九州大学学術情報リポジトリ Kyushu University Institutional Repository

CFD によるレンズ風車の性能評価とベイズ最適化を 用いたレンズ形状の提案

野間, 優希 九州大学総合理工学府総合理工学専攻機械・システム理工学メジャー

https://hdl.handle.net/2324/6788188

出版情報:九州大学, 2022, 修士, 修士 バージョン: 権利関係:

CFDによるレンズ風車の性能評価と ベイズ最適化を用いたレンズ形状の提案

九州大学大学院 総合理工学府 総合理工学専攻 機械・システム理工学メジャー 海洋環境エネルギー工学研究室 2ES21021R 野間 優希

1. 緒言

近年,地球温暖化やエネルギー問題の解決に風力発電 に注目が集まっている.九州大学応用力学研究所では高 い発電性能を持つレンズ風車が提案され,実用化開発が 進められている.風車にレンズと呼ばれる鍔付きディフ ューザーを取り付けており,レンズにより鍔後方に負圧 領域を作り出して風を引き込み,流体を増速させること で発電量が大きく増加している.レンズの形状は発電性 能と風抵抗に大きく影響するため,現在までに様々なレ ンズ形状が検討されてきた.その結果,小型レンズ風車で は,風車単体よりも2倍の出力が得られるサイクロイド曲 線を基本形状とした鍔付きのレンズが採用されている. しかし,従来のレンズ形状の欠点は風抵抗が大きいこと であり,レンズ風車大型化の課題になっている.

本研究では、従来のレンズ風車の高い発電性能を維持 しつつ、低い風抵抗になる新しいレンズ形状の提案を目 的とする.レンズ形状の最適化には、少ない試行回数で効 率的に探索が行えるベイズ最適化を用いる.最適化検討 に必要な大量風車データはCFDシミュレーションで求め る。CFD手法は高効率な流体計算が可能な格子ボルツマ ン法(LBM: Lattice Boltzmann Method)を使用、CFDコー ドに対する風車計算への拡張と精度検証も実施する.

2. マルチレンズ風車のCFD

(1) 格子ボルツマン法

格子ボルツマン法は計算格子上の流体粒子集団の統計 的な運動に基づく流体解析手法である.各計算格子状に 割り当てられた速度分布関数の時間発展を,流体粒子の 移動と衝突から計算する.速度分布関数*f_{ijk}の時間発展方* 程式は

$$f_{ijk}(\mathbf{x} + \xi_{ijk}\Delta t, \ t + \Delta t) = f_{ijk}(\mathbf{x}, \ t) + \Omega_{ijk}(\mathbf{x}, \ t)$$
(1)

であり, *ijk*は速度方向(*i*, *j*, *k*) \in {-1, 0, 1}³, ζ は速度成 分である. $\Omega_{ijk}(x, t)$ は衝突項であり, 2015年に提案され た乱流計算向けのキュムラントモデル[1]を用いる. 流体 の密度や速度は速度分布関数の総和から計算する.

タービンのモデルとして各ブレードを点群で表現する Actuator line (ACL) モデル[2]を用いる. ACL の各マーカ ー粒子に加わる流体力は、ブレードの抗力係数 C_d と揚力 係数 C_l を用いて

$$\boldsymbol{F}_{2D} = \frac{1}{2} \rho u_{\text{rel}}^2 c_a (C_l \boldsymbol{e}_l + C_d \boldsymbol{e}_d) \Delta r$$
(2)

と計算する. $e_l \ge e_d$ はそれぞれ揚力と抗力の作用する方向を示す単位ベクトル, c_a は翼弦長, Δr はマーカー粒子間隔である.

(2) シミュレーションと風洞実験の比較

LBMによるレンズ風車の計算精度と妥当性を評価する ために、大屋らが行った風洞実験結果[4]との比較を行っ た.計算条件は流速6m/s、周速比3.6、鍔高さ10%、ブレー ド直径D = 1.0(m)、計算領域32D×32D×64D、最大格子 幅 $\frac{1}{8}$ D、最小格子幅 $\frac{1}{256}$ D、時間刻み1.171×10⁻⁴(s)とした.

レンズ風車後流の平均速度と平均圧力の実験との比較 をそれぞれ図-1と図-2に示す.平均速度についてはレンズ 後方の速度損失とナセル周辺の増速率が少し大きく計算 されているが概ね一致している.平均圧力については実 験値とよく一致している.

図-1 風洞実験との速度比較

図-2 風洞実験との圧力比較

3. レンズ形状の最適化(C_p最大化, C^{*}_d最小化)

レンズ形状の設計にベイズ最適化を採用した.ベイズ 最適化は目的関数の評価に多大なコストがかかる実験等 において用いられる最適化手法の一種であり,目的変数 (y)の予測値が良くなる可能性のある説明変数(x)を,ガ ウス過程回帰を用いて探索する. ガウス過程回帰で $\mathbf{y} = \mathbf{f}(\mathbf{x})$ の予測値 \mathbf{y} はガウス分布に従い,平均は μ ,分散は σ^2 で表される.予測値の平均と分散はそれぞれ

$$\mu_{\mathrm{P}}(\mathbf{x}) = \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \sigma_{\mathrm{HP}}^{2} \mathbf{I})^{-1} \mathbf{y},$$

$$\sigma_{\mathrm{P}}^{2}(\mathbf{x}) = \mathrm{k}(\mathbf{x}, \mathbf{x}) + \sigma_{\mathrm{HP}}^{2} - \mathbf{k}(\mathbf{x})^{\mathrm{T}} (\mathbf{K} + \sigma_{\mathrm{HP}}^{2} \mathbf{I})^{-1} \mathbf{k}(\mathbf{x})$$
(3)

で計算される. k(x, x*)はカーネル関数(ガウスカーネル) で2種類のベクトルの類似性を表す.

$$k(\mathbf{x}, \mathbf{x}^{*}) = \phi(\mathbf{x})\phi(\mathbf{x}^{*})^{\mathrm{T}} = \exp(\frac{-||\mathbf{x}-\mathbf{x}^{*}||^{2}}{2\eta^{2}})$$

$$\mathbf{k}(\mathbf{x}) = (k(\mathbf{x}_{1}, \mathbf{x}), k(\mathbf{x}_{2}, \mathbf{x}), \dots, k(\mathbf{x}_{N}, \mathbf{x}))^{\mathrm{T}}$$

$$K = \begin{pmatrix} k(\mathbf{x}_{1}, \mathbf{x}_{1}) & k(\mathbf{x}_{1}, \mathbf{x}_{2}) & \dots & k(\mathbf{x}_{1}, \mathbf{x}_{N}) \\ k(\mathbf{x}_{2}, \mathbf{x}_{1}) & k(\mathbf{x}_{2}, \mathbf{x}_{2}) & \dots & k(\mathbf{x}_{2}, \mathbf{x}_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_{N}, \mathbf{x}_{1}) & k(\mathbf{x}_{N}, \mathbf{x}_{2}) & \dots & k(\mathbf{x}_{N}, \mathbf{x}_{N}) \end{pmatrix}$$
(4)

ここで ϕ は説明変数を関数にしたものであり、 η 、 σ_{HP} は ハイパーパラメータである.これらのパラメータは、本研 究で使用するベイズ最適化のPythonライブラリ PHYSBO[3]で自動的に設定される.最適化の評価にはパ レート解と劣解領域を用いた.パレート解はその点より も優れた解が存在しないような目的関数の組であり、劣 解領域はパレート解以外の解の体積(面積)である.

以下の式で示されるパワー係数C_pの最大化,抗力係数 C_dの最小化を目的関数として最適化を行った.

$$C_{p} = \frac{Q\omega}{\frac{1}{2}\rho U_{0}^{3}A}, C_{d}^{*} = \frac{T}{\frac{1}{2}\rho U_{0}^{2}A_{brim}}$$
(5)

ここで、Qはローターにかかるトルクの時間平均値、 ω は ローターの回転角速度、 ρ は空気の密度、 U_0 は流入流速、 A_{brim} は風車の鍔直径の受風面積、Aは風車のローター直 径の受風面積、Tはローターとレンズに作用する風抵抗の 合計である.説明変数はサイクロイド半径(a)、入出角 ($\theta_{in}, \theta_{out}$)、鍔高さの4つとした.数値計算の条件は2(2)節 の実験比較と同様にした.最適化の初期入力には従来の レンズ形状15個、ランダムな14個のレンズの計29個とし た.1回の最適化でレンズを8個提案し、劣解領域が収束 するまで最適化を行った.

10回の最適化を行い計80個のレンズを提案した.図-3に 劣解領域体積とパレート解の個数の推移を示す.劣解領 域体積が収束していることから,良いパレート解が探索 できていることが確認できる.

図-3 劣解領域体積とパレート解の個数の推移

図-4 最適化で提案されたレンズでのC_pC^{*}の分布

図-5 パレート解のレンズ形状の例

図-4に提案されたレンズのC_p,C_dの散布図を示す. 青点 は従来のレンズ,緑点はランダムに生成したレンズ,赤点 は最適化で提案したレンズとなっている. パレート解は 全て最適化により提案したレンズ形状であり,本研究の 最適化により従来のサイクロイド型レンズよりも高性能 で低抵抗のレンズ形状を提案できた.

図-5にパレート解のレンズ形状の一例を示す. 黒線と灰 色線は従来のサイクロイド型(C_i, C_{ii}レンズ)であり,最 適化により従来レンズよりもコンパクトなレンズが多く 提案されている.

4. 結言

格子ボルツマン法によるレンズ風車の計算を実施し, 計算結果を風洞実験結果と比較することで計算手法の精 度を確認した.ベイズ最適化を用いたレンズ形状の最適 化検討を行い,従来のレンズよりも高性能で低抵抗とな る新しいレンズ形状を提案できた.

今後の展望として,提案したレンズの実験機による性 能測定が必要であると考える.

参考文献

- Martin Geier, Martin Sch"onherr, Andrea Pasquali, and Manfred Krafczyk. Computers & Mathematics with Applications, Vol. 70, No. 4, pp. 507–547, 2015.
- [2] J.N. Sørensen, W.Z. Shen. Journal of Fluids Engineering, Vol. 124 (2), pp. 393-399, 2002.
- [3] Yuichi Motoyama, Ryo Tamura, Kazuyoshi Yoshimi, Kei Terayama, Tsuyoshi Ueno, and Koji Tsuda. Computer Physics Communications, Vol. 278, p. 108405, 2022
- [4] Ohya Yuji and Watanabe Koichi. Journal of Energy Resources Technology, Vol. 141, No. 5, 2019.