
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Scalable and Fast Method for IoT Malware
Clustering

何, 天祥

https://hdl.handle.net/2324/6787629

出版情報：九州大学, 2022, 博士（工学）, 課程博士
バージョン：
権利関係：

Kyushu University

Doctoral Thesis

Scalable and Fast Method for IoT Malware
Clustering

Author:
Tianxiang He

Supervisor:
Prof. Jun’ichi Takeuchi

Department of Information Science and Technology

Graduate School of Information Science and Electrical Engineering, Kyushu University

February 3, 2023

i

Contents

1 Introduction 1

2 Scalable and Fast Algorithm for Constructing a Phylogenetic Tree 3
2.1 Preliminaries . 3

2.1.1 Normalized compression distance . 3

2.1.2 Neighbor-joining method . 3

2.2 Related Works . 4

2.2.1 binary-level static analysis . 4

phylogenetic tree for malware clustering 5

large-scale malware clustering . 6

2.2.2 The Algorithm for Estimating a Phylogenetic Tree of Big Data 6

2.2.3 Phylogenetic Tree Construction Algorithm 6

3 Clustering Algorithm of Phylogenetic Tree with Application to IoT Malware Cluster-
ing 10
3.1 Clustering Algorithm . 10

3.2 Experiment and Results . 13

3.2.1 Dataset . 13

3.2.2 Experimental Setup . 13

3.2.3 Evaluation Metrics . 14

3.2.4 Evaluation results with 4,000 Specimens 14

3.2.5 Evaluation results with 65,494 Specimens 16

4 Online Processing of the Clustering and Current Work in Progress 19
4.1 Online Processing Algorithm . 19

4.1.1 Experiment of online processing . 20

4.2 Attempts on New Seed Set Selection Method 22

4.2.1 Experiment of the new seed selection method 23

4.3 Investigation about user-code-only binary . 24

5 Hierarchical Clustering of IoT Malware Using Active Data Selection 26
5.1 Active Clustering Algorithm . 26

Problem Setting . 27

5.2 Clustering . 28

5.3 Active Data Selection . 28

5.4 A Mistake of the Original Paper . 30

5.5 Performance Evaluation with Experiment . 31

Dataset . 31

5.5.1 Experimental Setup . 31

5.5.2 Evaluation Metrics . 32

5.5.3 Evaluation Results . 32

5.5.4 To Overcome the Bottleneck . 33

ii

6 Conclusion 34

1

Chapter 1

Introduction

IoT malware has been a rapid proliferation in recent years, and a large amount of malware is

newly spread every day. Honeypots and anti-malware platforms (such as VirusTotal 1) collect

large amounts of malware samples to keep track of popular malware trends. By analyzing these

malware samples, it is possible to know the threat of malware to cyberspace. To analyze the

massive amount of malware specimens, efficient malware analysis methods are required.

Clustering is a compelling method to analyze these large-scale malware sets efficiently. In

this paper, we focus on clustering based on a phylogenetic tree of malware specimens and discuss

efficient methods of constructing phylogenetic trees. We have a particular interest in malware’s

phylogenetic tree because it can not only cluster malware but also investigate the evolutionary

relationships of malware specimens. However, conventional methods to construct a phylogenetic

tree are very time-consuming when facing a large malware set. Therefore, we propose a new

phylogenetic tree construction method from a large-scale malware specimen set Our method is

outlined as follows: we first calculate the distances between malware specimens and then use

these distances to create a phylogenetic tree. For clustering, we divide the phylogenetic tree into

appropriate subtrees, each of which is a cluster.

We use the normalized compression distance (NCD) to measure the similarity (distance) be-

tween execution-type malware binaries. NCD does not require domain knowledge and can be

applied to many file formats. NCD measures the distance based on the similarity of two mal-

ware’s binary sequences. The higher the similarity between the two binary sequences, the smaller

the NCD [6, 9]. Specimens of the same IoT malware family are often created based on the same

source code with minor modifications [2]. Therefore, these specimens have high binary similari-

ties and can be expected to be divided into close clusters.

A typical method to create a phylogenetic tree is the neighbor-joining method [33]. The

neighbor-joining method takes a distance matrix over all the objects (malware binaries for our

case) as an input and outputs a phylogenetic tree with the tree distance approximating the input

distance matrix. However, the neighbor-joining method requires calculating distances of all the

pairs of objects, which means (N2 + N)/2 times of compression attempts in our case. Here, N is

the number of objects. The computation time of the NCD matrix is problematic when N is large.

Therefore, We proposed a scalable method to construct a phylogenetic tree [13, 14]. Then, we

execute a clustering algorithm based on the phylogenetic tree.

In our phylogenetic tree construction method, by calculating only a tiny part of the distance

matrix, we achieved good scalability while maintaining the accuracy of clustering. Instead of cre-

ating large phylogenetic trees all at once, our basic idea was to create small phylogenetic trees and

combine them into one big phylogenetic tree. Using the abovementioned algorithm, we can create

a phylogenetic tree with far fewer NCD computations than (N2 + N)/2 times. Our experiments

using 65,494 IoT malware specimens show that our fast algorithm reduced the computational cost

by 97.52 % compared to the neighbor-joining method.

Clustering is done by appropriately dividing the phylogenetic tree into subtrees. In our work [13],

we first applied the Inconsistency Coefficient [3] as the division criterion. It worked well

1https://www.virustotal.com

Chapter 1. Introduction 2

on a phylogenetic tree consisting of 4,109 ARM-architecture IoT malware. But when we ap-

plied the Inconsistency Coefficient to a much larger, multi-architecture malware set, the

clustering accuracy dropped significantly. Hence here, We applied the minimum description

length (MDL) criterion as the division criterion [32]. The MDL Criterion decides whether to

divide a cluster (subtree) into smaller clusters. We used a large-scale dataset containing 65,494

malware specimens to evaluate our method’s scalability. By improving the clustering algorithm

using MDL Criterion, our clustering algorithm achieved significantly higher accuracy than the

Inconsistency Coefficient. In the best case, the family name clustering accuracy was 95.5%

and the architecture name accuracy was 99.3%.

Furthermore, considering that new specimens are added to the dataset daily or weekly, re-

constructing the phylogenetic tree every time new specimens are collected is time-consuming and

resource-intensive. Therefore, we also proposed an online processing algorithm that directly adds

new specimens to the clusters without fully reconstructing the phylogenetic tree or clustering it

again. Our experiments using 65,494 IoT malware specimens show that the online processing

algorithm reduced 33% of the computational cost than the batch processing algorithm while main-

taining a clustering accuracy of 94%.

We also attempted to furthermore improve the phylogenetic tree construction algorithm by

designing a new seed set selection method. The seed set is like the core of our phylogenetic

tree. It is randomly selected so that the seed set can represent the whole dataset. We tried to

design a smarter method of seed set selection. Until now, we attempted many new methods and

among them, only one method achieved the same level of clustering accuracy with a much smaller

variance. Although this result is far from what we expected, we showed the possibility and an idea

to improve the clustering accuracy by proposing a new seed set selection method.

Besides the phylogenetic tree construction, we have a different approach for malware clus-

tering by applying active learning. In our phylogenetic tree construction algorithm, the distance

matrix is partly calculated based on the randomly selected seed set. In this research, we applied

active learning to decide where of the distance matrix to calculate [15]. The active clustering al-

gorithm has been proposed in [16] and [45]. In this research, we implementatd [45]’s method and

evaluated it with 3,008 IoT malware. Our experiment showed that the active clustering algorithm

observed about 20% lesser NCD than random sampling. However, the runtime of the combina-

torial optimization algorithm is too long, even if we change the implementation language to a

much faster one "Julia". Therefore, we showed that the active clustering algorithm is effective but

currently the run-time problem makes it not very scalable.

3

Chapter 2

Scalable and Fast Algorithm for
Constructing a Phylogenetic Tree

In this chapter, we introduce the Scalable and Fast Algorithm for Constructing a Phylogenetic Tree

that we proposed in [13]

2.1 Preliminaries

In this section, we first introduce two existing methods we applied in our study.

2.1.1 Normalized compression distance

In this study, we used NCD to measure the similarity (i.e., distance) between IoT malware bina-

ries. NCD is an information-theoretic measure of the similarity between two objects [22]. The

similarity is calculated based on the compression rate of the objects. NCD measures the similarity

of objects regardless of their format or structure, e.g., documents, pictures, programs, music, etc.

For two objects x and y, NCD is defined as follows:

NCD(x, y) =
C(xy) −min{C(x), C(y)}

max{C(x), C(y)} ,

where C(x) is the length of x that is compressed by compression program C, and xy is the con-

catenation of objects x and y. When compressing xy, the compression program will first compress

x and then use the information of x to compress y. Thus, the more similar x and y are, the higher

is the compression rate of xy. This means that the value of C(xy) will be similar to that of C(x)
or C(y) and result in the NCD value close to zero.

2.1.2 Neighbor-joining method

The neighbor-joining method [33] is an algorithm for creating a phylogenetic tree T using a dis-

tance matrix d defined on a finite set L as input. Every leaf of the phylogenetic tree represents an

object of L. The tree distance between two nodes of T is defined by the total branch length of the

path between the two nodes. The tree distance is an approximation of the input distance matrix d.

In the neighbor-joining method, two nodes i and j that minimize S i j, defined below, join a

newly created node p.

S i j =
1

2(N − 2)

∑
k∈L\{i, j}

(dik + d jk) +
1

2
di j +

1

N − 2

∑
a,b∈L\{i, j}

dab,

where di j is the (i, j) entry of the given distance matrix d. Nodes i and j are deleted from the set L,

and node p is added instead. This step is repeated until all the nodes are linked. The pseudocode

of the neighbor-joining method is shown in Algorithm 1, where D is the set of branch lengths.

Chapter 2. Scalable and Fast Algorithm for Constructing a Phylogenetic Tree 4

Algorithm 1 Neighbor-joining method

Require: finite dataset L with a distance matrix (di j) over L × L
Ensure: phylogenetic tree T
1: while |L| ≥ 2 do
2: choose (u, v) (u � v) which minimizes S u,v

3: create a new node p, V := V ∪ {u, v, p}, E = E ∪ {{u, p}, {v, p}}
4: branch length of{u, p} is defined as:

Du,p = (du,v +
∑

k∈L\{u,v}(duk−dvk)
|L|−2)/2, L := (L \ {u, v}) ∪ {p}

5: branch length of {v, p} is defined as:

Dv,p = (du,v +
∑

k∈L\{u,v}(dvk−duk)
|L|−2)/2

6: for w ∈ L \ {p}, d(w, p) := (1/2)(du,w + dv,w − du,v)
7: end while
8: return T = (V , E), D

2.2 Related Works

2.2.1 binary-level static analysis

We applied NCD for feature extraction that directly calculates the similarities between malware’s

byte sequences. Other binary-level feature extraction methods include N-grams [20, 30, 44],

entropy-based [12, 28], and image-based techniques [5, 7, 24], which convert a file’s entire se-

quence of bytes into a picture, where each byte represents the grayscale of a pixel.

Compared to N-gram, N-gram lacks long-term dependence, because it only considers the N-1

bytes before the current byte. Moreover, in practice, N is usually ranged from 2 to 8 due to the

computation complexity [20]. On the contrary, NCD’s feature extraction is based on the compres-

sion algorithm. In our method, we chose Lempel–Ziv–Markov chain algorithm (LZMA) as the

compression algorithm. Markov chain algorithm has much longer-term dependence than N-gram

so the Markov chain algorithm can match more same patterns in the byte sequences. Furthermore,

N-gram can only use N-byte words as the dictionary, but LZMA has a more flexible dictionary.

In the entropy-based feature extraction, information in the byte sequences will lose while

converting the byte sequences into entropy. Different byte sequences can result in the same entropy

value.

The image-based method converts byte sequences to an image. Each byte represents the grey

scale [0-255] of a pixel. The image can later be used as input for Neural Networks or other

methods. The advantage of this method is its robustness [1]. Our method and N-gram match

Table 2.1: Summary of the studies constructing phylogenetic tree for malware

clustering

Reference
Malware analysis Phylogenetic tree Scala-

bilityAnalysis method Feature extraction Size construction method

Karim et al.

2005 [21]
Static analysis

N-gram

and N-perm
170 UPGMA No

Vinod et al.

2012 [41]
Static analysis NCD 790 Not mentioned No

Hsiao et al.

2016 [18]
Dynamic analysis system call 1,200

unweighted pair

group
No

Wehner 2007 [40] Static analysis IDA 1,200 neighbor-joining No

Bailey et al.

2007 [3]
Dynamic analysis Behaviors 3,700 The shortest distance No

Cozzi et al.

2020 [10]

Both dynamic

and static analysis
Code-based 36,574

HNSW + the minimum

spanning tree
Yes

Chapter 2. Scalable and Fast Algorithm for Constructing a Phylogenetic Tree 5

Table 2.2: Summary of the studies about large-scale malware clustering

Reference
Malware analysis

Size Clustering method
Scala-

bilityAnalysis method Feature extraction

Dam et al.

2021 [11]
Static analysis System call graph 21,000 graph clustering Yes

Ricck et al.

2011 [31]
Dynamic analysis Behavior 33,698

Prototype-based

clustering
Yes

Torabi et al.

2021 [39]
Static analysis Strings-base 49,272 ClusterONE Yes

Bayer et al.

2009 [4]
Dynamic analysis

System call and

control flow
75,692 LSH Yes

Hu et al. 2013 [19] Dynamic analysis Code instruction 130,000
Prototype-based

clustering
Yes

Oliver et al.

2020 [26]
Static analysis 3-grams and TLSH 10 million HAC-T Yes

exactly the same pattern between byte sequences, while Neural Networks can deal with minor

alterations.

phylogenetic tree for malware clustering

Many studies have applied the phylogenetic tree to cluster malware samples and help the analyst to

better understand the evolutionary relationships between malware. But almost all of these studies

analyzed small malware sets. Because their methods require the computation of the whole distance

matrix, the O(N2) complexity makes it impossible to apply these methods to a large malware set.

A summary table of related studies constructing a phylogenetic tree is shown in Table 2.1.

Karim et al. [21] proposed a method to calculate the distance between all malware pairs using

n-perms and created a phylogenetic tree. Vinod et al. [41] also used NCD to calculate the distance

between 790 malware samples. They did not mention their method for constructing the phyloge-

netic tree, but they noted that they calculated all pairs of malware’s distance. In [18], Hsiao et

al. extracted malware features based on dynamic analysis, and the unweighted pair group method

with arithmetic mean was used to construct their phylogenetic tree. The size of the dataset was

1,200. Wehner [40] used IDA, a binary code analysis tool for reverse engineering, to transfer

executable malware to assembly code and calculated the similarity based on it. They used the

neighbor-joining method to construct the phylogenetic tree. Their experiment contained 1,200

malware specimens. Bailey et al. [3] proposed a representative automatic clustering method based

on the dynamic analysis of malware. Using the dynamic analysis log of 3,700 Windows malware

samples as input, the NCD matrix between the operation log data of all the samples was calculated,

and then a phylogenetic tree was created using the shortest distance method. In addition, they pro-

posed a clustering criterion called Inconsistency Coefficient and performed hierarchical

clustering based on it. We also used it in our studies. However, there was a problem in that the

clustering accuracy dropped significantly for a large-scale, multi-architecture phylogenetic tree.

Therefore, in this study, we improved the clustering method and performed clustering using the

MDL Criterion. All these studies calculated all pairs of malware distance, because any O(N2)
algorithm does not scale well, they are not suitable for constructing large-scale phylogenetic trees.

To the best of our knowledge, [10] is the only related study on the construction of large-scale

phylogenetic trees. Cozzi et al. separately constructed phylogenetic trees for different architec-

tures, and the largest one contains 36 thousand malware samples. They used hierarchical navigable

small world graphs (HNSW) to reduce the distance computation significantly. Compared to their

study, our phylogenetic tree almost doubles their size.

Chapter 2. Scalable and Fast Algorithm for Constructing a Phylogenetic Tree 6

large-scale malware clustering

Although there is only one related study about large-scale phylogenetic tree construction, there

exist several approaches to reduce the computational cost of large-scale malware clustering. A

summary table of large-scale malware clustering is shown in Table 2.2.

Bayer et al. [4] proposed a large-scale clustering method based on dynamic analysis. They

used the malware dynamic analysis log as input for clustering and performed clustering by calcu-

lating approximately 2% of the distance matrix without calculating the distance between all data

pairs using the locality sensitive hash (LSH). However, like Bailey et al.’s method, dynamic analy-

sis requires several minutes to run each malware specimen. By contrast, our static analysis method

does not require the malware to be executed.

Olivr et al. [26] proposed a clustering method based on a static analysis that uses trend locality

sensitive hashing (TLSH) to transfer every malware binary into fixed-length hash digests. They

then clustered all digests into clusters using a clustering method called HAC-T within O(N log N)
time. Torabi et al. [39] proposed a strings-based method to analyse and cluster 49,272 IoT mal-

ware. They extracted useful strings and calculated its similarities using Jaccard and overlap simi-

larity coefficients. Moreover, they applied ClusterONE [42] algorithm to perform clustering anal-

ysis. Ricck et al. [31] and Hu et al. [19] took a different approach: a prototype-based clustering

algorithm that reduces runtime complexity by performing clustering only on representative sam-

ples (prototypes). The remaining malware specimens are associated with their closest prototype in

the feature space. Dam et al. [11] also took a very different approach: they use IDA pro to extract

the system call graphs for each malware and transfer the graphs into vectors applying LSTM.

The neighbor-joining method requires a complete distance matrix to construct a phylogenetic

tree. The O(N2) computational cost is a problem when the dataset is large. Therefore, we proposed

a fast and scalable algorithm that only needs to calculate a small part of the distance matrix to

construct a phylogenetic tree. Our algorithm is an improvement of the algorithm for estimating a

phylogenetic tree of big data proposed in [43].

2.2.2 The Algorithm for Estimating a Phylogenetic Tree of Big Data

First, the algorithm randomly selects a seeds set S ⊂ L (|S | = k, |L| = N) with k (k << N).
Then, it calculates the distance matrix between S and L, and, using the distance matrix over S × S ,

creates a phylogenetic tree T using the neighbor-joining method. For each element z in L \ S ,

using the distance matrix over (L \ S) × S , it inserts z into the appropriate edge l that minimums

a cost function WT@l. We will not discuss the details of WT@l in this thesis so please refer [8]

for more details. Name Z(l) as the data set be inserted into l, then if |Z(l)| < h, it calculates the

distance matrix over Z(l) ∪ {l} and creates a phylogenetic tree TZ(l) with it using the neighbor-

joining method. It then combines TZ(l) and T . Here, h is a predefined threshold. l is included in

the recomputation to know which part of TZ(l) corresponds to T . If |Z(l)| > h, then it recursively

uses this algorithm for Z(l) ∪ l. The pseudocode of the algorithm is shown in Algorithm 2,

The computation order of calculating WT@l is O(|S |4 ∗ |L|), it’s very time-consuming when |S |
is large. Therefore, we improved this part of the algorithm. Instead of inserting data in L \ S into

the edges of T , we link the data to leaves of T .

2.2.3 Phylogenetic Tree Construction Algorithm

The improved algorithm is outlined as follows. The schematic diagram and the flow chart are

shown in Fig. 2.2 and Fig. 2.3, respectively. First, the algorithm randomly selects a seeds set

S ⊂ L (|S | = k, |L| = N) with k (k << N). Then, it calculates the distance matrix between S
and L, and, using the distance matrix over S × S , creates a phylogenetic tree T using the neighbor-

joining method. For each element z in L \ S , using the distance matrix over (L \ S) × S , it links it

with the leaf e of T , which is nearest to the element z.

Chapter 2. Scalable and Fast Algorithm for Constructing a Phylogenetic Tree 7

Algorithm 2 The Algorithm for Estimating a Phylogenetic Tree of Big Data

Require: finite dataset L, size k of seeds set, threshold h
Ensure: phylogenetic tree T
1: choose a certain seeds set S ⊂ L with |S | = k
2: calculate the distances di j for (i, j) ∈ S × L
3: create a phylogenetic tree T for S by the Neighbor-joining method using di j
4: for l ∈ ∂T do
5: Z(l) = ∅
6: end for
7: for z ∈ L\S do
8: Z(l) = Z(l) ∪ {z}, where l minimums WT@l
9: end for

10: for e ∈ ∂T do
11: if |Z(e)| > h then
12: recursively use Algorithm 2 for Z(l) ∪ {l}
13: end if
14: if 1 < |Z(l)| < h then
15: calculate di j for (i, j) ∈ (Z(l) ∪ {l})2 and create a phylogenetic tree TZ(l) with it.

16: replace the corresponding parts of T with TZ(l)
17: end if
18: end for

To increase the approximation accuracy of the tree distance between set L \ S , it recalculates

the tree distance recursively for each Z(e). If |Z(e)| < h, it calculates the distance matrix over

Z(e) ∪ {e} and creates a phylogenetic tree TZ(e) with it. It then combines TZ(e) and T . Here, h is

a predefined threshold. e is included in the recomputation to know which part of TZ(e) corresponds

to T . If |Z(e)| > h, then it recursively uses this algorithm for Z(e) ∪ e. The pseudocode of the

phylogenetic tree construction algorithm is shown in Algorithm 3, where ∂T denotes a set of all

leaves of T .

Algorithm 3 Fast Algorithm for Constructing a Phylogenetic Tree

Require: finite dataset L, size k of seeds set, threshold h
Ensure: phylogenetic tree T
1: choose a certain seeds set S ⊂ L with |S | = k
2: calculate the distances di j for (i, j) ∈ S × L
3: create a phylogenetic tree T for S by the Neighbor-joining method using di j
4: for e ∈ ∂T do
5: Z(e) = ∅
6: end for
7: for z ∈ L\S do
8: Z(e) = Z(e) ∪ {z} where e is nearest to z
9: end for

10: for e ∈ ∂T do
11: if |Z(e)| > h then
12: recursively use Algorithm 3 for Z(e) ∪ {e}
13: end if
14: if 1 < |Z(e)| < h then
15: calculate di j for (i, j) ∈ (Z(e) ∪ {e})2 and create a phylogenetic tree TZ(e) with it.

16: replace the corresponding parts of T with TZ(e)
17: end if
18: end for

Instead of calculating all pairs of distances, only the colored parts in Fig. 2.2 are calculated in

Algorithm 3. As a randomized algorithm, Algorithm 3’s computational cost is O(N2) in the worst

case. But in usual cases, the computational cost is reduced from O(N2) to O(N log N).
As a randomize algorithm, In the worst case, the time complexity of our algorithm is O(N2)

and the computation reduction rate is 0%. But in most case, the time complexity of our algorithm

is O(N log N) and the computation reduction rate is over 95%.

Chapter 2. Scalable and Fast Algorithm for Constructing a Phylogenetic Tree 8

Figure 2.1: The schematic diagram of the computation cost of our algorithm

Let N be the size of dataset L, k be the size of seeds set S and h be the threshold. The

worst case is that all data in set L\S are assigned to a single subset, for example Z(e0), and other

subsets Z(e1) to Z(ek−1) remain empty. And if this happens every time we recursively applying

our algorithm for subset Z(e0), our algorithm will finally calculate the whole distance matrix.

However, in usual case, these k data randomly picked from the dataset can represent the whole

dataset to some extent. for the convenience of computation, we assume that data in set L\S are

splited into Z(e0) to Z(ek−1) equally. N data are recursive divided into k subsets until the size

of the subset is smaller than h, so the recursive calculations will totally be log
N
h
k −1 times. The

computation cost of seed set is represented by the red parts in Fig.2.1, and it is calculated as:

1

2
k2(1 + k + k2 + ... + klog

N
h −1

k) =
1

2
k2 ∗ h − N

h(1 − k)
= O(N).

The computation cost for assigning the L\S is represented by the green parts, and it is calcu-

lated as:

k(N − k + N − k2 + ... + N − klog
N
h

k) = kN log
N
h
k −k2 h − N

h(1 − k)

= O(N log N).

Finally, the computation cost of neighbor-joining method is represented by the blue parts, and

it is calculated as:

1

2
h2 ∗ klog

N
h

k =
1

2
hN = O(N).

Figure 2.2: The schematic diagram of the phylogenetic tree construction algorithm

Chapter 2. Scalable and Fast Algorithm for Constructing a Phylogenetic Tree 9

Figure 2.3: The flow chart of the the phylogenetic tree construction algorithm

10

Chapter 3

Clustering Algorithm of Phylogenetic
Tree with Application to IoT Malware
Clustering

Since the burden on the analyst cannot be reduced by simply constructing the phylogenetic tree, it

is necessary to divide the phylogenetic tree into appropriate clusters. In this chapter, we introduce

our clustering algorithm and the experiments.

3.1 Clustering Algorithm

In the early phase of our study, we achieved a good clustering accuracy by using the clustering

method based on the

Inconsistency Coefficient [3], but when it was applied to a larger, multi-architecture dataset,

performance decreased considerably. To solve this problem, we changed the clustering method to

MDL Criterion [32].

The MDL Criterion is a model selection criterion based on information theory [32]. MDL
Criterion is defined as below:

MDL = −2 log L(θ̂; x) + m j log(n). (3.1)

where L is the likelihood function, θ is the maximum likelihood estimate, m j is the number of

dimensions of θ, n is the number of data samples. The description length includes the description

length of the model and the description length of the data when the model is given. When using

a complicated model, the data description length can be short, but the description length of the

model becomes long. When using a simple model, the description length of the model is short,

but the description length of the data becomes long. An appropriate model should be selected by

balancing both and minimizing the total description length.

The outline of the clustering algorithm is shown below. First, given one cluster C, it is assumed

that the data x contained in the cluster follows a normal distribution, and the description length

(DL) of the cluster is calculated by the following.

DL(C) = −2 log L(θ̂; x) + m j log(n)

= n log(
1

n

n∑
i=1

|xi − x̄|2) + m j log n + n(log 2π+ 1).

Here, L is the likelihood function, θ is the maximum likelihood estimate, n is the number of data

samples in the cluster, and m j is the number of dimensions of the parameter.

Chapter 3. Clustering Algorithm of Phylogenetic Tree with Application to IoT Malware

Clustering
11

In our model [14], this equation cannot be directly calculated because it is originally designed

for Euclidean space. We must approximate it as follows: xi − x̄ is calculated using the tree distance

between the malware i and the central malware x̄. The central malware is defined as the malware

that has the smallest sum of squares of the column elements in the cluster’s tree distance matrix. m j

becomes a free parameter that determines the fineness of the division of the phylogenetic tree. Note

that different information criteria like Akaike information criterion (AIC) or Bayesian information

criterion (BIC), or MDL Criterion are only different at the weight of m j, so since we regard m j as

a free parameter and use parameter tuning to choose the best m j, apply any information criterion

is actually the same.

The phylogenetic tree is a 3-regular graph (which means every node has three neighbors);

therefore, when dividing a cluster (subtree), it will be divided into three subtrees, viz., C1, C2, and C3.

We divide a cluster at its central node, which is defined as the node which has the smallest sum

of the squares of the column elements in the tree distance matrix. A schematic diagram of the

division example is shown in Figure 3.1 The description length of the divided cluster is calculated

by:

DL(C1, C2, C3) =
3∑

k=1

nk log(
1

nk

n∑
i=1

|xki − x̄k|2)

+ 3m j log n + n(log 2π+ 1).

Here, xk is the malware sample contained in the cluster Ck, and nk is its number. If DL(C1, C2, C3) >

(a) before dividing (b) after dividing

Figure 3.1: Example of dividing a cluster

DL(C), the cluster before the division is considered better, and the division is rejected. If DL(C1, C2, C3) <
DL(C), the cluster after division is considered to be better, and the cluster will be divided into three

clusters. The determination of division will continue for each small cluster.

While dividing the phylogenetic tree, many small clusters are formed. After completing the

division, we merge these small clusters into their respective close clusters. The distance between

clusters is defined by the tree distance between their central nodes. The merging process was

conducted targeting the clusters containing one hundred or fewer specimens with other clusters

in the order of closer distance. The merging is only done when the description length DL(C) of

the cluster after merging is smaller than the description length DL(C1, C2) of the clusters before

merging. The pseudocode of the algorithm is shown in Algorithm 4.

Chapter 3. Clustering Algorithm of Phylogenetic Tree with Application to IoT Malware

Clustering
12

Algorithm 4 Algorithm for Clustering a Phylogenetic Tree

Require: Phylogenetic tree T
Ensure: Clusters Tc
1: Function Cluster(C)

2: find the central node of C.

3: divide the cluster C into C1, C2, C3 at the central node.

4: if DL(C1, C2, C3) > DL(C) then
5: Tc = Tc∪C
6: end if
7: if DL(C1, C2, C3) < DL(C) then
8: Cluster(C1)

9: Cluster(C2)

10: Cluster(C3)

11: end if
12: EndFunction
13: Tc = ∅
14: Tc = Cluster(T)

15: for Ti ∈ Tc do
16: if |Ti| < 100 then
17: Tn= Ti’s nearest cluster

18: C= merge Ti and Tn
19: while count < 10 do
20: if DL(Ti, Tn) > DL(C) then
21: Tc= Tc − Ti − Tn
22: Tc = Tc∪C
23: break
24: else
25: Tn=Ti’s next nearest cluster

26: count++1

27: end if
28: end while
29: end if
30: end for

Chapter 3. Clustering Algorithm of Phylogenetic Tree with Application to IoT Malware

Clustering
13

3.2 Experiment and Results

In this section, we evaluate our algorithm with 65,494 IoT malware. In particular, it shows 1)

how well our fast algorithm reduces the computational cost compared with the neighbor-joining

method, 2) how much the MDL Criterion improves the clustering accuracy compared with

Inconsistency Coefficient.

Table 3.1: Breakdown of ISA and malware family names of the dataset

ISA
Malware Family

Total
Bashlite Mirai Tsunami mobidash Wroba others

ARM 7031 11492 298 360 301 2510 21992

MIPS 4918 6321 258 78 263 329 12167

Intel 4644 4971 720 597 237 1808 12977

x86 1753 753 141 180 59 697 3583

PowerPC 1913 2983 63 11 4970

Renesas 947 1907 49 5 2908

SPARC 1681 2226 26 4 3937

Motorola 929 1900 33 5 2867

others 16 51 2 24 93

Total 23832 32604 1588 1217 860 5393 65494

3.2.1 Dataset

We collected 65,494 Linux malware specimens (mostly IoT malware) from VirusTotal, from

November 2018 to February 2019. The breakdown of the dataset is shown in Table 3.1. The

malware family name was decided by AVClass [36]. AVClass is implemented as a Python tool to

label malware samples using VirusTotal JSON reports as input.

3.2.2 Experimental Setup

For performance comparison, we constructed phylogenetic trees with both the our fast algorithm

and the neighbor-joining method. We then clustered them with both the MDL Criterion and the

Inconsistency Coefficient, which is the method we applied in the early phase. To eval-

uate the clustering performance, we used 10-fold cross-validation. After clustering 90% of the

specimens, we assigned the remaining 10% to their nearest cluster to calculate the accuracy.

Moreover, to investigate the impact of dataset size on computational cost reduction and clus-

tering accuracy, the experiment included two parts: First, we evaluated our algorithm with a small

number of specimens: 4,000 specimens, which are randomly selected from the malware set. Sec-

ond, we evaluated our algorithm with 65,494 specimens.

The size k of the Seed set S was set to 1% of the number of specimens. The recursive compu-

tation threshold h was set to 5000. The clustering parameter m j was chosen from 4, 5, 7, 10, 15,

20, 25, 30.

We implemented our algorithm using R. The compression program xz command (version 5.1.0

alpha) of Linux was used to compress malware binaries for computing NCDs. xz adopted the

Lempel-Ziv-Markov chain algorithm (LZMA) [35] for compression.

As a benchmark for our algorithm, we used a conventional scheme: it first compressed every

pair of 65,494 malware binaries to compute the NCDs between them, and then constructed the

phylogenetic tree of the malware with the neighbor-joining method described in subsection 2.1.2.

Because of the large size of the dataset, using R’s library to run the neighbor-joining method was

Chapter 3. Clustering Algorithm of Phylogenetic Tree with Application to IoT Malware

Clustering
14

impossible; therefore, we used the library available for the textttJulia programming language as

an alternative [38].

The experiment was conducted on a 2.6 GHz Intel-Xenon-Gold-6126 CPU. In our algorithm

and the conventional scheme, the compression of NCD was computed in parallel with 80 threads.

3.2.3 Evaluation Metrics

1. RCR: To measure how well the compression attempts are reduced by our fast algorithm, we

define the rate of compression-attempt reduction RCR as follows:

RCR = (1 − # of compression attempts by ours

(N2 + N)/2
)

×100%

where N is the number of specimens, which equals 65,494. The RCR decreases as the

compression attempts are further reduced by our algorithm.

2. clustering accuracy: The clustering accuracy was evaluated by a 10-fold cross-validation.

Specifically, the malware set was divided into ten parts, and clusters were created using

90% of the specimens. Each of the remaining 10% test specimens was assigned to their

nearest cluster. If the family name of the cluster and the family name of the test specimen

is the same, then the test specimen is correctly clustered. The architecture name accuracy is

calculated in the same way. The distance between a specimen and cluster is defined by the

NCD between the specimen and the cluster’s center specimen. The cluster’s family name is

decided by the majority specimen’s family name in that cluster.

3.2.4 Evaluation results with 4,000 Specimens

This experiment is designed to investigate the impact of dataset size on RCR and clustering accu-

racy, which will be introduced in next subsubsection. In the experiment using 4,000 specimens,

the RCR was 94.01%. The clustering accuracy is shown in Fig. 3.2(a). The red line represents our

algorithm, and the green line represents the neighbor-joining method. After constructing the phy-

logenetic trees, they were both divided into clusters based on the MDL Criterion. In Fig. 3.2(a)

and Fig. 3.2(b), the horizontal axis is the parameter m j introduced in section 3.1 that determines

how finely the phylogenetic tree is divided. As m j becomes smaller, the phylogenetic tree is di-

vided into smaller clusters, whose number increases exponentially, and the clustering accuracy

also increases simultaneously. Our algorithm achieved a slightly higher family name clustering

accuracy than the neighbor-joining method, especially when m j is large.

For the same m j, a slightly smaller number of clusters were created using the neighbor-joining

method. Because the larger number of clusters, the more choices for test specimens, and the

higher clustering accuracy, we changed the horizontal axis variable to the number of clusters in

Fig. 3.3(c) and Fig. 3.3(d) to show the difference better. However, our algorithm still achieves a

slightly higher accuracy.

Fig. 3.2(c) and Fig. 3.2(d) show the accuracy achieved by our algorithm in clustering family

name and architecture name, respectively. For comparison, we used different methods to construct

and cluster the phylogenetic tree. The combinations of different methods are:

• Our fast algorithm and MDL Criterion, represented by the red line.

• Our fast algorithm and the Inconsistency Coefficient, represented by the blue line.

• The neighbor-joining method and MDL Criterion, represented by the green line.

Chapter 3. Clustering Algorithm of Phylogenetic Tree with Application to IoT Malware

Clustering
15

(a) m j-family name accuracy (b) m j-number of clusters

(c) family name accuracy comparison of 4 methods (d) architecture name accuracy comparison of 4

methods

Figure 3.2: Experimental results with 4,000 specimens and comparison be-

tween our algorithm, the neighbor-joining method, and the Inconsistency
Coefficient.

Chapter 3. Clustering Algorithm of Phylogenetic Tree with Application to IoT Malware

Clustering
16

• The neighbor-joining method and the Inconsistency Coefficient, represented by the

purple line.

Our fast algorithm combined with the MDL Criterion achieved the best clustering accuracy

among the four methods. The results show that our proposed algorithm successfully maintains

the clustering accuracies of the neighbor-joining method while significantly reducing the compu-

tational cost. Moreover, the clustering algorithm applying the MDL Criterion successfully im-

proved the clustering accuracies than the Inconsistency Coefficient. The Inconsistency
Coefficient is a clustering criterion designed by Bailey et al. [3] based on experience. We

believe our method achieved a better result because we have a better theoretical basis.

3.2.5 Evaluation results with 65,494 Specimens

(a) m j-family name accuracy (b) m j-number of clusters

(c) family name accuracy comparison of 4 methods (d) architecture name accuracy comparison of 4

methods

Figure 3.3: Experimental result and comparison between our algorithm, the

neighbor-joining method and the Inconsistency Coefficient.

The phylogenetic tree constructed using 65,494 specimens is shown in Fig. 3.4, where every

malware is colored according to its family name. The red points represent Bashlite, the green

points represent Mirai, and other colors represent other families. Our fast algorithm reduced the

number of compression attempts by 97.52 % compared with the neighbor-joining method. This

Chapter 3. Clustering Algorithm of Phylogenetic Tree with Application to IoT Malware

Clustering
17

result shows that the larger the dataset, the higher the RCR achieved. This is because our fast

algorithm reduces the computational cost from O(N2) to O(N log N), and N/ log N increases with

N. To calculate the input NCD matrix of the neighbor-joining method, (65, 4942 + 65, 494)/2

pairs of malware specimen are compressed in 80 threads with a 2.6 GHz Intel-Xenon-Gold-6126

CPU, which took 110 days. As for the neighbor-joining algorithm, we used the PhyloNetworks

[38], a library of Julia, to construct the phylogenetic tree. The neighbor-joining algorithm was

executed in 1 thread and took ten days. On the contrary, our method calculated only 2.48% of the

NCD matrix. Including the time for tree construction, it only took three days.

Figure 3.4: Phylogenetic tree constructed using our algorithm

It can be seen from Fig. 3.3(c) and Fig. 3.3(d) that our algorithm achieved a slightly higher

clustering accuracy than the neighbor-joining method. In addition, it achieved the best accuracy

among the four methods. Comparing the red and the blue lines, our clustering algorithm based

on MDL Criterion significantly improved the family name clustering accuracy and architecture

clustering accuracy. For instance, when m j = 7, the phylogenetic tree was divided into 1808

clusters. The family name accuracy of the MDL Criterion was 94.1%, and the architecture name

accuracy was 99.1%. Compared with the Inconsistency Coefficient with the same number

of clusters, the family name accuracy was 89.6%, and the architecture name accuracy was 96.1%,

which is an improvement of 4.5 percentage points of family name accuracy and 3.0 percentage

points of architecture name accuracy. This result also shows that the larger the dataset, the higher

the clustering accuracy achieved. We believe this is because the size of the seed set is set to 1% of

the size of the dataset. The larger dataset can result in a smaller variation of the seed set, which

means the randomly picked seed set can better represent the whole dataset.

We randomly pick one case in the 10-fold cross-validation experiment and show the confusion

matrix of the test malware set in Figure 3.5. Although we used an unbalanced dataset, the pro-

portion of the Bashlite and Mirai family groups is over 86%, but our algorithm can cluster minor

families successfully. Figure 3.5 shows that we achieve high accuracy for most minor families.

Chapter 3. Clustering Algorithm of Phylogenetic Tree with Application to IoT Malware

Clustering
18

Figure 3.5: Confusing matrix of test malware specimens

19

Chapter 4

Online Processing of the Clustering and
Current Work in Progress

Since new malware specimens are collected by honeypots every day, reconstructing the phyloge-

netic tree each time new specimens are added to the dataset will be time-consuming. Therefore,

we propose an online processing algorithm that adds new specimens to the existing clusters with-

out the reconstruction of the phylogenetic tree and clustering again. We also introduce our current

work in progress in this section.

4.1 Online Processing Algorithm

After creating a phylogenetic tree and clustering it, we calculate the distance between the center

specimens of every cluster and all new specimens. The center specimen of a cluster is the specimen

that has the minimum sum of the square of the distance to other specimens in the cluster. We

assign each new specimen to its nearest cluster. To determine where the new specimens should

be inserted, we re-create the phylogenetic tree of each cluster using the neighbor-joining method.

Note that the distance matrix of the original cluster has been calculated; therefore, the new distance

matrix only requires an extremely small amount of NCD computations. The pseudocode of the

algorithm is shown in Algorithm 5.

I would like to thank Professor Jun’ichi Takeuchi, who has supported my research with his

wealth of knowledge for five years. Professor Takeuchi always helped me with the most difficult

parts of my research, I couldn’t have been able to finish my doctoral course without his help. I

would like to thank Doctor Chansu Han. We worked together for many years and he always gave

me precious advice about my research. I would also like to thank my advisers Professor Shuji

Kijima and Professor Noboru Murata for their precious suggestions and insightful comments.

●
● ●

●
●

●
●

●

● ●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
mj

fa
m

ily
 n

am
e

ac
cu

ra
cy

●●

●●

batch processing
online processing

(a) clustering accuracy

● ● ● ● ● ●

●

●

●

● ● ●

0

1

2

3

5 10 15 20
mj

pe
rc

en
ta

ge
 o

f c
al

cu
la

tio
n

am
ou

nt
(%

)

●●

●●

batch processing
online processing

(b) computation rate of NCD matrix

Figure 4.1: Results of online processing algorithm compared with batch process-

ing

Chapter 4. Online Processing of the Clustering and Current Work in Progress 20

Algorithm 5 Algorithm for online processing

Require: Phylogenetic tree T , clustering result Tc, new malware set L
Ensure: New phylogenetic tree T ′
1: S = ∅
2: for each Ti ∈ Tc do
3: S = S ∪ {e}, where e is the central malware of cluster Ti
4: end for
5: calculate the distances di j for (i, j) ∈ S × L
6: for each malware l ∈ L do
7: insert l into nearest cluster

8: end for
9: for each Ti ∈ Tc do

10: re-construct the phylogenetic tree of Ti
11: end for
12: join all clusters into new phylogenetic tree T ′

4.1.1 Experiment of online processing

We evaluated the online processing algorithm with the same data in last section that contained

65,494 IoT malware. For the purpose of simulating the continuous addition of new specimens to

the dataset, we used 54% specimens to construct the phylogenetic tree and added 9% specimens

into the phylogenetic tree using our proposed algorithm at one time. After online processing for

four times, which adds 36% specimens into the phylogenetic tree, we used the last 10% specimens

to test the clustering accuracy. Fig. 4.1(a) shows that our online processing algorithm achieved

Figure 4.2: dataset usage of batch processing and online processing

close accuracy compared to batch processing, the clustering accuracy was only reduced by about

1%. Fig. 4.1(b) shows that our online processing algorithm not only saved the time of re-construct

a new phylogenetic tree but also reduced the computational cost of the NCD matrix. When m j =

7, the malware family name accuracy of batch processing was 94.1%, the accuracy of the online

processing was 93.2%, and the computation rate of the NCD matrix was reduced from 2.48% to

1.66%. In Fig. 4.1(b), batch processing is a straight line because its computational cost does not

rely on clustering, in another word, the parameter m j will not affect its computational cost. The

computation rate is determined when the phylogenetic tree is constructed.

Our online processing algorithm saves the time of reconstructing the phylogenetic every time

some new specimens are added to the dataset while maintaining the clustering accuracy.

We also investigated if the size of the phylogenetic tree or the properties of the specimens to

be inserted will influence the clustering accuracy. We designed two different kind of experiments.

In experiment 1, we investigated how the size of the phylogenetic tree affects the online pro-

cessing algorithm’s accuracy. The specimens for constructing the phylogenetic tree and the speci-

mens to be inserted into the phylogenetic using the online processing algorithm are both randomly

Chapter 4. Online Processing of the Clustering and Current Work in Progress 21

selected from our 65,494 specimens dataset. The size of the phylogenetic tree and the size of the

specimens to be inserted to the phylogenetic tree at one time are set up as follows:

• 1) 5000 and 1000, the experiment result is shown in Fig. 4.4(a).

• 2) 10000 and 2000, the experiment result is shown in Fig. 4.4(b).

• 3) 20000 and 4000, the experiment result is shown in Fig. 4.4(c).

The larger size of the phylogenetic tree is, the higher clustering accuracy is achieved. This is

because the larger size of the phylogenetic tree contains more clusters, which provides a higher

probability for the test malware to find the nearer cluster. But the clustering accuracy did not fall

as the online processing going on. We believed this is because that the online processing malware

set has the similar properties with the malware in the phylogenetic tree.

number of
specimens

2006-
2015 2016 2017_

1-4 2017_5 2017_6 2017_7 2017_8 2017_9 2017_10 2017_11 2017_12 2018_1 2018_2 2018_3 2018_4 2018_5 2018_6 2018_7 2018_8 2018_9 2018_10 2018_11 2018_12 2019_1 2019_2

1194 2006-2015 0.9039 0.9555 0.9346 0.9894 0.9908 0.9776 0.9900 0.9917 0.9935 0.9933 0.9834 0.9905 0.9932 0.9931 0.9905 0.9921 0.9928 0.9924 0.9939 0.9940 0.9942 0.9913 0.9915 0.9885 0.9919
484 2016 0.9555 0.9465 0.9595 0.9835 0.9830 0.9784 0.9821 0.9819 0.9833 0.9844 0.9812 0.9825 0.9852 0.9872 0.9868 0.9871 0.9890 0.9888 0.9902 0.9884 0.9881 0.9880 0.9893 0.9882 0.9891
182 2017_1-4 0.9346 0.9595 0.9185 0.9843 0.9865 0.9785 0.9876 0.9890 0.9904 0.9903 0.9816 0.9876 0.9908 0.9899 0.9891 0.9905 0.9916 0.9913 0.9921 0.9913 0.9918 0.9899 0.9905 0.9878 0.9908
332 2017_5 0.9894 0.9835 0.9843 0.9128 0.9030 0.9324 0.9030 0.9003 0.9012 0.9062 0.9111 0.9030 0.9238 0.9442 0.9526 0.9486 0.9526 0.9475 0.9554 0.9407 0.9343 0.9548 0.9631 0.9603 0.9563
305 2017_6 0.9908 0.9830 0.9865 0.9030 0.8611 0.9067 0.8650 0.8679 0.8695 0.8759 0.8817 0.8693 0.9002 0.9317 0.9487 0.9406 0.9501 0.9402 0.9482 0.9273 0.9170 0.9471 0.9588 0.9545 0.9487
186 2017_7 0.9776 0.9784 0.9785 0.9324 0.9067 0.9241 0.9073 0.9079 0.9096 0.9145 0.9166 0.9095 0.9308 0.9518 0.9619 0.9564 0.9626 0.9565 0.9624 0.9491 0.9430 0.9613 0.9690 0.9661 0.9628
364 2017_8 0.9900 0.9821 0.9876 0.9030 0.8650 0.9073 0.8601 0.8598 0.8639 0.8732 0.8797 0.8667 0.8972 0.9293 0.9447 0.9366 0.9482 0.9371 0.9452 0.9239 0.9145 0.9453 0.9576 0.9532 0.9470

1167 2017_9 0.9917 0.9819 0.9890 0.9003 0.8679 0.9079 0.8598 0.8477 0.8551 0.8695 0.8779 0.8645 0.8911 0.9236 0.9355 0.9280 0.9415 0.9310 0.9400 0.9179 0.9101 0.9412 0.9539 0.9495 0.9428
746 2017_10 0.9935 0.9833 0.9904 0.9012 0.8695 0.9096 0.8639 0.8551 0.8559 0.8690 0.8768 0.8633 0.8934 0.9260 0.9398 0.9321 0.9445 0.9333 0.9423 0.9203 0.9105 0.9419 0.9545 0.9504 0.9436
849 2017_11 0.9933 0.9844 0.9903 0.9062 0.8759 0.9145 0.8732 0.8695 0.8690 0.8749 0.8831 0.8705 0.9010 0.9321 0.9471 0.9397 0.9494 0.9393 0.9482 0.9280 0.9172 0.9460 0.9576 0.9537 0.9476

1760 2017_12 0.9834 0.9812 0.9816 0.9111 0.8817 0.9166 0.8797 0.8779 0.8768 0.8831 0.8860 0.8754 0.9065 0.9354 0.9495 0.9426 0.9526 0.9436 0.9516 0.9326 0.9219 0.9486 0.9593 0.9553 0.9501
3308 2018_1 0.9905 0.9825 0.9876 0.9030 0.8693 0.9095 0.8667 0.8645 0.8633 0.8705 0.8754 0.8615 0.8970 0.9292 0.9455 0.9374 0.9495 0.9390 0.9475 0.9264 0.9144 0.9444 0.9563 0.9521 0.9459
549 2018_2 0.9932 0.9852 0.9908 0.9238 0.9002 0.9308 0.8972 0.8911 0.8934 0.9010 0.9065 0.8970 0.9082 0.9328 0.9334 0.9326 0.9434 0.9442 0.9545 0.9381 0.9307 0.9499 0.9592 0.9563 0.9517
801 2018_3 0.9931 0.9872 0.9899 0.9442 0.9317 0.9518 0.9293 0.9236 0.9260 0.9321 0.9354 0.9292 0.9328 0.9422 0.9383 0.9412 0.9505 0.9562 0.9647 0.9541 0.9497 0.9597 0.9655 0.9639 0.9610
301 2018_4 0.9905 0.9868 0.9891 0.9526 0.9487 0.9619 0.9447 0.9355 0.9398 0.9471 0.9495 0.9455 0.9334 0.9383 0.9072 0.9229 0.9347 0.9542 0.9680 0.9596 0.9582 0.9598 0.9641 0.9634 0.9613
375 2018_5 0.9921 0.9871 0.9905 0.9486 0.9406 0.9564 0.9366 0.9280 0.9321 0.9397 0.9426 0.9374 0.9326 0.9412 0.9229 0.9284 0.9407 0.9540 0.9655 0.9559 0.9536 0.9594 0.9645 0.9634 0.9608
635 2018_6 0.9928 0.9890 0.9916 0.9526 0.9501 0.9626 0.9482 0.9415 0.9445 0.9494 0.9526 0.9495 0.9434 0.9505 0.9347 0.9407 0.9397 0.9526 0.9645 0.9573 0.9580 0.9631 0.9673 0.9664 0.9648
699 2018_7 0.9924 0.9888 0.9913 0.9475 0.9402 0.9565 0.9371 0.9310 0.9333 0.9393 0.9436 0.9390 0.9442 0.9562 0.9542 0.9540 0.9526 0.9508 0.9603 0.9514 0.9515 0.9640 0.9698 0.9681 0.9655
411 2018_8 0.9939 0.9902 0.9921 0.9554 0.9482 0.9624 0.9452 0.9400 0.9423 0.9482 0.9516 0.9475 0.9545 0.9647 0.9680 0.9655 0.9645 0.9603 0.9619 0.9567 0.9582 0.9702 0.9752 0.9738 0.9714
416 2018_9 0.9940 0.9884 0.9913 0.9407 0.9273 0.9491 0.9239 0.9179 0.9203 0.9280 0.9326 0.9264 0.9381 0.9541 0.9596 0.9559 0.9573 0.9514 0.9567 0.9410 0.9433 0.9611 0.9684 0.9662 0.9625

1799 2018_10 0.9942 0.9881 0.9918 0.9343 0.9170 0.9430 0.9145 0.9101 0.9105 0.9172 0.9219 0.9144 0.9307 0.9497 0.9582 0.9536 0.9580 0.9515 0.9582 0.9433 0.9328 0.9557 0.9634 0.9603 0.9562
7847 2018_11 0.9913 0.9880 0.9899 0.9548 0.9471 0.9613 0.9453 0.9412 0.9419 0.9460 0.9486 0.9444 0.9499 0.9597 0.9598 0.9594 0.9631 0.9640 0.9702 0.9611 0.9557 0.9627 0.9674 0.9664 0.9634

17948 2018_12 0.9915 0.9893 0.9905 0.9631 0.9588 0.9690 0.9576 0.9539 0.9545 0.9576 0.9593 0.9563 0.9592 0.9655 0.9641 0.9645 0.9673 0.9698 0.9752 0.9684 0.9634 0.9674 0.9698 0.9694 0.9670
16289 2019_1 0.9885 0.9882 0.9878 0.9603 0.9545 0.9661 0.9532 0.9495 0.9504 0.9537 0.9553 0.9521 0.9563 0.9639 0.9634 0.9634 0.9664 0.9681 0.9738 0.9662 0.9603 0.9664 0.9694 0.9678 0.9655
12463 2019_2 0.9919 0.9891 0.9908 0.9563 0.9487 0.9628 0.9470 0.9428 0.9436 0.9476 0.9501 0.9459 0.9517 0.9610 0.9613 0.9608 0.9648 0.9655 0.9714 0.9625 0.9562 0.9634 0.9670 0.9655 0.9615

Figure 4.3: Average distance among specimens in different period

● ●

● ●

0.00

0.25

0.50

0.75

1.00

0 20 40
times of online processing

ac
cu

ra
cy

●●

●●

archi
family

(a) clustering accuracy

● ●

● ●

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25
times of online processing

ac
cu

ra
cy

●●

●●

archi
family

(b) computation rate of NCD

matrix

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5 10.0
times of online processing

ac
cu

ra
cy

●●

●●

archi
family

(c) computation rate of NCD

matrix

Figure 4.4: Results of online processing experiment 1

●

●

●
● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ●

●

●
●

● ●
● ● ● ● ● ● ● ●

●
● ●

● ● ● ● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

5 10
times of online processing

ac
cu

ra
cy

●●●●

●●●●

●●●●

●●●●

batch_archi
batch_family
online_archi
online_family

Figure 4.5: Result of online processing experiment 2

In the experiment 2, we investigated how the properties of the new specimens affects the

online processing algorithm’s accuracy. Fig. 4.3 shows the average distance among specimens in

different periods. We can see from Fig. 4.3 that specimens collected from May 2017 to February

2018 have smaller distances. And the distances between specimens collected from March 2018 to

February 2019 and specimens collected from May 2017 to February 2018 are larger, which means

Chapter 4. Online Processing of the Clustering and Current Work in Progress 22

specimens in these two periods have different properties. Therefore, in the second experiment, we

choose the specimens collected from May 2017 to February 2018 for constructing the phylogenetic

tree and the specimens collected from March 2018 to February 2019 for online processing. The

result is shown in Fig. 4.5: if the properties of the online processing specimens changed from the

original specimens, the clustering accuracy of the family name was decreased to under 70%. The

accuracies rise as the online processing goes on because the more specimens are inserted into the

phylogenetic tree, the more similar the specimens in the phylogenetic tree and the specimens to

be inserted are. After inserting enough specimens, the specimens in the phylogenetic tree and the

specimens to be inserted will have similar properties, which lead to the accuracies being steady,

like in experiment 1. The purple and blue lines show the clustering accuracies when recreating the

phylogenetic tree after adding new specimens to the dataset (batch processing). Therefore, when

the properties of the online processing specimens change from the original specimens, a recreation

of the phylogenetic tree to maintain the clustering accuracy is needed.

4.2 Attempts on New Seed Set Selection Method

Figure 4.6: Procedure of the new seed set selection

Figure 4.7: Result of comparison of NCD and cosine distance

Our method introduced in section 2 supports large-scale dataset by randomly calculating only

a small part of the distance matrix. The idea of our method is similar to prototype-based clustering

algorithm. We first randomly select a seed set with size k and create a phylogenetic tree with it.

The remaining malware specimens are associated with their closest specimen (prototype) in the

seed set. Then create a phylogenetic tree for each prototype group and finally join them together.

We are now trying to design a new, smarter way to choose where of the distance matrix to calculate.

Chapter 4. Online Processing of the Clustering and Current Work in Progress 23

The selection of the seed set is important because it is the core of our phylogenetic tree. The seed

set should represent the whole malware set. Therefore, we tried a new method of seed set selection.

We assume that we do not have any prior knowledge of the malware set, so we have to use the

calculated distances for seed set selection. The diagram of the new seed set selection in shown in

Fig 4.6. After associating the remaining specimens to their closest prototype, we have calculated

a distance matrix of size N × k. Regard each row of the N × k matrix as a vector, we can get the

cosine distance matrix of these vectors. The purpose of this step is to get a complete distance

matrix.

To investigate if the cosine distance matrix can represent the NCD matrix, we used the cal-

culated 71410 × 71410 NCD matrix in a small test experiment. We randomly choose a malware

specimen A, and find its closest specimen B in the cosine matrix. Then we find out what number is

B in the closest sort of A in the NCD matrix. We tried this 10,000 times and the results and showed

in Fig 4.7. For any specimen, its closest specimen in the cosine matrix has a 91.58% possibility to

be the 1% closest specimen in the NCD matrix. And has a 99.39% possibility to be the 5% closest

specimen in the NCD matrix. Therefore, we can say that the cosine matrix can represent the NCD

matrix to some extent.

Then, we apply the simple greedy algorithm to choose the k specimens that are far from each

other as the new seed set. The pseudocode of the simple greedy algorithm is shown in Algorithm 6.

4.2.1 Experiment of the new seed selection method

Figure 4.8: Result of the new seed selection method distance

We used the same dataset in Table 3.1 that contained 65,494 IoT malware and applied the 10-

fold cross-validation to evaluate the clustering accuracy. We compared the new seed set selection

method (represented as random+cos) with the original one (represented as random). The results

are shown in Fig 4.6. Two methods achieved the same level of clustering accuracy and the new

method achieved a much smaller variance. We considered the reason for clustering accuracy not

improving maybe that the simple greedy algorithm tends to choose specimens from the corner

of the dataset, they may be far from each other but can not well represent the whole dataset. In

our future work, we are going to attempt other seed selection methods to achieve better clustering

accuracy.

Chapter 4. Online Processing of the Clustering and Current Work in Progress 24

Algorithm 6 Simple greedy algorithm

Require: a finite dataset V
Ensure: a seed set C with size k
1: initialization of C: randomly choose one data in V
2: while |C| < k do
3: v = max

v∈V d(v, C), where d(v, C) = min
c∈C dist(v, c), where dist(v, c) is the distance between v and c.

4: add v to C
5: end while
6: return C

4.3 Investigation about user-code-only binary

There are two ways for libraries to be linked with the malware specimen, statically-linked, and

dynamic-linked. The statically-linked library will be built inside the malware’s binary, which will

influence the NCD’s calculation. Therefore, in this topic, we will investigate how the statically-

linked library influences the NCD between malware specimens by removing the statically-linked

library using the IDA Pro1.

Table 4.1: Breakdown of ISA and malware family names of the dataset

ISA
Malware Family

Total
Bashlite Mirai Tsunami others

ARM 288 6345 6 3898 10537

MIPS 181 3578 3 1730 5492

Intel 58 1932 617 2607

x86 11 112 3 34 160

PowerPC 35 1725 1 883 2644

Renesas 50 1738 3 868 2908

SPARC 1 1

Motorola 52 1701 2 858 2867

Total 675 17132 18 8888 26713

We used the IoT malware collected from IoTpot [27] and did some small experiments. The

collection period was from May 2020 to July 2020. The breakdown of ISA and malware family

names of the dataset in shown in Table 4.1 First, we randomly chose 500 malware specimens.

We calculated the NCD matrix of the specimens and the NCD matrix of the user-code-only spec-

imens. The heatmaps of the two NCD matrix is shown in Fig 4.9. Note that these two graphs

have been resorted to form clusters. We can see from Fig 4.9 that many original binaries had no

neighbors, they were far from all other specimens’ binaries and did not belong to any cluster. After

removing the libraries from the binaries, the number of no-neighbor specimens was significantly

reduced. Moreover, some white clusters were formed, which means after removing the libraries,

these specimens had totally the same binaries.

Secondly, we chose 281 Mirai-architecture malware and calculated their NCD matrix. The

heatmaps of the two NCD matrix is shown in Fig 4.10. In general, the distances in the NCD matrix

became larger after removing the libraries. This is because these specimens were originally close

to each other because of the same libraries. The user code parts of the binaries are actually more

different.

To summarize this investigation, the user-code-only binary can help us find some hidden sim-

ilarities and better distinguish the close specimens pairs with the far pairs. In general, the user-

code-only NCD matrix can better represent the similarity of the malware specimens.

1https://hex-rays.com/ida-pro/

Chapter 4. Online Processing of the Clustering and Current Work in Progress 25

(a) original specimens (b) user-code-only specimens

Figure 4.9: Heatmaps of the NCD matrix of randomly selected 500 specimens

(a) original specimens (b) user-code-only specimens

Figure 4.10: Heatmaps of the NCD matrix of 281 Mirai specimens

26

Chapter 5

Hierarchical Clustering of IoT Malware
Using Active Data Selection

In the second section, we introduced our scalable algorithm (hereinafter referred to as FACCP)

that construct a phylogenetic tree by randomly calculating only a small part of the distance matrix.

In this section, rather than randomly calculating the distance matrix, we choose to smartly decide

where to calculate by applying the active learning [15].

Our scalable method introduced in the second section supports large-scale data by randomly

calculating only a small part of the distance matrix. Construction of a phylogenetic tree based

on the FACCP scalable method can be regarded as regression model learning, that is, supervised

learning, and distance data can be regarded as its attribute (covariate). Therefore, because this

is similar to active learning, we would like to adopt active learning to the clustering to improve

the distance calculation reduction rate. In fact, a clustering method by active learning has been

proposed [16, 45]. And it is applicable if we skip the construction of the phylogenetic tree, which

is an intermediate stage, making the clustering process simpler in the meantime. In this paper,

we applied active learning (also called query learning) to reduce the similarity calculation cost

(compression attempts). We believe active learning can achieve even better reduction by smartly

choosing which part of the distance matrix to calculate. The key idea of active learning is that the

learning algorithm can smartly select the data has most information to observe. Active learning

works well for these cases that labeled data is difficult, time-consuming, or expensive to obtain

because active learning needs much lesser labeled data than a normal machine learning algo-

rithm [37].

We applied the hierarchical clustering method in [45] which is to clustering all the specimens

into a binary tree. All the specimens are assigned to a leaf cluster. The optimizer algorithm Mean-

Field Annealing (MFA) determines the assignments by minimizing the cost function. The cost

function is defined to measure the compactness of the clusters. Finally, the active data selection

criterion decides the next observation position based on the current clustering and observation

information. MFA and active data selection are repeated until the cost function converges.

We evaluated the active data clustering with a Linux malware specimen set (mostly IoT mal-

ware) containing 3,008 specimens collected from VirusTotal. We used this dataset to evaluate the

reduction of the active clustering algorithm’s calculation cost and clustering accuracy. For perfor-

mance comparison, we choose MFA combines random sampling as the benchmark. The results

showed that active learning has better performance than the random sampling. We confirmed that

where to observe in the distance matrix is an important factor of algorithm’s performance.

5.1 Active Clustering Algorithm

In this section, we introduce the active clustering algorithm from [45]. This algorithm consists of

two parts: clustering and active data selection. The clustering algorithm determines the assign-

ment matrix based on the current observation of the distance matrix. The active data selection

Chapter 5. Hierarchical Clustering of IoT Malware Using Active Data Selection 27

determines the next observation based on the current assignment matrix. The algorithm starts with

1% of the distance matrix is observed randomly.

Problem Setting

The distance matrix of the dataset is represented as D ∈ RN×N , as mentioned in the introduction,

only small parts of D are calculated, which leaves most parts of D to remain unknown. N1, ...,NN

record which distances have been calculated: if Di j has been calculated, then j ∈ Ni.

• Assignment Matrix

The hierarchical clustering model in [45] is based on a binary tree, which means all the specimens

are assigned to a leaf cluster. Clustering N data into leaf clusters can be seen as an assignment

problem. Let K be the depth of the binary tree T (the depth of root node is 0), so the number of

leaf nodes is 2K , and the total number of nodes is 2K+1 − 1. Clustering N data equals assign N
data into 2K leaf nodes. Clustering can be encoded as an assignment matrix M ∈ {0, 1}N×(2K+1−1),

where Mi j = 1 means i-th data is in j-th cluster. The inner nodes are also treated as clusters.

An inner node cluster consists of the data that belong to its successor leaf nodes. 2kth column to

(2k+1 − 1)th column of M represent the k-th layer’s assignment of the binary tree. M has following

properties:

(a) any data should be assigned to one cluster

∀i,
2K+1−1∑

j=2K

Mi j = 1.

(b) inner nodes’ assignments are inherited upwards in the tree

∀i,
2K−1∑
j=1

Mi j = Mi(2 j) + Mi(2 j+1).

(c) root node contains all the data
N∑

i=1

Mi1 = N.

(d) each cluster contains at least one data

∀ j,
N∑

i=1

Mi j ≥ 1.

• Cost Function

To measure how well an assignment matrix is, we apply the cost function in [29, 45] :

H(M, D,N , K) =
K∑

k=1

W(k)
N∑

i=1

2k+1−1∑
v=2k

Miνdiν, (5.1)

where diν =

∑
j∈Ni M jνDi j∑

j∈Ni M jν
. (5.2)

Here diν represents the distance between data i and cluster ν. H sums up the sum of the distances

in the clusters with

weight W, respectively. H measures the compactness of the clusters, the smaller the cost function,
the better the clustering is.

Chapter 5. Hierarchical Clustering of IoT Malware Using Active Data Selection 28

Algorithm 7 Mean-Field Annealing (MFA)

Input: Temperature schedule vector: T

Output: M ∈ {0, 1}N×2K+1−1

1 Initialization: randomly generate a assignment matrix M
for t from 1 to length(T) do

2 while cost function is decreasing do
3 randomly select i-th data

calculate the mean field vector of i: φik = − ∂H∂Mik
(k from 2K to 2K+1 − 1)

update the assignment matrix: Mik=
eφik/Tt∑2K+1−1

n=2K eφin/Tt

4 end
5 t=t+1

6 end
7 return(M)

5.2 Clustering

The clustering algorithm finds an assignment matrix M that minimizes the cost function H, which

can be considered as a combinatorial optimization problem. MFA is applied to solve the optimiza-

tion problem.

MFA combines mean-field theory and simulated annealing. Mean-field theory simplifies a

high-dimensional complex random model to a simpler model. The complex model usually con-

tains many molecules that interact with each other. Instead of calculating the enormous interac-

tions, one molecule’s interactions with other molecules are approximated as an averaged interac-

tion. As a result, the study of complex systems or models is possible.

Simulated annealing is a well-known method for solving optimization problems. Annealing is

a metallurgy process that metal cools down slowly so that molecules can find places that minimize

the internal energy, which leads to steady. The principle of simulated annealing is similar to

annealing: The solution is consists of molecules’ states, and it’s randomly moving in the solution

space. A better solution (smaller value of energy function) is always accepted. The key idea is

that a worse solution is accepted under certain probability. This probability becomes smaller as

the temperature gets lower, which allows the algorithm to jump out of the local minimum solution

and finally converge to the global minimum solution.

The pseudocode of MFA is shown in Algorithm 7. Note that Mi j can take any real value

between 0 and 1 during the cooling. Mi j represents the probability of assigning i to cluster j.
When the temperature cools down and the system becomes stabilized, Mi j will converges to 0 or

1.

5.3 Active Data Selection

After MFA determines the best assignment matrix based on the current observation of the distance

matrix, we need to decide where to observe next. The active data selection algorithm finds where

it expects to have the most information. To measure the expected value of information, we applied

the Bayesian approach developed in [23], which is also the method applied in [16, 45]. If all the

distances have been observed, the distance between data i and cluster ν is given by

d∗iν =
∑N

j=1 M jνDi j∑N
j=1 Di j

.

Chapter 5. Hierarchical Clustering of IoT Malware Using Active Data Selection 29

But since we are using incomplete data, d∗iν can not be calculated in realistic. Therefore, we

consider d∗iν as a random variable and rely on its point estimator diν in (5.2). Assume the prior

distribution of d∗iν a noninformative prior distribution. diν is the sample mean, σ2
iν is the sample

variance and miν is the number of sample. The marginal posterior distribution of d∗iν is a student t

distribution:

t =
√

miν(d∗iν − diν)/σiν.

Thus d∗iν can be expressed as:

d∗iν = diν − t ∗ σ
2
iν

miν
.

The probability density function of d∗iν is denoted by fiν(d∗iν|diν,σiν, miν). Furthermore, the Ex-
pected Value of Perfect Information (EVPI) [16] can be defined with fiν:

EVPI =

∫ ∞
−∞

...

∫ ∞
−∞

max
ν
{d∗iα − d∗iν}

×
2K+1−1∏
ν=2K

fiν(d∗iν|diν,σ
2
iν, miν)d d∗iν.

(5.3)

where α = arg minν diν. The EVPI measures the loss expects to incur by making the decision

α based on the incomplete information diν instead of the optimal decision α∗. In other words, the

expected gain if α∗ was revealed to us.

However, in the actual experiment, the perfect information can not be obtained. Thus, what we

are more interested in is the Expected Value of Sampling Information (EVSI). The EVSI measures

how much uncertainty is expected to be remained after observing the additional data. In other

words, EVPI minus EVSI measures how much gain we are expecting from additional data. The

selection strategy is that drawing m+
iν additional samples from the ν-th cluster, which is expected to

gain the most information. Drawing m+
iν additional samples will not affect the unbiased estimates

diν and σ2
iν, but increase the sample size miν. Therefore, the EVSI of drawing samples from cluster

j is given by the following equation:

EVSIi j =

∫ ∞
−∞

...

∫ ∞
−∞

max
ν
{d∗iα − d∗iν}

× fi j(d∗i j|di j,σ
2
i j, mi j + m+

i j)

×
2K+1−1∏
ν=2K
ν� j

fiν(d∗iν|diν,σ
2
iν, miν)d d∗iν d d∗i j.

(5.4)

To calculate equation (5.4), we apply Monte-Carlo techniques to sampling from the student

t distribution to estimate the above integral. Each leaf cluster will calculate this equation, and

additional samples will be drawn from the cluster with minimal EVSI value.

The pseudocode of the active clustering algorithm is shown in Algorithm 8.

Chapter 5. Hierarchical Clustering of IoT Malware Using Active Data Selection 30

Algorithm 8 Active Clustering

Input: N × N unknown distance matrix D,K
Output: M ∈ {0, 1}N×2K+1−1

8 N = (N1, ...,NN). If j ∈ Ni, means the value of Di j is available.

9 Initialization:

randomly observe 1% of D (N will be changed)

while cost function getting smaller do
10 using MFA to calculate the M that minimize cost function H(M, D,N , K)

Active Data Selection :

for i from 1 to N do
11 ν = arg minν EVSIiν

observe m+
iν distances between data i and data that belongs to cluster ν (N will be

changed)

12 end
13 end

5.4 A Mistake of the Original Paper

In the original paper [45] that proposed this algorithm, the authors said that the sampling decisions

would be met for the objects and clusters with the maximal EVSI value. But in fact, the EVSI is

not directly calculating the expected value of sampling information, but the uncertainty that is

remained after observing the additional data. The sampling decision should be met for objects

and clusters with the least uncertainty, which means the minimal EVSI value. We did some small

experiments to prove this.

Table 5.1: simulated clusters and their EVSI value (case 1)

cluster sample mean sample variance number of samples EVSI

1 0.7 0.09 6 0.03981

2 0.35 0.09 6 0.03820

Table 5.2: simulated clusters and their EVSI value (case 2)

cluster sample mean sample variance number of samples EVSI

1 1 0.002 6 0.22823

2 1 0.17 6 0.22476

We can see from Table 5.1, 5.2 and 5.3 that clusters have a larger sample mean, a smaller

sample variance and a larger number of samples tend to have a larger EVSI value. Sampling from

those clusters will not give us much information or reduce much cluster’s uncertainty. Because

we can already predict pretty well what we will get from the sampling. Moreover, sampling

from the cluster has a larger variance and the number of samples will make its EVSI even larger,

which means all the following sampling will be made at this cluster. This is obviously wrong, the

sampling decision should be made at the cluster that has minimal EVSI value.

Chapter 5. Hierarchical Clustering of IoT Malware Using Active Data Selection 31

Table 5.3: simulated clusters and their EVSI value (case 3)

cluster sample mean sample variance number of samples EVSI

1 0.5 0.5 4 0.53152

2 0.5 0.5 100 0.55409

5.5 Performance Evaluation with Experiment

In this subsection, we introduce our experiment to evaluate the active clustering algorithm with

IoT malware. As a benchmark, we also applied random sampling as the data selection strategy. For

both data selection strategies, we applied the MFA as the optimization algorithm. Furthermore,

we compared the percentage of the calculation of the distance matrix and clustering accuracy with

our former work, a fast algorithm for constructing a phylogenetic tree of malware specimens and

clustering [13].

Dataset

We collected 3,008 Linux malware specimens (mostly IoT malware) from VirusTotal. The col-

lection period was from November 2018 to February 2019. Our dataset is consists of Bashlite

and Mirai. The breakdown of the dataset is shown in Table 5.4. The malware family name was

decided by AVClass [36]. AVClass is a Python tool to label malware samples using VirusTotal

JSON reports.

(a) Distance matrix (b) Sampling snapshot

Figure 5.1: Heatmap of the distance matrix and observation position of the dis-

tance matrix

5.5.1 Experimental Setup

We implemented our algorithm using the programming language julia. xz command (version

5.1.0 alpha) of Linux was used to compress malware binaries for computing NCDs. This xz
adopted the Lempel-Ziv-Markov chain algorithm (LZMA) [35] as the compression algorithm.

The CPU of our computation environment is 2.6GHz Intel-Xenon-Gold-6126. In the active data

selection algorithm, the computation of the Monte-Karlo method was parallel computed with 80

threads.

Table 5.4: Breakdown of ISA and malware family names of the dataset

Malware Family
ISA

Total
ARM MIPS Intel x86 PowerPC Renesas SPARC Motorola

Bashlite 195 194 197 189 197 200 200 200 1572

Mirai 161 165 183 157 171 199 200 200 1436

Total 356 359 380 346 368 399 400 400 3008

Chapter 5. Hierarchical Clustering of IoT Malware Using Active Data Selection 32

5.5.2 Evaluation Metrics

We evaluate the active clustering algorithm with three metrics.

1. Cost function: We compared how the cost function’s value changed as the observation of

the distance matrix gradually increase.

2. Family name clustering accuracy: The clustering accuracy is evaluated by 10-fold cross-

validation. Specifically, the malware set is divided into ten parts, and clustering is performed

using 90% of the specimens. Then assign each remaining 10% of the specimens to their

nearest cluster. The cluster’s family name is decided by the majority of the specimen’s fam-

ily name in that cluster. The family name clustering accuracy is calculated as the percentage

of correct clustered specimens.

3. Architecture name clustering accuracy: The architecture name clustering accuracy is cal-

culated the same as the family name clustering accuracy.

5.5.3 Evaluation Results

Fig. 5.1(a) shows the heatmap of the distance matrix, and the red color represents the greater

distance (low similarity). Fig. 5.1(b) is the heatmap of the assignment matrix M, which shows

the observed position after having observed 3% of the distance matrix. Fig. 5.1(a) and Fig. 5.1(b)

are both symmetric matrices, and their data are sorted in the same order. The active data selection

algorithm chooses the observation mainly from the clusters with low similarity among the cluster.

This is because the clusters with high similarity will form clusters successfully at an early phase.

There is no need to draw any more samples from those clusters.

Cost functions’ change of active data selection and random sampling are shown in Fig. 5.2.

Both methods are evaluated on the complete data (100% observation). The cost function of active

data selection converges about 20% faster than random sampling, which means the active data

selection algorithm requires 20% lesser observation of the distance matrix.

2000

2250

2500

1 2 3 4
percentage of observation

co
st

active learning
random sampling

Figure 5.2: Cost functions of active data selection and random sampling

Result of the 10-fold cross-validation is shown in Fig. 5.3(a) and Fig. 5.3(b). The active clus-

tering algorithm and random sampling combined with MFA showed the same level of clustering

accuracy. Compared to the FACCP, the active clustering algorithm achieved much higher accu-

racy. In other words, the active clustering algorithm can achieve the same level of accuracy as the

FACCP with less than half of the FACCP’s observation.

With the experiment results, we confirmed that the active clustering algorithm observed about

20% lesser NCD than the benchmark and achieved the same level of clustering accuracy. Com-

pared to the FACCP, the observation of the NCD matrix decreases from 7.2% to 2.6%. Besides, the

Chapter 5. Hierarchical Clustering of IoT Malware Using Active Data Selection 33

0.00

0.25

0.50

0.75

1.00

2 4 6 8
percentage of observation

fa
m

ily
 n

am
e

ac
cu

ra
cy

active learning
FACCP
random sampling

(a) Family name accuracy

0.00

0.25

0.50

0.75

1.00

2 4 6 8
percentage of observation

ar
ch

ite
ct

ur
e

ac
cu

ra
cy

active learning
FACCP
random sampling

(b) Architecture name accuracy
Figure 5.3: Clustering accuracy

active clustering algorithm achieved much better accuracy than the FACCP at the same observation

percentage.

Even though the active data selection algorithm reduces 64% of the calculation amount of

NCD than FACCP, the runtime of MFA is very long, which results in that the active clustering

algorithm is much slower than the FACCP. Currently, the runtime of the active clustering algorithm

is about 7 hours, while the runtime of the FACCP is about 30 minutes. The active data selection

algorithm showed excellent performance, but the optimizer algorithm (MFA) is now the whole

algorithm’s bottleneck.

5.5.4 To Overcome the Bottleneck

To solve this problem, we did some research but have not made any breakthroughs. Our approach

is to propose a faster, parallelable MFA algorithm [17, 25, 34]. The advantage of this approach is

that the runtime can be reduced significantly based on the computer’s hardware specifications. In

paper [25], Okuyama et.al proposed a parallel optimization algorithm named momentum anneal-

ing (MA). They converted an Ising model into a bipartite graph and achieved proofing that the spin

configuration on the left (or right) side of Figure 5.4(b) [25] also minimizes the Ising energy of

Figure 5.4(a). In Figure 5.4(a), σ1 and σ2 can not be updated at the same time because their spin

states will influence each other. But in Figure 5.4(b), updating all spins on each side in parallel

is possible. Okuyama et.al’s model is designed for binary optimization, if we want to apply their

method to our problem, we need to extend their proof to multiple value cases.

Figure 5.4: Conversion of Ising model into bipartite graph

34

Chapter 6

Conclusion

We proposed a fast algorithm for constructing the phylogenetic tree, which significantly reduced

the computational cost than the conventional method. We proposed an algorithm applying the

MDL Criterion to clustering the constructed phylogenetic tree. Furthermore, we proposed an

online processing algorithm that can reduce the computation cost in actual operation by skipping

the phylogenetic tree reconstruction while maintaining the clustering accuracy. We evaluate our

algorithms’ scalability and clustering accuracy using a large-scale IoT malware set.

Our experiments using 65,494 IoT malware specimens show that our fast algorithm reduced

the computational cost by 97.52 % compared to the neighbor-joining method. By improving

the clustering algorithm using MDL Criterion, our clustering algorithm achieved significantly

higher accuracy than the Inconsistency Coefficient. In the best case, the family name clus-

tering accuracy was 95.5% and the architecture name accuracy was 99.3%. Furthermore, the

online processing algorithm reduced 33% of the computational cost than the batch processing al-

gorithm while maintaining a clustering accuracy of 94%. Our experiment results show that our

method successfully reduces a significant amount of computational cost.

We also evaluated the feasibility and efficiency of the existing active clustering algorithm with

our experiment using 3,008 actual Linux malware specimens. And we introduced our attempts at

overcoming the bottleneck of the algorithm.

35

Acknowledgement

The research for this thesis was conducted under a contract of “MITIGATE” among “Research

and Development for Expansion of Radio Wave Resources (JPJ000254)”, which was partly sup-

ported by the Ministry of Internal Affairs and Communications, Japan. This work was also partly

supported in part by JST SPRING, Grant Number JPMJSP2136.

I want to thank Professor Jun’ichi Takeuchi, who supported my research with his wealth of

knowledge for 5 years. He always helped me with the most difficult parts of my research. I

couldn’t have finished my doctoral course without his help.

I would like to thank Doctor Chansu Han. We worked together for many years, he gave me

lots of precious suggestions, which greatly helped me to finish my work.

I would like to thank the rest of the thesis committee: Prof. Eiji Takimoto and Associate Prof.

Daisuke Ikeda for giving me precious suggestions and insightful comments to improve the thesis.

I would also like to express my gratitude to Professor Shuji Kijima and Professor Noboru

Murata. As my advisor, They gave me precious suggestions and insightful comments about my

research.

At last, I want to thank my families for supporting me all the time.

36

Bibliography

[1] Adel Abusitta, Miles Q. Li, and Benjamin C.M. Fung. Malware classification and com-

position analysis: A survey of recent developments. Journal of Information Security and
Applications, 59:102828, 2021.

[2] Manos Antonakakis, Tim April, Michael Bailey, et al. Understanding the mirai botnet. In

Proceedings of the 26th USENIX Conference on Security Symposium, pages 1093–1110,

2017.

[3] Michael Bailey, Jon Oberheide, Jon Andersen, Zhuoqing Morley Mao, Farnam Jahanian, and

Jose Nazario. Automated classification and analysis of internet malware. In Recent Advances
in Intrusion Detection, 10th International Symposium, RAID 2007, Gold Goast, Australia,
September 5-7, 2007, Proceedings, pages 178–197, 2007.

[4] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Krügel, and Engin

Kirda. Scalable, behavior-based malware clustering. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2009, San Diego, California, USA, 2009.

[5] Niket Bhodia, Pratikkumar Prajapati, Fabio Di Troia, and Mark Stamp. Transfer learning for

image-based malware classification, 2019.

[6] Manuel Cebrian, Manuel Alfonseca, and Alfonso Ortega. The normalized compression dis-

tance is resistant to noise. IEEE Transactions on Information Theory, 53(5):1895–1900,

2007.

[7] Rajasekhar Chaganti, Vinayakumar Ravi, and Tuan D. Pham. Image-based malware rep-

resentation approach with efficientnet convolutional neural networks for effective malware

classification. Journal of Information Security and Applications, 69:103306, 2022.

[8] Rudi Cilibrasi and Paul Vitanyi. Clustering by compression, 2003.

[9] Rudi Cilibrasi and Paul M.B. Vitányi. Clustering by compression. CoRR, cs.CV/0312044,

2003.

[10] Emanuele Cozzi, Pierre-Antoine Vervier, Matteo Dell’Amico, Yun Shen, Leyla Bilge, and

Davide Balzarotti. The tangled genealogy of iot malware. In Annual Computer Security
Applications Conference, ACSAC ’20, page 1–16, New York, NY, USA, 2020. Association

for Computing Machinery.

[11] Khanh Huu The Dam, Thomas Given-Wilson, and Axel Legay. Unsupervised behavioural

mining and clustering for malware family identification. In Proceedings of the 36th Annual
ACM Symposium on Applied Computing, SAC ’21, page 374–383, New York, NY, USA,

2021. Association for Computing Machinery.

[12] Daniel Gibert, Carles Mateu, Jordi Planes, and Ramon Vicens. Classification of malware

by using structural entropy on convolutional neural networks. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of
Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

BIBLIOGRAPHY 37

[13] Tianxiang He, Chansu Han, Ryoichi Isawa, Takeshi Takahashi, Shuji Kijima, Jun’ichi

Takeuchi, and Koji Nakao. A fast algorithm for constructing phylogenetic trees with ap-

plication to iot malware clustering. In Tom Gedeon, Kok Wai Wong, and Minho Lee, ed-

itors, Neural Information Processing, pages 766–778, Cham, 2019. Springer International

Publishing.

[14] Tianxiang He, Chansu Han, Ryoichi Isawa, Takeshi Takahashi, Shuji Kijima, and Jun’ichi

Takeuchi. Scalable and fast algorithm for constructing phylogenetic trees with application to

iot malware clustering. IEEE Access, 11:8240–8253, 2023.

[15] Tianxiang He, Chansu Han, Takeshi Takahashi, Shuji Kijima, and Jun’ichi Takeuchi. Scal-

able and fast hierarchical clustering of iot malware using active data selection. In 2021 Sixth
International Conference on Fog and Mobile Edge Computing (FMEC), pages 1–6, 2021.

[16] Thomas Hofmann and Joachim Buhmann. Active data clustering. 01 1997.

[17] Chuleui Hong. A distributed hybrid heuristics of mean field annealing and genetic algo-

rithm for load balancing problem. In Salvatore Greco, Yutaka Hata, Shoji Hirano, Masahiro

Inuiguchi, Sadaaki Miyamoto, Hung Son Nguyen, and Roman Słowiński, editors, Rough
Sets and Current Trends in Computing, pages 726–735, Berlin, Heidelberg, 2006. Springer

Berlin Heidelberg.

[18] Shun-Wen Hsiao, Yeali S. Sun, and Meng Chang Chen. Behavior grouping of android mal-

ware family. In 2016 IEEE International Conference on Communications (ICC), pages 1–6,

2016.

[19] Xin Hu, Kang G. Shin, Sandeep Bhatkar, and Kent Griffin. Mutantx-s: Scalable malware

clustering based on static features. In 2013 USENIX Annual Technical Conference (USENIX
ATC 13), pages 187–198, San Jose, CA, June 2013. USENIX Association.

[20] Sachin Jain and Yogesh Kumar Meena. Byte level n–gram analysis for malware detection. In

K. R. Venugopal and L. M. Patnaik, editors, Computer Networks and Intelligent Computing,

pages 51–59, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[21] Md. Enamul Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi Parida. Malware phy-

logeny generation using permutations of code. Journal in Computer Virology, 1(1-2):13–23,

2005.

[22] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M. B. Vitányi. The similarity metric. IEEE
Trans. Information Theory, 50(12):3250–3264, 2004.

[23] P. Minton, H. Raiffa, and Robert Schlaifer. Applied statistical decision theory. American
Mathematical Monthly, 69:72, 1962.

[24] Lakshmanan Nataraj, Shanmugavadivel Karthikeyan, Grégoire Jacob, and B. S. Manjunath.

Malware images: visualization and automatic classification. In VizSec ’11, 2011.

[25] Takuya Okuyama, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Masanao Yamaoka. Bi-

nary optimization by momentum annealing. Phys. Rev. E, 100:012111, Jul 2019.

[26] Jonathan Oliver, Muqeet Ali, and Josiah Hagen. Hac-t and fast search for similarity in se-

curity. In 2020 International Conference on Omni-layer Intelligent Systems (COINS), pages

1–7, 2020.

[27] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto, Takahiro Kasama,

and Christian Rossow. IoTPOT: analysing the rise of iot compromises. In 9th USENIX
Workshop on Offensive Technologies (WOOT 15), 2015.

BIBLIOGRAPHY 38

[28] Joon-Young Paik, Rize Jin, and Eun-Sun Cho. Malware classification using a byte-

granularity feature based on structural entropy. Computational Intelligence, 38(4):1536–

1558, 2022.

[29] Jan Puzicha, Thomas Hofmann, and Joachim M. Buhmann. A theory of proximity based

clustering: structure detection by optimization. Pattern Recognition, 33(4):617–634, 2000.

[30] Edward Raff, Richard Zak, Russell Cox, Jared Sylvester, Paul Yacci, Rebecca Ward, Anna

Tracy, Mark Mclean, and Charles Nicholas. An investigation of byte n-gram features for

malware classification. Journal of Computer Virology and Hacking Techniques, 14, 02 2018.

[31] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Automatic analysis of

malware behavior using machine learning. Journal of Computer Security, 19:639–668, 06

2011.

[32] Jorma Rissanen. Modeling by shortest data description. Autom., 14(5):465–471, 1978.

[33] N Saitou and M Nei. The neighbor-joining method: a new method for reconstructing phylo-

genetic trees. Mol Biol Evol, 4(4):406–425, 1987.

[34] Shaharuddin Salleh and Albert Y. Zomaya. Multiprocessor scheduling using mean-field an-

nealing. Future Generation Computer Systems, 14(5):393–408, 1998. Bio-inspired solutions

to parallel processing problems.

[35] David Salomon. Data compression - The Complete Reference, 4th Edition. Springer, 2007.

[36] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. Avclass: A tool

for massive malware labeling. In Fabian Monrose, Marc Dacier, Gregory Blanc, and Joaquin

Garcia-Alfaro, editors, Research in Attacks, Intrusions, and Defenses, pages 230–253, Cham,

2016. Springer International Publishing.

[37] Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648,

University of Wisconsin–Madison, 2009.

[38] Claudia Solís-Lemus, Paul Bastide, and Cécile Ané. PhyloNetworks: A Package for Phylo-

genetic Networks. Molecular Biology and Evolution, 34(12):3292–3298, 09 2017.

[39] Sadegh Torabi, Mirabelle Dib, Elias Bou-Harb, Chadi Assi, and Mourad Debbabi. A strings-

based similarity analysis approach for characterizing iot malware and inferring their under-

lying relationships. IEEE Networking Letters, 3(3):161–165, 2021.

[40] P. Vinod, V. Laxmi, M. S. Gaur, and Grijesh Chauhan. Momentum: Metamorphic malware

exploration techniques using msa signatures. In 2012 International Conference on Innova-
tions in Information Technology (IIT), pages 232–237, 2012.

[41] Stephanie Wehner. Analyzing worms and network traffic using compression. J. Comput.
Secur., 15(3):303–320, 2007.

[42] Ruiping Yin, Kan Li, Guangquan Zhang, and Jie Lu. Detecting overlapping protein com-

plexes in dynamic protein-protein interaction networks by developing a fuzzy clustering al-

gorithm. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pages

1–6, 2017.

[43] Takumi Yone. Phylogenetic tree estimation for large-scale malware datasets. Master’s thesis,

Kyushu University, Japan, 2016. (written in Japanese).

BIBLIOGRAPHY 39

[44] Enmin Zhu, Jianjie Zhang, Jijie Yan, Kongyang Chen, and Chongzhi Gao. N-gram mal-

gan: Evading machine learning detection via feature n-gram. Digital Communications and
Networks, 8(4):485–491, 2022.

[45] T. Zoller and J.M. Buhmann. Active learning for hierarchical pairwise data clustering. In

Proceedings 15th International Conference on Pattern Recognition. ICPR, volume 2, pages

186–189 vol.2, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

