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1  Introduction 

1.1 Trigeminal Neuralgia 

Facial sensation is innervated by trigeminal neuralgia with some exceptions,  and facial 

pain and sensory disturbance are caused by lesions of the trigeminal nerve, i ts  branches,  and 

various areas of the central  nervous system, including the thalamus and cortical sensory 

cortex [1].  Trigeminal neuralgia,  a typical disorder of facial  pain,  is  unilateral (rarely 

bilateral)  paroxysmal facial  pain that occurs in the area innervated by the trigeminal nerve. 

The pain is l imited to the area innervated by the trigeminal nerve branches,  is  evoked by 

non-nociceptive stimuli,  and is repeated for a short t ime [2].  I t  is  a disease that produces 

intense pain that feels l ike an electric shock, and thus has a significant impact on daily l ife.  

Trigeminal neuralgia is classified into several categories and is classified as trigeminal 

neuralgia and painful trigeminal neuropathy by the International Headache Society in the 

third edition of ICHD [3].  Within that trigeminal neuralgia,  i t  is  divided into typical 

trigeminal neuralgia,  secondary trigeminal neuralgia,  and idiopathic trigeminal neuralgia.  

The trigeminal neuralgia guidelines of the European Neurological Association classify 

trigeminal neuralgia into primary and secondary trigeminal neuralgia,  and primary trigeminal 

neuralgia is divided into typical and idiopathic trigeminal neuralgia according to the degree 

of neurovascular compression. In this study, we focused on typical trigeminal neuralgia,  

which is the most frequent type of trigeminal neuralgia.   

1.1.1 Patient’s conditions 

The lifetime incidence is estimated to be 0.16~0.3% [4][5][6].  I t  tends to be more common 

in women and increases with age. The incidence of new cases of trigeminal neuralgia is 

reported to be 4.3~27/100,000 persons.  The mean age at onset of typical trigeminal neuralgia 

(CTN) was 53 years and that of secondary trigeminal neuralgia (STN) was 43 years,  with 

typical trigeminal neuralgia tending to be older.  The age distribution of typical trigeminal 

neuralgia (TN) is widely distributed from young to old,  and according to a report based on 

tertiary care centers,  secondary trigeminal neuralgia accounts for 14~20% of all  tr igeminal 
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neuralgia (TN) cases [7].  The age distribution of typical trigeminal neuralgia (CTN) and 

secondary trigeminal neuralgia (STN) is shown in Fig.  1.  

 

Fig.  1 Frequency distribution of onset age in 120 patients with CTN (n=96) and STN (n 

=24) trigeminal neuralgia.  y axis = number of patients;  x axis = years.  

Source:[7]  

1.1.2 Mechanism  

Trigeminal neuralgia is caused by stimulation of the trigger zones of the second and third 

branches of the trigeminal nerve, which are located around the l ips,  nasal cavity,  and cheeks. An 

overview of the trigeminal nerve is shown in Fig. 2.  The latency between stimulation of the 

trigger zone and the onset of pain and the refractory period after a pain attack have raised the 

possibili ty that the central  nervous system is involved in the pathogenesis of trigeminal neuralgia.  

Since then, many similar cases have been reported, and it  has been shown that trigeminal 

neuralgia subsides when the blood vessels compressing the trigeminal nerve at  the trigeminal 

nerve origin in the cerebellar bridge angle are decompressed by treatment or other means [10][11].  

An MRI image of a blood vessel compressing the trigeminal nerve is shown in Fig. 3.  Typical 

trigeminal neuralgia is currently believed to be caused by compression of the trigeminal nerve 

by surrounding blood vessels or tumors and is included in the criteria for typical trigeminal 
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neuralgia in the International Classification of Headache, Third Edition. The vessels 

compressing trigeminal neuralgia are often arteries,  most commonly the superior cerebellar 

artery, but also the basilar artery and the anterior inferior cerebellar artery. However,  there are 

also cases in which veins cause compression [12],  and it  is  thought that,  as with arteries,  

compression is influenced by the pulsation of the blood vessels.  

 

 
Fig. 2 Overview of the trigeminal nerve (N: Nerve)  

Source:[13] 
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Fig. 3 MRI image of a blood vessel compressing the trigeminal nerve  

1.1.3 Diagnosis and Treatment 

Currently,  the diagnosis is based on a medical interview and imaging studies.  However,  in 

order to differentiate trigeminal neuralgia from other facial  pain-causing diseases,  imaging is 

often used to diagnose the disease.  In imaging, MRI cisternal imaging is used to detect the 

location of nerve compression. Treatment methods for trigeminal neuralgia include drug therapy, 

surgical treatment such as microvascular decompression, and gamma knife therapy. The first  

choice among these treatments is drug therapy [14].  

1.2 Artificial Intelligence and Medical Field 

Artificial  intell igence (AI) experienced its third AI boom in the 2000s with the advent of 

big data,  machine learning, and deep learning. Today, AI is used in numerous fields.  The 

Trigeminal Nerve

Pressed
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application of AI in the medical field began in the late 1970s in the field of medical expert  

systems and developed in the 1980s [15].  In the current medical field,  AI has been used for 

knowledge-based applications,  image/video data,  and biomedical measurement data,  among 

which many studies on AI technology applications using image data were conducted in Japan 

[16].  Among them, many studies using AI technology with image data have been conducted 

in Japan [16].  Reasons for the expected application of AI in the medical field include the 

prevention of human error,  the resolution of personnel shortages in the medical field,  and 

the ease of diagnosis in remote areas such as isolated islands and in home medical care.  

However,  ethical,  legal,  and social issues sti l l  exist  [17].  In addition, i t  has been pointed out 

that AI is a black box in the medical field.  Therefore,  i t  is  necessary to consider the 

positioning of AI util ization with l imited scope of medical roles and responsibili t ies.  In this 

study, we focused on the use of AI for trigeminal neuralgia,  for which imaging diagnosis has 

been established as the main diagnostic method, and decided to introduce AI as a diagnostic 

aid system in imaging diagnosis.  

1.3 Research Objectives 

The purpose of this study is to construct an automated system for image diagnosis of 

trigeminal neuralgia.  Therefore,  in this study, we examine and propose an image analysis 

method using deep learning for AI diagnosis as fundamental research in this field.  We discuss 

the learning model with the practice of identifying an appropriate deep learning model.   
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2  Image Analysis Method 

2.1 Annotation 

The original image is extracted into a training image using OpenCV, an open-source library 

specialized for image processing and analysis.  The original image is used to create a 

binarized image in which the trigeminal area is white (pixel value: 0) and all  other areas are 

black (pixel value: 255).  The binarized image is overlapped with the original image and 

extracted from the center of the white area to a size of 60 mm in height and width. The 

extracted image is used as the training data image. Annotation overview is shown in Fig.4. 

 
Fig.  4 Annotation overview (left:  overlap between binary image and original image, right:  

extracted image) 

2.1.1 Augmentation 

Deep Learning requires a large amount of data (number of images) for training because of 

the huge number of parameters i t  has.  However,  in the medical field,  the number of data 

tends to be relatively small  because of privacy concerns.  Therefore,  in order to learn 

sufficiently with a small  number of data,  this study employed Data Augmentation [18],  which 

is a method of creating a large number of completely different data by inverting, changing 

brightness,  rotating, translating, and merging from an existing data set,  thereby increasing 
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the amount of data by a factor of several to several dozen. Data augmentation is also expected 

to avoid overfit t ing, improve model robustness,  reduce model sensitivity to images,  and 

avoid sample imbalance. Excessive use,  however,  can affect model performance by 

destroying key property information and creating augmented images with incorrect or 

ambiguous labels.  Therefore,  in this study, we used two methods of data expansion: fl ipping 

the data upside down and left  to right,  and rotating and sliding the data.  

2.2 Convolutional Neural Network 

This study employed convolutional neural network (CNN), which are among the deep 

learning models that are commonly used for image analysis.  We used three CNN models that 

are relatively easy to handle and compared the accuracy of each model.  

LeNet [18] developed by Yann Lecun et al .  is  the prototype for CNN, which consists of a 

convolutional layer and a pooling layer.  LeNet overview is shown in Fig.5. The convolution 

layer can process data while preserving the shape of the data (3D data in the case of image 

data).  While the general all-join layer processes data as one- dimensional data,  the 

convolutional layer allows data to be output without losing spatial  information. Convolution 

create feature maps by applying fil ters (kernels) to the input data.  In this research3 × 3 fi l ter 

is applied to the input data.  An example of convolution is shown in Fig. 6.  The pooling layer 

performs operations such as the average and the maximum on the elements of the output data 

obtained in the convolutional layer.  Therefore,  there are no parameters to be learned, and the 

number of channels does not change.  

 

 
Fig.  5 Architecture of LeNet a Convolutional Neural Network 

Source:[18] 
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Fig.  6 Convolution 

Source: [19] 

2.2.1 VGG 16 

VGG16 is a CNN model proposed by Simonyan Karen [20] et  al .  that consists of 16 layers 

(13 convolutional layers and 3 all-connected layers) and blocks (blocks) in each pooling 

layer.  The VGG16 structure in this study is shown in Fig. 7. 3 × 3 The number of fi l ter 

channels in the convolutional layer is 64 (denoted by conv3-64),  which is doubled for each 

block. Pooling is performed by five max pooling layers.  Max pooling is performed in a 2 × 

2 pixel window with a stride of 2.  The max pooling layer is followed by several convolutional 

layers,  and finally the output of the convolutional layers is converted to a full  concatenated 

layer (denoted by FC) with 4096 channels.1 × 2 The output of the convolutional layer is 

converted to a 3-dimensional array and then subjected to binary classification by the Softmax 

function. In addition, the1 × 1 convolutional layer,  but in this study, we use a fi l ter in the3×3 

In this study, we used the VGG16 model of convolutional layer fi l tering. All  hidden layers 

are equipped with ReLU functions. 
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Fig.  7 VGG16 
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2.2.2  VGG 19 

VGG19, l ike VGG16, is a CNN model proposed by Simonyan Karen [20] et  al .  I t  consists 

of 19 layers (16 convolutional layers and 3 all-connected layers) and a pooling layer.  The 

VGG19 structure in this study is shown in Fig.  8.  VGG19 also corresponds to 3D RGB image 

data,  and the number of fi l ter channels in the 3 × 3 convolutional layer is 64, which is 

doubled in each convolutional layer block. In VGG19, four convolution layers are configured 

at Block3~Block5. Each pooling layer consists of a Max pooling layer.  The output of the 

convolution layer is transformed to 1 × 2 dimensional over 4096 channels in all  the coupled 

layers,  and finally binary classification is performed by Softmax function. Similarly,  in 

VGG19, i t  consists only of fi l ters in the 3 × 3 convolution layer,  with ReLU in all  hidden 

layers.  
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Fig. 8 VGG19 

2.2.3 ResNet 50 

Resnet50, proposed by Kaiming He et al  [21],  is  a CNN model with 50 layers in depth. 

Although the accuracy was improved by increasing the depth of the layers,  the effect of 
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increasing the depth of the layers caused the gradient disappearance problem and the 

degradation problem, which resulted in poor learning. Various approaches,  such as activation 

functions,  have been used to solve the gradient loss problem, but focusing on the degradation 

problem, the Residual Network (ResNet) was devised as a network architecture that can learn 

even with deep layers.  To address this degradation problem, a deep residual learning 

framework is introduced. Rather than expecting each of several stacked layers to directly fi t  

the desired mapping, these layers are explicit ly adapted to the residual mapping. Residual 

learning in the deep residual learning framework is shown in Fig. 9.  assuming that i t  is  

optimal to learn F(x)=x and the identity mapping, the parameters w of the nonlinear function 

F needs to be adjusted to learn the identity mapping, based on the consideration that this is 

difficult  and may cause degradation problems. A detour called Shortcut Connection or 

Identity Mapping was added, and F(x)+x was configured to be the output.  In this case,  

learning the identity mapping is simpler than in the former case,  since the parameters need 

to be learned so that F(x)=0, i .e. ,  w=0. The Residual Network is a network of multiple layers 

of residual blocks, called a residual block (building block),  consisting of several 

convolutional layers and shortcut connections.  The architecture of the Residual Network is 

shown in Fig.  10.  In this study, we adopted the Bottleneck architecture's Residual block, 

which consists of 1×1, 3×3, and 1×1 convolutional layers,  to create a 50-layer Resnet.  The 

Bottleneck architecture is shown in Fig. 11.  

 

Fig.  9 Residual learning: a building block  

Source:[21] 
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Fig.  10 Residual Network 

Source: [21]  
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Fig. 11 Bottleneck 

2.3 Transfer Learning 

Transfer learning is an efficient learning method in which what has been learned in one 

domain (learned model) is applied to another domain. This reduces learning time and 

computational cost (parameter updates) compared to learning a model from scratch. It  can 

learn efficiently even with a small  amount of data,  thus achieving stable accuracy. The pre-

training model is based on ImageNet,  which has been trained on a large dataset.  In VGG16, 

we fix weights up to layer 15 and retrain the following layers.  Resnet50 fixes weights up to 

layer 143 and retrains the subsequent layers.  

2.4 Grad-CAM 

In the medical application of AI,  high reliabili ty is required for the results output by AI.  

while AI can be used for complex tasks that require flexible responses,  i ts  flexible processing 

has left  the issue of not being able to clearly present the basis for the processing results.  

Therefore,  accountabili ty and transparency of AI decisions are required. Against this 

background, there is a trend toward the demand for Explainable AI in medical applications.  

In this study, we applied Grad-CAM [22] developed by Ramprasaath R. Selvaraju et  al .  to 

visualize the basis for AI decisions.  Grad-CAM is a method for displaying the identified 

points in an image as a heat map for a given input and its prediction for a CNN-based image 
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recognition model.  Grad-CAM is a generalization of CAM heatmap computation that is not 

l imited by model constraints.  The overview of Grad-CAM is shown in Fig.12. Grad-CAM is 

a generalized version of the CAM heat map calculation that is not l imited by model 

constraints.  Images and classes of interest  are given as input,  the images are forward 

propagated through the CNN part ,  and then through task-specific computation to obtain the 

raw scores for the categories.  The gradient is set  to zero for all  classes except the desired 

class.  The signal is back-propagated to create a parallelized convolutional feature map of 

interest ,  which is combined to compute a coarse Grad-CAM localization. The Grad-CAM 

localization (blue heatmap) represents where the model must look to make a particular 

decision. Finally,  the heatmap is crossed with the original image to obtain a Grad-CAM 

visualization. An example using Grad-CAM is shown in Fig. 13. 

 

 

Fig. 12 Grad-CAM overview 

Source:[22] 

 

 

 
Fig.  13 Example of Grad-CAM visualizing the basis for bike decisions  
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Source:[22]  

2.5 Experimental data 

MRI images of the left  and right trigeminal nerves were obtained from a total  of 43 donors: 

28 trigeminal neuralgia positive (5 males,  20 females,  3 unknown) and 15 trigeminal 

neuralgia negative (5 males,  10 females).  A total  of 240 non-trigeminal and trigeminal 

neuralgia images (A set),  a data set of 960 images (B set),  and a data set of 2400 images (C 

set) were created for a total  of three different data sets.  A table of the datasets is shown in 

Tab. 1.  Eighty percent of the dataset is used as the training dataset,  the remaining 10% as 

the validation dataset,  and the remaining 10% as the test  dataset.  

The training dataset is  used to train the model and the validation dataset is  used to adjust 

the piper parameters of the training model.  Finally,  the training model is evaluated using the 

test  dataset.  

Tab. 1 Dataset 

 

2.6 Program experiment protocol 

For the experiments,  Python 3.0 was used for CNN model building. Keras2.0 and scikit -  

learn l ibraries were mainly used on TensorFlow2.0. Batch size was set to 32 and epoch to 

300. The experiments were conducted using binary classification, but 

“categorical_crossentropy”, which showed the highest accuracy, was used for the loss 

function. The learning rate was fixed at 0.00005 with no change from epoch to epoch. The 

image size was set to80 × 80 mm. 

2.7 Evaluation Method 

Positive Negative Sum
A set 120 120 240
B set 480 480 960
C set 1200 1200 2400
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The performance of the CNN model is evaluated from Accuracy, Precision, Recall ,  

Specificity,  F-score,  AUC (ROC curve: Receiver Operating Characteristic curve) based on 

the Confusion Matrix of True Positive (TP),  False Positive (FP),  False Negative (FN), and 

True Negative (TN), with two classifications: true positive (TP),  false positive (FP),  false 

negative (FN), and true negative (TN). The Confusion Matrix is shown in Tab. 2.  

Tab. 2  Confusion Matrix 

 

Accuracy is simply the number of correct classifications in the overall  data.  Accuracy is 

used to adjust the hyperparameters,  mainly when using Validation data.  The formula for 

Accuracy is shown in (1).  

𝐴𝑐𝑐𝑟𝑢𝑟𝑎𝑐𝑦	 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (1) 

Precision indicates the probabili ty that the positive answer is actually the correct answer 

among the predicted positives.  Therefore,  i t  is  an indicator to prevent false positives.  It  is  

an important index in precision testing in the medical field.  Equation (2) of Precision is 

shown below. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

Recall  (Sensitivity) indicates the probabili ty that among all  data for which the correct 

answer (true value) is "Positive",  the prediction by the machine learning model is also 

"Positive" and correct.  Positive indicates the probabili ty that the prediction by the machine 

learning model is "Positive" and the true value is also "Positive" and correct.  Indicates the 

degree to which the prediction by the learning model reproduces the correct answer when the 

correct answer is "Positive”. In the medical field,  the evaluation of recall  is  important 

because false positives can be problematic.  The formula for Recall  is  shown in Equation (3).  

Predicted value

Positive Negative

Correct 
value

Positive TP  (True positive) FP  (False positive)

Negative FN  (False negative) TN  (True negative)
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𝑅𝑒𝑐𝑎𝑙𝑙	 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

The F-score (Dice coefficient) is an indicator for evaluating Precision and Recall  together.  

The F-score is used to evaluate both Precision and Recall ,  and is used when comprehensively 

judging whether the desired detection is made. It  is  the most efficient and well-balanced 

machine learning model.  Equation (4) of the F-score is shown. 

𝐹 =
𝑇𝑃

𝑇𝑃 + 12 ∗ (𝐹𝑃 + 𝐹𝑁)
=

1
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
1

𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

The ROC curve is shown as a graph with the True Positive Rate (TPR) on the vertical axis 

and the False Positive Rate (TPR) on the horizontal axis.  The range of both the vertical and 

horizontal axes is 0.0~1.0, and the points corresponding to the threshold values are placed 

on these axes.  On the ROC curve, a high recall  and a low false positive rate are indicated by 

the upper left  point.  In other words,  the higher the ROC curve is to the upper left ,  the higher 

the discrimination performance. Therefore,  i t  is  one of the most important evaluation 

methods for diagnosis in the medical field. 

AUC (Area Under Curve) is a numerical indicator of the ROC curve and refers to the area 

under the ROC curve between 0.0 and 1.0.  The maximum value is 1.0,  which can be indicated 

as recall  1.0 and false positive rate 0.0 if  the judgment is perfect.  
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3  Experimental results 

3.1 Results in CNN 

We prepared three types of datasets,  A set,  B set,  and C set,  from data augmentation by 

creating images in which disease regions were detected using annotation from the 

aforementioned MRI images. Each dataset was divided into training data (including 

validation data) and test  data.  Training was performed on the three CNN models,  VGG16, 

VGG19, and Resnet 50, using the training data,  and model performance was evaluated based 

on results obtained from the test  data.  

3.1.1 Training process  

During training, the training was performed under the conditions of the aforementioned 

experimental protocols.  Fig.14, Fig.15, and Fig.16 show the learning process for each dataset 

of VGG16. The horizontal axis represents Epoch, and the vertical axis represents Accuracy. 

The red line shows the process on the training data,  and the blue l ine shows the process on 

the validation data.  In B and C set,  as the number of images increases,  the accuracy improves 

compared to A set.  In addition, while there was a behavior (variation) in accuracy during 

training in B set,  i t  can be seen that the behavior during training converges in C set.  This is 

because the number of images increases as the number of images increases,  and the accuracy 

of B and C set increases as the number of images increases.  This is thought to be due to the 

fact that the accuracy of the validation data was improved by the increase in the number of 

images, which allowed more features to be captured from the images than in the A and B set,  

which had a relatively small  number of images. 

The learning process of VGG19 on each dataset is  shown in Fig.17, Fig.18, and Fig.19. As 

in VGG19, in the A set,  learning reaches a certain relatively low level of accuracy, and 

learning convergence on the training data is slow. Compared to VGG16, the training 

converges and the validation process shows high accuracy. However,  in the C set,  there is 

less variabili ty in the validation process than in the B set,  but the accuracy is lower.  It  is  

thought that over fi t t ing occurred because the data acted as excessive noise for VGG19, 
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which is a more complex model (more parameters) than VGG16. Therefore,  a 4-fold data 

augmentation is appropriate for VGG19. 

Fig.20, Fig.21, and Fig.22 show the training process for each dataset of ResNet50. The 

accuracy of the training data as well  as the validation data varied, and the training did not 

converge well .  However,  as the number of image data is increased, the accuracy variation 

becomes smaller.  In addition, the deeper the layers,  the smaller the size.  Therefore,  i t  is  

difficult  to extract features in a generalized manner for images with an input size of 80 × 80. 

It  is  believed that the accuracy is low (does not increase) due to these reasons.  

 

 

Fig. 14 Learning process with A set 

(VGG16) 

 

 

Fig. 15 Learning process with B set 

(VGG16) 

 

 

Fig. 16 Learning process with C set 

(VGG16) 
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Fig. 20 Learning process with A set 

(ResNet50) 

 

 

Fig. 21 Learning process with B set 

(ResNet50) 

 

Fig. 17 Learning process with A set 

(VGG19) 

 

Fig. 18 Learning process with B set 

(VGG19) 

 

 

Fig. 19 Learning process with C set 

(VGG19) 
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Fig. 22 Learning process with C set 

(ResNet50) 

 

3.1.2 Loss function 

Fig. 23, Fig.  24, and Fig.  25 show the process of the loss function for each dataset in 

VGG16. In A set,  the loss values for the validation data diverge without decreasing after 

epoch 50, indicating that the learning process is not going well .  In the B set,  the loss value 

rises to around 1.0 and then drops to around 0.4,  indicating that the excessive divergence of 

the loss value is suppressed, although some variation is observed. However,  compared to the 

loss value of the training data,  the loss value of the validation data is large, indicating that 

overlearning has occurred, which is also the case in the B set.  Although the loss values are 

relatively small ,  i t  can be said that overlearning is also occurring in the C set.  

Fig.  26, Fig.  27, and Fig.  28 show the process of the loss function for each dataset of 

VGG19. Overall ,  the loss values of the validation data are lower than those of VGG16, and 

the trend of increasing values is relatively gradual.  The accuracy of the validation data 

during the training process was not significantly different from that of VGG16, but the loss 

values showed a large difference. Compared with VGG16, the accuracy of the validation data 

during the learning process was not significantly different from that of VGG16, as in the A 

set.  In comparison with VGG16, the accuracy of the val idation data during the learning 

process was not much different from that of VGG16, but the loss values were low and did 

not vary greatly,  indicating that the learning process was relatively stable.  Therefore,  the 

accuracy of the validation data is also lower in the C set than in the B set.  
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Fig. 29, Fig.  30, and Fig.  31 show the process of the loss function for each of the ResNet50 

data sets.  Although the variation of the loss value is suppressed as the number of image data 

increases,  the overall  loss value does not decrease as the number of data increases,  as is the 

case with other models.  As described in the training process in 3.1.1,  i t  is  not possible to 

extract features in a generalized manner.  

 

 
Fig. 23  Loss process with A set (VGG16) 

 

 
Fig. 24 Loss process with B set (VGG16) 

 

 
Fig. 25 Loss process with C set (VGG16) 
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Fig.  26 Loss process with A set (VGG19) 

 

Fig.  27 Loss process with B set (VGG19) 

 

 

Fig.  28 Loss process with C set (VGG19) 

 

 

 

 

Fig.  29 Loss process with A set 

(ResNet50) 

 

 

Fig.  30 Loss process with B set 

(ResNet50) 
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Fig.  31 Loss process with C set 

(ResNet50) 

 

3.1.3 Evaluation on test data  

The results (accuracy, precision, recall ,  F1-score,  auc) for each test  data in VGG16 are 

shown in Tab.3.  Tab.3 shows that the results for C set are accuracy: 0.942, precision: 0.958, 

recall:  In comparison between the C set and the A set,  the accuracy was 0.109, precision 0.14, 

recall  0.108, F1-score 0.124, and auc 0.115 for accuracy. The overall  accuracy improved as 

the number of image data increased. These results confirm the effectiveness of data 

augmentation in VGG16. To visualize the evaluation of VGG16 on the best performing C set,  

a confusion matrix is shown in Fig. 32. 14 of the 240 test  images are mispredicted, and Fig. 

32 shows that 5 of the 14 images are misclassified as false positives and 9 as false negatives.  

Fig.  32 shows that out of the 14 images,  5 are false positives and 9 are false negatives.  

Tab.4 shows the results for each test  data in VGG19. Tab.4 shows that the B set has the 

best performance in recall  with recall:  0.920, F1-score: 0.906, and auc: 0.964, respectively.  

Although recall  is  an important index in the medical field,  the overall  evaluation showed 

that VGG19 in the C set had the highest performance in VGG19, since the difference between 

the C set and the B set was only 0.007 of recall .  The overall  performance of VGG19 was also 

improved by increasing the number of data in VGG19, confirming the effect of data 

augmentation. To visualize the evaluation of VGG19 in the best performing C set,  a confusion 

matrix is shown in Fig. 32. 24 out of the 240 test  images are mispredicted, and Fig. 32 shows 
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that 13 of the 24 images are misclassified as false positive and 11 as false negative. Fig.  32 

shows that out of 24 images, 13 are false positives and 11 are false negatives.  

Tab.5 shows the results of each test  on ResNet50. As with ResNet50, as the number of data 

increased, the overall  evaluation increased, confirming the effect of data augmentation. 

However,  the accuracy variabili ty during the training process is significantly higher than 

that of other models,  so the reliabili ty of the evaluation is considered low. To visualize the 

evaluation of ResNet50, a confusion matrix is shown in Fig. 34. 47 out of 240 test  images 

are mispredicted. 28 out of 47 images are misclassified as false positives and 19 as false 

negatives,  according to Fig. 34.  

Comparing the VGG16, VGG19, and ResNet50 models,  the VGG model shows the most 

stable performance, with VGG16 performing the best in the C set.  I t  showed the best 

performance in all  evaluations and was able to learn with high accuracy from the validation 

data during training. The effectiveness of data augmentation was also demonstrated for all  

models.  

 

Tab. 3 Test result  with VGG16 

 

 

Tab. 4 Test result  with VGG19 

 

VGG16

Accuracy Precision Recall F1-score auc

Aset 0.833 0.818 0.818 0.818 0.867

Bset 0.865 0.824 0.913 0.866 0.973

Cset 0.942 0.958 0.926 0.942 0.982

VGG19

Accuracy Precision Recall F1-score auc

Aset 0.708 0.688 0.846 0.759 0.699

Bset 0.885 0.868 0.920 0.893 0.947

Cset 0.900 0.898 0.913 0.906 0.964
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Tab. 5 Test result  with ResNet50 

 
 

 

 

Fig. 32 Confusion Matrix of VGG16 on C set 

 

ResNet50

Accuracy Precision Recall F1-score auc

Aset 0.591 0.625 0.454 0.526 0.699

Bset 0.792 0.771 0.804 0.787 0.836

Cset 0.804 0.786 0.844 0.814 0.876
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Fig. 33 Confusion Matrix of VGG19 on C set 

 

 

Fig. 34 Confusion Matrix of ResNet50 on C set  

3.1.4 ROC curve 
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The ROC curves for each test  data of the three models are shown in Fig.  35, Fig.  36, and 

Fig.  37. First ,  Fig.  35, Fig.  36, and Fig.  37 show the ROC curves for the VGG16 test  data.  

Fig.  35, Fig.  36, and Fig.  37 show that the more image data there is in the test  data set,  the 

more the curve rises to the left .  

Fig.  38, Fig.  39, and Fig.  40 show the ROC curves for each of the VGG19 test  data sets.  

Similarly,  for VGG19, although the performance evaluation is low for the A set,  the curve 

increases to the left  as the test  data set has more image data.  

Fig.41, Fig.42 and Fig.43 show the ROC curves for each test  data set of ResNet50. In Fig.  

42 and Fig. 43, the right-leaning curve is no longer high, but there is no tendency for the 

curve to rise to the upper left  as the number of data increases,  which was observed in the 

VGG model.  The AUC is also lower than that of the other models.  From these results,  i t  can 

be concluded that the performance of ResNet50 is low at this stage and that the VGG model 

has high performance. 

 
Fig.  35 ROC curve with A set (VGG16) 

 
Fig.  36 ROC curve with B set (VGG16) 

 
Fig.  37 ROC curve with C set (VGG16) 
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Fig.  38 ROC curve with A set (VGG19) 

 

 
Fig.  39 ROC curve with B set (VGG19) 

 

 
Fig.  40 ROC curve with C set (VGG19) 

 

 

 

 

Fig.  41 ROC curve with A set (ResNet50) 

 

 

Fig.  42 ROC curve with B set 

(ResNet50) 
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Fig.  43 ROC curve with C set 

(ResNet50) 

 

3.1.5 Grad-CAM 

Negative and positive image data are prepared, and the basis for judging VGG16, VGG19, 

and ResNet50 in each data set is  visualized using Grad-CAM. An example of a negative 

image result  is  shown at the top, and an example of a positive image result  is  shown at the 

bottom. The results for each image are,  from left  to right,  the original image, the heatmap, 

and the image obtained by overlapping the original image and the heatmap (Grad-CAM 

image).  

The Grad-CAM results of VGG16 for each dataset are shown in Fig.44, Fig.45, and Fig.46. 

Fig.44 shows that no features were captured in the negative images.  Fig.45 shows that the 

negative image fails to capture the trigeminal nerve as in VGG16 of set A. The positive 

image shows that the trigeminal nerve is captured. Fig.  46 shows that the trigeminal nerve 

was captured in the C set while i t  was not captured in the A and B set.  I t  can be said that the 

discrimination performance was improved by increasing the number of images. In the 

positive images, the lower part  of the trigeminal nerve was captured as in the B set.  

Fig.47, Fig.48 and Fig.49 show the Grad-CAM results of VGG19. Fig.48 shows that VGG19 

captured the area around the trigeminal nerve while VGG16 did not,  indicating that VGG19 

has better discrimination performance than VGG16 in the B set.  The positive images showed 
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that the trigeminal nerve was not detected by VGG16. The positive image shows that the area 

around the trigeminal nerve including the background was captured and widely distributed. 

Grad-CAM results of ResNet50 are shown in Fig.50, Fig.51 and Fig.52. Fig.50 and Fig.51 

show that the Grad-CAM results for ResNet50 tend to capture a wide range of features,  and 

are not able to capture specific features.  Therefore,  the background is captured in a wide 

range, and it  can be confirmed that the negative image in Fig.  52 is strongly discriminated 

from the background. However,  in Fig.  52, the trigeminal nerve is captured at the center of 

the image, which improves the discrimination performance. 

 

 

 
Fig. 44 Grad-CAM of VGG16 on A set 

 

 
Fig. 45 Grad-CAM of VGG16 on B set 

 

 
Fig. 46 Grad-CAM of VGG16 on C 

set 
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Fig. 47 Grad-CAM of VGG19 on A set 

 

 
Fig. 48 Grad-CAM of VGG19 on B set 

 

 
Fig. 49 Grad-CAM of VGG19 on C set 

 

 

 

 
Fig. 50 Grad-CAM of ResNet50 on A 

set 

 

 
Fig. 51 Grad-CAM of ResNet50 on B 

set 
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Fig. 52 Grad-CAM of ResNet50 on C 

set 
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4  Proposal method of VGG model  
The results for the VGG model showed stable performance; however,  the performance for 

the multi-layer model is expected to be lower than for the Resnet50 model,  because 

increasing the number of convolutional layers created a situation where learning did not 

converge (i .e. ,  accuracy did not increase).  Therefore,  we focused on the structure of the VGG 

model and improved its structure in order to propose a more accurate model.  To this end, we 

proposed two methods for improving the structure of the VGG model.  

4.1 Support Vector Machine 

Support Vector Machines (SVM) are machine learning algorithms introduced by Bernhard 

E. Boser [24] et  al .  The goal of the algorithm is to maximize the margin, the distance between 

the n-1-dimensional plane (not strictly a plane) that classifies n-dimensional data,  called the 

separation hyperplane, and the data closest to that separation hyperplane. The goal of the 

algorithm is to maximize the margin, which is the distance between the separation hyperplane 

and the data closest to the separation hyperplane. Based on this idea of margin maximization, 

the algorithm is mainly good at binary classification. An example of a distribution map 

identified by the support vector machine is shown in Fig. 53. It  shows the case of binary 

classification (Group A, Group B) of a group of data based on two features (A, B).  In this 

case,  the data closest to the separation hyperplane is called the support vector,  and its 

distance is called the margin. By maximizing this margin, the range of discriminative 

judgments for binary classification becomes wider,  and thus,  stable accuracy can be achieved. 

In general,  however,  i t  is  difficult  to achieve perfect discrimination. Therefore,  i t  is  

necessary to tolerate a certain degree of misclassification, and classification is made possible 

by setting constraint conditions (constraint formulas) on the margin. This margin is called 

the soft  margin. The maximization of the margin and the kernel method described here enable 

a support vector machine that can perform nonlinear classification. However,  the 

computational cost of converting all  data from all  features to vectors and then classifying 

them is high. The support vector machine also needs to adjust to two piper parameters:  the 

cost parameter (C),  which determines how much misclassification is tolerated; the larger C, 



 

 36 

the less misclassification is tolerated. The higher C, the less misclassification is tolerated. 

The second is the RBF kernel parameter (γ),  where smaller values of γ result  in simpler 

decision boundaries next to each other and larger values result  in more complex decision 

boundaries.  In this study, support vector machines were employed because the number of 

data handled in training is relatively small  and because binary classification is performed. 

The architecture of VGG+SVM is shown in Fig. 54. The upper VGG convolutional layer 

blocks are treated as feature extractors,  and the lower all-combining layer blocks are 

converted to SVMs as discriminators.  In addition, we changed from Max pooling to Average 

pooling. Based on the features extracted by the feature extractor,  the discriminator SVM 

performs soft-margin binary classification based on the features. 

 

Fig.  53  Example of distribution map classified by support vector machine 

(Classification is made from the features of Feature A and Feature B. Example of 

classification into Group A and Group B) 
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Fig.  54 VGG architecture with discriminator as support vector machine 

4.2 Batch Normalization 

Batch Normalization is a batch normalization for feature computation proposed by Ioffe 

Sergey [25] et  al .  In Deep Networks,  hidden layers in deep layers have problems with internal 

covariate shifts,  a phenomenon in which the input distribution changes for each layer and 

each activation. Covariate shift  is  a problem. Internal Covariate Shift  is  not often discussed 

in ordinary machine learning algorithms in the context of a simple training dataset.  However,  

sometimes the distribution of the training data sampling and test  data input is so skewed that 

the algorithm cannot cope. In the VGG models of 2.2.1 and 2.2.2,  only the init ial  inputs are 

normalized for each feature,  so that in the process of propagating layer by layer,  the 

distribution of inputs to each layer is different for each mini-batch. The distribution of the 
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inputs to each layer changes in the process of propagating layer by layer.  Therefore,  by 

adding batch normalization to the VGG model,  the inputs are normalized not only for the 

init ial  feature inputs,  but also for each layer.  This sets the mean of the features to zero and 

the standard deviation to one for each layer,  thereby eliminating the effects of distributional 

bias and scale.  This normalization reduces the need for regularization methods such as 

Dropout and thus speeds up the learning process.  since it  has already been added to Resnet 

50 in 2.2.3,  we have added Batch Normalization for the VGG model.  We also add Activation 

after the Batch Normalization layer.  The discriminator was changed to the Global average 

pooling layer,  which is computationally less expensive. Fig.55 and Fig.56 show the 

architecture of the new VGG16 (VGG16 + BN) and VGG19 (VGG19 + BN) models with the 

added layer.  
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Fig. 55 VGG16 with batch normalization 
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Fig. 56 VGG19 with Batch Normalization  
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5  Results in the proposed method 

5.1 Results on SVM method 

We created VGG16+SVM, which is a part  of VGG16 converted to SVM, and VGG19+SVM, 

which is a part  of VGG19 converted to SVM. We calculated the optimal hyperparameter 

values for these architectures and determined the hyperparameters to be C:1000 and gamma: 

0.001 for the RBF kernel,  respectively. data.  

5.1.1 Evaluation on test data  

Tab.6 shows the results of the VGG16 + SVM test data,  which show an overall  decrease in 

evaluation compared to the results with VGG16 in 3.1.3.  In addition, there was no 

improvement in accuracy by data augmentation for VGG16 + SVM. 

Tab.7 shows the results of the VGG19+SVM test data.  as with VGG19+SVM, the overall  

evaluation was lower than that of VGG19 in 3.1.3.  data augmentation improved the 

evaluation for A set and B set,  but not for subsequent sets as the number of data increased. 

However,  there was no improvement with the increase in the number of data after that.  Based 

on these results,  we can conclude that i t  is  difficult  to improve the performance of VGG by 

SVM in this study. Therefore,  we believe that the all-join layer,  which allows dimensionality 

reduction, shows better discriminative performance.  

 

Tab. 6 Test result  with VGG16 + SVM 

 
 

VGG16
＋
SVM

Accuracy Precision Recall F1-score auc

Aset 0.792 0.842 0.696 0.762 0.788

Bset
0.786 0.774 0.786 0.773 0.786

Cset 0.765 0.766 0.770 0.768 0.764
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Tab. 7 Test result  with VGG19 + SVM 

 

5.1.2 Grad-CAM 

The Grad-CAM results of VGG16+SVM for each dataset are shown in Fig.57, Fig.58 and 

Fig.59. It  can be seen that the overall  features cannot be captured but are captured in a wide 

range. Therefore,  i t  can be confirmed that the results depend on the background. The number 

of captured features does not change as the number of image data increases.  

Fig.60, Fig.61 and Fig.62 show the Grad-CAM results of VGG16+SVM for each dataset,  

indicating that VGG16+SVM captures more features around the trigeminal nerve than 

VGG16+SVM. Compared with VGG19, VGG19+SVM tends to capture features in the same 

way. However,  the number of features captured does not change as the number of image data 

increases.  From these results,  i t  can be concluded that the addition of SVM does not improve 

performance. 

 

 

Fig.  57 Grad CAM of VGG16+SVM on A set 

 

 

Fig.  58 Grad CAM of VGG16+SVM 

on B set 

VGG19
＋
SVM

Accuracy Precision Recall F1-score auc

Aset 0.708 0.631 0.631 0.631 0.695

Bset 0.750 0.774 0.727 0.750 0.750

Cset 0.723 0.721 0.730 0.726 0.723
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Fig.  59 Grad CAM of VGG16+SVM on C set 

 

 

 

 

Fig.  60 Grad CAM of VGG19+SVM on A 

set 

 

 

Fig.  61 Grad CAM of VGG19+SVM on 

B set 

 

 

Fig.  62 Grad CAM of VGG19+SVM on C 

set 
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5.2 Results  after adding Batch Normalization 

Evaluate the performance of VGG16 + BN with Batch Normalization added to VGG16 and 

VGG19 + BN with Batch Normalization added to VGG16, respectively,  from test  data results 

for A set,  B set,  and C set data sets.  2.  6 and compare the results with those of the VGG 

model in Chapter 3.  

5.2.1 Training process 

Fig.63, Fig.64, and Fig.65 show the learning process for each dataset of VGG16 + BN. 

Overall ,  the learning accuracy of VGG16 + BN after adding Batch Normalization is higher 

than that of VGG16 + BN on the Validation data.  Fig.  65 also shows that there is a significant 

increase in accuracy in the C set,  and there are further indications of this after epoch 180. 

The same behavior was observed in the training data.  However,  the training data showed 

faster learning convergence.  

The learning process for each dataset of VGG19 + BN is then shown in Fig. 66, Fig.  67, 

and Fig. 68. Fig.  66 shows that the learning process for the VGG19 + BN dataset is not 

convergent,  although the learning accuracy improves locally.  Fig.67 shows that the B set 

shows a significant improvement in learning accuracy on the validation data compared to 

Fig.18. Fig.68 shows that the C set shows a similar improvement to the B set compared to 

Fig.18, with faster learning convergence, as in the comparison of the B set .  Compared to the 

B set,  the C set did not improve the learning accuracy, but i t  did reduce the variabili ty of the 

accuracy. Overall ,  the accuracy of the Validation data was improved compared to the VGG19 

data,  although the accuracy variabili ty during the learning process was increased. The 

increase in accuracy variabili ty during the learning process can be attributed to the decrease 

in learning stabili ty due to the elimination of Dropout.  However,  after the addition of batch 

normalization, the accuracy of both VGG16 and VGG19 improved. 
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Fig.  63 Learning process with A set 

(VGG16 + BN) 

 

Fig.  64 Learning process with B set 

(VGG16 + BN) 

 

 

Fig.  65 Learning process with C set 

(VGG16 + BN) 

  

 

 

 

Fig. 66 Learning process with A set 

(VGG19 + BN) 

 

 

Fig. 67 Learning process with B set 

(VGG19 + BN) 
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Fig. 68 Learning process with C set 

(VGG19 + BN) 

 

5.2.2 Loss function 

Fig.69, Fig.70, and Fig.71 show the learning process of the loss function for each dataset 

of VGG16 + SVM. According to Fig. 70, the B set has the same variation in loss values as 

the A set,  and it  is  locally large. Fig.  70 shows that the B set,  l ike the A set,  has a variation 

of loss values that is locally large, and in particular,  the behavior of loss values after epoch 

250 is significant,  and there is an increasing trend in loss values.  After epoch 180, some loss 

values are less than 0.2.  Compared to Fig.  25, the loss values are generally small  and 

decreasing, although the variation of the loss values is large.  

Fig.72, Fig.73 and Fig.74 show the learning process of the loss function for each dataset 

of VGG19 + SVM. In the B set,  Fig.  73 shows that the loss values in the A set are less 

scattered and the loss values are smaller than those in the same B set of VGG16 + SVM. In 

the C set,  according to Fig. 74, the loss value is less scattered than in the B set,  but there 

are some areas where the loss value is more pronounced. Compared to Fig. 28, the loss values 

are lower,  and there is a decreasing trend from an increasing trend to a decreasing trend. A 

similar trend was observed in the accuracy of the Validation data for the learning process in 

5.2.2.  The VGG + BN model shows less learning stabili ty than the VGG model,  but the loss 

values tend to be smaller,  and the learning performance improves.  
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Fig.  69 Loss process with A set (VGG16 

+ BN) 

 

Fig.  70 Loss process with B set (VGG16 

+ BN) 

 

 

Fig.  71 Loss process with C set (VGG16 

+ BN) 

 

 

 

 

Fig.  72 Loss process with A set (VGG19 

+ BN) 

 

 

Fig.  73 Loss process with B set (VGG19 

+ BN) 
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Fig.  74 Loss process with C set (VGG19 

+ BN) 

 

5.2.3 Evaluation on test data  

Tab.8 shows the results (accuracy, precision, recall ,  F1-score,  auc) of each test  data in 

VGG16 + SVM. B set showed a significant change from VGG16. B set improved accuracy 

0.052, precision 0.056, recall  0.044, and F1-score 0.052 compared to VGG16. C set improved 

accuracy 0.012, recall  0.012, and F1-score 0.052 compared to VGG16. A set showed a 

significant change from VGG16. B set showed a significant change from VGG16. C set 

showed a significant change from VGG16. B set showed a significant change from VGG16. 

The C set improved accuracy 0.012, recall  0.047, F1-score 0.013, and auc 0.013 compared 

to VGG16. Overall ,  the evaluation increased after the addition of batch normalization. 

Among them, VGG16 + SVM in the C set showed the highest values in all  the evaluations,  

indicating that the VGG16 model performed the best.  The confusion matrix of VGG16 + SVM 

is shown in Fig. 75. 11 out of 240 test  images are incorrectly predicted. Fig.  60 shows that 

out of the 11 images, 7 are misclassified as false positives and 4 are misclassified as false 

negatives.  The results of the confusion matrix also show that the addition of batch 

normalization improves the discrimination performance.  

Tab.9 shows the results for each test  set  in VGG19 + SVM. However,  the C set achieved a 

significant improvement in accuracy 0.079, precision 0.090, recall  0.062, F1-score 0.073, 

and auc 0.027 after the addition of Batch Normalization. The VGG19 + SVM also showed 

the highest overall  evaluation, indicating the effectiveness of data augmentation, as the 
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evaluation increased as the number of images increased. Fig.  61 shows that out of 240 test  

images, 5 images are mispredicted, and Fig. 76 shows that out of 11 images, 2 are 

misclassified as false positives and 3 as false negatives.  The results of the confusion matrix 

also show that the addition of batch normalization improves discrimination performance. 

Overall ,  these results indicate that the addition of batch normalization improves the 

evaluation performance of the VGG model and demonstrates the effectiveness of batch 

normalization. Among them, VGG19 + SVM in the C set showed high values for all  

evaluations,  and the results of the confusion matrix also showed low misclassification. 

Therefore,  we can conclude that VGG19 + SVM is the model with the best discriminative 

performance in this study. As with the VGG results in 3.1.3,  the effectiveness of data 

augmentation is confirmed. 

Tab. 8 Test result  with VGG16 + BN 

 
Tab. 9 Test result  with VGG19 + BN 

 
 

VGG16
+
BN

Accuracy Precision Recall F1-score auc

A set
0.792 0.800 0.727 0.762 0.944

B set 0.917 0.880 0.957 0.917 0.963

C set
0.954 0.944 0.967 0.955 0.995

VGG19
+
BN

Accuracy Precision Recall F1-score auc

Aset
0.792 0.714 0.909 0.800 0.888

Bset
0.896 0.875 0.913 0.894 0.951

Cset
0.979 0.983 0.975 0.979 0.991
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Fig.  75 Confusion Matrix of VGG16 + SVM on C set 

 

 

Fig.  76 Confusion Matrix of VGG19 + SVM on C set 

5.2.4 ROC curve 
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The ROC curves for each test  data of VGG16 + SVM and VGG19 + SVM are shown. First ,  

the ROC curves for the VGG16 + SVM test data are shown in Fig. 77, Fig. 78, and Fig. 79. 

In Fig.  79, the curve is almost a leftward curve, and the range of misclassification is narrow 

and auc is 0.995, indicating that the discriminative performance is high. 

Fig.80, Fig.81, and Fig.82 show the ROC curves of the VGG19 + SVM test data,  indicating 

that the VGG19 + SVM discriminates the VGG19 + SVM data more clearly than the VGG19 

test  data in 3.1.4.  In Fig. 82, the curve tends to be more to the left ,  and auc is as high as 

0.99, indicating a significant improvement in performance. Compared to VGG16 + SVM in 

the same C set,  VGG19 + SVM has a wider range of false positives,  but fewer false positives.  

Overall ,  there was an increase in the ROC curve due to batch normalization. The C set of 

each model showed high auc and narrowed the range of false positives,  indicating clear 

discriminative performance. 

 

 

Fig.  77 ROC curve with A set (VGG16 + 

BN) 

 

 

Fig.  78 ROC curve with B set (VGG16 + 

BN) 
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Fig.  79 ROC curve with C set (VGG16 + 

BN) 

 

 

 

Fig.  80 ROC curve with A set (VGG19 + 

BN) 

 

 

Fig.  81 ROC curve with B set (VGG19 + 

BN) 

 

 

Fig.  82 ROC curve with C set (VGG19 + 

BN) 

 

0.995)
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5.2.5 Grad-CAM 

The VGG16+BN Grad-CAM results for each dataset are shown in Fig. 83, Fig. 84, and Fig. 

85. It  can be seen that the negative images tend to capture the trigeminal nerve. In the 

positive image, the trigeminal nerve was not well  captured in Fig. 83, but i t  was captured in 

Fig.  85. Compared to VGG16, VGG19 and VGG16 are able to capture more features from the 

images. 

The Grad-CAM results for VGG19+BN for each dataset are shown in Fig. 86, Fig. 87, and 

Fig.  88. In the negative image, the features were not captured in Fig. 87, but they were 

captured again in Fig. 88. In the positive image, Fig.  88 shows that the trigeminal nerve is 

captured to a greater extent than in Figs.  86 and 87. Therefore,  i t  can be said that the 

discrimination performance was improved by the increase in the number of image data.  In 

Fig.88, both the negative and positive images show that the trigeminal nerve is captured in 

a larger size than in Fig.86 and Fig.87. 

 

 

Fig.  83  Grad-CAM of VGG16 + BN on A 

set 

 

 

Fig.  84 Grad-CAM of VGG16 + BN on 

B set 



 

 54 

 

 

Fig.  85 Grad-CAM of VGG16 + BN on C 

set 

 

 

 

Fig.  86 Grad-CAM of VGG19 + BN on A 

set 

 

Fig.  87 Grad-CAM of VGG19 + BN on 

B set 

 

Fig.  88 Grad-CAM of VGG19 + BN on C 

set 
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6 Conclusion 
In this paper,  we examine and propose an AI diagnostic method for image analysis of 

trigeminal neuralgia using deep learning. In doing so, a series of experiments were conducted 

with three different classification models,  VGG16, VGG19, and ResNet50, which are mainly 

CNNs, and the performance of each model was compared. The results showed that the best 

performing model achieved accuracy: 0.942, precision: 0.958, recall:  0.926, F1-score: 0.942, 

and auc: 0.982 when trained on 80 x 80 images using VGG16 in the C set.  CAM also confirms 

the performance of the VGG model.  To further improve the performance of the VGG model,  

we improved the structure of the VGG model and proposed two methods.  The support vector 

machine did not improve performance, but the addition of batch normalization did, VGG19 

achieved accuracy of 0.979, precision: 0.983, recall:  0.975, F1-score: 0.979, and auc: 0.991 

in the C set,  and the best model in terms of fewer misclassifications and Grad-CAM The 

model also performed the best in terms of low misclassification and Grad-CAM results.  

Based on this high classification accuracy, we believe that this study will  play a role in the 

development of an AI diagnostic system for imaging diagnosis of trigeminal neuralgia,  which 

may be useful in the near future in regions where there are medical disparit ies.  
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