin-wave velocity v0 is defined as

v0 ≡ dE (q)

dq

∣∣∣∣
q=0

. (40)

The velocity is a function of N , v0(N ). In our numerical
calculations, we investigate the slope of the dispersion curves
to obtain v0(N ) written as

v0(N ) = E (2π/N ) − E (0)

2π/N
. (41)

2. Phase boundary

Here, we explain how to specify the TL-trimer boundary
shown in Fig. 1, corresponding to g1 = 0 and g2 > 0 in Fig. 2.
Considering B0 = B2 in Eq. (37), we plot

�Esq(±2π/3) ≡ �E0(±2π/3) − �E2(±2π/3) (42)

for various φ with N = 9–18 in Fig. 4 to specify the TL-trimer
phase boundary. As shown in Fig. 4, we first find that the
value of �Esq(±2π/3) changes from positive to negative at
a certain point φc for all system sizes. One can see that the
size dependence of the crossing points φc(N ) is very small.
We discuss these numerical results on the basis of the theory
of Itoi and Kato [13].

The TL-trimer phase transition corresponds to the transi-
tion between the first quadrant (g1 > 0 and g2 > 0) and the
second quadrant (g1 < 0 and g2 > 0) in Fig. 2. It occurs at
the boundary of the line g1 = 0 and g2 > 0. By solving the
renormalization-group equation (34), they found [13] that if
the system is a massless TL phase, �Esq(±2π/3) satisfies the
relation

�Esq

(
±2π

3

)
> 0. (43)

FIG. 5. Phase boundary φc(N ) as a function of N−2 in the case
of θ = 7π/18 with N = 9–18. The dashed line and the red solid line
show the extrapolation up to therms of N−4 and N−2, respectively.

They also found [13] that if the system is the trimer phase,
�Esq(±2π/3) satisfies the relation

�Esq

(
±2π

3

)
< 0. (44)

By comparing our numerical results in Fig. 4 with the theory
[13], we find that the region φ < φc is the Z3 symmetric
(massless) phase, and the region φ > φc is the Z3 ordered
phase. In other words, a phase transition occurs at φ = φc.

In Fig. 5, we plot φc(N ), the crossing points of Fig. 4.
The correction terms O(N−2) of φc(N ) can be written as
[30,33,34]

φc(N ) = φc + X1N−2 + X2N−4 + O(N−6), (45)

where the leading term φc arises from the SU(3)1 WZW
model. The correction term of N−2 arises from the descendant
fields of the identity operator 1̂ [30,33,34], that is, L̂−2

ˆ̄L−21̂,
L̂−41̂, L̂2

−21̂, etc., with the scaling dimension x = 4. These
descendant fields are not included in Eq. (17) of the CFT, but
ascribed for the lattice model. In a similar way, the correction
terms of O(N−4) arise [30,33,34]. As shown in Fig. 5, we
extrapolate the data up to therms of N−4 (dashed line), and
then we obtain φc/π = 0.2120. Also, extrapolating it up to
therms of N−2 (red solid line), we obtain φc/π = 0.2123. The
result of Fig. 5 is shown in Fig. 1 in the case of θ = 7π/18. In
the same way, we plot the TL-trimer phase boundary in Fig. 1
in other cases as well.

3. Central charge

Here, we calculate the central charge c, which characterizes
the quantum anomaly and specifies the universality class. In
the critical state of one-dimensional quantum systems under
PBCs, the ground-state energy density at N follows [28,35]
the equation

Eg(N )

N
= ε∞ − πv0c

6N2
, (46)

where ε∞ is the ground-state energy density in the case of
N → ∞. In Eq. (46), one can numerically calculate Eg and
v0, but there remain two constants, ε∞ and c, as unknown
values. By removing the constant term ε∞ in Eq. (46), we thus
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FIG. 6. Effective central charge c(N ) as a function of φ in the
case of θ = 7π/18 with N = 12–18.

calculate the effective central charge c(N ) as

Eg(N )

N
− Eg(N − 3)

N − 3

= −π

6

[
v0(N )

N2
− v0(N − 3)

(N − 3)2

]
c(N ). (47)

Figure 6 shows the effective central charge as a function of
φ for different system sizes, N = 12–18. The effective central
charge was first numerically calculated in the case of the CFT
with c = 1 [36]. In this article, we investigate the effective
central charge utilizing Eq. (47). Equation (46) is true only
in the case of the massless phase certainly, but we can apply
Eq. (47) even to systems in a massive phase as well. We find
that the effective central charges smoothly converge to c = 2
as N → ∞ in the region φ < φc (Fig. 7). In Fig. 7, similarly
to Eq. (45), we extrapolate the effective central charge c(N )
as [30,33,34]

c(N ) = c + C1(N − 3/2)−2 + O((N − 3/2)−4), (48)

where C1 is the constants. We then obtain c = 2.00 by ex-
trapolating c(N ) with N = 12–18 (dashed line). Also if we
extrapolate it with N = 15–18 (red solid line), we obtain c =
1.99. On the other hand, in the region φ > φc, the effective
central charge shows a decline as φ approaches π/2. More-
over, around φ = φc, there is no sharp decline of c(N ) because
of the logarithmic correction [27] O((ln N )−3). Comparing
our numerical results in Figs. 6 and 7 with Zamolodchikov’s c-
theorem [37] and the theory of Itoi and Kato [13], we find that

FIG. 7. Effective central charge c(N ) as a function of (N −
3/2)−2 with N = 12–18 at (φ, θ ) = (0.2120π, 7π/18). The dashed
line and the red solid line show the extrapolation with N = 12–18
and 15–18, respectively.

FIG. 8. Effective scaling dimension x(N ) with N = 9–18 at
(φ, θ ) = (0.2120π, 7π/18). The dashed line and the red solid line
show the extrapolation up to therms of N−4 and N−2, respectively.

the region φ < φc is illustrated by the CFT with c = 2 (critical
phase), whereas the region φ > φc is a massive phase.

4. Scaling dimension

Here, we calculate the scaling dimension x, which is one of
the critical exponents, at the boundary (φ = φc). We rewrite
elementary excitation energy at a certain ST , Eq. (23), as

�EST

(
±2π

3

)
= 2πv0

N
[x + AST g1(l ) + BST g2(l )]. (49)

To remove terms of g1 and g2, which include logarithmic
correction, we calculate the scaling dimension x as

1

9

[
�E0

(
±2π

3

)
+ 3�E1

(
±2π

3

)
+ 5�E2

(
±2π

3

)]

= 2πv0(N )

N
x(N ). (50)

We further extrapolate the effective scaling dimension x(N ) as
[30,33,34]

x(N ) = x + D1N−2 + D2N−4 + O(N−6), (51)

where D1 and D2 are constants. Figure 8 shows the effec-
tive scaling dimension x(N ) at φ = φc with N = 9–18. As
shown in this figure, we extrapolate x(N ) up to therms of
N−4 (dashed line), and then we obtain x = 0.670. Also, ex-
trapolating it up to therms of N−2 (red solid line), we obtain
x = 0.672. These numerical results at the φ = φc point are in
line with the scaling dimension x = 2/3 of the SU(3)1 WZW
model [18–20].

FIG. 9. f1−2 with N = 9–18 as a function of φ at θ = 7π/18.

125406-6



CRITICAL PHENOMENA AROUND THE SU(3) SYMMETRIC … PHYSICAL REVIEW B 107, 125406 (2023)

FIG. 10. f2−4 with N = 12–18 as a function of φ at θ = 7π/18.

5. Other properties

Here, we confirm the phase transition based on other sev-
eral properties. For the discussion, we define f1−2 and f2−4

as

f1−2 ≡ �E2(±2π/3)

�E1(±2π/3)
, f2−4 ≡ �E4(±2π/3)

�E2(±2π/3)
. (52)

We show the numerical results of f1−2 and f2−4 in Figs. 9 and
10, respectively.

First, we discuss properties in the vicinity of φ = 0, TL
phase. Figure 9 shows that f1−2 gradually gets larger as N
gets larger. In the case of the thermodynamic limit N → ∞,
it is expected to converge to 1 due to the consistency with the
SU(3) symmetric property of the WZW model [18–20]. But
the convergence is very slow since the excitation energies have
logarithmic corrections [13]. In Fig. 10, f2−4 approaches 4 as
N gets larger, which means the characteristics caused by the
spin quadrupole [7]. Although the convergence is very slow
as well, f2−4 is nearly 4 since the effects of the logarithmic
corrections are small.

Secondly, we discuss the vicinity of φ = π/2, trimer
phase. Figure 9 shows f1−2 = 1 despite the value of N in the
case of φ = π/2, which means the SU(3) symmetric charac-
teristics described in Eqs. (27). In Fig. 10, f2−4 gradually gets
smaller as N gets larger. We expect that it converges to 2 as
N → ∞, since two magnons with the magnetization Sz = 2
exist almost independently [10]. If we can deal with a larger
size, we will observe the convergence to 2 more sharply.

FIG. 11. �Estq (±2π/3) as a function of φ in the case of θ =
5π/36 with N = 9–18.

FIG. 12. Phase boundary φc(N ) as a function of N−2 in the case
of θ = 5π/36 with N = 9–18. The dashed line and the red solid line
show the extrapolation up to therms of N−4 and N−2, respectively.

B. Haldane phase–trimer phase transition

In this subsection, we discuss the phase transition between
the Haldane phase and the trimer phase. We investigate the
phase transition by changing φ and fixing θ at θ = 5π/36,
which is the parameter in the Haldane phase of the BLBQ
model (see Fig. 1).

1. Phase boundary

Here, we explain how to specify the Haldane-trimer bound-
ary shown in Fig. 1, corresponding to g1 + g2 = 0 and g1 > 0
in Fig. 2. In Fig. 11, we plot

�Estq(q) ≡ �E0(q) − 3
2�E1(q) + 1

2�E2(q) (53)

for various φ with N = 9–18, considering the Clebsch-
Gordan coefficients of SO(3) × SO(3) in Eq. (32). As shown
in Fig. 11, we first find that the value of �Estq(±2π/3)
changes from positive to negative at a certain point φc for
all system sizes. One can see that the size dependence of
the crossing points φc(N ) is very small. We discuss these
numerical results on the basis of the theory of Itoi and Kato
[13].

The Haldane-trimer phase transition corresponds to the
transition at the boundary of the line g1 + g2 = 0 and g1 >

0 in Fig. 2. By solving the renormalization-group equa-
tion (34), they found [13] that if the system is Haldane phase,
�Estq(±2π/3) satisfies the relation

�Estq

(
±2π

3

)
> 0. (54)

FIG. 13. f1−2 with N = 9–18 as a function of φ in the case of
θ = 5π/36.
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FIG. 14. f2−4 with N = 9–18 as a function of φ in the case of
θ = 5π/36.

They also found [13] that if the system is the trimer phase,
�Estq(±2π/3) satisfies the relation

�Estq

(
±2π

3

)
< 0. (55)

By comparing our numerical results in Fig. 11 with the theory
[13], we find that the region φ < φc is the Haldane phase, and
the region φ > φc is the Z3 ordered phase. In other words, a
phase transition occurs at φ = φc. Also, the boundary, which
is the case of �Estq(±2π/3) = 0, is explained [31] by the
SO(3) × SO(3) SDSG model with massive excitation.

We plot φc(N ), the crossing points of Fig. 11, in Fig. 12.
The correction terms of φc(N ) behave [30,33,34] as

φc(N ) = φc + Y1N−2 + Y2N−4 + O(N−6), (56)

where Y1 and Y2 are nonuniversal constants. As shown in
Fig. 12, we extrapolate the data up to therms of N−4 (dashed
line), and we obtain φc/π = 0.3458. Also, extrapolating it up
to therms of N−2 (red solid line), we obtain φc/π = 0.3461.
The result of Fig. 12 is shown in Fig. 1 in the case of θ =
5π/36. In the same way, we plot the Haldane-trimer phase
boundary in Fig. 1 in other cases as well.

2. Other properties

Here, we confirm the phase transition based on other sev-
eral properties. We show the numerical results of f1−2 and
f2−4 in Figs. 13 and 14, respectively.

First, we discuss properties in the vicinity of φ = 0, Hal-
dane phase. In Figs. 13 and 14, f1−2 and f2−4 approach 2 as
N gets larger. This is consistent with the property illustrated

FIG. 15. N�E1(2π/3) with N = 9–18 as a function of φ in the
case of θ = 5π/36.

FIG. 16. N�E2(2π/3) with N = 9–18 as a function of φ in the
case of θ = 5π/36.

with the nonlinear σ model [14,15], in which there are two
massive magnons independently.

Second, Figs. 15 and 16 show the numerical results
of N�E1(2π/3) and N�E2(2π/3), respectively. Both fig-
ures show behaviors of the second-order transition, although
the Haldane-trimer phase transition should be the first-order
transition [31] illustrated with the massive SO(3) × SO(3)
SDSG model. We believe that this is because we investigate
the phase transition near the fixed point (g1, g2) = (0, 0),
which shows the critical state described by the SU(3)1 WZW
model [18–20]. If we investigate it in the region far from
the fixed point, we may see the behavior of the first-order
transition. Note that the analysis based on the CFT may be
invalid to investigate properties of the first-order transition
in principle. In any case, the elucidation of the first-order
transition will be a future task.

C. TL phase–Haldane phase transition

As for the TL phase–Haldane phase transition, it is exactly
shown [13] that the SU(3) symmetric line (g2 = 0, g1 < 0
in Fig. 2) is the phase boundary. Also, the universality class
is BKT-like with c = 2 and x = 2/3 [13]. There are several
numerical calculations [8,21,22,38,39] on this phase transi-
tion. Therefore, we do not do the numerical calculation in this
paper.

V. CONCLUSION AND DISCUSSION

A. Summary

We have investigated the model Eq. (5) to reveal the critical
phenomena when changing two parameters θ and φ. First
of all, we find the tricritical point among three phases—the
TL phase, the trimer phase, and the Haldane phase—which
corresponds to the SU(3) symmetric critical point found in
Ref. [12] described with the SU(3)1 WZW model [18–20]. We
specify that the tricritical point is (θ, φ) = (π/4, 0.223 39π )
and the phase diagram is shown in Fig. 1. Second, the criti-
cal phenomena belong to the Berezinskii-Kosterlitz-Thouless
(BKT) -like universality class with the central charge c = 2
and the scaling dimension x = 2/3. Third, the boundary be-
tween the Haldane phase and the trimer phase, g1 + g2 = 0
and g1 > 0 in Fig. 2, is illustrated with the SDSG model [31]
of massive spin current.
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B. Discussion based on group theory

Here, we discuss the degeneracy shown in Secs. III A–III C
based on the representation of group theory. First of all, in the
case of the line g2 = 0, there is the degeneracy of triplet and
quintuplet states as shown in Eq. (27), which corresponds to
the direct product

3SU(3) ⊗ 3̄SU(3) = 1SU(3) ⊕ 8SU(3), (57)

where 3SU(3), 3̄SU(3), 1SU(3), and 8SU(3) are representations of
SU(3). Equation (57) reflects the characteristics of the SU(3)
symmetric case of models Eqs. (5) and (17).

Second, the line g1 + g2 = 0 is explained with the group
SO(3), that is, the subgroup of SU(3). In this case, the model
can be represented [31] by the representation of SO(3) ×
SO(3) as

3SO(3) ⊗ 3SO(3) = 1SO(3) ⊕ 3SO(3) ⊕ 5SO(3), (58)

where 3SO(3), 1SO(3), 3SO(3), and 5SO(3) are representations
of SO(3). By comparing Eqs. (32) and (58) with Ref. [31],
we interpret Eq. (32) as the Clebsch-Gordan coefficients of
SO(3) × SO(3).

Lastly, in the case of the line g1 = 0, we obtain the degen-
eracy of singlet and quintuplet states as shown in Eq. (37). We
expect this degeneracy to correspond to the relation

3SU(3) ⊗ 3SU(3) = 3̄SU(3) ⊕ 6SU(3), (59)

where 6SU(3) is the representation.
Therefore, we consider that the perturbative renormaliza-

tion group of Itoi and Kato [13] may be supported with the
symmetry, even in the case far away from the fixed point
g1 = g2 = 0.

C. Correlation functions

Here, we review several correlation functions in each phase
to discuss the critical behavior. As for the TL phase and
the trimer phase, we already discussed [12] them based on
Refs. [8,13,21,23], utilizing the spin order parameter Ŝi, the
spin-quadrupolar order parameter Q̂μν

(i) , and the order parame-
ter of the trimer T̂i defined as

Q̂μν
(i) ≡ 1

2

{
Ŝμ

i , Ŝν
i

} − 2
3δμν, (60)

T̂i ≡ T̂ P
i − 〈

T̂ P
i

〉
, T̂ P

i ≡ |{i, j, k}〉〈{i, j, k}|, (61)

where the state vector of |{i, j, k}〉 is the same as {◦ ◦ ◦},
Eq. (4), and we put j ≡ i + 1 and k ≡ i + 2. As for the TL
phase, the correlation functions are expected [13,21,23] to be

〈Ŝi · Ŝi+r〉 ∝ cos

(
2π

3
r

)
r−4/3(ln r)σ1 , (62)

〈
Q̂μν

(i) Q̂(i+r)μν

〉 ∝ cos

(
2π

3
r

)
r−4/3(ln r)σ2 , (63)

〈T̂iT̂i+r〉 ∝ cos

(
2π

3
r

)
r−4/3(ln r)σ3 , (64)

from x = 2/3. Here, σa (a = 1, 2, 3) are critical exponents of
the logarithmic correction. Especially, in the SU(3) symmetric
case (g2 = 0), critical exponents are σ1 = σ2 = 2/9 and σ3 =
−16/9 [13]. In the non-SU(3) case, they take different values.

Secondly, in the trimer phase, the correlation functions are
expected [8,13] to be

〈Ŝi · Ŝi+r〉 ∝ cos

(
2π

3
r

)
e−r/ξ , (65)

〈
Q̂μν

(i) Q̂(i+r)μν

〉 ∝ cos

(
2π

3
r

)
e−r/ξ , (66)

〈T̂iT̂i+r〉 ∝ cos

(
2π

3
r

)
, (67)

where ξ is the correlation length. Equation (67) characterizes
a trimer long-range order. The Haldane phase is characterized
by the correlation function [14,15,17] as

〈
Ŝi · Ŝi+r

〉 ∝ cos (πr)r−1/2e−r/ξ , (68)

with short-range correlation.

D. Future works and applications

There remains an unsolved problem as for the Haldane-
trimer transition. In our numerical calculations, we could not
verify that this transition is the first-order transition, which
Lecheminant and Totsuka expected [31]. We believe that the
boundary line in Fig. 1 determined with the properties of
SO(3) × SO(3) is reasonable, although there remain unsolved
problems as for the universality class of this phase transition.
Also, we should investigate the incommensurability of the
dispersion curves in order to discuss the properties of the
subphases in the Haldane phase and the trimer phase [40,41].

As for applications, we believe that our theories and results
are applicable to experiments of ultracold atomic systems in
an optical lattice, described by the SU(ν) (ν is an integer)
Hubbard model [42], for example SU(6) symmetric 173Yb
atomic systems [1] or SU(10) symmetric 87Sr atomic systems
[2]. Also, Greiter and Rachel expected [10] the existence of
the atomic systems of the SU(3) spins in an optical lattice with
the internal interaction composing the trimer state.
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