九州大学学術情報リポジトリ Kyushu University Institutional Repository

浮体式洋上風車の動揺による後流影響に関する研究

三輪, 哲聖 九州大学総合理工学府総合理工学専攻機械・システム理工学メジャー

https://hdl.handle.net/2324/6788184

出版情報:九州大学, 2022, 修士, 修士 バージョン: 権利関係:

浮体式洋上風車の動揺による後流影響に関する研究

九州大学大学院総合理工学専攻 風工学研究室

三輪 哲聖

1. 緒言

世界各国では、温室効果ガスの排出を削減するべく、再 生可能エネルギーへの期待が高まっている.環境負荷の少 ない風力発電はその中の1つであり、特に現在は、洋上に 設置するウィンドファームに関心が持たれている.日本国 内では、設置可能海域の観点から、浮体式風車による洋上 ウィンドファームの導入が強く期待されている.浮体式風 車は、海底に固定する着床式と違い、風や波等の外力によ って、風車自体が6自由度で変動する.この動揺に起因し、 浮体式風車特有の問題として、自身の浮体動揺によって流 入風速の変動が大きくなり、一般的な風車後流よりも流動 メカニズムがさらに複雑になることが懸念される.

この浮体式風車が形成する後流に伴い,下流側に設置さ れた風車の風荷重や発電出力等への影響が増大すること が危惧される.今回は,風洞内で風車模型に浮体動揺を意 図的に引き起こす装置(以下,加振装置と称する)を製作し た.本加振装置を用いて浮体動揺を考慮した後流を再現し, 下流側に設置した風車が受ける影響を解明することを主 たる目的とした風洞実験を行った.その実験結果を報告す る.

2. 浮体動摇加振装置

上記で紹介した加振装置は、浮体動揺の6自由度の内、 動揺角度の大きいピッチ方向と上下流風車の離隔距離変 化に相当するサージ方向の2自由度を模擬した.一般的な 波に対する動揺パラメータは、DTU10MW風車を搭載し たセミサブ型の浮体を想定し、Bladedを用いたシミュレ ーションによって算出した.さらに、日立造船が実施した 水槽試験の結果から得られた条件を含め、動揺パラメータ を選定した.今回は、波に対する動揺の影響を考慮するた め、フルード則を使用し、選定したデータを用いて、加振 装置の動揺パラメータを決定した.表1に、加振装置の動 揺パラメータ、図1に実際の加振装置を示す.

表1	加振装置の動揺パラメー	タ

	Pitching	Surging
Amplitudo	$\pm 1[deg],$	±15[mm],
Ampiltude	$\pm 5[\deg]$	$\pm 60[mm]$
Period[s]	0.8	18

図1 本研究で試作した加振装置

3. 下流側風車のトルク,抗力計測と後流の気流計測

本風洞実験では、ロータ直径D=442[mm]である風車模型2基を使用した.先に述べたように、特に下流側に設置した風車(以下,WT2)の抗力やトルクの挙動に着目した. さらに、WT2が形成する後流域の気流測定も実施した.図1は上流側の風車(以下,WT1)を加振装置に取り付けた状態である.風車模型の配置は、図2に示すように、風車間離隔距離3D,5Dの2パターンで設定した.本実験における浮体動揺に関しては、ピッチ動揺±1[deg]、±5[deg]の2パターンを設定した.流入風速はU₀=8 [m/s]とし、鉛直方向には速度シアーのない一様流を課した.ここで、ロータ直径Dを代表長さとして定義したレイノルズ数は1.9×10⁵である.WT2が形成する後流域の気流計測には熱線流速計を用いた.熱線流速計はWT2の後方3D,5Dの位置において、ハブ中心から風洞天井方向を正としてZ=0,0.25D,0.5D,1.0D の4地点で同時測定を行った.

事前に実施した風車性能試験の結果に基づき,最適周速 比(約4.0)になるよう,WT1のブレード回転数を1469[rpm], WT2のブレード回転数を735[rpm]と設定した.WT2の抗 力計測には,風車模型を変更し,タワー下に設置した分力 計を使用した.

4. 実験結果と考察

4-1. WT2のトルク計測結果

図3,4にWT2のトルクの時系列グラフ(WT1が動揺なしの場合とピッチ動揺±5[deg]している場合の結果の比較) を示す.ここで特筆すべきは、WT1がピッチ動揺している 場合,その影響はWT2の挙動にも明確に現れているとい うことである.また,WT1およびWT2の離隔距離が大き くなるに伴い,WT2におけるピッチ動揺の影響も大きく なることが示された.

風車間離隔距離3Dでのトルク時系列データ

風車間離隔距離5Dでのトルク時系列データ

4-2. WT2のトルク周波数結果

WT1の動揺状態がWT2のトルク変動にどのように影響 を与えるのかについて検討すべく,先に示した時系列デー タに対して周波数解析を行った.今回,ピッチ動揺の影響 に着目するため,約1.25[Hz]の箇所(ピッチ動揺する周波 数,図中赤線にて示す)に着目した.図5,6にそれぞれの 離隔距離,動揺状態別でWT2のトルクの周波数解析結果 を示す.得られた結果から,WT2のトルクの変動がWT1 のピッチ動揺の影響を受けていることが明確に示された. また,WT1とWT2の離隔距離が大きくなるに伴い,ピッ チ動揺の影響が大きくなることも確認できた.

図5 離隔距離3Dでのトルクの周波数解析結果

図6 離隔距離5Dでのトルクの周波数解析結果

4-3. WT2の抗力計測結果

動揺状態別で計測結果を比較すると、WT1の浮体動揺 の有無に伴い、WT2の結果には有意な差異が存在するこ とが明らかになった.

4-4. WT2の後流計測結果

図7には、WT2の後方3D,ロータ中心地点で測定した 風速の時系列データ(WT1が動揺なしの場合とピッチ動揺 ±5[deg]している場合の結果の比較)を示す.ここで、WT1 およびWT2の風車間離隔距離3Dであり,0.1[s]の移動平均 処理を行った結果である.両者の時系列データの比較から, WT1がピッチ動揺している場合には、WT2の後流にはそ の影響が明確に生じていることが視覚的に確認できる.ま た、動揺なしの場合と比較すると、ピッチ動揺がある場合 には、風速の変動振幅が非常に大きくなることも示された.

図7 下流側風車の後方3Dのロータ中心における風速の 時系列データ,風車間離隔距離3Dの場合

5. 結言

風洞実験にて浮体式風車の動揺を模擬するための加振 装置を製作した.これを用いて風車がピッチ動揺する際 に形成される後流を再現し,それが下流側に位置する風 車(WT2)に与える影響を検討した.主な研究結果は以下 に示す通りである.

- 上流側風車のピッチ動揺状態によって、下流側風車のトルク、風荷重、後流は強い非定常性を示し、平均場ではなく、時系列での評価が必要であることが示唆された。
- 上流側風車の動揺状態は、下流側風車のトルクの挙動に影響を与え、風車間離隔距離が大きくなるにつれ、その影響は大きくなった。
- 下流側風車の抗力,後流の計測結果においても,上 流側風車のピッチ動揺の影響が出現することを視 覚的に確認できた.

研究発表実績

- 日本流体力学会年会 2022, 口頭発表1件
- 日本風力エネルギー学会第44回風力エネルギー利
 用シンポジウム、口頭発表1件