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ABSTRACT 
Urban outdoor air pollution in the developing world, which is mainly brought on by particulate 
matter (PM2.5), is a significant public health problem. Climate change mitigation and air 
pollution reduction actions provide several advantages, including increased energy efficiency, 
improved air quality, and public health. These advantages are generally known as "co-
benefits". In this thesis, first, a comprehensive analysis of the widely used Air Pollution Health 
Risk Assessment (AP-HRA) tools was carried out to understand how the health hazards of air 
emissions and their origins are measured and how air pollution-related impacts are quantified. 
Second, climate co-benefits from utilizing the battery-electric bus (BEB) fleet in the Delhi 
public transportation system as a part of the Delhi electric vehicles policy 2020 and also 
adopting nonmotorized transportation (Walking and cycling) in Delhi, India, are quantified in 
detail. To this aim, two different integrated quantitative modeling frameworks are developed. 
The first model is used to estimate the expected environmental, health, and economic co-
benefits from replacing the currently existing public bus fleet with the new BEBs in Delhi, 
using a detailed battery energy simulation model, considering the impact of the battery capacity 
loss on the annual operational time (hours of service) of the BEB. The results reveal a 
significant reduction of 315 kt/y in CO2 emission and 44 t/y of avoided PM2.5 emission from 
the utilization of the BEB fleet in the Delhi urban transportation system. The expected 
reduction in mortality and respiratory diseases related hospital admission cases from the 
avoided near roadway PM2.5 exposure ranges from 67 (low) to 1370 (high) and 137 (low) to 
2808 (high), respectively, which will be associated with the considerable annual economic 
benefits of UDS 18.7 (low) to 383.2(high) million for the local government in Delhi. 

The second model is used to evaluate the multiple benefits of switching from personal 
motorized transportation to NMT (nonmotorized transportation) in Delhi, taking into account 
the inhabitant’s willingness to use NMT (walking and cycling) mode. To determine the 
willingness to accept NMT, a cross-sectional survey is carried out in Delhi. The results are then 
used to estimate the anticipated health benefits of both increased physical activity and avoiding 
exposure to PM2.5 near roadways in specific traffic areas throughout Delhi's 11 major districts. 
The economic advantages of reduced deaths and diseases due to NMT in Delhi are determined, 
using the value of statistical life (VSL) and cost of disease methodologies.  The results reveal 
that, increased physical activity and avoiding exposure to PM2.5 near roadways are expected to 
reduce the mortality rate by 17529 cases in addition to reducing other morbidities, as indicated 
in this study, while physical activity plays a significant role in lowering mortalities and 
morbidities.  The associated cost savings from mortalities are approximately USD 4,869.8 
million annually, which will positively impact Delhi's local government's finances. 

According to this study, switching to battery electric public bus transportation from currently 
fossil fuel-run buses and developing a walking and cycling-friendly infrastructure in Delhi is 
not only supposed to improve public health but also make solid financial sense due to the 
significant health cost savings from reduced air pollution and increased physical activity. While 
the transport low-emission development strategies are cost intensive, failing to quantify and 
monetize the co-benefits, particularly co-benefits that outweigh the costs, such as public health, 
can lead to flawed policy recommendations of the Delhi local government.  
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motorized transport). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



vii 

 

ACKNOWLEDGMENT 
 
 
First and foremost, I want to express my gratitude to Associate Prof. Hooman Farzaneh for his 
helpful guidance, continuous support, and patience throughout my Ph.D. study. His vast 
knowledge and wealth of experience have inspired me throughout my academic research and 
daily life.  
 
I am incredibly thankful to Prof. Aya Hagishima and Associate Prof. Osama Eljamal for their 
valuable comments and suggestion on the presented work. 
 
I'd like to express my gratitude to everyone in the Department of Energy and Environmental 
Engineering (EEE), for their friendly assistance and support, which made my studies at Kyushu 
University (Japan) a delightful experience. I also owe my heartfelt gratitude and respect to the 
entire faculty of Kyushu University's EEE department. 
 
I am glad to express my appreciation to all EES lab members and friends, especially Sajid 
Abrar, Nabeel Ur Rehman and Nie Zifei. 
 
I'd also like to express my appreciation to my parents, especially my father (Mr. G. Hassan 
Bhat) for his love and support throughout my life.  
 
Finally, I would like to thank and appreciate my wife (Ms. Ruby Jan), and my children (Amna, 
Maryam and Muhammad) for providing me with unfailing support and continuous 
encouragement. It would have been difficult for me to finish without their wonderful 
understanding and encouragement throughout the last few years.  
 
 
 
Tavoos Hassan Bhat 
Kyushu University, Chikushi Campus, Fukuoka, Japan 
 
 
 
 
 
 
 
 
 
 
 
 



viii 

 

RESEARCH ACHIEVEMENTS 
 
This dissertation resulted in the following journal papers and conference proceedings, which 
were all part of the thesis, in which I am leading the first author. 
 
Journal papers: 

1. Hassan Bhat,T., Farzaneh, H., Toosty, N.T. (2022). Co-Benefit Assessment of Active 
Transportation in Delhi, Estimating the Willingness to Use Nonmotorized Mode and 
Near-Roadway-Avoided PM2.5 Exposure, International Journal of Environmental 
Research and Public Health: 19 (22), 14974 
 

2. Hassan Bhat,T., Farzaneh, H.(2022). Quantifying the multiple environmental, health 
and economic benefits from the electrification of the Delhi public transport bus fleet, 
estimating a district-wise near roadway avoided PM2.5 exposure, Journal of 
Environmental Management: 321 (1),116027 
 

3. Hassan Bhat, T., Jiawen, G., Farzaneh, H. (2021). Air Pollution Health Risk 
Assessment (AP-HRA), Principles and Applications International Journal of 
Environmental Research and Public Health, 18 (4), 1935. 

 
Conference Proceedings: 

1. Hassan Bhat, T., Farzaneh, H. Environmental, health, and economic co-benefits 
assessment of the electrification of public transport in Delhi., Ecodesign conference, 
December 1-3, 2021, Tokyo, Japan 
 

2. Hassan Bhat, T., Farzaneh, H. Co-Benefits of replacing personal motorized transport 
with active transportation under different scenarios in Delhi. International Exchange 
and Innovation Conference on Engineering & Sciences, Oct. 20-21, 2022, Fukuoka, 
Japan 

 
 



 

 

CHAPTER 1 
 

 

1.1. Introduction: 
     By 2050 air pollution-related premature mortality could be doubled, and air pollution is 
perceived to be the most severe environmental health-related threat the world faces [1]. Urban 
outdoor air pollution in the developing world, which is mostly brought on by particulate matter 
(PM2.5), is a major public health problem [2]. At least 140 million people in India breathe air 
10 times or more above the World Health Organization (WHO) acceptable limit, making the 
country home to 13 of the world's 20 cities with the highest yearly levels of air pollution [3][4]. 
After China and the United States, India is the third biggest emitter of greenhouse gases. 
According to forecasts by the United Nations (UN), India's population will continue to grow. 
However, GDP is expected to grow more quickly simultaneously, which means that as more 
people use more energy, consumption and emissions may rise significantly [5]. The leading 
causes of air pollution emissions and poor air quality in India are growing urbanization, rising 
industrialization, and related anthropogenic activities [6]. Currently, the main sources of air 
pollution in India come from Industrial pollution (51% ), vehicles (27%), and crop burning, 
which accounts for 17% [7]. In India, air pollution contributed to over 1.67 million annual 
deaths, accounting for 17.8% of the total deaths in the country [8]. The health burden of 
ambient air pollution ranked fifth in India among significant health risk factors [9]. 
     Epidemiological studies have indicated both short and long-term exposure to adverse health 
effects of air pollution [10]. Long-term exposure to pollutants is measured in months or years, 
and short-term exposure is measured in hours, days, or weeks [11]. The longer time and 
intensity of exposure, the more serious the health consequences, which can vary from minor 
eye irritation to even premature mortality. It is estimated that globally 8.9 million deaths 
happen due to air pollution exposure, resulting in 7.6% of the total yearly mortality and leading 
to 103.1 million healthy life years lost [12].  According to the WHO, 4.2 Million lose their 
lives every year due to ambient outdoor air pollution and 3.8 Million from indoor air pollution, 
mainly due to exposure to smoke from cookstoves and fuels [13]. Outdoor air pollution 
accounts for 2% of all cardiopulmonary diseases, 1.4 % of all deaths, and 0.4 % of disability-
adjusted life years (DALYs) worldwide [14]. In the long and short term, exposure to particulate 
material (PM) has increased mortality and reduced life expectancy [15]. Increases in mortality, 
morbidity, premature death, cardiovascular and respiratory diseases are some of the adverse 
effects due to air pollution exposure [16], Lung cancer [17], and adverse impact on the activity 
of the central nervous system resulting in cognitive impairment [18], and harmful effects on 
fetal development and pregnancy [19]. Air pollution, primarily PM, may have carcinogenic 
effects on humans[20]. Increased PM10 concentration by 10 μg/m3 has resulted in non-
accidental mortality [21]. 
    Several studies have repeatedly identified a correlation between air pollution exposure and 
mortality and morbidity [17], [22], [23] and increasing hospitalizations and emergency 
department visits [24]–[28]. The most frequent causes of early death in adults due to outdoor 
air pollution are ischemic heart disease and stroke, although there is evidence of other impacts, 
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such as diabetes and neurodegenerative diseases. In children, this might include decreased lung 
development and function, respiratory infections, and exacerbation of asthma [29]. Particulate 
materials' health impacts are dominated by cardiovascular diseases [30]. Lung cancer, 
pregnancy, early childhood health impacts, and cognitive impairment are other health outcomes 
linked to air pollution [18], [19], [31], [32]. Secondary pollutants such as ozone are also 
associated with respiratory and circulatory diseases and mortalities [33], chronic respiratory 
diseases, and asthma [34]. Other studies have associated higher ozone concentrations with 
reproductive health [35], preterm birth [36], and cognitive disorders [37]. 
     Chronic obstructive pulmonary disease (COPD) is expected to be responsible for 54.5 % of 
all premature deaths due to air pollution in India, followed by ischemic heart disease (IHD) for 
24.0 %, stroke for 18.5 %, and lung cancer (LC) for 3.0 %, respectively [38]. Many health 
impact studies in the past on PM2.5 effects have been conducted in India, indicating exposure 
to ambient fine particulate matter (PM2.5) is a major cause of health impacts [38]–[42]. Some 
of these studies have ranked India as the highest-exposed country to PM2.5 as more than half of 
the country's population lives exposed to annual mean ambient PM2.5 concentrations of up to 
150 g/m3

 [43]. According to the Global Burden of Disease (GBD) report, ambient air pollution 
causes 2 million premature deaths each year in India, placing air pollution-related health risks 
close or at the top and among all known risk factors for diseases [44].  Most Indian megacities, 
including Delhi, have air pollution levels exceeding the government's guidelines [45], [46]. A 
large portion of Delhi's population is exposed to high levels of hazardous pollutants. Delhi's 
PM2.5  emission is expected to be responsible for 54,000 premature deaths in 2020 [47]. PM2.5-

related deaths in current policies will increase on average by 39.32% in 2025 and 100% by 
2040 [25]. Studies have indicated that per capita mortality in India related to PM2.5 would likely 
rise by 21% by 2030 if PM2.5 levels stayed steady at their present levels, and over the next 15 
years, average PM2.5 levels would need to drop by 20–30% only to maintain PM2.5 attributable 
mortality rates (deaths per 100,000 people per year). Thus, substantial reductions in PM2.5-
related mortality in India will require massive improvements in air quality. 
     In addition, air pollution has been found to have an adverse economic impact worldwide, 
leading to the loss of GDP due to mortality and morbidity. With the increase in the GDP of 
developing countries, air pollution costs have also been increasing. Air pollution costs India 
$119 billion in economic losses (or 0.44 % of India's GDP),  accounting for 115% of the disease 
burden [8].  

 

1.1.1. Air pollution problem in the transport sector in Indian urban areas: 
     India's energy consumption, travel demand, and transportation-related emissions have all 
increased substantially as the country's urbanization rate has risen, also leading to a significant 
increase in personal automobile ownership. The growing travel demand and rapid expansion 
in motor vehicle use in India are contributing to high levels of urban air pollution. Emissions 
from motor vehicles have been identified as a major source of air pollution in India, affecting 
public health [48]. Most Indian cities struggle to maintain air breathable for their citizens due 
to increasing ambient air pollution levels in densely populated megacities, like Delhi. The total 
number of motorized vehicles in Delhi is 11.4 Million [52], and Delhi's transportation sector 
contributes 40-72% of the whole pollution load. The average share of the transport sector in 
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PM2.5 concentrations ranges from 17 % to 28 % in Delhi,  making it the city's largest source of 
poor air quality [51], which accounts for 39% of PM2.5 emissions [52].     Studies, which were 
primarily conducted in urban areas of India (Delhi), discovered that areas with high levels of 
air pollution had a higher prevalence of asthma, reduced lung function, and acute and chronic 
respiratory symptoms like coughing and wheezing [53]. Vehicle emissions are the most quickly 
increasing cause of air pollution in cities like Delhi. Nearly 55% of Delhi's population (7.8 
million people) lives within 500 meters of a road, putting them in more danger of traffic 
pollution [54]. Since a large number of people are exposed to transport-related exhaust gases 
and particles, transportation emissions have received a lot of attention in recent years.  

     Various national sustainable policies, as well as pollution control measures particular to the 
city of Delhi, have been enacted in the past to minimize emissions from the transportation 
sector [55]; however, Delhi's air quality has worsened. Failure of different air pollution 
management measures to reduce urban air pollution has become a severe public health concern, 
particularly in Delhi. Implementation of sustainable urban transportation regulations in New 
Delhi, as well as a transition to public transportation such as electric buses, metro rail, battery-
powered rickshaws, and  NMT (Non-motorized transport), can help to reduce ambient air 
pollution in Delhi [56]. 

1.2. Physical inactivity and motorized transportation: 
 The urban transportation system endangers human health through accidents, air pollution, 

and physical inactivity. Such health issues have demanded significant health impact analyses 
in order to facilitate the creation of walking and bicycling-friendly infrastructure to improve 
public health. Non-motorized transport (NMT) especially walking and cycling, can reduce air 
pollution and physical inactivity, save lives, and lessen the effects of climate change. Physical 
inactivity is responsible for about 5 million annual deaths, while motorized transportation-
related emissions were responsible for 74 thousand of premature deaths, and Delhi had the 
highest transportation-related death rates among India's major cities [57]. Sedentary lifestyles 
are one of the main factors increasing the risk of mortality from noncommunicable diseases 
(NCD), as 71% of all deaths worldwide, 41 million per year, are caused by NCDs. 
Cardiovascular diseases (17.9 million), Cancers (9.3 million), respiratory diseases (4.1 
million), and diabetes (1.2 million) are major NCDs-related mortalities each year [58]. Studies 
have shown that being physically inactive raises the risk of psychological disorders, colon 
cancer, breast cancer, type 2 diabetes, coronary heart disease, and musculoskeletal conditions 
by about 15% to 20% [59]. 
     Physical activity (PA) has been shown in numerous studies to significantly reduce mortality. 
Being overweight, obesity, type II diabetes, coronary heart disease, depression, and fracture 
risk can all be decreased by PA. According to Devi et al., sedentary lifestyles correspond to 
higher all-cause mortality [59].  As per WHO, about 1.6 million deaths have explicitly been 
linked to insufficient physical activity [58]. On a global scale, an increase in physical activity 
can prevent 3.9 million premature deaths, which equals 15% of all premature deaths, as 
indicated by Strain et al. [60]. It has been established that regular exercise can aid in preventing 
and treating NCDs, such as breast and colon cancer, diabetes, heart disease, and stroke. PA can 
also enhance mental health, quality of life, and well-being while preventing hypertension, 
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obesity, and overweight [61]. Regardless of sex or age, PA is considered to have a preventative 
effect against depression and a beneficial impact on treating depression in non-clinical and 
clinical populations [62]. Walking for 30 minutes or bicycling for 20 minutes on most days 
lowers mortality risk by at least 10%, also 10% reduction in the risk of cardiovascular disease 
and a 30% reduction in the risk of type 2 diabetes, as well as a 30% reduction in the mortality 
rate from cancer [65]. 
   In India, 20% of the population is not active, and 37% is just moderately active, respectively, 
failing to meet the WHO physical activity guidelines, leading to the risk of developing various 
NCDs in a large portion of the Indian population [66]. The prevalence of NCDs in India, 
including breast and colon cancer, diabetes, coronary artery disease, and hypertension, are 
mainly related to physical inactivity [59]. Regular PA can help prevent and treat many NCDs 
[66]. The commuters in Delhi are forced to use individualized modes of transportation due to 
the lack of a satisfactory alternative public transportation system [67]. As a result, the vast 
majority of adults were physically sedentary. Total physical activity in Delhi is estimated to be 
about 400.3 minutes per week for men and 265.3 minutes per week for women [59].  
    Being a low-emission and space-efficient mode of transportation, active transportation 
(mostly walking and bicycling) has grown in popularity in the transportation and environmental 
sectors in India. NMT or active transportation can provide both transportation (access to goods 
and activities) and recreation, while users may view a specific journey to serve both aims.  
 

1.3. Co-benefits of low-emission urban transport system: 
Climate change mitigation and air pollution reduction actions provide several advantages, 

including increased energy efficiency, improved air quality, and public health. These 
advantages are generally known as " climate co-benefits" [68]. Co-benefits which are known 
as supplementary benefits, refer to a number of equally significant justifications that might be 
satisfied by a single policy or practice [69]. Co-benefits are becoming a major topic in 
discussions about the environment and energy. In order to garner support for and ensure the 
optimization of policies, projects, and programs, particularly in developing countries, there is 
a greater need to identify policy interventions that have multiple benefits for climate and other 
developmental objectives. This is especially true in light of the global focus on achieving 
Sustainable Development Goals (SDGs) [70]. 
    Due to the desired win-win outcomes of such policies towards both local and global aims, 
co-benefits from policies addressing climate change mitigations have been widely promoted. 
Co-benefits have been widely advocated in tandem with mitigation measures for greenhouse 
gas (GHG) reduction. Especially in emerging nations such as India, where urbanization and 
climate change adaptations are all significant challenges and economic co-benefits of non-
motorized transportation [71]. Transition to new transportation patterns based on sustainable 
ideas like reduction in the number of motorized vehicles share mode trips, NMT, low-carbon 
vehicular technology, and fuel shift can safeguard natural resources, public health, ecosystems, 
and global climate. It also supports the economic (job creation, balanced regional growth, trade 
activities), social, and environmental pillars of sustainable development (inclusive 
development, poverty reduction, equity) [72]. 
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Detailed Co-benefits in the transportation industry while including initiatives that reduce 
climate change are shown in figure 1.1 [73]. 

 

 
 

Figure 1. 1. Co-Benefits of Sustainable Transport 

1.3.1. Co-benefits of the Battery-Electric-Bus (BEB) Fleet: 
    When it comes to future transport modes, BEBs offer a lot of potential because of their ability 
to reduce carbon emissions while also improving energy security, public health, and air quality 
in Delhi. BEBs have substantial energy security benefits when renewable energy sources are 
used to power them [74]. Life cycle assessment (LCA) studies that evaluated carbon emissions 
between electric and fossil fuel-based vehicles suggested electric vehicles such as BEBs can 
deliver significant emission savings in the long run [81].  

   Several studies have been conducted to estimate and quantify the expected environmental 
and economic co-benefits from the electrification of public transport and address their 
operational challenges. Lankao et al. highlighted that the cost of achieving the 2°C climate 
stabilization goal can be reduced by expanding the penetration of electric vehicles [79] . 
Previous studies have concluded that the electric bus operating system has the advantage over 
the fossil fuel-operated buses, not only in creating a larger profit margin for the bus operators, 
but also in terms of improved passenger satisfaction (by carrying more passengers per unit of 
the bus with lower energy consumption) [80]. Regarding the economic and environmental 
health impacts, another study has estimated that an electric bus fleet in Los Angeles would save  
USD 65 million in environmental expenses per year [81]. Liou et al. also estimated total 
emissions reduction benefits from converting all internal combustion vehicles to electric 
vehicles in Taiwan, including USD 760 million savings in GHG emissions reduction and USD 
2091 million in health co-benefits from reduced air pollution per year [82]. Zhou et al. 
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concluded that in China's transportation system, BEBs could lower WTW (well-to-wheels) of 
petroleum by more than 85 % and overall CO2 emissions by 19–35 % over the life cycle of the 
vehicle[83].   

    In light of the long-term benefits, BEBs offer a viable alternative to traditional fossil-fuel-
based modes of public transit, providing moderate benefits in terms of air pollution, public 
health, and energy security indicators in Indian urban areas [90]. 

 

1.3.2. Co-benefits of Nonmotorized transport (NMT): 
   Walking and bicycling for transportation provide significant health benefits to users by 
increasing physical activity [87]. Benefits include improved accessibility, more affordable 
travel, less congestion, cheaper infrastructure costs for parking lots and roads, energy 
conservation, decreased air and noise pollution, and decreased accidents for other drivers [88]. 
Additionally, it is an affordable form of transportation for millions of people with low incomes, 
particularly in Delhi. Given the long-term benefits, NMT is a feasible option for traditional 
fossil-fuel-based public transportation modes in Indian cities. A review of thirty health impact 
assessment studies from Europe, the United States, Australia, and New Zealand concluded that 
health benefits from increased PA outweighed the adverse effects of traffic accidents and 
exposure to air pollution by a large margin .It is estimated that, an increase in the median daily 
walking and bicycling time from 4 to 22 minutes can reduce 14% of GHG emissions in 
California, which results in decreasing the corresponding burden of cardiovascular disease and 
diabetes and could avoid 32,466 disability-adjusted life years (DALYs) [89]. Increased 
physical activity and reduced local air pollution from vehicle emissions can save 122 lives and 
net savings of about USD 200 million annually in New Zealand [90]. A study in Adelaide, 
Australia [91], showed that, increased cycling, public, and active transportation could reduce 
road traffic-related CO2 emissions annually, ranging from 191,313 to 954,503 million tons and 
160 to 542 deaths. Therefore, 2,113 to 7,674 DALYs could be avoided due to improved air 
quality, increased physical activity, and avoided traffic injury. Another study conducted in 6 
European cities has shown that increases in cycling and walking trips to 35% and 50% of total 
city trips, respectively, will cut GHG emissions in the six cities by 1,139 to 26,423 metric tons 
per year, including varying degrees of health benefits [92]. A recent study has indicated cost 
savings of 15 billion euros per year in Europe for a 10% shift to active mobility modes [93]. 
   As transportation-related emissions rise in Delhi, NMT is becoming increasingly popular 
among policymakers and environmentalists as a practical substitute for motorized 
transportation. Studies have addressed the significant impacts of improving bicycle and bus 
infrastructure on lowering CO2 emissions [94] and increasing PA in 5% of the population [95], 
in India. Using the travel demand and health impact modeling approach, a study showed that 
active transportation could reduce the health burden (90,000 DALYs) annually in India [96]. 
Another study in India assessed alternative scenarios, including increased active travel, lower-
carbon-emission motor vehicles, and a combination of the two, utilizing comparative risk 
assessment techniques [97]. The results of other studies indicated that, the most significant 
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advantages would come from combining active transportation with low-emission motor 
vehicles, which can reduce 12995 DALYs in Delhi [98].   

 

1.4. What will be elucidated in this research:  
     Following the previous studies, this study aims to quantify the expected climate co-benefits 
from the implementation of both clean transport technology and active transport scenarios in 
the urban transportation system in Delhi, India. The co-benefits include all environmental, 
health, and economic benefits from the two plausible scenarios of the future electrified urban 
bus fleet and the development of the NMT mode in this city. The reasons for considering the 
aforementioned scenarios in this study are as follows: 
 

 Electrification of public transport is regarded as one of the key climate change mitigation 
strategies for the local government of Delhi to achieve sustainable development goals 13 
(climate action), 8 (economic growth), 7(affordable and clean energy), and 3 (Good health 
and wellbeing). This underscores a key point that sits at the core of work on co-benefits. 
However, few studies have quantified the potential environmental, health, and economic 
co-benefits from the electrification of the urban bus fleet in Delhi. 

 Due to their lower carbon footprint and significant economic advantages in terms of 
preventing health effects, NMT can be a crucial part of a strategy in Delhi to lower 
individual healthcare and transportation costs while enhancing public health and the 
environment. In addition to reducing greenhouse gas emissions and air pollution, cycling 
and walking can significantly improve physical inactivity, helping decarbonize 
transportation and directly contributing to many of the Sustainable Development Goals 
(SDGs). 

 

1.5. Research Methodology: 
    An integrated co-benefits assessment modeling framework is developed in this study to 
assess the health, environmental, and economic co-benefits of the above two scenarios, which 
includes four main parts: 

1.6.1. Estimation of the avoided emissions from introducing the new scenario: 
A) Avoided emissions from replacing the CNG bus fleet with the new BEBs  

in Delhi:  
To determine the avoided emissions from replacing the CNG bus fleet with the new 
BEBs,  
the annual operational time of the BEB is estimated by developing a detailed 
simulation model of battery electricity management, taking into account time lost in 
charging as well as state-of-charge (SOC) and capacity loss of the BEB's lithium 
battery and emission factors. The annual avoided emissions are then estimated based 
on the period a BEB can deliver the transport service, considering the same transport 
demand of CNG buses.  

 
B) Avoided emissions from replacing motorized transportation with NMT:  
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Avoided emissions are calculated based on the total per capita extra distance traveled 
and the total VKT (vehicle kilometers) replaced by walking and cycling based on 
developing a detailed daily trip model, taking into account the willingness of people 
in Delhi to use walking and cycling travel modes. The willingness to use NMT in Delhi 
is estimated, using a logistic regression model based on the collected data from a cross-
sectional interview with 250 inhabitants in Delhi. 

 

1.6.2. Estimation of the near-roadway PM2.5 exposure: 
     In order to assess the impact of avoided emissions (particularly PM2.5) on improving public 
health in Delhi, a near-roadway PM2.5 dispersion model is developed and applied to the selected 
traffic zones in 11 major districts of Delhi. In the BEB scenario, a steady state gaussian 
dispersion model is developed to estimate the hourly concentration at 200 meters downwind 
distance from the center of the street. Additionally, a ground-level concentration model is 
developed to assess the short-term area concentration of PM2.5 over the area in the upwind and 
crosswind directions, taking into account the relationship between wind coordination.  In the 
case of the NMT scenario, an air dispersion modeling tool called CALRoads View (Lakes 
Environmental Software) is used to predict pollutant concentrations for receptors located 
within 150 meters on either side of the roadways. 
 

1.6.3. Health impact assessment (HIA): 
     To establish a link between the avoided concentration of PM2.5 and health benefits, a health 
risk assessment model is developed in the third part, which estimates the relationship between 
changes in PM2.5 concentrations and the occurrence of specific health outcomes in the selected 
traffic areas, using the concentration-response function (CRF) for several diseases. The CRF 
coefficient values used in this study are derived from the relative risk (RR) level, which 
measures the likelihood of an adverse health outcome among the population exposed to a 
higher level of ambient air pollution than a lower level of ambient air pollution. The values of 
the RR utilized in the study are extracted from a detailed meta-analysis of previous studies. To 
this aim, a systematic review of epidemiological studies, meta-analyses, and review articles is 
conducted to assess the relationship between changes in PM2.5 concentrations and changes in 
the incidence of each health endpoint.  

 

1.6.4. Economic impact assessment: 
     The Value of Statistical Life (VSL) approach is used in this study to calculate the mortality 
cost of PM2.5 exposure cost of illness (COI), and the cost of an emergency room visit (ERV) 
approach is used to determine the cost of treatment. 

 

1.7. Thesis organization 
    Chapter 2: In this chapter, the concept of Air Pollution Health Risk Assessment (AP-HRA) 
will be discussed, offering an outline for the proper conducting of AP-HRA for different 
scenarios, explaining in broad terms how the health hazards of air emissions and their origins 
are measured and how air pollution-related impacts are quantified. Seven widely used AP-HRA 
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tools will be deeply explored in this part, taking into account their spatial resolution, 
technological factors, pollutants addressed, geographical scale, quantified health effects, 
classification method, and operational characteristics. Finally, a comparative analysis of the 
proposed tools will be conducted using the SWOT (strengths, weaknesses, opportunities, and 
threats) method. 

 

     Chapter 3: This chapter investigates the co-benefits from the utilization of the battery-
electric bus (BEB) fleet in the Delhi public transportation system as a part of the Delhi electric 
vehicles policy 2020. To this aim, an integrated quantitative assessment framework is 
developed to estimate the expected environmental, health, and economic co-benefits from 
replacing the currently existing public bus fleet with the new BEBs in Delhi. First, the model 
estimates the avoided emissions from deploying the BEB fleet, using a detailed battery energy 
simulation model, considering the impact of the battery capacity loss on the annual operational 
time (hours of service) of the BEB. Second, considering fine particles (PM2.5) as the most 
health-harming pollutant, the model calculates the near roadway avoided PM2.5 exposure in the 
selected traffic zones of 11 major districts of Delhi, using a Gaussian dispersion model. Third, 
the near roadway avoided PM2.5 exposure is further used in a health impact assessment model, 
which considers concentration-response functions for several diseases to evaluate the public 
health benefits from introducing the BEB fleet in Delhi. 

 
     Chapter 4: This chapter aims to estimate avoided mortalities and morbidities and related 
economic impacts due to adopting the nonmotorized transportation (NMT) policy in Delhi, 
India. To this aim, an integrated quantitative assessment framework is developed to estimate 
the expected environmental, health, and economic co-benefits from replacing personal 
motorized transport with NMT in Delhi, taking into account the inhabitants' willingness to use 
NMT (walking and cycling) mode. The willingness to accept NMT is estimated by conducting 
a cross-sectional survey in Delhi, which is further used to estimate the expected health benefits 
from both increased physical activity and near roadway avoided PM2.5 exposure in selected 
traffic areas in 11 major districts in Delhi. The value of statistical life (VSL) and cost of illness 
methods are used to calculate the economic benefits of avoided mortalities and morbidities 
from NMT in Delhi.  
 
     Chapter 5: The last chapter summarizes the major findings of the research, and the study 
limitations and future work will be further elaborated in this chapter. 
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CHAPTER 2 

 Air Pollution Health Risk Assessment Models  

 

Abstract: Air pollution is a major public health problem. A significant number of 
epidemiological studies have found a correlation between air quality and a wide variety of 
adverse health impacts emphasizing a considerable role of air pollution in the disease burden 
in the general population ranging from subclinical effects to premature death. Health risk 
assessment of air quality can play a key role at individual and global health promotion and 
disease prevention levels. The Air Pollution Health Risk Assessment (AP-HRA) forecasts the 
expected health effect of policies impacting air quality under various policy, environmental 
and socio-economic circumstances, making it a key tool for guiding public policy decisions. 
This chapter presents the concept of AP-HRA and offers an outline for the proper conducting 
of AP-HRA for different scenarios, explaining in broad terms how the health hazards of air 
emissions and their origins are measured and how air pollution-related impacts are quantified. 
In this chapter, seven widely used AP-HRA tools will be deeply explored, taking into account 
their spatial resolution, technological factors, pollutants addressed, geographical scale, 
quantified health effects, method of classification, and operational characteristics. Finally, a 
comparative analysis of the proposed tools will be conducted, using the SWOT (strengths, 
weaknesses, opportunities, and threats) method. 
 

2.1. Introduction: 
     Since air pollution is one of the most significant health hazards, there is a sufficient scientific 
basis to justify developing approaches to incorporate epidemiological assessment into health-
related risk. Although the idea of AP-HRA has been around since the 1950s, the health-care 
system worldwide has not adopted them as quickly. AP-HRAs can play a critical role at both 
individual, community, and global health promotion and disease prevention levels. According 
to the (WHO), “AP-HRAs estimate the health impact to be expected from measures that affect 
air quality, in different socioeconomic, environmental and policy circumstances. It is, 
therefore, an important tool for informing public policy decisions” [1]. It synthesizes 
information on exposures to air emissions, health impacts, and community risk used for 
regulatory decision-making and public participation [2].  

   AP-HRAs help to understand health benefits, which will be an outcome due to improved air 
quality and have been used in many studies like the global burden of disease by WHO. Over 
the last decade, they have evolved from more qualitative approaches to quantitative tools. 
These tools help in assessing, planning, and supporting climate change and health measures, 
as well as assessing the full range of health and economic consequences of industry restrictions 
and air quality improvements. Policymakers can use these tools to track health indicators, 
consider health-related issues when making choices, and forecast potential economic, health, 
and environmental repercussions from certain sectors [3]. HRA tools assess the health risks of 
the major pollutants such as oxides of sulfur (SOx) and oxides of nitrogen (NOx), ground-level 
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ozone (O3), and particles (PM2.5) on the population which is exposed to these pollutants [4]. 
They relate the change in the level of air pollutant concentration to the expected mortality rates 
due to ischemic heart diseases, stroke, lung cancer, and respiratory infections, using 
Concentration Response Functions (CRFs) [5]. Three main steps involved in developing the 
HRA tools include 1) population exposure assessment, 2) Health effect estimation related to 
air pollution, and 3) calculation of the uncertainty of the analysis [1]. The HRA tools can 
facilitate policy decision-making by evaluating the associated costs and health benefits of 
climate change mitigation actions. These tools can also help raise public awareness regarding 
the adverse health impact of low air quality and finally connect governing authorities with 
scientific research throughout the regulatory process.  

   The HRA tools have been widely used in evaluating air quality policies in the United States 
[6] and the European Union [7]. In addition, many countries have developed their own 
Nationally Appreciate Mitigation Action (NAMA) based on using the HRA tools, considering 
the different air pollution reduction scenarios. These studies range from local, national, 
regional, and global scales, which are reported in Table 2-1. 

  

Table 2- 1. Recent studies in the air pollution health risk assessment. 

Purpose of the Study Region Health Impacts Ref 

Evaluating the mortality impact of fine 
particles reduction policies and Air quality 
modeling in Spain. 

Spain All-cause deaths [8] 

Assessing the geographical spread and 
economic benefit of the ozone health 
consequences associated with climate change 
in the United States in 2030 

USA 

Mortality and 
morbidity 
impacts related 
to ozone 

[9] 

Reductions of PM2.5 Air Concentrations and 
Premature Mortality in Japan 

Japan Mortality  [10] 

Assessing the health-related benefits of 
attaining the ozone level standard 

USA 

Mortalities, 
emergency 
department 
admissions, 
hospitalization, 
restricted activity 
day, and school 
absences 

[11] 
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Purpose of the Study Region Health Impacts Ref 

Estimation of the national public health 
burden associated with exposure to 
atmospheric PM2.5 and ozone 

USA 

Reduced life 
years and life 
expectancy; and 
mortalities 

[12] 

Evaluation of air quality in six Indian cities to 
create a knowledge base for multi-pollutant 
pollution, dispersion modeling of ambient 
particulate concentrations 

India 
Premature 
mortality 

[13] 

Evaluation of the health-related economic 
externalities of air emissions from particular 
emission sources or industries that can be used 
to help emission reduction policymaking. 

Europe 
Mortality and 
morbidity 

[14] 

Using multi-sectoral emissions inventory to 
estimate health impacts in terms of premature 
mortality and morbidity in Delhi 

Delhi, India 
Premature 
mortality and 
morbidity effects 

[15] 

Health benefits from the adaptation of cleaner 
brick processing technologies 

Dhaka, Bangladesh, 
Mortality and 
morbidity, health 
cost savings 

[16] 

Study the linkages between indoor and 
outdoor PM in Ulaanbaatar, Mongolia 

Ulaanbaatar, 
Mongolia 

Premature deaths [17] 

Estimation of the citywide morbidity and 
mortality attributable to ambient fine 
particulate matter (PM2.5) and ozone in New 
York City 

New York City, 
USA 

Health impacts 
and disparities 

[2] 

Assessment of the intercontinental impact of 
ozone emissions on human mortality 

Northern 
Hemisphere, North 
America, East Asia, 

South Asia, and 
Europe 

Premature 
mortality 

[18] 

Estimation of the mortality impacts of 20% of 
anthropogenic primary PM2.5 and PM2.5 
precursor emission decreases in each of the 
four major industrial regions (North America, 
Europe, East Asia, and South Asia) 

Europe, East Asia, 
and South Asia, 
North America, 

Premature 
mortality 

[19] 

Evaluation of the external health costs of air 
emissions in Europe and the contribution of 
international shipping activities 

Europe 
Health-related 
cost of Air 
pollution 

[14] 
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Purpose of the Study Region Health Impacts Ref 

Calculation of premature deaths from 
cardiopulmonary and lung cancer due to PM2.5 
levels and the effect of reductions in black 
carbon emissions on surface air quality and 
human mortality 

Global Mortality [20] 

Estimation of premature air pollution-related 
mortalities prevented, ozone-related yield 
reductions of large food crops avoided, and 
health damage avoided 

Global 

Mortalities, 
Morbidities and 
avoided Ozone-
related reduction 
of yield of major 
food crops. 

[21] 

Estimating the global and national health 
burden of atmospheric PM2.5 pollution due to 
surface transport emissions. 

Global Mortality [22] 

 

2.2. Methodological approaches used in the AP-HRAs: 
    The health risk assessment for air pollution contains the mathematical estimation and 
modeling of several processes, including population estimates, population exposure to 
pollutants, and adverse health impacts assessment through specific concentration-response 
functions [23]. In general, precise data are required, such as: population data, air quality data, 
baseline mortality or disease rates, and risk estimation (change of the health effect related to 
the concentration change of air pollutants, which is referred to as coefficient, β) from 
epidemiological studies that quantify the association between health effects and exposure to air 
pollution. The flow diagram (see Figure 2.1) represents the methods, typical models, and data 
inputs of AP-HRA. 

 

Figure 2. 1. The flow diagram of AP-HRA methods, typical models, and data inputs. 
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2.2.1. Population Estimates: 

     The first stage of AP-HRA is to estimate the population exposed to air pollution once the 
temporal and spatial resolution in the study has been determined. Past and current data is 
accessible from some national census databases or the latest World Population Prospects 
published by the UN Department of Economic and Social Affairs [24]. In most cases, the health 
risk assessment is conducted for a particular socio-economic and environmental scope with 
some potential mitigation policies to be implemented. Therefore, the population data for the 
incoming few years achieved from population forecast models is usually required for the 
scenario setting. 

2.2.2. Population Exposure to Air Pollution: 
     The adverse health impacts are mainly derived from population exposure to contaminated 
air. Therefore, one core component of AP-HRA is the assessment of exposure to specific air 
pollutants for the target population, which is a comprehensive integral part of pollution 
concentration, the time-activity pattern of the population of interest (e.g., exposure period and 
level), the proportion of susceptible population and characteristics of pollutants (e.g., solubility 
and pattern of physiological contact). Most studies take the ambient concentration of air 
pollutants as a surrogate indicator for pollution exposure, as the measurement is conducted 
much more simply and conveniently [25]. Environmental agencies worldwide have set air 
quality criteria to identify the concentration of those health-related pollutants [26]. Typically, 
the WHO air quality guidelines (2005) determined specified indicators of four primary air 
pollutants, including PM10/PM2.5 (particles with a diameter less than 10 μm or 2.5 μm), NO2, 
SO2, and O3, and proposed the interim targets and air quality guidelines (AQG) [27]. The 
interim targets are intended for countries as incremental steps to move towards AQG. The 
guidelines are selected based on concentration-response functions to suggest the concentration 
level that, if achieved, would contribute to significant benefits for the protection of public 
health. 

Table 2- 2. Air quality indicators of typical air pollutants. 

 

Pollutant Indicator 
Interim 

target-1 

Interim 

target-2 

Interim 

target-3 

Air Quality 

Guideline (AQG) 

PM2.5 
annual mean 10 μg/m3 35 25 15 10 

24-hour mean 25 μg/m3 75 50 37.5 25 

PM10 
annual mean 20 μg/m3 70 50 30 20 

24-hour mean 50 μg/m3 150 100 75 50 

O3 8-hour mean 100 μg/m3 160 - - 100 

NO2 
annual mean 40 μg/m3 - - - - 

1-hour mean 200 μg/m3 - - - - 

SO2 
24-hour mean 20 μg/m3 125 50 - 20 

10-minute mean 500 μg/m3 - - - 500 

 



23 

 

   Generally, modeling and monitoring are two major methods to estimate population exposure. 
Monitoring data can be directly used by collecting past and current air quality data near the 
monitoring sites. At the same time, modeling measurements can be combined with advanced 
monitoring technologies to facilitate: i) simulation of air quality in different geographical areas, 
using specific socioeconomic or environmental conditions; and ii) prediction of changes in 
exposure, taking into account the future policy implementations [28]–[30].  

Recent analytical methodologies that have been commonly adopted in estimating the 
population exposure to air pollution can be classified as follows: 

 The Global Model of Ambient Particulates model (GMAPS) which was developed by the 
World Bank to estimate the ambient concentration of PM10 on the city-level and used in 
the previous Global Burden of Disease (GBD) studies [31]; 

 The global-regional chemistry transport model TM5, as well as the source receptor (SR) 
relationship, developed from TM5 which have been widely applied to evaluate the response 
of ambient air quality indicators to changes in emissions of various pollutants from the 
certain source in different control strategy scenarios [72–74]; 

 Global atmospheric models such as GEOS-Chem [35] and MOZART [36], which use a 
similar approach, are also available to provide the ambient concentration estimates of ozone 
and/or PM2.5; 

 Land-use regression models which can estimate outdoor pollutant concentrations through 
specific geographic information of the source, landscape characteristics, and roadway 
[77,78]; 

Hierarchical Bayesian models are applicable for multiple-pollutants estimation by using 
tiered Bayesian statistical procedures [79,80]. 

2.2.3. Health Impact: 
     The most important part of an AP-HRA is to quantify the health risk related to air pollution 
exposure. Various adverse health effects (also called health endpoints) attributed to short-term 
and long-term exposures can be categorized as follows: 

1. For short-term exposure: 

Mortality 

 Hospital admissions or emergency department visits caused by respiratory diseases 
 Hospital admissions or emergency department visits caused by cardiovascular 

diseases 
 Days of restricted activity 
 Absence from work or school 
 Other acute symptoms 

2. For long-term exposure: 

 Mortality caused by cardiovascular and respiratory disease 
 Lung cancer 
 Chronic incidence caused by respiratory or cardiovascular disease 
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 Decline in physiologic functions 
 Intrauterine growth restriction 

     Different subgroups of the population suffer the various risks of health effects caused by air 
pollution exposure. These vulnerable populations include ailing individuals, children and the 
aged, and sex differences would, in some cases, influence the burden of health effects. 
Statistical data such as the mortality or morbidity rate among the population exposed to a 
particular air pollutant concentration is necessary. Numerous methodologies have been 
developed on short and long-term exposure (see Table 2-3), while most of them were conducted 
separately within different areas, resulting in generalizability limitation [27]. 

 
Table 2- 3. Epidemiological studies of short and long-term exposure and their features. 

Category Methodology Advantage Disadvantages 

Short-term 
exposure 

Time-series studies: using 
the statistical model to 

estimate the influence of 
temporal (usually daily) 
changes in air pollutant 
concentrations on daily 
health incidence in the 
population exposed. 

 Avoid disturbance 
caused by long-term 
variations such as 
individual occupations 
and socioeconomic 
conditions. 

 lower costs associated 
with data collection. 

 Uncertainty 
caused by the 
quality of health 
data. 

 Unable to quantify 
the chronic effects 
of air pollutants. 

Case-crossover studies: 
studying the risk of an acute 
health case after momentary 

exposure. 

 Get rid of confounders 
from time-independent 
factors. 

 Improve causal 
inferences on the 
individual level. 

 Unsuitable to 
estimate the risk 
from exposures 
with a time trend. 

Panel studies: assessing the 
respiratory diseases 

associated with air pollution 
among susceptible 

subgroups. 

 Availability of detailed 
health- and exposure-
related information of 
individuals. 

 Uncertainty 
caused by the 
relatively small 
sample size. 

Long-term 
exposure 

Cohort studies: examining 
the risk of health endpoints 

attributed to long-term 
pollution exposure. 

 Consider the total 
impact of all types of 
health cases. 

 High cost and 
complication of 
implementation. 

 High demand for 
spatial, temporal 
and average 
concentration 
data. 
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2.2.3.1. Concentration-Response Functions (CRFs): 
      The health risk is represented by concentration-response functions (CRFs), which link the 
health endpoints attributed to exposure to air pollutant concentration changes. The relationship 
estimation between concentration change of air pollutants, ∆C, and change in health effects 
(usually an incidence or mortality rate), ∆y usually contains three steps: i) determining a 
functional form of the CRF; ii) estimating the coefficient values of the CRF; and iii) deriving 
the relationship between ∆C and ∆y from the CRF. There are two forms of the CRF, linear and 
nonlinear. Linear and log-linear models are often used for simplification based on biological 
evidence [31][41] but nonlinear models (e.g., logistic model) may also be applied for 
comprehensive computation, depending on the baseline data, as well as specific air pollutants 
and endpoints [42]. For best regression fitness, the Akaike Information Criterion (AIC) 
approach may be used, and the model with a lower value of AIC is preferred [43]. Table 2-4 
shows the different forms of CRFs which are widely used in health impact risk assessment 
studies. 

2.2.3.2. Relative Risk (RR): 
     The coefficient values of the CRF are typically derived based on Equation (2-1) from the 
level of Relative risk (RR), which describes the risk of an adverse health effect among the 
population exposed to a higher ambient air pollution level relative to a lower ambient level. 

 RR=exp(β×∆C) (2-1) 

Table 2- 4. CFRs in health impact risk assessment* 

Functional Form Formula of CRFs 
Relationship between ∆C 

and ∆y 

Linear function y=α+β×C ∆y=y0-yc=β×(C0-C)=β×∆C 

Log-linear 
function 

ln(y) =α+β×C ∆y=y0-yc=yo(1-
1

exp(β×∆C)
) 

Logistic function y=prob(occurrence |C×β)=(
exp(C∙β)

1-exp(C∙β)
)  

*In the above table, α represents a combination of all the independent variables, and β 
is the excess incidence rate of health outcome per 1 μg/m3 increase of pollutants. 
 

     Previous epidemiological studies [44][45][46] postulated that RR associated with ambient 
air pollution is in a linear relationship with the concentration level, with several alternative 
linear function models established as below, where c represents the concentration of air 
pollutants and ct represents the minimum level below which there is no obvious adverse health 
impact (also called threshold value): 
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For c < ct, RRLin50(c)=1, 

For ct < c < 50, RRLin50(c)=1+γ(c-ct), 

For c > 50, RRLin50(c)=1+γ(50-ct). 

             (2-2) 

     However, the studies focused on estimating the RR functions are mainly carried out in 
Europe and North America, where the pollutant concentration is low. Therefore, the models 
mentioned above may not be suitable for other regions, especially for developing countries 
where the concentration of the pollutant is relatively higher. Instead, the gradual diminution of 
the marginal increase in RR is extracted from the logarithm model [47] or power model [48][47] 
of RR and concentration. The WHO has subsequently recommended the logarithmic model for 
GBD to measure the health impact attributable to air pollution at the national level [49]. 

 Logarithm model: 

For c < ct, RRLog(c)=1, 

For c ≥ ct, RRLog(c)=[(c+1)/(ct+1)]ρ. 
   (2-3) 

 Power model: 

For c < ct, RRPower(c)=1, 

For c ≥ ct, RRPower(c)=1+θ(c-ct)
η. 

       (2-4) 

     Based on the above mathematical forms used for burden assessment, recent studies have 
also conducted the meta-analysis of observed data and proposed an integrated exposure-
response function (IERs) that flattens out at high exposures: 

For c < ct, RRIER(c)=1, 

For c ≥ ct, RRIER(c)=1+α[1-exp(-γ(c-ct)
δ)]. 

     (2-5) 

where α, γ, and δ jointly characterize the CRF which is derived from a fitting process. 
 

2.2.3.3. Result Integration: 

 Mortality and morbidity: 
     Results of AP-HRAs are often summarized into several metrics, including numbers of 
deaths or diseases, years of life lost (YLL), disability-adjusted life years (DALY), or changes 
in life expectancy [23]. The excess deaths or diseases (ED) derived from an increase in 
concentration can be calculated as follow: 

ED=∆y× Population                                         (2-6) 

     It can also be expressed in terms of the population attributable fraction [50]–[52]: 

ED=PAF×I×P (2-7) 
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    Where PAF (population attributable fraction) is the fraction of disease burden attributable to 
pollution; I is the mortality incidence per year, and P is the all-age population. PAF can be then 
computed as below: 

PAF=
p(RR-1)

p(RR-1)+1
 (2-8)

    Where RR represents the relative risk of premature mortality obtained from the IER model, 
and p represents the fraction of the population exposed. When all people in the region of 
interest are exposed to the air pollutant, that is p=1. 
    Disability -Adjusted Life Year (DALY) : 
   One DALY can be considered as one lost year of “healthy” life, while the total number of 
DALYs in the entire population can be regarded as the gap between an ideal health status where 
all people have no disease and disability and the current health status [53]. DALYs can be 
considered as the sum of YLL and YLD: 

𝐃𝐀𝐋𝐘 = 𝐘𝐋𝐋 + 𝐘𝐋𝐃 (2-9)

    YLL is a measure of the years of life lost due to premature death. The basic formula for a 
given cause, age, and sex is shown below: 

YLL=N×L   (2-10)

    Where N represents the number of deaths, and L represents standard life expectancy at the 
age of death in years. YLD measures years lost due to disability. The basic formula considering 
the certain disease, age, and gender is shown below: 

YLD=I×DW×L (2-11)

     Where I represent the number of cases, L represents the average years of disease, and DW 
represents the disability weight, reflecting the severity ranging from 0 (healthy) to 1 (dead). 
 

 Economic Assessment:  
     The economic costs of the health effects can be monetized using two approaches: the value 
of a statistical life (VSL) method[54] and the cost of illness (COI) method [55]. VSL can be 
calculated through the willingness to pay (WTP) approach, which measures people’s 
willingness to pay for reducing a marginal death risk, following the equation shown as below 
[56]: 

VSL=
dWTP

dP
 (2-12)

    WTP represents the willingness to pay to avoid premature death and morbidity, and P 
represents the probability of death. The values of WTP are directly obtained through a survey-
based conjoint analysis. The cost of Illness (COI) method indicates the economic cost of some 
morbidity endpoints based on the mean estimation of unit values. Generally, the total COI 
comprises hospital admission and medical costs due to missed workdays or restricted activity 
days. For this purpose, relevant data is obtained through the survey and interviews with medical 
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practitioners. Since detailed information on treatment costs is not accessible in all regions, the 
following transfer approach can be used to calculate the illness treatment cost in region i, in 
comparison with the European Union (EU) [57]: 

  Cmorb(i)=Cmorb(EU)×(
PCIi

PCIEU
)
e

                                       (2-13) 

    Where Cmorb(i) and Cmorb(EU) represent the illness treatment cost in the region i and EU 

country, PCIi and PCIEU are the per capita income in the region and EU, respectively. The 
value of Cmorb(EU) can be obtained from the European valuation table [58], and e is the elasticity 

coefficient of WTP [59]. 
 

2.3. AP-HRA Tools:  
     There are currently various quantitative HRA tools developed by governmental and non-
governmental entities to provide timely information regarding air pollutant exposure and its 
health impacts. Among them, COBRA (Co-Benefits Risk Assessment), Simair, Air Q+, 
BenMAP-CE (Environmental Benefits Mapping and Analysis Program—Community 
Edition), Ecosense, Household Air Pollution Intervention Tool (HAPIT), GAINS (Greenhouse 
gas—Air pollution Interactions and Synergies model) were developed to quantify the number 
of air pollution-related premature mortalities, disability-adjusted life years, and cases of disease 
[60]. These tools use common data for population, sources for baseline mortality rates, and 
concentration-response associations, but they vary in degree of technical complexity, exposure 
information source, and format [61]. They use a different methodological approach, spatial 
resolution, and geographical scope. However, most of these tools are preset to estimate the 
effects of NOx, Sulfur Oxides (SOx), PM2.5 and PM10. The input data can also vary depending 
upon the source of air pollution and its impact on a specific population or sub-population, like 
children or air pollution by a particular sector [53][62]. Some of the tools allow user-specified 
inputs. However, most of these tools use default values for demographic, concentration-
response functions, and health data to estimate the population’s exposure level. Table 2-5 
represents some of the widely used quantitative HRA tools. 

    BenMap-CE estimates health impacts and monetary benefits from reductions in PM2.5 and 
ozone. The possible economic consequences of air pollution-related health impacts can be 
quantified by BenMap-CE, enabling users to measure the potential health and economic 
benefits of improving air quality in any country or region of the world, using the air quality, 
population, baseline health and concentration-response criteria of the GBD. [63]. The health 
impacts include heart attacks, Premature mortality, and other air pollution-related health effects 
due to air quality changes. After determining ambient air quality changes using user-specific 
air quality data, BenMAP-CE relates health effects or health endpoints with changes in the air 
pollution concentration, using CFRs. 

   HAPIT is a web-based tool that was developed to estimate the expected health benefits from 
low indoor PM2.5 emission development strategies in middle and low-income countries. It can 
be used to estimate averted premature deaths and DALYs and health-associated costs of the 



29 

 

different intervention scenarios by using the best available background disease and data 
available for the exposure-response [64]. HAPIT can be used to evaluate the implication of the 
intervention scenarios for improving indoor air quality in countries where a significant portion 
of the population uses solid fuel, allowing policymakers to compare the relative merits of 
interventions within and between different countries. HAPIT depends on up-to-date national 
health background information and the tools and databases built for the Comparative Risk 
Assessment (CRA) which were used for the 2010 Global Burden of Disease (GBD 2010). 
Exposure-response details are used in 57 countries where solid fuels account for 50% of 
primary cooking fuel [65]. 

     COBRA evaluates the human health and economic impacts of the state-level low emissions 
development strategies in the US by translating the reduced PM and other concentrations of air 
pollutants into preventable causes of death. It helps identify the best option with the highest 
health benefits or reduce health risks in a cost-efficient manner [66]. COBRA uses county-
level predicted PM2.5 concentrations as a proxy of PM2.5 exposures for individuals living in 
those counties and estimates the health effects by comparing them with exposure-response 
relationships based on the available data from the EPA. A Gaussian dispersion model is being 
used in the COBRA tool that accounts for dry and wet deposition as well as first-order chemical 
atmospheric transition. The S-R matrix includes transfer coefficients in the U.S. between 
emissions and county-level PM2.5 concentrations and integrates meteorological inputs 
determined in the 1990 EPA guideline impact analysis based on weather observation[67]. 

     The Simple Interactive Model for better Air quality (SIM-air) is used to assess the 
implications of integrated air quality management policies in developing countries’ urban 
areas. It combines the Geographical Information System (GIS) with the local emission data 
inventories in cities in evaluating various air quality scenarios. SIM-air uses the source-receptor 
transfer matrix (SRTM) to convert emissions of the concentrations, which is an output from a 
chemical transport model. It provides the necessary information for the policymakers to 
prioritize their air quality management policies, optimizing options for both public health and 
costs impacts in order to better adapt to local ambient standards in urban areas [68]. 

     AirQ+ software tool for health risk assessment of air pollution is one of the most widely 
used tools for calculating the possible health impacts of improving air quality. It assesses the 
short-term and long-term exposure to both outdoor and indoor emissions of PM10, PM2.5, O3, 
NO2, and black carbon. AirQ+ helps measure the health impacts of atmospheric and household 
air pollution and aims to measure cancer risks and contain unit risk values for nickel, benzene, 
vinyl chloride, and chromium (VI) arsenic, and benzopyrene calculates the number of 
preventable premature deaths and diseases due to improvement in the air quality using the 
Health Impact Function (HIF) equations. The HIF estimates the count of premature deaths and 
diseases by using baseline rates of mortality or morbidity, population data, air pollutant 
concentrations, and concentration-response parameters[63].  

     EcoSense is an atmospheric dispersion and air pollution exposure assessment model that 
helps estimate the health and environmental impacts and related economic impacts in Europe. 
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It calculates long-term effects on human health, ecosystem, and crops by airborne pollutants, 
taking into account the chemical transformation and dispersion of pollutants. The CRFs are 
used to quantify the DALYs and morbidity rates caused by long-term exposure to NO2, PM, 
and Ozone[27]. EcoSense integrates local and regional dispersion models with complex 
exposure-response network functions to quantify the impacts of elevated concentrations of air 
pollutants and also the economic value for the different impact categories like human health, 
building materials, forests and ecosystems, and crops. 

      GAINS model identifies the cost-effective portfolios of pollution reduction policies that 
achieve air quality improvements at a minimum cost. GAINS helps address the risks of fine 
particulate matter and ground-level ozone to human health and the danger of acidification 
disruption to habitats, excess nitrogen accumulation (eutrophication), and exposure to high 
ozone levels. The environmental and health impacts of primary pollutants (PM2.5-PM10) 
particles, sulfur dioxide (SO2), non-methane volatile organic compounds (VOC), ammonia 
(NH3), and nitrogen oxides (NOx) are quantified in a multi-pollutant context. For the change 
in the emissions, source-receptor relationships have been established, and compressive 
transport models together with atmospheric chemistry, are used to simulate complex physical 
and chemical reactions [91]. The GAINS uses the Eulerian Unified EMEP model to assess the 
fate of atmospheric pollutants [92]. The health impact estimation of GAINS is based on 
epidemiological studies quantifying mortalities due to long-term exposure to PM2.5 or 
SOMO35. 

 
Table 2- 5. Widely used quantitative HRA tools. 

Tool Developer Study Area Reference 

Environmental 
Benefits Mapping and 
Analysis Program—
Community Edition 

(BenMap-CE) 

The United States Environmental 
Protection Agency (EPA) 

USA, Turkey, 
Spain 

[69][70][8] 

Greenhouse gas—Air 
pollution Interactions 

and Synergies 
(GAINS) model 

International Institute for Applied 
Systems Analysis (IIASA) 

Europe, China [7][71][72] 

CO-Benefits Risk 
Assessment (COBRA) 

Health Impacts 
Screening and 
Mapping Tool 

The United States Environmental 
Protection Agency (EPA) 

USA 

[66] 

[73][74][75][7
6] 
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Tool Developer Study Area Reference 

Air Quality (Air Q+)  
World Health Organization 

(WHO)  
Iran, Italy 

[68][77][45] 

 

Air Q+ and BenMAP-
CE EPA and WHO USA [78] 

The Simple Interactive 
Model for better Air 

quality (SIM-air) 
Urban Emissions India, Europe 

[79] 

[80][13] 

Household Air 
Pollution Intervention 

Tool (HAPIT) 

Household Energy, Climate, and 
Health Research Group at the 

University of California, Berkeley 

India, 
Mozambique 

[81][82][83] 

Ecosense 
Institute of Energy Economics and 

Rational Energy Use (IER), 
University of Stuttgart 

Greece 

France, Brazil 
[84][85][86] 

TM5- FASST JRC Ispra (Italy) 
China, 

Multinational 
study 

[87][88] 

Aphekom 
French Institute of Public Health 

Surveillance 

25 European 
cities, 10 

European cities 
[89][90] 

 

        Table 2-6 represents the comparison between the above-mentioned AP-HRA tools, 
concerning their methodologies, scopes, input parameters, and predicted health impacts.  
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Table 2- 6. Comparison between the AP-HRA tools. 

Characteristic AIRQ2.2 
BenMAP-

CE 
COBRA HAPIT SIM-Air GAINS EcoSense 

Health Impacts 

Mortality (cases) √ √ √ √ √ √ √ 

Disability-
adjusted life years 

(DALY) 
√ √ √ √  √ √ 

Morbidity (cases) √ √ √ √ √  √ 

Economic 
Impacts 

√ √ √  √  √ 

Pollutants: 

PM2.5 √ √ √ √ √ √ √ 

PM10 √ √   √ √ √ 

Ozone √ √    √ √ 

NO2 √ √ √   √ √ 

SO2 √ √ √   √ √ 

CO √ √    √ √ 

Other 
Black 
smoke 

 VOC   
CO2, VOC, 
CH4, N2O 

Hydrocarbons
, dioxins and 
heavy metals 

Spatial Resolution 

Regional √ √   √ √ √ 

National √ √ √   √  

City-level √ √   √ √  

Household/Indoor √   √  √ √ 

 

A comparative SWOT (strengths, weaknesses, opportunities, and threats) analysis of the afore 
mentioned tools has been carried out in this research, which is summarized in Table 2-7. 
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2.4.  Discussions and conclusion: 
     Air pollution health risk assessment tools have different advantages regarding simplicity, 
consistency, comparability, and quality assurance. These tools also help policymakers by 
providing necessary information to make action plans to reduce air pollutants by reducing the 
combustion of fossil fuels. Substantial progress has been made in evaluating the health and 
other environmental effects of the HIA tools. These tools have advanced over the past decade 
because of growing epidemiological data that offers quantitative parameters of air emissions 
and health impact on the concentration-response relationship, which has helped decision-
makers educate the public about the potential estimated benefits of improved air quality [62]. 
Simultaneously, low-quality baseline morbidity rates, especially in low-income countries, 
make it challenging to measure air-pollution-related morbidity effects worldwide [61] 
accurately. Each of these tools has its limitations and strengths. Nevertheless, knowing them is 
crucial while assessing air pollution's health and economic impact.  

     To estimate air pollution, most tools rely on air quality modeling, but some may also collect 
these data from air quality monitor observations or derive information from both monitors and 
models. Using the models for health impact assessment offers an advantage and covers a 
broader spatial area. On the other hand, monitoring data represents real atmospheric 
concentrations over a discrete amount of time in a given area [61].  
      There are several complexities in the use of air quality models for health impact assessment. 
In epidemiological studies from which concentration-response comparisons are extracted, 
modeled concentrations do not correlate to the method or spatial resolution of the 
characterization of exposure and may contribute to the inaccuracy of the analysis. In addition, 
the inherent uncertainty of simulated concentrations may not have enough resolution to 
represent the actual exposure patterns. So, it sometimes becomes a challenge to deliver 
reasonable outcomes for policymakers and other people who don’t have specialized skills in 
the field while keeping harmony between the tools utilized and the multifaceted nature of the 
data. 
     It’s essential to use the most precise and highly accurate data in the health impact assessment 
tools [93]. In addition to that, some unknown uncertainties and their interaction with each other 
are also usually not known. For example, the air we breathe could blend different pollutants 
with various sources and pass through different chemical reactions in the atmosphere. 
Furthermore, considering air pollution as the only factor responsible for many health outcomes 
and mortalities may not be the only solution. Multiple factors, such as social and cultural 
behaviors, should be considered in AP-HRA tools. While developing a tool for HIA studies, 
the main features like spatial resolution, emissions, health impacts, population exposure 
characterization methods, accessibility, sophistication, and application in policy contexts 
should be considered. 
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Table 2- 7. SWOT (strengths, weaknesses, opportunities, and threats) analysis of the selected AP-AHP tools. 

Tool Strength Weakness Opportunities Threats 

AirQ+ 

- Health impacts 
Quantification of 
indoor/outdoor air 
pollution. 

- Quantification of the 
cancer risks and includes 
unit risk values for 
chromium (VI), arsenic, 
nickel, benzene, vinyl 
chloride, and benzopyrene 
is an additional feature in 
the tool. 

- Multilanguage versions of 
the tool are available. 

Evidence-based health 
outcome relationships are not 
strong, especially with the air 
pollutants like NO2, BC (Black 
Carbon), and long-term ozone 
exposure. 

There is an opportunity to refine 
further the spatial resolution in 
the analysis carried out with 
AirQ+ and integrate new user-
friendly features like additional 
explanations for input data and 
components to calculate 
economic impacts and DALYs. 

Often unrefined spatial 
resolution in the analysis is 
carried out with AirQ+, which 
may cover a whole country or 
city’s spatial domain [63]. 
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Tool Strength Weakness Opportunities Threats 

COBRA 

- It helps researchers create 
a new scenario that 
suggests improvements in 
pollution from baseline 
emissions smoothly and 
efficiently. 

- Detailed and 
comprehensive estimation 
of the health and economic 
gains that are related to 
decreasing the atmospheric 
PM2.5 concentrations over 
a given year of study. 

- Entirely concentrated on 
state-wise health impacts 
assessment in the US, 
making it difficult to be 
used in other regions. 

- The SR Matrix doesn’t 
reflect the interaction 
which takes place in the 
atmosphere between the 
air pollutants. 

Currently, COBRA has baseline 
data, which is only appropriate 
for the USA. There is an 
opportunity to add baseline data 
to make it suitable for regional 
or global HIA studies. The tool 
needs to continue to evolve and 
integrate the functionality and 
improve the sophistication of 
analysis. 

- Some health endpoints like, 
upper respiratory 
symptoms, lower 
respiratory symptoms, and 
acute bronchitis are using a 
comparatively small 
sampling group and 
estimated from a single 
local survey, which 
increases the estimation’s 
uncertainty. -For consistent 
distribution of air 
pollutants, an initial 
probabilistic method 
adjusted by the developers 
has been only used in the 
COBRA, which reduces the 
accuracy of the results. 
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Tool Strength Weakness Opportunities Threats 

BenMAP—
CE 

Merging the CFRs with basic 
pooling strategies (e.g., 
random effects and fixed 
effects) to construct a new 
function that can adequately 
consider the diverse 
demographics data. 

- The degree to which 
different mixtures of air 
pollutants pose a greater 
or lesser risk and the 
extent to which 
concentration-response 
associations observed in 
one group is limited to 
the particular case 
studies and cannot easily 
be extended to other 
cases. 

- Estimating health 
impacts due to air 
quality is limited to a 
single year period and 
cannot be carried out on 
a multiple-year 
horizon[61]. 

Incorporating new features 
into the tool, such as the 
estimate of the health impacts 
due to the exposure to 
multiple pollutants [63]. 

Spatial shifts in city-wide 
environmental concentrations, 
diverse sets of individual 
activity patterns, and indoor 
ambient air pollution 
differences[62]. 
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Tool Strength Weakness Opportunities Threats 

HAPIT 

- HAPIT is an easy-to-use 
tool that helps estimate 
averted DALYs, averted 
premature deaths, and 
choosing Cost-Effective 
interventions. 

- Information on total 
households studied in the 
intervention, PM2.5 
exposure to pre and post-
intervention population, 
and the average proportion 
of the population using 
intervention helps estimate 
the cost per intervention of 
the initiative the annual 
operating costs per 
household. 

- The estimation period is 
short can’t be indicative of 
long-term trends.  

- Equal exposures among 
household members is 
assumed in the HAPIT. 
However, the exposure 
levels vary among the 
household members. 

To decrease the uncertainty in 
the results, information about 
the baseline and intervention 
PM2.5 exposure levels should be 
included for the developing 
countries where solid fuel is 
mostly used. 

Background diseases and 
economic characteristics of a 
population are assumed to 
remain relatively unchanged in 
HAPIT.  This presumption will 
hold for a short lifespan. 
Therefore, for long-term 
interventions, such as shifting 
from fossil fuel to renewable 
energy or electricity, the 
forecasts will have to be 
periodically updated. 
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Tool Strength Weakness Opportunities Threats 

GAINS 

Compressive Transport models 
and atmospheric chemistry to 
simulate complex physical and 
chemical reactions [91]. 

- The atmospheric 
dispersion model in 
GAINS is simplified into 
the basic linear function 
form based on the 
regression of results from 
TM5 and the relevant 
response-source model, 
resulting in uncertainty. 

- The health impact is 
assessed according to 
general RR value obtained 
from European and 
American epidemiological 
studies, which is 
unsuitable and inaccurate 
for other areas [91]. 

- Future projections of 
activity data such as 
macroeconomic drivers, 
energy, and fuel 
consumption are exogenous 
to the GAINS model, 
derived from other model 
calculations or national 
experts provided to ensure 
timeliness and authority.  

- Alternative pathways can 
also be specified in the 
GAINS Expert mode, 
improving the applicability 
for more scenarios. 

Other models that focus on 
emission estimation or health 
impact assessment separately 
can provide more precise results 
and, if combined, would be a 
better alternative option than 
GAINS. 
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Tool Strength Weakness Opportunities Threats 

ECOSENSE 

- Comprehensive estimation 
of air pollution impacts on 
human health and 
Ecosystems. 

- Robust database including 
details of major air 
pollutants, hydrocarbons, 
and heavy metals [94]. 

Considering a simple linear 
source-receptor model for 
assessing the atmospheric 
chemistry interactions that 
perform a nonlinear behavior 
in nature. 

Validation of the 
meteorological models used in 
the EcoSense tool to make it 
more appropriate for the 
developing countries by 
reviewing the meteorological 
databases and concentration-
response functions. 

- Inability to capture 
complicated atmospheric 
chemistry processes [61]. 

- The exact estimation of the 
form and severity of the 
related environmental 
impacts is hindered by 
limited knowledge of 
receptor size [84]. 

- Present projections of the 
external cost of climate 
change vary considerably, 
reflecting the high 
uncertainty of the forecasts 
since much of them would 
take place over the long 
term. 

SIM-AIR 

Multiple benefits 
(Environmental—health—
economic) assessment of the 
climate change action plans, 
considering interactions 
between emissions, dispersion 
of pollution, impacts, and 
options for management 
[79][95]. 

Uncertainty in spatial analysis 
resolution matching the project 
(mainly urban areas). 

For the study of pollution 
inventories and health effects, 
the database of concentration-
response functions and emission 
sources is included in the tools 
that can be modified with 
relevant data from cities. 

Recognizing the uncertainty of 
inventories is important and 
needs to be adjusted carefully as 
per the local data. 
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CHAPTER 3 

 Quantifying the multiple environmental, health, and economic benefits from 
the electrification of the Delhi public transport bus fleet 

 

Abstract: This chapter investigates the co-benefits from the utilization of the battery-electric bus 
(BEB) fleet in the Delhi public transportation system as a part of the Delhi electric vehicles policy 
2020. To this aim, an integrated quantitative assessment framework is developed to estimate the 
expected environmental, health, and economic co-benefits from replacing the currently existing 
public bus fleet with the new BEBs in Delhi. First, the model estimates the avoided emissions from 
deploying the BEB fleet, using a detailed battery energy simulation model, considering the impact 
of the battery capacity loss on the annual operational time (hours of service) of the BEB.  The 
annual operational time of the BEB is greatly affected by its battery degradation, which results in 
time lost due to charging the battery. This indicates that the annual passenger-kilometres (PKM) 
delivered by the BEB is less than the regular bus, under the same traveling condition. Second, 
considering fine particles (PM2.5) as the most health-harming pollutant, the model calculates the 
near roadway avoided PM2.5 exposure in the selected traffic zones of 11 major districts of Delhi, 
using a Gaussian dispersion model. Third, the near roadway avoided PM2.5 exposure is further 
used in a health impact assessment model, which considers concentration-response functions for 
several diseases to evaluate the public health benefits from introducing the BEB fleet in Delhi.  
The research findings indicate that, the utilization of the new BEB fleet leads to a 74.67% reduction 
in the total pollutant emissions from the existing bus fleet in Delhi. The results of the integrated 
co-benefits assessment reveal a significant reduction in PM2.5 emissions (44 t/y), leading to 
avoidance of mortality (1370 cases) and respiratory diseases related hospital admissions (2808 
cases), respectively, and an annual savings of about USD 383 million from the avoided mortality 
and morbidity cases in Delhi.  
 

3.1. Introduction 
   As one of the low emission development strategies, the Delhi Electric Vehicles Policy, 2020 
seeks to meet the main goal of improving Delhi's air quality by speeding up the deployment of 
battery electric vehicles (BEVs), so that by 2024 they comprise 25% of all new vehicle 
registrations and significantly enhance Delhi's environment by reducing emissions from the 
transportation sector. BEVs are regarded as one of the most environmentally friendly alternatives 
to traditional fuel vehicles. Such policy intervention will have many co-benefits. Studies have 
indicated several co-benefits of electric vehicles, such as energy savings, carbon emission 
reduction, and local air quality management in the long run [1], [2].  

  As a part of the policy implementation, the Delhi government would offer financial incentives, 
waive road taxes and registration costs, and build a vast network of charging stations and battery-



50 

 

swapping stations. Between 2019 and 2022, the policy's initial goal is for electric buses to account 
for at least half of all new stage-carriage buses (i.e., for all public transport vehicles with 15 seats 
or more) [3]. From the viewpoint of urban air pollution, the justification for electric buses, and 
more generally, zero-emission buses, has been evident. Their health advantages in decreasing 
mortality and morbidity have been demonstrated economically.  

   With respect to the Delhi Electric Vehicle Policy, the projected climate co-benefits of using the 
BEB fleet in the urban transportation system of India's megacity of Delhi are analyzed in this 
chapter by developing a quantitative assessment methodology for environmental, health, and 
economic benefits. Figure 3.1 depicts the research approach followed in this study.  

The main contribution of this chapter can be summarized as follows: 

1- Few studies have quantified the potential environmental, health, and economic co-benefits 
from the electrification of the urban bus fleet in Delhi. The developed model is used to assess 
the expected co-benefits in 11 major districts  and, subsequently, the whole urban 
transportation system in Delhi. 

2- In addition to fuel efficiency and carbon intensity as the two main factors which are used in 
estimating the avoided emissions from replacing conventional buses with the BEB fleet, this 
study further emphasizes the impact of degraded battery capacity on the annual PKM 
delivered by the BEB, providing a more accurate estimation of the environmental co-benefits. 

3- To more precisely estimate the avoided mortality and morbidity cases from the electrification 
of the bus fleet in Delhi, this study drives a pooled estimate of the RR values for six health 
outcomes, including total mortality, COPD, cardiovascular mortality, respiratory mortality, 
and morbidity, and related hospital admissions. 
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Figure 3. 1 Methodological approach used in this study 

3.2. Integrated co-benefits assessment modeling framework: 

3.2.1. Estimation of the avoided emissions by replacing the CNG bus fleet with BEBs: 
    In order to estimate the exact avoided emissions from replacing the CNG bus fleet with the new 
BEBs, it is necessary to realize the difference between their operational times (hours of service). 
The operational time is defined as the period that a bus can deliver the transport service throughout 
the year.  Compared with a CNG bus, for a BEB, there is a need to spend a considerable time for 
charging the vehicle's battery (almost 4 hours per charging). The electric bus is out of service 
during the charging periods and cannot deliver the transport service. The annual operational time 
of the BEB can be calculated as follows: 

 

                                                        𝝉𝑩𝑬𝑩 = 𝝉𝑪𝑩 − 𝒏𝑻𝒄𝒉𝒂𝒓𝒈𝒊𝒏𝒈                             (3-1)                                                                                                            

   Where, 𝝉𝑩𝑬𝑩 is the operational time of the BEB; 𝝉𝑪𝑩 is the operational time of a CNG bus, 
considering the same traveling condition;  n is the number of times to charge the battery per year  
and 𝑻𝒄𝒉𝒂𝒓𝒈𝒊𝒏𝒈 = 𝟒 𝒉𝒓𝒔. Therefore, the avoided emissions from replacing current CNG buses with 

the BEBs may be estimated, as follows: 

𝑨𝑬𝑩𝑬𝑩 = 𝜶𝑬𝑪𝑩                      (3-2)        
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𝜶 =
𝝉𝑩𝑬𝑩

𝝉𝑪𝑩
                                                                    (3-3) 

    Where, 𝑨𝑬𝑩𝑬𝑩 is the avoided emissions from replacing a CNG bus with a BEB [t/h]; and 𝑬𝑪𝑩 
is the annual emissions from a CNG bus [t/h], and  𝜶 is the ratio of the operational time of the BEB 
to the CNG bus. It is noted that, the BEBs are considered as zero-emission vehicles, and the 
lifecycle emission of electricity is not considered in this calculation.  

    The operational time of a BEB is affected by battery degradation and capacity loss. Capacity 
loss, also known as capacity fading, is a phenomenon that occurs for rechargeable batteries over 
time, in which the amount of charge a battery can provide at the rated voltage decreases. Many 
degradation mechanisms occur in Li-ion batteries and are exacerbated by various internal and 
external stressors [4]. Capacity loss occurs not only during the usage period “cyclical loss”, but 
also during the storage period “calendar loss”. The ambient temperature substantially influences 
capacity loss; Aging rates rise with decreasing temperature below 25 °C, but increase with 
increasing temperature over 25 °C [5]. The number of charging in a year, n, is calculated from an 
accurate hourly estimation of the state of charge (SOC) of the battery: 

 

𝑺𝑶𝑪𝒕 = 𝑺𝑶𝑪𝒕ି𝟏 −
𝑻𝑳𝒐𝒂𝒅,𝒕

𝑹𝑳𝒐𝒂𝒅,𝒕

                                              (3-4) 

 

𝑺𝑶𝑪𝒎𝒊𝒏 < 𝑺𝑶𝑪𝒕 < 𝑺𝑶𝑪𝒎𝒂𝒙                                             (3-5) 

    Where, 𝑻𝑳𝒐𝒂𝒅𝒕 and 𝑹𝑳𝒐𝒂𝒅𝒕 refer to the utilized electrical load based on the PKM delivered 
by the electric bus, and the actual remaining load of the battery in time step t [kWh], respectively. 
𝑺𝑶𝑪𝒕 and 𝑺𝑶𝑪𝒕ି𝟏 are the battery SOCs in time step t and t-1. The battery SOC varies between a 
lower limit (𝑺𝑶𝑪𝒎𝒊𝒏 = 𝟐𝟎%) and an upper limit (𝑺𝑶𝑪𝒎𝒂𝒙 = 𝟖𝟎%). If the battery SOC reaches 
its lower limit, the electric bus is sent to the charging station for recharging up to its upper limits. 
The actual remaining load of the battery, 𝑹𝑳𝒐𝒂𝒅𝒕, is affected by the battery capacity degradation 
(𝑸𝒍𝒐𝒔𝒔,𝒕): 

 𝑹𝑳𝒐𝒂𝒅𝒕 = ൫𝟏 − 𝑸𝒍𝒐𝒔𝒔,𝒕൯𝑪𝟎                                              (3-6) 

 

𝑸𝒍𝒐𝒔𝒔,𝒕=𝑸𝑪𝒂𝒍,𝒕 + 𝑸𝑪𝒚𝒄,𝒕                                                      (3-7) 

    Where, 𝑪𝟎 is the nominal capacity of the battery [kWh] and 𝑸𝒍𝒐𝒔𝒔,𝒕, the battery capacity loss in 

time step t, which includes the battery calendar and cyclical aging losses: 

            𝑸𝑪𝒂𝒍,𝒕 = 𝜸𝒆(ି𝑬𝐚/𝑹𝑻)𝒕𝟎.𝟓
                                            (3-8) 

 

    𝑸𝑪𝒚𝒄,𝒕 = 𝜷𝟏𝐀𝐡t 𝒆
𝜷𝟐𝑪𝒓𝒂𝒕𝒆                                                   (3-9) 

    In the above equations, 𝛾, 𝛽ଵand 𝛽ଶ are constant coefficients, which their values are given in 
[6]; 𝐸ୟ is the activation energy of the battery [J/mol]; R is the gas constant [J/molC], T is the 
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ambient temperature [C]; 𝐶௥௔௧௘ is the electric current in which a battery is charged and 
discharged and rated at 3C for the electric bus. Aht is the storage throughput, which is the amount 
of energy that cycles through the battery. The amount of Aht  is degraded with respect to the 
battery capacity loss, as follows: 

𝑨𝒉𝒕 = 𝑨𝒉𝒕ି𝟏 + 𝑨𝒉𝒐൫𝟏 − 𝑸𝒍𝒐𝒔𝒔,𝒕ି𝟏൯                                        (3-10) 

 

    𝐴ℎ௢ is the initial storage throughput of the battery.    The above calculations indicate that, both 
utilized electrical load (𝑇௅௢௔ௗ,) and degraded capacity (𝑄௟௢௦௦) of the battery affect the annual time 

lost in charging (𝑛𝑇௖௛௔௥௚௜௡௚). 

 

3.2.2. Prediction of near roadway avoided PM2.5 exposure:  
     Concentrations of air pollutants at specific sites are assumed to be indicative of population 
exposures. However, emission levels may be higher in locations near specific sources of air 
pollution, such as major roads, power plants, and big stationary sources, necessitating additional 
measures to minimize pollution levels for residents [7]. Most epidemiological and risk evaluations 
currently rely on simple exposure measures, such as the distance between highways and residential 
areas, to represent traffic-related air quality implications. To be able to relate the avoided emissions 
from replacing the CNG buses with the EBEs to the health endpoints, a near-roadway dispersion 
model is developed in this research, taking into account the concentration of PM2.5 as the major air 
pollutants. The model estimates the hourly concentration at downwind distance x (km) and 
crosswind distance y (km), using a steady-state gaussian depression model [8] as follows: 

      𝑪 =
𝑬𝑯

𝟐𝝅𝒗𝒔𝜹𝒚𝜹𝒛
𝒆𝒙𝒑 ቈ−𝟎. 𝟓 ൬

𝒚

𝜹𝒚
൰

𝟐

቉                                                               (3-11) 

 

And:                  𝑯 = ൤𝒆𝒙𝒑 ൬−𝟎. 𝟓 ቀ
𝒛ି𝒉

𝜹𝒛
ቁ

𝟐

൰൨ + ൤𝒆𝒙𝒑 ൬−𝟎. 𝟓 ቀ
𝒛ା𝒉

𝜹𝒛
ቁ

𝟐

൰൨                             (3-12) 

                                    

  𝜹𝒚 = 𝟒𝟔𝟓. 𝟏𝟐𝒙𝒕𝒂𝒏(𝟎. 𝟎𝟏𝟕𝟒(𝜽 − 𝝁 𝐥𝐧(𝒙))                                                     (3-13) 

 

𝜹𝐳 = 𝝏𝒙𝝆                                                                                     (3-14) 

 

Here, 𝐶 is the concentration (g/mଷ);  𝐸 is the pollutant emission rate from the buses (mass per unit 
time). Since there are no emissions from the BEBs, therefore, 𝐸 = 𝐴𝐸஻ா஻. 𝑣௦ is the 
mean wind speed (m/s) at release height; 𝑧 is the receptor height which is considered the same as 
the average human height; 𝛿௬ 𝑎𝑛𝑑 𝛿௭ are the "standard deviation of lateral and vertical 
concentration distribution (m); h is the effective source height, which is considered as the vertical 
distance between the bus exhaust pipe and ground. 𝜃, 𝜇, 𝜕 and 𝜌 are constant coefficients that can 
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be defined based on the given values for the stability category at the local area. x is the distance 
from the source (bus located in the roadway) to the receptor (people located near-roadway), which 
is shown in Figure 3.2. It is noted that, in the polar coordinate system, the relationship between 
wind coordination with x and y should be taken into consideration in the above calculation. The 
wind speed at release height, 𝑣௦, can be calculated, using the following formula: 

𝒗𝒔 = 𝒗𝟎 ቀ
𝒉

𝒛𝟎
ቁ

𝒑

                                                                            (3-15) 

   Where, 𝑣଴ and 𝑧଴ are the observed wind speed and reference measurement height, respectively. 
p is the wind profile exponent, and its value can be estimated based on the stability category in 
the local area. In order to estimate the short-term area concentration of the PM2.5 over the area in 
the upwind and crosswind directions, the ground level concentration model is used in this study, 
which can be represented as follows [8]: 

                                 𝑪 =
𝑬

𝟐𝝅𝒗𝒔
∫

𝑯

𝜹𝒚𝜹𝒛𝒙
(𝐞𝐫𝐟𝐜 ൬

𝒚

𝜹𝒚
൰)𝒅𝒙                                                             (3-16) 

 

   Where, 𝐞𝐫𝐟𝐜 refers to the complementary error function. In the above equation, the integral part 
can be calculated by using a trapezoidal approximation with m intervals [9] . 

 
Figure 3. 2. Road and receptor coordinate system used in the desperation model 

 

3.3.Health Impact Assessment (HIA) assessment model: 

    In order to quantify the health benefits of avoided PM2.5 levels in a specific area, the air quality 
health risk assessment (AP-HRA) is used, with specific concentration-response functions and 
relative [10], [11]. Total mortality, COPD, cardiovascular mortality, respiratory mortality and 
morbidity, and related hospital admissions are the six health outcomes which are considered for 
health impact analysis in this study. PM2.5 particles that penetrate deep into the lungs are the most 
health-harming pollutants as they are linked to an increased risk of premature deaths [12]. 
Concentration-response functions (CRFs) are used to estimate the relationship between a change 
in air pollutant concentration (PM2.5 in this study) and a change in health effects (usually an 
incidence or mortality rate). The CRF coefficient values are generally obtained from relative risk 
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(RR), representing the probability of an unfavorable health consequence among the population 
exposed to a greater ambient air pollution level than a lower ambient level. Tables 3-1 and 3-2 
show the methods used to assess the relative risk (RR) of long-term PM2.5 exposure and the 
baseline mortalities used to calculate averted mortality and morbidity in this study.  India has 
baseline mortality rates of 142.1, 165.8, 116.4, and 6.5 per 100,000 people for COPD, IHD, stroke, 
and LC, respectively [13]. Excess deaths or illnesses (EDI) resulting from the rise in PM2.5   
concentration can be estimated as follows: 

EDI=PAF×I×P                                                           (3-17) 

    Where, PAF (population attributable fraction) denotes the proportion of illness burden owing to 
pollution, I, is the annual baseline mortality rate, and P denotes the total population. The PAF may 
then be calculated as follows [14]. 

 

PAF =
p(RR-1)

p(RR-1)+1
                                                         (3-18) 

p is the proportion of the population exposed. 

 

Table 3- 1. Methods for assessing the relative risk of long-term PM2.5 exposure  

Outcome Relative risk function* 
Total mortality, Cardiopulmonary mortality, and 
Respiratory mortality 

𝑅𝑅 = 𝑒𝑥𝑝 [𝛽(𝐶 − 𝐶଴)] 

Lung cancer mortality  𝑅𝑅 = [(𝐶 + 1)/(𝐶଴ + 1)]ఉ 
 *β is a coefficient that assesses a health outcome's reaction to a change in pollutant concentration. 
and 𝐂 and 𝐂𝟎 represent the pollutant concentrations in the baseline and intervention scenarios [10]. 

 

Table 3- 2. Baseline incident rates 

1From  [15], [16]. 
2From  [17]. 

 

Mortality/Morbidity1 Baseline Incidence per 100,000 

Total Mortality1 1013 

Cardiovascular Mortality1 497 

Respiratory Mortality1 66 

COPD Morbidity (Hospital Admissions)1 101 

Respiratory Disease (Hospital Admissions)1 1260 

Lung Cancer (LC)2 9.06 
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    Estimation of the correct values of RR is a critical issue in the health impact assessment that 
needs highly aggregated epidemiological data. As one of the main originalities of this research, a 
comprehensive PM2.5 related RR meta-analysis was performed for selected diseases from the 
previous studies undertaken in Asian countries. The meta-analysis was based on a systematic 
quantitative review in which all relevant empirical evidence that meets the pre-specified eligibility 
standard and criteria is collected and combined, using a statistical method to generate a pooled 
estimate that is closest to Delhi-specified RR values. Based on the inclusion criteria, 64 studies 
were included. Figure 3.3 shows the geographical distribution of the studies selected for meta-
analysis in this study. Most of the research came from China (n = 47) and India (n = 7) for total 
Mortality, COPD, Cardiovascular Mortality, respiratory mortality, LC, and respiratory 
morbidities related to hospital admissions. The detailed data used in the analysis is given in Figure 
(3.11-3.16).   

 
Figure 3. 3. The geographical distribution of the selected studies for meta-analysis 

 

   The pooled value extracted from the meta-analysis (𝑹𝑹𝒑)is estimated as follows [18]: 

𝑹𝑹𝒑 =
∑ 𝑹𝑹𝒊𝒚𝒊

∑ 𝒚𝒊
                          (3-19) 

𝒚𝒊 =
𝟏

𝑺𝑬{𝐥𝐨𝐠 𝑹𝑹𝒊}𝟐                            (3-20) 

 

   Where, SE is the standard error. The overall calculation flow in the health impact assessment 
model is shown in Figure 3.4. 
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Figure 3. 4. Calculation flow in the HIA model 

 

3.4.Economic impacts assessment model: 
    In this study, the Value of Statistical Life (VSL) approach was used to calculate the mortality 
cost from PM2.M exposure. Due to the lack of data availability on VSL in India, the value of the 
VSL for India in 2020 was estimated based on the available data of VSL in the US, using the 
following formula:  

𝐕𝐒𝐋𝐈𝐍𝐃 = 𝐕𝐒𝐋𝐔𝐒 × ቀ
𝐘𝐈𝐍𝐃

𝐘𝐔𝐒
ቁ

𝐞

                             (3-21) 

    Where, 𝐘𝐈𝐍𝐃 and  𝐘𝐔𝐒  are the per capita GDP of India and the US which are estimated at USD 
1927 thousand and  USD 63,413 thousand in 2021[19], [20]. 𝐕𝐒𝐋𝐔𝐒 and 𝐕𝐒𝐋𝐈𝐍𝐃 are the values of 
the VSL of the US and India in 2020 [USD], respectively. VSL of the US is assumed to be $10 
million [21], [22]. e refers to the VSL’s income elasticity. In this study, a given value of 1 for e is 
considered for low- and middle-income nations.  

    The cost of an emergency room visit (ERV) is estimated as follows: 

 

ERV = One workday loss + hospital charge + medication charge + transport charge       (3-22) 

    With an annual increase in medical costs in India between 5 to 12% [16], [23]. The monetary 
burden of health impacts grows in tandem with the rising cost of treatment. As a result, a low (5%) 
and high (10%) increase in the price of medicines and hospital admission charges is considered 
when estimating monetary burden trends  

     Following the above approach, the value of VSL in India is estimated at USD 0.279 million, 
which lies within the range of USD 0.15 to 0.36 million addressed in previous studies [24]–[26], 
considering the Indian annual average GDP per capita growth [27]. The  Cost of illness (COI) 
approach was used to determine the cost of hospital admissions, COPD, respiratory diseases, and 
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LC [28], [29]. Table 3-3 shows the values for the different health endpoints considered in this 
study. 

 

Table 3- 3. Values of the health endpoints used in this study 

Health endpoint  Valuation (USD) with 
a yearly 10% 
increase in the cost of 
treatment 

Method of cost calculation 

Total mortality  279,411 VSL approach (This study) 

Increase in the cost 
of treatment 

5%  10%  

COPD hospital 
admissions 

205 345 CoI approach [28] 

Respiratory diseases 
hospital admissions 

48  80 CoI approach [28] 

LC hospital 
admissions 

1708  1,886 CoI approach [30] 

 

3.5.Results and Discussion: 

3.5.1. Avoided emissions from the utilization of BEB fleet: 
     The average speed of a Delhi public transportation bus fleet is estimated to be 15 km/h [31], 
[32], with a 39.6 % occupancy rate [33]. CNG Bus fuel efficiency is estimated at 3.08 km/kgCNG 
[34], and the operating period for DTC (Delhi Transport Corporation) buses is between 5:00 a.m. 
and 11:00 p.m. (DTC, 2020). There are currently 5327 operating public transportation buses in 
Delhi DTC and DIMTS (Delhi Integrated Multi-Modal Transit System), with an average daily 
mileage of 200 kilometers per bus [35]. The details of the average occupants and delivered 
passenger kilometers (PKM) for one CNG bus are given in Table 3-4. The contribution of the CNG 
buses to overall air pollution in Delhi is shown in Table 3-5. 

Table 3- 4. Daily transport service delivered by a CNG bus in Delhi 

Operational Time  Average 
occupants 

PKM 

5:00 to 6:00 25 375.0 
6:00-7:00 26 390.0 
7:00-8:00 33 495.0 
8:00-9:00 51.67 775.1 

9:00-10:00 56.88 853.2 
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Operational Time  Average 
occupants 

PKM 

10:00-11:00 55.29 829.4 
11:00-12:00 51 765.0 
12:00-13:00 29.94 449.1 
13:00-14:00 29.94 449.1 
14:00-15:00 35.21 528.2 
15:00-16:00 26.47 397.1 
16:00-17:00 26.47 397.1 
17:00-18:00 26.79 401.9 
18:00-19:00 26.79 401.9 
19:00-20:00 33.91 508.7 
20:00-21:00 25.37 380.5 
21:00-22:00 25 375.0 
22:00-23:00 25 375.0 

 

Table 3- 5. Contribution of the CNG bus fleet to overall air pollution in Delhi 

Emissions  PM2.5a NOxa COa VOCa CO2b 

CNG bus emission factors 
(gm/km)  

0.184 25.66  11.92  3.311  
1308 

CNG bus fleet contribution 
to overall air pollution in 
Delhi (t/y) c  59.5 8296 3854 1070 422,925 

a- From [34] 
b- From [36] 
c- From [37] 

 

   The BEBs are supposed to deliver the same amount of PKM that CNG buses will deliver. As 
previously discussed, the total operational time of a BEB is less than one CNG bus due to the 
battery's annual capacity loss and required charging time. This can be further discussed in Figure 
3.5, which shows the variation of the battery SOC during the first (Jan 1st to 4th) and last (Dec 26th 
to 29th) weeks of the operation period. As can be seen in this figure, the BEB starts to operate at 
5:00 am, using a fully charged battery. The battery SOC declines to 20%, and the BEB is sent to 
the charging station to charge the battery, which takes about 4 hours. After charging, BEB is re-
operated until 11 pm. There are two key points in this figure: 3.5) the battery charging process 
takes place during the operating period (5:00 am to 10:00 pm), indicating the BEB is out of service 
during this period.  When it approaches the last week of the year, the SOC declines more rapidly 
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and the number of changings per day increases due to the gradual degradation of the battery 
capacity, which indicates that the battery capacity loss greatly influences the operational time of 
the BEB.  Using the detailed methodology explained in section 3.2, the annual operational time 
for a BEB is estimated at 4907 hrs, compared with a standard CNG bus (6570 hrs), which suggests 
that 𝛂 = 𝟎. 𝟕𝟒𝟔𝟕 (Eq (2)). Therefore, about 74.67% of the total pollutant emissions from the 
current CNG buses can be avoided by using the same number (5327) of the BEBs in Delhi, taking 
into account the same traveling condition. Table 3-6 shows the detailed specification of the BEB 
used in this study.  

 
Figure 3. 5. Estimation of the battery SOC (%) in the first and last weeks of the operation 

 

Table 3- 6. Technical specification of the BEB used in this study  

Motor [38]. Integrated Motor Generator 
Max Power: 245 kW 
Continuous Power: 145 kW 

HV Battery 
Specification [38]. 

Li-Ion Battery Pack- ~186 KWH (Expandable) 

 

    Figure 3.6 represents the estimation of the actual remaining capacity and capacity loss of the 
battery throughout one operational year for a BEB in Delhi, taking into account the travel demand 
given in Table 3-4. The annual charging time estimated from the hourly SOC of the battery is 
reported in Table 3-7.  
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Figure 3. 6. a) Annual battery actual remaining capacity b) Annual battery capacity loss. 

 

Table 3- 7. Charging time (excluding rest period) estimated from the hourly SOC. 

Time spans within the operational period Charging hours in a year  
5:00-12:00  1032 
12:00-18:00 423 
18:00-23:00 208 

Total 1663 
 

   Considering the annual operational time, the amount of avoided emissions from replacing all 
CNG buses with the new BEB fleet in Delhi is given in Table 3-8. 

 

Table 3- 8. Avoided emissions from replacing all CNG buses with the new BEB fleet (t/y). 

PM2.5 NOx CO 
 

 VOC 
 

CO2 

 
44.4 6,196.7 2,878.6 799.6 315,874.4 

 

3.5.2. Near roadway avoided PM2.5 exposure: 
      In order to assess the impact of the avoided PM2.5 emissions from replacing the CNG public 
transport bus fleet with BEBs, the near roadway concentration model explained in section 3.2.2 
was applied to a selected traffic zone, entitled “Chaudhary Charan Singh Marg (Latitude: 
28.65578, Longitude: 77.31986)” located in Anand Vihar (AV), which covers 4 km of the bus 
route, shown in Figure 3.7. The AV area is part of the Shahdara district in Delhi's NCT, with a 
population density of 19518 persons per km², which is considered as one of the most congested 
urban areas in Delhi [39]. The near roadway model estimates PM2.5 concentration in a downwind 
distance of 0.2 km from the buses to the near roadway passengers. 
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Figure 3. 7. Selected traffic zone in this study 

     The average bus traffic flow is reported at 95 buses per hour in this traffic zone [40] with an 
average of 508 PKM per hour, where the avoided PM2.5 emission from replacing them with the 
new BEBs can be estimated at 346 kg per year. The results of the near-roadway hourly 
concentration of avoided PM2.5 exposure in the selected traffic zone are shown in Figure 3.8 (a,b), 
taking into account the local wind speed and solar elevation angle in the AV urban area. The 
average ground level area concentration of PM2.5 in a receptor grid (4× 𝟎. 𝟐𝒌𝒎𝟐), covering the 
selected traffic zone, is estimated at 2.13 μg/m3. 

 

 
Figure 3. 8.  (a) Variation of the wind speed and solar elevation angle and (b) Estimated near 

roadway avoided PM2.5 exposure in the selected traffic zone at receptor point (0.2 km from the 
roadway) 

    The same calculation method was used to estimate the average reduced level of PM2.5 exposure 
in all 11 districts in Delhi, considering the average bus traffic flow [40] in a selected traffic zone, 
which is shown in Figure 3.9 . Table 3-9 shows the detailed data used in this estimation.  From 
Figure 3.9, it can be observed that, New Delhi and Southeast districts have the lowest (0.73 μg/m3) 
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and the highest (2.73 μg/m3) near roadway avoided PM2.5 exposure among all districts in Delhi, 
respectively. 

 
Figure 3. 9. Estimated near roadway avoided PM2.5 exposure from the utilization of the new BEB 

fleet in the different districts of Delhi 

3.5.3. Public health and economic co-benefits: 
     The avoided mortalities, morbidities, and respiratory diseases related-hospital admission 
resulting from the near roadway avoided PM2.5 exposure in the different districts is depicted in 
Figure 3.10. The RR values used for the health burden estimation were extracted from the meta-
analysis of 64 studies explained in section 3.3 (see Table 3-10). The detailed results of the meta-
analysis (meta-analysis results are based on the inclusion criteria, 64 studies were included in the 
metanalysis. RAVMAN (Version 5.4.1) was used to construct forest plots and pooled Risk Ratio 
(RR) for Total Mortality, COPD, Cardiovascular Mortality, Respiratory mortality, LC, and 
Respiratory morbidities related Hospital Admissions) are given in figures (See Figures 3-11 to 3-
16). As explained earlier, the avoided health burden is a function of both bus traffic and near 
roadway population density in each district. Thus, although the southeast, Shahdara, and north 
districts have the highest avoided PM2.5 emission and exposure through their intensive bus traffic 
conditions, the reduction of expected health cases is particularly prominent in the northeast and 
central districts due to higher near roadway population density in these districts. More precisely, 
the utilization of the BEB fleet in the densely populated districts, such as the northeast (36155 
persons per kilometer), results in greater prevention of mortality and hospital admission cases per 
kilometer of the roadway.  
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Figure 3. 10. Avoided health burden per 1 kilometer of near roadway. 

 

Table 3- 9. Data used for the estimation of the near roadway avoided PM2.5 exposure. 

District Traffic Zone Average number 
of buses per 

hour 

Annual bus 
kilometer 

Northwest Delhi Rohtak Road 71 1,861,412 
South Delhi Aurbindo Marg 53 1,382,328 
West Delhi Mahatma Gandhi Marg 95 2,486,088 

Southwest Delhi Azad Hind Fauz Marg 62 1,624,104 
Northeast Delhi Wazirabad Road 75 1,978,884 

East Delhi Vikas Marg 71 1,870,085 
North Delhi GT Karnal Road 90 2,373,084 

Central Delhi Bahadur Shah Zafar Marg 75 1,978,884 
New Delhi Vandemataram Marg 33 856,728 

Southeast Delhi Mathura Road 106 2,793,564 
Shahdara Chaudhary Charan Singh 

Marg 
96 2,518,500 
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Figure 3. 11. Meta-analysis results All-Cause mortality 

 

 

Figure 3. 12. Meta-analysis results COPD 

 

Figure 3. 13. Meta-analysis results Lung Cancer 
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Figure 3. 14. Meta-analysis results respiratory diseases related hospital admissions 

 
 

 
 

Figure 3. 15. Meta-analysis results Respiratory mortality 

 
 

Figure 3. 16. Meta-analysis results Cardiovascular Mortality 
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Table 3- 10. RR values per 10 μg reduction in PM2.5 concentration (meta-analysis). 

 Avoided 
all-cause 
mortality 

COPD LC Respiratory 
diseases 
hospital 

admissions 

Cardiovascular 
Mortality 

Respiratory  

Mortality 

Pooled 
value of 
RR with 
95% CI 

1.0069 1.0173 1.0472 1.0114 1.0076 1.0077 

Statistical 
test 

I2=99%*  

(p<0.00001) 

I2=97% 
(p<0.00001) 

I2=97% 
(p<0.0001) 

I2=88% 
(p<0.00001) 

I2=97% 
(p<0.00001) 

I2=96% 
(p<0.00001) 

* I2 refers to the test of heterogeneity; p is the statistical p-value; CI is the confidence interval 

      The findings were further generalized to the whole Delhi public transportation system, 
considering the total bus route network length of 16200 km [41]. The approximated values of the 
avoided health burden and costs resulting from the electrification of the bus fleet in the whole city 
of Delhi are given in Table 3-11, considering the lowest and highest levels of the avoided PM2.5 

exposure. 

 Table 3- 11. Annual Avoided health burden and costs from the utilization of the BEB fleet in the 
Delhi public transportation system 

  
Mortality Cases 

 
Morbidity Cases 

Total Avoided 
cost 

(1000 $) 
 

5%* 

 
10%* 

 
All 

causes  
Respiratory Cardiovascular COPD Lung 

Cancer 
Respiratory  

Upper 
Limit  

1370 100 736 342 82 2,808 
383,144 383,298 

Lower 
Limit 

67 5 40 17 4 137 
18,737 18,745 

*Increase in the cost of treatment reported in Table 3-3. 

 

    As reported in Table 3-11, the avoided mortality and morbidity cases and costs anticipated from 
reducing PM2.5 exposure in near roadway areas in Delhi are very high. This finding emphasizes 
the importance of considering sources in terms of their impact (like what can be seen in the near 



68 

 

roadway areas), not just the emissions.  Impacts can vary by an order of magnitude, even within a 
single county or sector. This can be further clarified, as follows: 

   Assessment of the human health risk presented by emissions can be established by the 
combination of many factors like the source, quantity released, intake per unit release, risk of 
adverse effect per unit intake, size, density, and closeness of populations to sources [42]–[44]. The 
health and economic co-benefits of reducing PM2.5 varies depending on where the emission 
reduction takes place and the type of source [42]. Sources that emit substantial amounts of PM2.5  
( like vehicular emissions), which are located close to important population centers, would be 
expected to have a higher damage cost as the most impacted region from the mobile emissions is 
between 150-200  meters from the roadway [45].  Since a large portion of Delhi’s population lives 
or works within 500 meters of main arteries, 41% of Delhi's population is exposed to high traffic-
related air pollution [46]. It is noted that, near road emissions pose a substantially higher health 
risk due to the higher intake fraction (the fraction of emissions that are inhaled), as intake fraction 
values from vehicle emissions are many times larger than those from other industry sources due to 
high-level pollutant concentrations in the traffic micro-environment. The intake fractions are more 
significant in regions with higher population densities like Delhi [47]–[49]. As previously 
explained in the modeling approach, the intake fraction is a function of both population attributable 
fraction and population density. Therefore, given higher values of the population density and PM2.5 
concentration in near roadway areas in Delhi, reducing near road emissions, mainly from public 
buses, could result in significant health advantages. 

     Previous studies have employed transfer coefficients to assess the monetized benefits of 
pollution, producing national non-source-specific damage cost ($/ton) estimates, that could be 
applied to the expected reductions in emissions for a variety of policy settings. Such studies have 
used transfer coefficients to quantify both health consequences and economic valuation. However, 
this approach has its own limitations because it is based on several strong assumptions, including 
the population, meteorology, and source attributes such as plant stack heights, emission exit 
velocity, topography, plant dimensions, and other factors at the policy site are identical (or at least 
similar) to those at the study site. If this assumption is broken, the per-ton transfer figures will 
either overestimate or underestimate the real damage cost at the policy site [50], [51]. The avoided 
cost estimated in this research is based on a detailed estimation of the near roadway PM2.5 exposure 
in major traffic areas in Delhi, which might be comparable with other similar highly populated 
megacities in Asia. From Table 3-11,  the per capita avoided cost of the near roadway PM2.5 
exposure can be estimated at  $21.3 in Delhi, which is comparable with the megacities in China 
such as Beijing ($41.2), Shanghai ($38.8), and Tianjin ($35.9) [52]. However, the avoided damage 
cost ($426,000 to $8,700,000) per ton in Delhi (with a 10% increase in the cost of treatment) is 
much higher than the cities in developed countries. For example, the  PM2.5  exposure damage cost 
for Los Angeles County, CA, ranges from $52,000 to $2,900,000 per ton [44] and for the road 
transfer inner London, UK, from $410,000  to 1,273,000 $ per ton [53],  implying the impact of 
high population density and near roadway PM2.5  concentration in Delhi. 
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     Based on the above discussion, a comparative analysis of the economic value of mortality risk 
reductions per ton of PM2.5 emissions from mobile sources was conducted between the case of the 
Delhi’s near roadway in this study and other megacities, considering the impact of the population 
density, VSL, and PM2.5 concentration. The result is represented in Figure 3.17.  

 

 
Figure 3. 17. A comparative analysis of avoided health burden per ton from mobile sources between 
the case of Delhi in this study and different cities of the world. 

The data used in the calculation of the benefit per ton of avoiding  PM2.5  in the selected cities 
are: 1) Details of the avoided mortality cases collected from [44], [53], [54] ; 2) The required 
data for calculating the VSL collected from [55]. 
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CHAPTER 4 

 Co-Benefit Assessment of Active Transportation in Delhi, Estimating the 
Willingness to Use Nonmotorized Mode  

Abstract: This chapter aims to estimate avoided mortalities and morbidities and related economic 
impacts due to adopting the nonmotorized transportation (NMT) policy in Delhi, India. To this 
aim, an integrated quantitative assessment framework is developed to estimate the expected 
environmental, health, and economic co-benefits from replacing personal motorized transport with 
NMT in Delhi, taking into account the inhabitants' willingness to use NMT (walking and cycling) 
mode. The willingness to accept NMT is estimated by conducting a cross-sectional survey in Delhi, 
which is further used to estimate the expected health benefits from both increased physical activity 
and near roadway avoided PM2.5 exposure in selected traffic areas in 11 major districts in Delhi. 
The value of statistical life (VSL) and cost of illness methods are used to calculate the economic 
benefits of avoided mortalities and morbidities from NMT in Delhi. The willingness assessment 
indicates that, the average per capita time spent walking and cycling in Delhi is 11.054 and 2.255 
minutes, respectively. The results from the application of the NMT in Delhi show the annual 
reduction of CO2 and PM2.5 by 121.5 kilotons and 138.9 tons, respectively. The model estimates 
the expected co-benefits from increased physical activities and reduced PM 2.5 exposure at 17529 
avoided cases of mortality with an associated savings of about USD 4870 million in Delhi. 

 

4.1. Introduction 
    While there are inadequate studies in India conducted to estimate the co-benefits of NMT 
transportation, most of these studies have mainly focused on traffic injuries and air pollution and 
associated health benefits rather than the benefits of extra physical activity (PA) [38].  By 
developing an integrated environmental-health-economic benefits quantitative assessment 
modeling framework (Figure 4.1), this chapter seeks to quantify the expected health and economic 
co-benefits of both increased PA and improved air quality resulting from implementing the NMT 
policy in Delhi, India. As shown in Figure 4.1, the willingness-based trip demand model is used 
to estimate the total kilometers and time the inhabitants are willing to spend on NMT due to 
choosing to walk and bike instead of driving cars and motorized two-wheelers. The impact of the 
potential factors such as age, gender, education, income, and travel distance on the probability of 
the willingness to use NMT is analyzed, utilizing a logistic regression model on the collected data 
from a cross-sectional interview with 250 inhabitants in Delhi. The results of the trip demand 
model are used in two sub-models: 1) The physical activity sub-model converts the extra daily 
minutes of walking and cycling to metabolic equivalents (METs), which is further used in a health 
risk assessment to estimate the relationship between physical activity and the beneficial impact of 
lowering the occurrence of specific health outcomes in the selected traffic areas. 2) The near-road 
air pollution sub-model is used to calculate the potential reduction in motorized vehicle kilometers 
due to travel distance covered by walking and cycling and also, its associated near roadway 
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avoided PM2.5 exposure in 11 major districts in Delhi. The relationship between changes in PM2.5 

concentrations and the occurrence of specific health outcomes in the chosen traffic areas is 
estimated, using the concentration-response function (CRF) for several diseases in order to 
establish a connection between the avoided exposure of PM2.5 and health benefits. The relative risk 
(RR) level, which predicts the likelihood of an adverse health outcome among the population 
exposed to a higher level of ambient air pollution than a lower level of ambient air pollution, served 
as the basis for the CRF coefficient values used in this study. The values of the RR used in the 
study were taken from a thorough meta-analysis of earlier research. In order to achieve this, meta-
analysis and review articles were carried out to determine the correlation between alterations in 
PM2.5 concentrations and alterations in the incidence of each health endpoint. Avoided mortalities 
and morbidities data from both sub-models are finally used to calculate the economic value of the 
avoided health burden from both avoided emissions and increase in physical activity using the 
value of statistical life (VSL) and cost of illness methods. The findings are generalized to the whole 
city of Delhi. 

 

Figure 4. 1. Integrated quantitative approach used in this study 

 

4.2. Model Development: 

4.2.1. PA estimation model: Estimation of the weekly time spent for NMT: 
    The count model is first used to calculate the number of walks and bike trips an individual makes 
throughout an average day in order to estimate the weekly time spent walking and bicycling for 
transportation, as follows [39]: 
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                                    𝑴𝒄,𝒊  = 𝑵𝒄,𝒊 × 𝑷𝒓𝒄,𝒊 × 𝒕𝒄,𝒊                                                           (4-1) 

    Where  𝑀௖,௜ is the daily minutes spent traveling using mode c (walking or bicycle) for individual 

i ; 𝑁௖,௜ is the expected daily number of trips taken using mode c for individual i ; 𝑃𝑟௖,௜ is the 

probability that a trip taken by individual i using mode c and 𝑡௖,௜ is the trip duration for a trip taken 

by individual i using mode c. 𝑃𝑟௖,௜ expresses the willingness to adopt active transport (walking and 

bicycling), which can be further estimated by developing the following logistic regression model: 
 

𝑷𝒓. (𝒀𝒊 = 𝟏|𝑿𝒊) =
𝒆𝑿𝒊

𝑻𝜷

𝟏ା𝒆𝑿𝒊
𝑻𝜷

,            𝒊 = 𝟏, 𝟐, ⋯ , 𝒏            (4-2) 

 

   In the above equation, 𝑌௜ is the willingness to adopt active transport of the 𝑖௧௛ (𝑖 = 1,2, ⋯ , 𝑛) 
individual. 𝑋௜ = (𝑥௜ଵ, 𝑥௜ଶ, ⋯ , 𝑥௜௝ , ⋯ , 𝑥௜௣)் is the 𝑝 × 1 vector of covariates corresponding to the 

𝑖௧௛ individual. 𝑋௜ represents the vector of independent regressors, including age, gender, 
education, income, and travel distance which affect the individual’s willingness to use a walking 
or bicycle mode for transport purposes. Furthermore, 𝛽 = (𝛽ଵ, 𝛽ଶ, ⋯ , 𝛽௝ , ⋯ , 𝛽௣)் is the 

corresponding 𝑝 × 1 vector of regression coefficients, which can be estimated through the 
maximum likelihood estimation approach. The likelihood function of interest takes the following 
form. 
 

     𝑳(𝜷|𝒀, 𝑿) = ∏ ( 𝑷𝒓. (𝒀𝒊 = 𝟏|𝑿𝒊) )𝒀𝒊𝒏
𝒊ୀ𝟏 ( 𝟏 −  𝑷𝒓. (𝒀𝒊 = 𝟏|𝑿𝒊) )𝟏ି𝒀𝒊  .                 (4-3) 

 

    The estimated coefficients of the above model are interpreted through odds ratios (ORs). The 
OR for the covariate 𝑥௜௝ can be estimated from the estimates of regression coefficients as given 

below. 
 

 𝑶𝑹൫𝒙𝒊𝒋൯ = 𝒆𝜷𝒋                  (4-4) 

    The daily PA can be calculated, by combining the time spent cycling and walking multiplied by 
the intensity of each activity, as determined by metabolic equivalents (METs), which is explained 
as follows [39]: 

                     𝑫𝑷𝑨𝒊 =
൫𝑴𝑪𝒘𝒂𝒍𝒌𝒊𝒏𝒈 ,𝒊×𝟑.𝟓൯ା൫𝑴𝒄𝒃𝒊𝒌𝒊𝒏𝒈,𝒊×𝟔.𝟖൯

𝟔𝟎𝒎𝒊𝒏/𝒉
                                                   (4-5) 

 

    Where, DPAi is the daily physical activity (from walking and cycling) for individual i in MET-
hours. For transportation, the MET values for walking and cycling are 3.5 and 6.8, respectively 
[40]. 
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4.2.2. Near roadway avoided PM2.5 exposure model: 
    The concentrations of air pollutants at particular locations are believed to represent population 
exposures. It is estimated that 55% of the population living within 500 meters of major roads in 
Delhi are exposed to hazardous emissions from transportation, where PM2.5 is primarily produced 
by vehicle emissions [41]. It is crucial to use appropriate models with the vehicle and 
meteorological data to estimate near-road PM2.5 exposure, since monitoring PM2.5 concentrations 
cannot be done for all near-road regions. This research uses an air dispersion modeling tool called 
CALRoads View (Lakes Environmental Software) to forecast how mobile sources affect air 
quality near roads and intersections. The CALINE-4 model is a fourth-generation line source air 
quality dispersion model that uses a mixing zone concept to characterize pollutant dispersion near 
roadways. Using the Gaussian dispersion methodology, the model predicts pollutant 
concentrations for receptors located within 150 meters on either side of the roadways using input 
parameters such as site geometry and characteristics: 
 

𝑪(𝒙, 𝒚) =
𝒒𝝉

𝝅𝝈𝒚𝝈𝒛𝒖
∫  

𝒚𝟐ି𝒚

𝒚𝟏ି𝒚
𝐞𝐱𝐩 ൬

ି𝒚𝟐

𝟐𝝈𝒚
𝟐൰ 𝒅𝒚                                                (4-6) 

 
    Where C is the concentration (g/m3), y1 and y2 are the finite line source endpoint y coordinates 
(m), u is the wind speed (m/s),  𝜎௬and 𝜎௭ are the horizontal and vertical Gaussian dispersion 

parameters which are a function of downwind distance x (m), q is the avoided PM2.5 emissions 
from replacing the distance traveled of the vehicle category 𝜏 (g/s), which can be calculated, as 
follows: 
 

𝒒𝝉 = (𝑴𝑪𝒘𝒂𝒍𝒌𝒊𝒏𝒈𝑲𝒘𝒂𝒍𝒌𝒊𝒏𝒈 + 𝑴𝑪𝒃𝒊𝒌𝒊𝒏𝒈𝑲𝒃𝒊𝒌𝒊𝒏𝒈)𝑬𝑭𝝉      (4-7) 

 

    Where, 𝑀𝐶௪௔௟௞௜௡௚, 𝑀𝐶௕௜௞௜௡௚, 𝐾௪௔௟௞௜௡௚ and 𝐾௕௜௞௜௡௚ are the yearly time spent walking and 

cycling (s) and the average distance covered by walking and cycling in Delhi (km/s), respectively. 
𝐸𝐹ఛ is the PM2.5 emission factor of the vehicle category 𝜏 (g/km)  𝑀𝐶௪௔௟௞௜௡௚, 𝑀𝐶௕௜௞௜௡௚ are 

calculated by Eq. (4-1) and 𝐾௪௔௟௞௜௡௚ and 𝐾௕௜௞௜௡௚ are given values. 

 

4.2.3. Health impact assessment model: 
    Excess deaths or illnesses (EDI) caused by an increase in PM2.5  concentration can be estimated 
as follows [42]: 

EDI=PAF×I×P                                            (4-8) 

 

    Where I is the annual baseline mortality rate, P is the total population, and PAF (population 
attributable fraction) indicates the percentage of illness burden attributable to pollution. The PAF 
can then be calculated using the formula below [43]: 

PAF =
p(RR-1)

p(RR-1)+1
                                         (4-9) 
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    P represents the population’s exposure rate. The values of RR for physical activity and near-
roadway PM2.5 exposure are estimated in different ways. In order to accurately assess the correct 
values of RR, the health impact assessment requires highly aggregated epidemiological data. To 
this aim, in this study, a comprehensive meta-analysis was based on a systematic quantitative 
review, where all directly relevant empirical data that satisfies the eligibility standards and criteria 
were gathered, combined, and then statistically analyzed to produce a pooled estimate that was as 
close as possible to the RR values specified by Delhi. The following equation is used to estimate 
the final RR of willingness-based physical activity [39]. 
 

𝑹𝑹𝑷𝑨 = 𝑹𝑹𝒎
ቀ

𝑫𝑷𝑨

𝜶 𝑴𝑬𝑻 
ቁ                                                 (4-10) 

 

    Where, 𝑅𝑅௉஺ is relative risk estimated from walking and bicycling physical activity; 𝑅𝑅௠ is the 
relative risk estimated from the meta-analysis of collected data from 61 studies on five physical 
activity-related health outcomes (all-cause mortalities, T2 Diabetes, Coronary heart diseases, 
Cancers, and Depressive disorders) to estimate the dose-response function and PA-related 
morbidities and mortalities as function of physical transportation activity (Figure 4.2- Figure 4.12). 
     The meta-analysis was based on collecting data from selected studies with reported values of 
RR of moderate-intensity PA (𝛼 ranges from 3 to 6 hours). Current global recommendations for 
adults' physical activity are 150 minutes (𝛼 =2.5 hours) of moderate-intensity aerobic physical 
activity per week [44]. The pooled values of RR collected from 64 studies related to total mortality, 
COPD, cardiovascular mortality, respiratory mortality, and morbidity, and related hospital 
admission (Figure 4.2-4.12) were used to calculate the relationship between a change in air 
pollutant concentration (in this study, PM2.5) and a change in health effects, concentration-response 
functions (CRFs): 
 

𝑹𝑹𝑨𝑷 = 𝒆𝒙𝒑 [𝜷(𝑪 − 𝑪𝟎)]                                                 (4-11) 

   
   Where, 𝑅𝑅஺௉ is relative risk estimated from the near roadway avoided PM2.5 exposure, and β is 
a coefficient that evaluates the response of a health outcome to a change in pollutant concentration. 
C and Co are the pollutant concentrations in the baseline and intervention scenarios. Table 4-1 
represents baseline incident rates of diseases in Delhi used in this study. The geographical 
distribution of the studies used in the meta-analysis are shown in the figure 4.13. 
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Figure 4. 2. PM2.5 related All-Cause mortality (Metanalysis results) 

 

 

Figure 4. 3. PM2.5 related COPD (Metanalysis results) 

 

 

Figure 4. 4. PM2.5 related Lung Cancer (Metanalysis results) 
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Figure 4. 5. PM2.5 related hospital admissions (Metanalysis results) 

 

 

Figure 4. 6. PM2.5 related Respiratory mortality (Metanalysis results) 

 

 

Figure 4. 7. PM2.5 and Cardiovascular mortality (Metanalysis results) 
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Figure 4. 8. PA related all-cause mortality (Metanalysis results) 

 

Figure 4. 9. PA related coronary heart diseases (Metanalysis results) 

 

 

Figure 4. 10. PA related Depression (Metanalysis results) 
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Figure 4. 11. PA related T2 Diabetes (Metanalysis results) 

 

 

Figure 4. 12. PA related Cancer (Metanalysis results) 
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(a)        (b) 

Figure 4. 13. The geographical distribution of the studies that were chosen for the RR meta-analysis 
(a) Physical activity and health impacts (b) PM2.5 and health impacts 

 

Table 4- 1. Baseline incident rates of diseases in India (Delhi). 

Mortality/Morbidity Baseline Incidence per 100,000 
Total Mortality1 1013 
COPD Prevalence rate2 818 
Diabetes T2 prevalence rate2 784 
Respiratory Diseases rate2 608 
Depressive disorders rate2 633 
Diabetes mortality rate 2 18 
Ischemic/Coronary heart diseases prevalence 
rate2 

2321 

Cardiovascular mortality1 497 
Respiratory mortality1 66 
Cancer prevalence reate4 98.8 
Lung Cancer prevalence rate (LC)3 9.06 

1From [38-39]. 2Form [47]. 3From [48]. 4 From [49]. 

 

4.2.4. Economic impacts assessment model: 
     The Value of Statistical Life (VSL) approach and The cost of an emergency room visit (ERV) 
was used in this study to calculate the mortality cost of PM2.M exposure [42]. The cost of illness 
(COI) approach was used to determine the cost of treatment of coronary heart diseases, type 2 
diabetes, Cancer and Depressive disorders, hospital admissions due to respiratory diseases, COPD, 
respiratory mortality, cardiovascular mortality, and  LC.  [47-48]. The values for the various health 
endpoints considered in this study are shown in Table 4-2. 
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Table 4- 2. Values of the health endpoints used in this study. 

Health endpoint 
Valuation (USD) with a yearly 
10% increase in the cost of 
treatment 

Method of cost 
calculation 

Total mortality 279,411 VSL approach [42] 
COPD hospital admissions 345 CoI approach [50] 
Respiratory diseases hospital 
admissions 

80 CoI approach [50] 

LC 1,886 CoI approach [52] 
Diabetes T2 23,862 [52-53] 
Coronary heart diseases 3842 [55] 
Depression 110 [55–57] 
Cancer 1,065 [59] 

 

4.3. Results and discussion: 

4.3.1. Willing of people in Delhi to use NMT: 
     A cross-sectional survey was conducted from July 2 to July 8, 2022, in Delhi, India, to estimate 
peoples’ willingness to accept active transportation as their usual travel mode. The survey 
encompassed different areas of Delhi, like Ashok Vihar, Nand Nagri, Dilshad Garden, Jhilmil, and 
Seema Puri. About 250 inhabitants were physically interviewed during the survey, while 50 
responses were collected online. People were physically approached and were asked questions 
during morning hours while leaving for work and during evening hours while returning, especially 
near bus stops, public parks, and pedestrian crossings. For the online survey, questionnaires were 
shared with only those currently living in Delhi. The detailed questionnaire used in this research 
is described in Table 4-3. 
 

Table 4- 3. Detailed questionnaire used in this survey 

Question Response 
1. Willing to use NM modes (bicycle)  Yes 

 No 

 Already using NM modes 
2. Willing to use NM modes (walking)  Yes 

 No 

 Already using NM modes 
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Question Response 
3. Mandatory travel mode to work, school, 

business 
 

 (Walk/Bicycle) 

 motorcycle 

 personal vehicle/car 

 Public transport 
4. Non mandatory travel mode to shopping, 

personal, family, etc. 
 (Walk/Bicycle) 

 motorcycle 

 personal vehicle/car 

 Public transport 
5. Age-wise distribution  Below 18years 

 18 - 25 years 

 25 - 45 years 

 45 - 55 years 

 55 - 65 yeas 
6. Gender wise distribution  Female 

 Male 
7. Occupation level  Student 

 Support 

 Middle 

 Higher 
8. Monthly Income level  below 15k 

 15k to 30k 

 30k to 50k 

 50k to 75k 

 75k to 100K 

 above 100K 
9. Education level  Nil 

 Only school 

 Graduation or Higher. 
10. For which distance you prefer bicycles / 

walking as your transport mode? 
 

 1-2Km 

 2-3 Km 

 3-4 km 

 4-5 Km 

 5-6 Km 
Personal vehicle ownership  motorcycle 

 personal vehicle/car 

 Personal cycle 

 None 
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Question Response 
11. What are the main barriers towards walking 

and cycling in urban area? 
 Few cycle lanes and bike 

parking areas 

 Safety: no separate road 
space for cycling and 
walking. 

 Inadequate bicycle rental and 
bike-sharing systems 

 No combination of cycling 
and rapid bus transit or rail 
systems) 

 No cycling/Walking Culture 

 Other 
 

     The questionnaire, consisting of 11 questions, initiated the most important survey inquiry, 
whether the respondent was willing to use active transport in Delhi. Then, separate questions were 
asked for walking and bicycling. The later part of the questionnaire asked about the mandatory 
and non-mandatory travel modes of the inhabitants of Delhi, India, along with their preferable 
distance to be covered by walking and bicycling. Finally, the survey enquired about the 
respondents' socio-economic condition (income and education) and demographic characteristics 
(age and gender). After discarding all missing and erroneous data, a total of 283 respondents’ 
information was finally analyzed. All these variables are described in (Table 4-4) which depicts 
that 30.35% and 38.52% of the respondents were willing to use walking and bicycling, 
respectively, as their regular transportation modes. All the selected covariates were categorized to 
distinguish the probability of willingness for different categories of the corresponding predictors. 
Among the set of covariates, regular travel mode, monthly income, education level, and age were 
categorized into more than two categories. Such categorical variables require special attention, 
unlike continuous and binary predictors, which can be incorporated into the regression model 
without any modification. In the case of the covariates with more than two categories, one category 
needs to be considered as a reference category to which the remaining categories can be compared. 
This reference category is selected based on the purpose of comparison. Then, the remaining 
categories are transformed into binary variables and compared with the reference category of 
interest. The results of the model are presented in Table 4-5.  
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Table 4- 4. Characterization of selected variables along with descriptive statistics 

Variables Categories Characteristics Frequencies (%) 

Willingness 
to walk 

Yes 
No 

Willed to use walking as a regular travel 
mode 
Unwilled to use walking as a regular 
travel mode 

85 (30.35%) 
198 (69.95%) 

Willingness 
to bicycle 

Yes 
No 

Willed to use bicycling as a regular 
travel mode 
Unwilled to use bicycling as a regular 
travel mode 

109 (38.52%) 
174 (68.48%) 

Regular 
travel mode 

Public 
transport 

Private car 
Motorcycle 

Used public transport as a mandatory 
travel mode 

Used private car as a mandatory travel 
mode 

Used motorcycle as a mandatory travel 
mode 

99 (34.98%) 
96 (33.92%) 
88 (31.10%) 

Distance to 
cover by 
walking 

Short distance 
Long distance 

Preferred to walk for 1-2 km of distance 
 

Preferred to walk for more than 2 km of 
distance 

96 (33.92%) 
 

187 (66.08%) 

Distance to 
cover by 
bicycling 

Short distance 
Long distance 

 

Preferred to use the bicycle for 1-2 km 
of distance 

 
Preferred to use the bicycle for more 

than 2 km of distance 

19 (6.71%) 
 

264 (93.29%) 

Monthly 
income 

Low income 
Medium 
income 

High income 

Monthly income of below 15,000 INR 
Monthly income of between 

15,000−75,000 INR 
Monthly income of above 75,000 INR 

90 (31.80%) 
172 (60.78%) 

21 (7.42%) 

Education 
level 

Illiterate 
Primary to 
secondary 

High 

No education 
Studied up to school 

Graduated or higher studies 

25 (8.83%) 
91 (32.16%) 

167 (59.01%) 

Age group 
Young 

Middle-aged 
Old 

Aged between 10−18 years 
Aged between 18−45 years 

Aged above 45 years 

18 (6.36%) 
224 (79.15%) 
41 (14.49%) 

Gender 
Male 

Female 
Male respondents 

Female respondents 
200 (70.67%) 
83 (29.33%) 
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Table 4- 5. Estimated coefficients (𝜷෡) obtained from LR models, OR and p-value 1 

Covariates Willingness to Walk Willingness to use Bicycle 

𝛃෡ OR p-value 𝛃෡ OR p-value 

Intercept -0.328 0.720 0.637 0.342 1.408 0.696 
Regular travel 

mode 
Public transport 

Private car 
Motorcycle 

 
(RC) 

-1.421 
-0.853 

 
(RC) 
0.241 
0.426 

 
(RC) 

<0.001 
0.018 

 
(RC) 

-0.740 
-0.692 

 
(RC) 
0.477 
0.501 

 
(RC) 
0.035 
0.042 

Distance to cover 
Short distance 
Long distance 

 
(RC2) 
0.102 

 
(RC) 
1.107 

 
(RC) 
0.741 

 
(RC) 
1.172 

 
(RC) 
3.228 

 
(RC) 
0.066 

Monthly Income 
Low 

Medium 
High 

 
0.147 
(RC) 
1.482 

 
1.158 
(RC) 
4.402 

 
0.716 
(RC) 
0.005 

 
-0.017 
(RC) 
0.603 

 
0.983 
(RC) 
1.828 

 
0.963 
(RC) 
0.242 

Education level 
Illiterate 

Primary to 
secondary 

Higher education 

 
1.261 
(RC) 
0.779 

 
3.529 
(RC) 
2.179 

 
0.023 
(RC) 
0.051 

 
1.089 
(RC) 
0.321 

 
2.971 
(RC) 
1.379 

 
0.041 
(RC) 
0.351 

Age group 
Young 

Middle-aged 
Old 

 
(RC) 

-1.011 
-0.961 

 
(RC) 
0.364 
0.383 

 
(RC) 
0.102 
0.193 

 
(RC) 

-2.233 
-2.925 

 
(RC) 
0.107 
0.054 

 
(RC) 
0.002 

<0.001 
Gender 
Male 

Female 

 
0.371 
(RC) 

 
1.449 
(RC) 

 
0.264 
(RC) 

 
0.557 
(RC) 

 
1.745 
(RC) 

 
0.076 
(RC) 

McFadden’s Rଶ 0.112 0.100 

Cox-Snell Rଶ 0.128 0.120 

Tjur’s Rଶ 0.140 0.124 

p-value of the 
Hosmer-

Lemeshow test 
0.66 (>0.05) 0.19 >0.05) 

1 Obtained from the Wald test; 2Reference category 



90 

 

As indicated in the survey, 37 % of our responders fall in the low-income category, while 55 % 
percent are from the medium-income group and the rest are from the high-income category (Figure 
14.14. a). 
Based on the findings from the interview currently, public transportation, personal vehicles, and 
Motorcycles almost have an equal share in meeting regular travel mode demands to work, school, 
and business in Delhi (Figure 14.14. b). 

Regarding current main barriers to NMT in Delhi, more than 75% of responders (Figure 14.14. a) 
are willing to switch over to NMT if their concerns about safety, inadequate infrastructure for 
NMT, and the nonexistent combination of NMT and rapid bus transit and rail systems are met. 
Survey results indicate that urban road design regarding NMT infrastructure and safety should be 
prioritized in transportation planning especially adding dedicated cycling/ walking lanes.  

A combination of NMT and rapid bus transit and rail systems will help encourage people to use 
NMT as a regular mode of transportation. In addition, safe and convenient cycling and walking 
infrastructure and dedicated walking/cycling lanes can also encourage people in Delhi to switch 
over to NMT. 

          

(a)                                                                                (b) 

 

(c) 

Figure 4. 14 : (a) Monthly income level of responders, (b) Mandatory regular travel mode, (c) Main 
barriers to choose NMT as regular mode of travel. 
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Since regular travel mode, monthly income, and education level are significant factors in the 
willingness to walk in Delhi, India. On the other hand, the LR model for the willingness to bicycle 
revealed the significant association of regular travel mode, distance to cover, education level, 
gender, and age group with such behavior are depicted in Table 4-5. The OR for private car users 
was 0.241, which is less than one. Hence, those who used private cars as their regular travel mode 
in Delhi have significantly (1 − 0.241) × 100% = 75.9% lower odds of preferring to walk than 
public transport users. Similarly, motorcycle users had 57.4% lower odds of willingness to walk 
regularly as a travel mode compared to those who used public transport. A lower likelihood of 
bicycling was observed for both the regular users of private cars and motorcycles than those of 
public transport. Distance to cover could significantly influence only the willingness to bicycle. 
For longer distances (more than 2 km), people preferred more (OR=3.228>1 and p<0.10) to use 
bicycling as a regular travel mode than shorter distances. Compared to the medium-income group, 
people with high incomes tended more to choose walking as their travel mode in daily life. Both 
illiterate and highly educated people preferred walking more than those who completed their 
primary or secondary education. On the other hand, only illiterate people were more likely to 
bicycle than primary to secondary educated ones. Both middle-aged and older people had a lower 
preference for bicycling than the younger group. On the other hand, compared to their female 
counterparts, males have a higher willingness to use bicycles in their daily lives. The p values of 
the Hosmer-Lemeshow test for both the LR models are greater than 0.05, which indicates that the 
corresponding models did not provide a poor fit to the data [60]. 
     Based on the NMT willingness analysis findings, the average per capita time spent on walking 
and bicycling were estimated as 11.1 and 2.3 minutes, respectively, which is equal to cover an 
extra walking and cycling distance of 1.18 kilometers per day based on the average walking and 
cycling speed in Delhi. These results were further analyzed to evaluate the environmental and 
health impacts achieved by improving the infrastructure so that people in Delhi can adopt active 
transport as per their willingness. 
 

4.3.2. Avoided PM2.5 exposure from replacing distance traveled by private vehicles with 
NMT: 
      The near roadway concentration model described in section 4.2.2 was applied to selected traffic 
zones (0.2 x 1 km2 area) in all 11 districts of Delhi while considering the population density in 
each district, in order to evaluate the impact of the avoided PM2.5 exposure from replacing distance 
traveled by private vehicles with walking and cycling. The PM2.5 concentration is estimated by the 
CalRoads software to be 0.2 km downwind from vehicles to the near roadway passengers. The 
heatmaps of avoided PM2.5 exposure in the selected traffic zones in different districts in Delhi in 
shown in Figure 4.14. Per hour avoided vehicle kilometers (VKM) due to an increase in NMT and 
average near-road avoided PM2.5 exposure in different districts in Delhi are shown in Table 4-6. 
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Table 4- 6. Per hour avoided VKM and average near road avoided PM2.5 exposure in different 
districts in Delhi. 

District 

Traffic 

Zone 
Per hour avoided 

VKM 
Near road avoided 

concentration) µg/m3 

1. Northwest Rohtak Road 261.3 0.62 

2. South Aurbindo Marg 235.3 0.62 

3. West Mahatma Gandhi 
Marg 232.9 

0.62 

4. Southwest Azad Hind Fauz Marg 172.2 0.52 

5. Northeast Wazirabad Road 226.3 0.60 

6. East Vikas Marg 167.7 0.52 

7. North GT Karnal Road 200.9 0.56 

8. Central Bahadur Shah Zafar 
Marg 69.6 

0.45 

9. New Delhi Vandemataram Marg 173.1 0.52 

10. Southeast Mathura Road 291.7 0.59 

11. Shahdara Chaudhary Charan 
Singh Marg (AV) 322.8 

0.64 

 



93 

 

 
Figure 4. 15. Heatmaps of avoided PM2.5 exposure in the selected traffic zones of Delhi. 

4.3.3. Health and economic co-benefits: 
      Figure 4.15 (a) shows avoided mortalities and morbidities related to increased PA per km2 in 
different districts of Delhi. Northeast Delhi has the highest health benefits due to high population 
density, while the New Delhi district has the lowest health benefits due to less population density. 
More specifically, the NMT (walking and bicycling) use in areas with high population density, 
like the northeast (36155 people per kilometer), leads to a more significant reduction in the number 
of morbidity and mortality cases. Figure 4.15 (b) shows the avoided mortalities related to avoiding 
PM2.5 exposure near roadways in the various districts. The pooled values of RR used in health 
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impact assessment for both PA and near-roadway avoided PM2.5 exposure reported in Table 4-7 
and Table 4-8. Table 4-9 includes detailed avoided morbidities per km2 in different districts of 
Delhi. As previously stated, the avoided health burden in each district depends on both traffic and 
the population density along the nearest roadway. Therefore, despite the fact that the southeast, 
Shahdara, and north districts have the highest avoided PM2.5 emission and exposure due to their 
heavy traffic conditions, the northeast and central districts have the highest expected avoided 
health cases due to higher near-roadway population densities. 
 
 
 

 
(a)                                                                     (b) 

Figure 4. 16. Estimated annual mortalities per km2 from (a) increased physical activity (b) near 
roadway avoided PM2.5 exposure. 

 

Table 4- 7. RR values per moderate PA extracted from the meta-analysis. 

 
Avoided 
mortality 

coronary  
heart diseases 

Depression Diabetes Cancer 

Pooled value of 
RR with 95% CI 

0.78 0.85 0.81 0.81 0.88 
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Table 4- 8. RR values per 10 μg reduction in PM2.5 concentration (meta-analysis). 

 
Avoided 
mortality 

Respiratory 
mortality 

Respiratory 
diseases  
hospital 
admissions 

COPD 
Cardiovascular 
mortality 

LC 

Pooled value of 
RR with 95% 
CI 

1.0069 1.0077 1.0114 1.0173 1.0076 1.0472 

 

Table 4- 9. Avoided morbidities (1km2) with increased physical activity decreased near road PM2.5 

exposure. 

District CVD Depression 
T2 
Diabetes Cancer COPD LC HA RM CVM 

Northwest 13.93 4.98 6.16 0.46 0.004 0.001 0.045 0.003 0.018 

South 18.67 6.67 8.26 0.62 0.005 0.001 0.059 0.004 0.024 

West 33.03 11.8 14.62 1.09 0.009 0.001 0.104 0.006 0.041 

Southwest 9.19 3.28 4.07 0.3 0.002 0.001 0.025 0.002 0.01 

Northeast 61.05 21.82 27.02 2.02 0.016 0.002 0.192 0.011 0.076 

East 45.81 16.37 20.28 1.52 0.01 0.001 0.121 0.007 0.048 

North 24.58 8.78 10.88 0.81 0.006 0.001 0.071 0.004 0.028 

Central 46.82 16.73 20.72 1.55 0.009 0.001 0.109 0.006 0.043 

New Delhi 6.85 2.44 3.03 0.22 0.002 0.001 0.018 0.001 0.008 

Southeast 25.33 9.05 11.21 0.84 0.006 0.001 0.073 0.004 0.029 

Shahdara 9.19 3.28 4.07 0.3 0.003 0.001 0.03 0.002 0.012 

 
    The findings were then generalized to the entire Delhi, taking into account the total area of the 
route network length of 16200 km in Delhi [58-[62]. The total avoided CO2 emissions and PM2.5 

exposure are estimated at 121.5 kilotons per year and 138.9 tons per year, respectively (The 
emission factors and avoided VKM are given in Table 4-10. Finally, the total avoided health and 
economic impacts of physical activity and associated reduction in near roadway PM2.5 exposure 
are given in Table 4-11. 
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Table 4- 10. Total annual avoided PM2.5 and CO2 in Delhi based on reduced VKM.  

Vehicle Type 

Total VKM 
per year 
(Million) 

Reduced 
VKM 

(Million) 
Reduced 

PM2.5 (Ton) 

Reduced 
CO2 (Kio 

Ton) 

Car 6358.93 426.69 64.01 73.8 

Motorcycle (2-
wheeler) 11624.63 780.02 56.95 

35.6 

Three wheelers 2430.98 163.12 17.95 12.1 

Total 20414.53 1369.82 138.9 121.5 

      From : [17], [62–65]. 

Table 4- 11. Avoided mortality, morbidity and economic impacts of improved PA and near 
roadway avoided PM2.5 exposure resulting from implementing NMT in Delhi. 

Mortality Morbidities 
Economic 
impacts 

All causes  
Mortality 
 (PA and AP) 

CHD Depression 
T2 

Diabetes 
Cancer COPD LC HA 

Avoided cost 
(million USD) 

17529  39,707 14,190 17,575 1,319 20 1.8 248 4,869.8 

 

       The results indicate that, compared to the near roadway avoided PM2.5 exposure, the 
increased PA has a higher impact on preventing annual mortalities and morbidities in different 
districts of Delhi. This can be attributed to higher values of the relative risks of PA, leading to 
higher health impacts. In addition, the health benefits were seen as more prominent in the 
districts where the population density is higher, both in case of increased PA and decreased air 
pollution. The results emphasize that an increase of 11.2 minutes of physical activity or 1.18 
km of extra distance walked per day can significantly reduce noncommunicable diseases 
related to mortalities and morbidities in Delhi. Comparing findings from this study with 
previous studies, which have predicted significant health and economic benefits of NMT policy 
implementation in India and other countries, emphasizes that the health benefits of active 
transport can outweigh the costs of NMT infrastructure requirements [63]. Similar studies in 
India have shown that active transportation can lower India's health burden by 90,000 DALYs 
annually [35] and integrating active transportation with low-emission vehicles can save 12995 
DALYs in Delhi [36].  While considering economic impacts, a 10% shift to active mobility 
options has been indicated to save 15 billion euros annually in Europe [32].  
      Table 4.12 shows a comparative analysis of avoided mortality per metabolic equivalent 
(MET) in per million population between this study and previous studies from different regions 
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of the world. For this comparative analysis, all cause baseline mortality rate per million due to 
physical inactivity [72]-[73] was used to calculate baseline mortalities due to physical 
inactivity and then compared with a decrease in mortality per million population with an 
increase in 1 MET per individual. The results of the analysis indicate a slightly higher rate of 
mortality due to physical inactivity, lifestyle, and other environmental factors in cities from 
lower-income (Delhi) and middle-income countries (Shanghai) than in higher-income 
countries in Japan (Miyagi), which is consistent with previous studies indicating the majority 
of people in low-income nations appear to fall short of the recommended levels of physical 
activity. 

 
Table 4. 12. Comparative analysis of per minute avoided mortalities of physical activity 

between the case of Delhi in this study and different regions of the world  

Region RR Avoided mortality Per metabolic 
equivalent (MET) (per million population) 

Based on moderate physical activity (150 
minutes of physical activity per week or 10 

METs per week) 

Ref 

China (Shanghai) 0.78 15.8 [66] 

UK (Norfolk) 0.82 12.9 [67] 

USA (Nationwide 
cohort study) 

0.78 15.8 [68] 

Finland (Nationwide 
Twin Cohort) 

0.80 14.4 [69] 

Canada (national 
population-based study) 

0.82 12.9 [70] 

Japan (Miyagi) 0.90 7.2 [71] 

Delhi  0.78 15.8 (This 
study) 
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CHAPTER 5 

 Findings and Conclusion   

 

      Sustainable transportation is important to climate change strategies, particularly in developing 
countries, including India, which can be integrated into development goals such as health and well-
being, as well as clean energy and sustainable cities. Therefore, identifying tangible co-benefits to 
justify actions to fulfill climate change mitigation and other human development goals is critical. 
Public transportation, which runs on battery electricity and NMT, can be an essential component 
for such a strategy, as electric buses and NMT have a lower carbon footprint and provide 
substantial economic benefits in preventing health impacts. 

       In India, structural problems with transportation are manifested by pollution and congestion; 
thus, policymakers must choose the most effective solution for sustainable urban transportation, 
keeping in mind the physical environment, public health, and economic dimensions, including 
improving economic efficiency and social welfare. The ambition of using electric buses to reduce 
pollution and congestion is being hampered by a lack of charging infrastructure and the need for 
extensive training. In the case of NMT, the space on the road is shared by motorized and non-
powered modes in Delhi, bicycle infrastructure has not been constructed, and pedestrian 
infrastructure has received little attention in most Indian cities, including Delhi. In most Indian 
cities, including Delhi, NMT means are important in meeting transportation needs. The reliance 
on NMT transit modes will increase in the foreseeable future if safety and infrastructure needs are 
met, notwithstanding the increased economic prosperity and interest in owning motor vehicles in 
urban areas. The provision of infrastructure for nonmotorized modes has not received enough 
attention required in transportation planning studies carried out to date in major cities; therefore, 
policymakers should pay special attention to this aspect.  

       Considering our findings and the current infrastructure regarding battery-electric public 
transport and NMT (Walking and cycling) in Delhi, the electrification of the bus fleet in the urban 
transportation system in Delhi is a challenging and cost-intensive scenario for the local government 
due to the cost of the battery and required investments in constructing charging stations. Although 
costs are substantial, failing to recognize the co-benefits, particularly benefits that outweigh the 
costs (e.g., public health), can lead to flawed policy implementation. Deploying battery swapping 
and charging stations across Delhi can help implement BEB transportation. While creating NMT 
facilities in Delhi may also be costly due to the need to build and improve bike lanes, paths, and 
crosswalks as well as design safer roads for NMT transportation. However, massive savings in 
annual health costs may outweigh investments in infrastructure in just a couple of years. 
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5.1.    Major findings: 
5.1.1. Public health, environmental and economic benefits of the utilization of BEB 
transportation:   

 The utilization of the new BEB fleet leads to a 74.67% reduction in the total pollutant 
emissions from the existing bus fleet in Delhi. 

 The results revealed a significant reduction of 315 kt/y in CO2 emission and 44 t/y of 
avoided PM2.5 emission from the utilization of the BEB fleet in the Delhi urban 
transportation system.  

 The expected reduction in mortality and respiratory diseases related hospital admission 
cases from the avoided near roadway PM2.5 exposure ranges from 67 (low) to 1370 (high) and 
137 (low) to 2808 (high), respectively, which will be associated with the considerable 
economic benefits for the local government in Delhi.  

 

5.1.2. NMT (walking and cycling) as a part of the Sustainable transportation strategy in 
Delhi: 

 Based on the NMT willingness analysis findings, the average per capita time spent on 
walking and bicycling were estimated as 11.1 and 2.3 min, respectively, which is equal to 
covering an extra walking and cycling distance of 1.18 km per day based on the average 
walking and cycling speed in Delhi.  

 The increased physical activity and avoiding exposure to PM2.5 near roadways are expected 
to reduce the mortality rate by 17529 cases in addition to reducing other morbidities, as 
indicated in this study, while physical activity plays a significant role in reducing 
mortalities and morbidities.  

 The associated cost savings from mortalities were approximately 4,869.8 million USD 
annually, which will positively impact Delhi's local government's finances. 

 

5.1.3. Valuing co-benefits to make low transport emission investments in Delhi: 

 The monetization of health co-benefits significantly improves the financial viability of the 
transport low emissions strategies development in Delhi.  

 As explained in chapter 3, the electric bus fleet could replace only 74.67% of the total 
existing CNG bus fleet under the same traveling condition. Thus, extra electric buses would 
be needed, if the local government intends to replace all CNG buses. Although, a 100% 
replacement scenario results in additional capital investment, the expected economic 
benefits from the avoided health outcome, would recover a major part of these initial costs. 
Based on the estimated economic benefits from the avoided health outcome, the BEB fleet 
can cover all initial capital cost, which is estimated at USD 1,784 million, within six years 
of implementation of the electrification of public transport in Delhi, taking into account its 
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lower operational and maintenance costs per kilometer compared to the conventional 
vehicles.  

 The average investment in walking and bike lanes is around 1 million USD/km in Delhi. 
However, findings in chapter 4 indicated that the average saving from improving public 
health due to increased physical activity would be 0.3 million USD/ km per year which 
makes a strong case for the implementation of NMT infrastructure in Delhi. 

 

5.2.Study limitations: 
5.2.1. Uncertainty of near roadway assessment for PM2.5 exposure: 
    Estimates of emissions, pollutant concentrations, population, and disease rates affect 
mortality due to air pollution caused by transportation. There are uncertainties at every 
analytical stage of the health effects of air pollution, including identifying emissions, pollutant 
concentrations, and associated health implications. The size and spatial distribution of 
transportation emissions also bring important uncertainties, so more details focus on near 
roadway stations for assessment for PM2.5 should be done. 

 
5.2.2 The detailed cost analysis of the studied low-emission scenarios: 
    In this study, the cost analysis of the proposed scenarios was not discussed. For example, 
the availability of charging infrastructure in Delhi is an important issue that will affect the 
future implementation of this policy. Charging systems is the most important part of electric 
mobility, but it is also one of the most significant perceived impediments to EV adoption in 
Delhi due to low availability and long charging periods. To carry out the Delhi Electric Vehicle 
Policy, this goal necessitates the simultaneous penetration of charging stations across Delhi, as 
there are currently only 72 public charging stations in Delhi. Therefore, setting up charging 
infrastructure at the public level needs to be analyzed in detail, before implementing a battery-
electric public transport system in Delhi.   

 
5.2.3. The lifecycle emissions of electricity generation: 
    The lifecycle emissions of electricity generation (from coal) were not addressed in this study. 
The results revealed that the additional electricity demand by the BEBs is considerable and is 
about 1.3 % of Delhi's current total electricity consumption, 34% of which should be supplied 
from the coal-fired power plants. Therefore, to maximize the environmental and health co-
benefits from the electrification of the whole transport system in Delhi, the local government 
needs to decrease its reliance on fossil fuels for electricity generation and switch over to 
renewable sources for electricity generation.  
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5.2.4.The lack of data availability on RR and limits of the meta-analysis: 
    Data availability to calculate RR in the case of the Indian scenario remains a challenge due 
to limited access to the historical epidemiological statistics on different disease and mortality 
rates and also data for the hospital admission costs. Data availability to calculate RR related to 
physical activity and health impacts specific to the Indian scenario was also a challenge, as few 
studies are available. Moreover, most of the health impact studies on air pollution in India are 
currently based on the time-series analysis undertaken in large cities through primary research 
only.  In order to tackle this challenge, this study mostly relied on available data from China, 
Europe, the USA, and other Asian countries that may not be 100% applicable in the case of 
the Indian scenario. 

 

5.3. Future work 
The current study has only quantified the health and economic co-benefits of Delhi's low-

carbon transportation system (NMT and BEBs). However, other co-benefits of sustainable 
transport systems, which include a reduction in traffic congestion, road accident-related mortalities 
and injuries, noise reduction, increased energy efficiency, Local job creation, and other social 
benefits, could be considered as future work of this research. 

 

 

 


