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Abstract

A massive amount of information is actively exchanged all over the world as a consequence of

rapid innovations in network and sensor technologies. These huge amounts of data may contain

valuable information that could assist us to solve problems that are socially and/or economi-

cally important, and thus their use has now become a key issue. However, these data are very

massive and may surpass memory limits and networking band constraints during processing

and analysis. Furthermore, certain kinds of data dynamically change (examples are those in

Wikipedia and versioned documents in Git). One of the main ways to solve the concerns of

large data structures with such dynamic changes is the development of resilient data structures

and compressors that are robust to edit operations.

Since most digital data can be regarded as a sequence of symbols (i.e. a string), algorithmics

and combinatorics on strings (a.k.a. stringology) can play a central role in solving important

problems in information retrieval, data compression, and bioinformatics. This thesis studies

computation over compressed data, of which the task is to efficiently process compressed data

by exploiting useful combinatorial properties of compressed strings. In particular, firstly this

thesis deals with the string indexing problem, where the task is to build a small (compressed)

data structure that supports fast pattern matching queries. Secondly, the thesis considers the

sensitivity of string compressors which evaluates the perturbation of the compression data size

after an edit operation is performed to the input string. Thirdly, the thesis moves on to analyses

of string combinatorial objects in the compressed and/or semi-dynamic setting.

String compressors that are mainly discussed in this thesis are grammar-based compressions

and run-length encodings (RLE), and a new grammar-based string indexing data structure. The

sensitivity of various grammar-based compressors is then analyzed. Minimal absent words

(MAWs) are one of the key subjects of string combinatorics, which are not only used directly

for compression, but also have several applications in music information retrieval and bioinfor-

matics. As a special case of edit operations, MAWs in the sliding window model that repeatedly

deletes one character on the left and adds one character on the right are considered.
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The contributions of the thesis are three-fold:

• (A) New grammar-based compressed index that have merits both in theory and in practice;

• (B) Upper and lower bounds on the sensitivity of grammar-based compressors;

• (C) Upper and lower bounds on the number of MAWs in RLE-compressed strings and in

the sliding window model.

In (A), we propose a new grammar-compressed indexing structure that is built on grammar-

compression based on induced suffix sorting (GCIS). In more details, (A-1) we show that GCIS

exhibits a locality sensitive parsing property, which allows us to specify, given a pattern P ,

certain substrings of P called cores, that are similarly parsed in the grammar whenever these

occurrences are extensible to occurrences of P . Using this property, we present a new com-

pressed text indexing structure built upon a grammar compression GCIS, which allows us to

avoid technical difficulties of GCIS that require long decompression time. (A-2) To examine

practical performance of the proposed GCIS-Index, we performed comparative experiments

with known methods including the ESP-Index, which is the most relevant our current approach.

We compared the index size, construction time and locate time in examination of them, and our

GCIS-Index achieved fastest pattern matching in the case of matching long patterns of length

1000 or more. Also, GCIS-Index theoretically takes less computation time than the ESP-Index

to locate pattern occurrence after core verification. As a result, we found that GCIS-Index lo-

cates patterns with faster than the ESP-Index in some datasets with a large number of pattern

occurrences.

In (B), we introduce a new concept “compression sensitivity” which measures how much a

single character edit operation (substitution, addition, or deletion) effects the compression ratio

in some grammar-based compressors. We prove upper and lower bounds for sensitivity of (B-

1) GCIS, which is related to (A), (B-2) LZ-End, a variation of the famous LZ77-compressor,

and (B-3) Bisection, which is another grammar-based compression. By applying some ideas

from the LZSS upper bounds, (B-4) we also provide non-trivial upper bounds of some grammar

compressors, such as the AVL-grammar. As for (B-1), we prove that the size of the GCIS,

which is a foundation of the GCIS-Index technology, can increase by a constant factor of 4

after a single-character edit operation to the input string. This means that GCIS has a robust

compression ratio against single character edits. We also show a family of strings that actually

achieves the worst-case sensitivity of GCIS, which is 4. Regarding (B-2), we show that the

size of the LZ-End compression can increase by a factor of 2 after single character editing
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(substitution, addition, and deletion). A non-trivial upper bound of the sensitivity of LZ-End is

also discussed.

In (C), we classify MAWs based on their combinatorial properties and present upper and

lower bounds on the number of MAWs in each type. (C-1) We find strict upper and lower

bounds for the amount of change in the number of MAWs generated by a shift on the sliding

window (deleting one character at the left and adding one character at the right). Furthermore,

(C-2) we classify MAWs in RLE-compressed strings into five types and prove upper and lower

bounds of their numbers for each type. We also propose a compact representation of MAWs that

takes space linear in the RLE-compression size. Finally, (C-3) presents how to construct our

compact representation of MAWs stated in (C-2) in O(m logm) time and O(m) space using

some data structures related to the truncated RLE-suffixes, where m is the size of the input

RLE-compressed string.
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Chapter 1

Introduction

1.1 Background and motivations

A massive amount of information is actively exchanged all over the world as a consequence of

rapid innovations in network and sensor technologies. These huge amounts of data may contain

valuable information that could assist us to solve problems that are socially and/or economi-

cally important, and thus their use has now become a key issue. However, these data are very

massive and may surpass memory limits and networking band constraints during processing

and analysis. Furthermore, certain kinds of data dynamically change (examples are those in

Wikipedia and versioned documents in Git). One of the main ways to solve the concerns of

large data structures with such dynamic changes is the development of resilient data structures

and compressors that are robust to edit operations.

Since most digital data can be regarded as a sequence of symbols (i.e. a string), algorithmics

and combinatorics on strings (a.k.a. stringology) can play a central role in solving important

problems in information retrieval, data compression, and bioinformatics. This thesis studies

computation over compressed data, of which the task is to efficiently process compressed data

by exploiting useful combinatorial properties of compressed strings. In particular, firstly this

thesis deals with the string indexing problem, where the task is to build a small (compressed)

data structure that supports fast pattern matching queries. Secondly, the thesis considers the

sensitivity of string compressors which evaluates the perturbation of the compression data size

after an edit operation is performed to the input string. Thirdly, the thesis moves on to analyses

of string combinatorial objects in the compressed and/or semi-dynamic setting.

String compressors methods that are mainly discussed in this thesis are grammar-based

compressions and run-length encodings (RLE), and a new grammar-based string indexing data
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CHAPTER 1. INTRODUCTION

structure. The sensitivity of various grammar-based compressors is then analyzed. Minimal ab-

sent words (MAWs) are one of the key subjects of string combinatorics, which are not only used

directly for compression, but also have several applications in music information retrieval and

bioinformatics. As a special case of edit operations, MAWs in the sliding window model that

repeatedly deletes one character on the left and adds one character on the right are considered.

The contributions of the thesis are three-fold:

• (A) Development of new compressed grammar index and performance evaluation

• (B) An investigation of the influence of single-character editing on some compression and

data structures.

• (C) Upper and lower bounds on the number of MAW on compressed models such as RLE

strings, sliding windows, and both of them.

1.2 Grammar indexes

The keyword in the first part (A) of this thesis is a compressed index. Although highly-repetitive

texts are perceived as a common problem instance nowadays due to use cases involving a set

of DNA sequences within a very narrow taxonomy group or a large number of slightly differ-

ent versions of documents maintained in revision control systems, this problem is difficult to

handle due to the usual large amount of data, but interesting in the sense that the data is highly

compressible. Compressed text indexes have become standard tools for tackling this problem

when full-text search queries such as locating all occurrences of a pattern are of importance.

It is desired for a text index to be a self-index, i.e., a data structure that supports queries on

the underlying text without storing the text in its plain form. One type of such self indexes are

grammar indexes, which are an augmentation of the admissible grammar [64] produced by a

grammar compressor. Grammar indexes exhibit strong compression ratios for artificial texts or

texts with high repetition ratios. Unlike other indexes that perform pattern matching step-wise

by character-by-character comparison, some grammar indexes have locality sensitive parsing

properties, which allows them to match certain non-terminals of the admissible grammar built

upon the pattern with the non-terminals of the text. Such a property helps us, to compute fewer

comparisons, and thus speed up pattern matching for particularly long patterns, which could

be large gene sequences in a genomic database or source code files in a database maintaining

source code. Here, we focus on indexes computing the method locate(P ) retrieving the starting

positions of all occurrences of a given pattern P in a given text.

2



CHAPTER 1. INTRODUCTION

Our main contribution is the discovery of a locality sensitive parsing property in grammar

produced by the grammar compression by induced sorting (GCIS) [94], which helps us to an-

swer locate with an index built upon GCIS with the following bounds:

Theorem 1.1. Given a text T of length n, we can compute an indexing data structure on T in

O(n) time, which can locate all occ occurrences of a given pattern of length m in O(m lg |S|+
occC lgm lg |S| + occ) time, where S is the set of characters and non-terminals of the GCIS

grammar and occC is the number of occurrences on the right side of the production rules of the

GCIS grammar of a selected core of the pattern. Our index can be constructed in O(n lg |S|)
time, and uses O(g) words of space, where g is the sum of the right sides of all production rules.

Similar properties hold for other grammars such as the signature encoding [78], ESP [27],

HSP [43], the Rsync parse [46], or the grammar of [22]. A brief review of self-indexes follows.

1.3 Compression sensitivity

The second keyword in the next part (B) of this thesis is string edit operations. As mentioned in

previous sections, some data can change dynamically in information systems including Github

and Wikipedia. One of the most difficult and important issues is calculating the magnitude

of slight changes in the size of the compressed representation of the data. For addressing this

problem, we introduce a new notion to quantify efficiency of (lossless) compression algorithms,

which is our second target that we call sensitivity of compressors.

Let C be a compression algorithm and let C(T ) denote the size of the output of C applied

to an input text (string) T . Roughly speaking, the sensitivity of C measures how much the

compressed size C(T ) can change when a single-character-wise edit operation is performed at

an arbitrary position in T . Namely, the worst-case multiplicative sensitivity of C is defined by

max
T∈Σn

{C(T ′)/C(T ) : ed(T, T ′) = 1},

where ed(T, T ′) denotes the edit distance between T and T ′. This new and natural notion

enables one to measure the robustness of compression algorithms in terms of errors and/or

dynamic changes occurring in the input string. Such errors and dynamic changes are commonly

seen in real-world texts such as DNA sequences and versioned documents.

The so-called highly repetitive sequences, which are strings containing a lot of repeated

fragments, are abundant today: Semi-automatically generated strings via M2M communica-

tions, and collections of individual genomes of the same/close species are typical examples. By
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CHAPTER 1. INTRODUCTION

intuition, such highly repetitive sequences should be highly compressible, however, statistical

compressors are known to fail to capture repetitiveness in a string [69]. Therefore, other types

of compressors, such as dictionary-based, grammar-based, and/or lex-based compressors are

often used to compress highly repetitive sequences [72, 100, 70, 57].

Let us recall two examples of well-known compressors: The run-length Burrows-Wheeler

Transform (RLBWT) is one kind of compressor based on the lexicographically sorted rotations

of the input string. The number r of equal-character runs in the BWT of a string is known to

be very small in practice: Indeed, BWT is used in the bzip2 compression format, and several

compressed data structures which support efficient queries have been proposed [48, 5, 90, 91].

The Lempel-Ziv 78 compression (LZ78) [111] is one of the most fundamental dictionary based

compressors that is a core of the gif and tiff compression formats. While LZ78 only allows

Ω(
√
n) compression for any string of length n, its simple structure allows for designing efficient

compressed pattern matching algorithms and compressed self-indices (c.f. [63, 50, 51, 81, 39]

and references therein).

The recent work by Giuliani et al. [54], however, shows that the number r of runs in the

BWT of a string of length n can grow by a multiplicative factor of Ω(log n) when a single

character is prepended to the input string1. It is noteworthy that the family of strings discovered

by Giuliani et al. [54] satisfies r(T ) ∈ O(1) and r(T ′) ∈ Ω(log n), where r(T ) and r(T ′)

respectively denote the number of runs in the BWTs of T and T ′. The other work by Lagarde

and Perifel [71] shows that the size of the dictionary of LZ78, which is equal to the number

of factors in the respective LZ78 factorization, can grow by a multiplicative factor of Ω(n1/4),

again when a single character is prepended to the input string. Letting the LZ78 dictionary size

be z78, this multiplicative increase can also be described as Ω(z
3/2
78 ). Lagarde and Perifel call

this phenomenon “one-bit catastrophe”.

Based on these known results, here we introduce the three following classes of string com-

pressors depending on their sensitivity.

(I) Those whose sensitivity is O(1);

(II) Those whose sensitivity is polylog(n);

(III) Those whose sensitivity is proportional to nc with some constant 0 < c ≤ 1.

By generalizing the work of Lagarde and Perifel [71], we say that Class (III) is catastrophic in

terms of the sensitivity. Class (II) may not be catastrophic but the change in the compression size

1If the string ends with a unique symbol $, then the number r of runs in the BWT increases additively by at

most 2 after a character is prepended to the string. Giuliani et al. [54] showed that this is not the case without $.
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CHAPTER 1. INTRODUCTION

can still be quite large just for a mere single character edit operation to the input string. Class

(I) is the most robust against one-character edit operations among the three classes. Recall that

LZ78 z78 belongs to Class (III). As for RLBWT, the work of Giuliani et al. [54] showed only

a lower bound Ω(log n), however, the multiplicative sensitivity of RLBWT r turns out to be

O(log r log n), which implies that r belongs to Class (II) [1].2.

The LZ77 compression [110], which is the greedy parsing of the input string T where each

factor of length more than one refers to a previous occurrence to its left, is the most important

dictionary-based compressor both in theory and in practice. The LZ77 compression without

self-references (resp. with self-references) can achieve O(log n) compression (resp. O(1) com-

pression) in the best case as opposed to the Ω(
√
n) compression by the LZ78 counterpart, and

the LZ77 compression is a core of common lossless compression formats including gzip, zip,

and png. In addition, its famous version called LZSS (Lempel-Ziv-Storer-Szymanski) [101],

has numerous applications in string processing, including finding repetitions [29, 67, 56, 7],

approximation of the smallest grammar-based compression [98, 21], and compressed self-

indexing [12, 13, 83, 10], just to mentioned a few.

In this thesis, we show that such a catastrophe never happens with GCIS, which is the

grammar compression used in our GCIS-Index we mentioned above. We show that for all types

of edit operations, the multiplicative sensitivity of the size of the GCIS grammar is at most

4. Furthermore, that there exist strings for which the multiplicative sensitivity is also 4 with

all types of edit operations. We also consider the smallest bidirectional scheme [101] that is a

generalization of the LZ family where each factor can refer to its other occurrence to its left or

right. It is shown that for all types of edit operations, the multiplicative sensitivity of the size

b of the smallest bidirectional scheme is at most 2, and that there exist strings for which the

multiplicative sensitivity of b is 2 with insertions and substitutions, and it is 1.5 with deletions.

The smallest grammar problem [21] is a famous NP-hard problem that asks to compute a

grammar of the smallest size g∗ that derives only the input string. We show that the multiplica-

tive sensitivity of the smallest grammar size g∗ is at most 2. We also present non-trivial upper

and lower bounds for the multiplicative sensitivity for the size zEnd of the LZ-End compres-

sor [69].

Moreover, we consider the multiplicative sensitivity of other compressors and repetitive-

ness measures including Bisection [87], GCIS [94, 93], α-balanced grammars [21], AVL-

grammars [98], and Recompression [59]. Table 1.1 summarizes our results on the multiplicative

2This O(log r log n) upper bound for the sensitivity of r follows from our result on the sensitivity of δ and the

Lemma 2.1 of [1], and from the known results between r and δ [60, 66].
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sensitivity of the string compressors and repetitiveness measures.

In addition to the aforementioned multiplicative sensitivity, we also introduce the worst-case

additive sensitivity, which is defined by

max
T∈Σn

{C(T ′)− C(T ) : ed(T, T ′) = 1},

for all the string compressors/repetitiveness measures C dealt with in this thesis. We remark

that the additive sensitivity allows one to observe and evaluate more details in the changes

of the output sizes, as summarized in Table 1.2. Studying the additive sensitivities of string

compressors is motivated by an approximation of the Kolmogorov complexity. Let K(T ) denote

the Kolmogorov complexity of string T , that is the length of a shortest program that produces T .

While K(T ) is known to be uncomputable, the additive sensitivity K(T ′)−K(T ) for deletions

is at most O(log n) bits, since it suffices to add “Delete the ith character T [i] from T .” at the

end of the program. Similarly, the additive sensitivity of K for insertions and substitutions is at

most O(log n+ log σ) bits, where σ is the alphabet size. Therefore, a “good approximation” of

the Kolmogorov complexity K should have small additive sensitivity.

6



CHAPTER 1. INTRODUCTION

Table 1.1: Multiplicative sensitivity of the string compressors and string repetitiveness measures

studied in this thesis and in the literature, where n is the input string length and Σ is the alphabet.

In the table “sr” stands for “with self-references”. The upper bounds marked with “†” are

obtained by applying known results [61, 66, 60, 69, 62, 21, 98, 59] and our results on the

sensitivity of the substring complexity δ or the smallest grammar g∗ to Lemma 2.1. This thesis

excludes the boundaries denoted by “§”, the published version of this work [1] has detailed

proofs of the results.

compressor/repetitiveness measure edit type upper bound lower bound

Substring Complexity δ
ins./subst. 2§ 2§

deletion 1.5§ 1.5§

Smallest String Attractor γ all O(log n)†§ 2§

RLBWT r
insertion

O(log n log r)†§
Ω(log n) [54]

del./subst. -

Bidirectional Scheme b
ins./subst. 2§ 2§

deletion 2§ 1.5§

LZ77 z77
all 2§ 2§

LZ77sr z77sr

LZSS zSS del./subst. 3§ 3§

LZSSsr zSSsr insertion 2§ 2§

LZ78 z78
insertion

O((n/ log n)
2
3 )†

Ω(n
1
4 ) [71]

del./subst. Ω(n
1
4 )§

LZ-End zEnd all O(log2(n/δ))† 2

Smallest grammar g∗ all 2 -

Repair grpair

all O((n/ log n)
2
3 )† -Longest match glong

Greedy ggrdy

Sequential gseq all O((n/ log n)
3
4 )† -

α-balanced grammar gα

all O(log(n/g∗))† -AVL grammar gavl

Simple gsimple

Bisection gbsc
substitution 2 2

ins./del. σ + 1 σ

GCIS gis all 4 4

7



CHAPTER 1. INTRODUCTION

Table 1.2: Additive sensitivity of the string compressors and string repetitiveness measures

studied in this thesis, where n is the input string length and σ is the alphabet size. Some up-

per/lower bounds are described in terms of both the measure and n. In the table “sr” stands for

“with self-references”. The upper bounds marked with “†” are obtained by applying known re-

sults [61, 66, 60, 69, 62, 21, 98, 59] and our results on the sensitivity of the substring complexity

δ or the smallest grammar g∗ to Lemma 2.1. This thesis excludes the boundaries denoted by

“§”. The published version of this work [1] has detailed proofs of the results.

compressor/
edit type upper bound lower bound

repetitiveness measure

Substring Complexity δ all 1§ 1§

Smallest String Attractor γ all O(δ log n)†§ γ − 3§ Ω(
√
n)§

RLBWT r
insertion

O(r log n log r)†§ -
Ω(log n) [54]

del./subst. -

Bidirectional Scheme b all b+ 2§ b/2− 3§ Ω(
√
n)§

LZ77 z77
subst./ins. z77 − 1§ z77 − 1§

Ω(
√
n)§

deletion z77 − 2§ z77 − 2§

LZ77sr z77
subst./ins.

z77sr
§ z77sr

§
Ω(

√
n)§

deletion z77sr − 2§

LZSS zSS
del./subst. 2zSS − 2§ 2zSS −Θ(

√
zSS)

§
Ω(

√
n)§

insertion zSS
§ zSS −Θ(

√
zSS)

§

LZSSsr zSSsr
del./subst. 2zSSsr

§ 2zSSsr −Θ(
√
zSSsr)

§
Ω(

√
n)§

insertion zSSsr + 1§ zSSsr −Θ(
√
zSSsr)

§

LZ78 z78
insertion

O(g∗ · (n/ log n) 2
3 )†§

Ω((z78)
3
2 ) [71] Ω(n/ log n) [71]

del./subst. Ω((z78)
3
2 )§ Ω(n

3
4 )§

LZ-End zEnd all O(zEnd log
2(n/δ))† zEnd −Θ(

√
zEnd) Ω(

√
n)

Smallest grammar g∗ all g∗ -

Repair grpair

all O(g∗ · (n/ log n) 2
3 )† -Longest match glong

Greedy ggrdy

Sequential gseq all O(g∗ · (n/ log n) 3
4 )† -

α-balanced grammar gα

all O(g∗ log(n/g∗))† -AVL grammar gavl

Simple gsimple

Bisection gbsc
substitution gbsc �log2 n� gbsc − 4 2 log2 n− 4

ins./del. σgbsc Ω(σgbsc) Ω(σ2 log2(n/σ))

GCIS gis all 3gis 3gis − 26 Ω(n)

8



CHAPTER 1. INTRODUCTION

1.4 Minimal absent words (MAWs)

Edit operations affect not only compression sensitivity, but also other properties of strings, such

as palindromes, minimal unique substrings, and so on. Most, if not all, of them are useful to

analyze string data, and therefore, the number of such characteristic features and the amount

of change are also of significance. One of such characteristic features we focus on is minimal

absent words which is the last keyword in the third part (C) of this thesis.

We say that a string s occurs in another string T if s is a substring of T . A non-empty string

w is said to be a minimal absent word (an MAW) for a string T if w does not occur in T but

all proper substrings of w occur in T . Note that by definition a string of length 1 (namely a

character) which does not occur in T is also an MAW for T . On the other hand, any MAW for

T of length at least 2 can be represented as aub, where a and b are single characters and u is a

(possibly empty) string, such that both au and ub occur in T . For example, let Σ = {a, b, c} be

the alphabet. Then, the set of MAWs for string w = abaab is {aaa, aaba, bab, bb, c}.

Applications of (minimal) absent words include phylogeny [18], data compression [32, 33],

musical information retrieval [28], and bioinformatics [3, 95, 68, 19].

In this thesis, we first analyze the amount of MAWs for the sliding window model, and

second, we propose the efficient representation of MAWs for run-length encodings (RLE).

1.4.1 MAWs for sliding window

We follow the recent line of research on MAWs for the sliding window model, which was initi-

ated by Crochemore et al. [30]. In this model, the goal is to compute or analyze MAW(T [i..i+

d− 1]), as i is incremented, each time by 1, from 1 to n− d+ 1. For intuition, consider sliding

a length-d window on T from left to right.

Crochemore et al. [30] presented a suffix-tree based algorithm that maintains the set of all

MAWs for a sliding window in O(σn) time using O(σd) working space. Crochemore et al. [30]

also showed how their algorithm can be applied to approximate pattern matching under the

length weighted index (LWI) metric [18].

How efficiently their system works is heavily dependent on combinatorial properties of

MAWs for the sliding window. In particular, Crochemore et al. [30] studied the number of

MAWs to be added/deleted when the current window is shifted to the right by one character. As

was done in [30], for ease of discussion let us separately consider

• adding a new character T [i + d] to the current window T [i..i + d − 1] of length d which

9



CHAPTER 1. INTRODUCTION

forms T [i..i+ d], and

• deleting the leftmost character T [i−1] from the current window T [i−1..i+d−1] which

forms T [i..i+ d− 1] of length d.

We remark that these two operations are symmetric.

Crochemore et al. [30] considered how many MAWs can change before and after the win-

dow has been shifted by one position, and showed that

|MAW(T [i..i+ d])�MAW(T [i..i+ d− 1])| ≤ (si − sα)(σ − 1) + σ + 1,

|MAW(T [i− 1..i+ d− 1])�MAW(T [i..i+ d− 1])| ≤ (pi − pβ)(σ − 1) + σ + 1,

where � denotes the symmetric difference and

• si is the length of the longest repeating suffix of T [i..i+ d− 1],

• sα is the length of the longest suffix of T [i..i + d − 1] having an internal occurrence

immediately followed by α = T [i+ d],

• pi is that of the longest repeating prefix of T [i..i+ d− 1], and

• pβ is the length of the longest prefix of T [i..i + d − 1] having an internal occurrence

immediately preceded by β = T [i− 1].

Since both si − sα and pi − pβ can be at most d − 1 in the worst case, the asymptotic bounds

for the numbers of changes in the set of MAWs obtained by Crochemore et al. [30] are:

|MAW(T [i..i+ d])�MAW(T [i..i+ d− 1])| ∈ O(σd),

|MAW(T [i− 1..i+ d− 1])�MAW(T [i..i+ d− 1])| ∈ O(σd).
(1.1)

Crochemore et al. [30] also considered the total changes in the set of MAWs for every

sliding window over the string T , and showed that

n−d∑
i=1

(
|MAW(T [i..i+ d− 1])�MAW(T [i+ 1..i+ d])|

)
∈ O(σn). (1.2)

The goal of this thesis is to give more rigorous analyses on the number of MAWs for the

sliding window model. This study is well motivated since revealing more combinatorial insights

to the sets of MAWs for the sliding windows can lead to more efficient algorithms for computing

them.

10
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In this thesis, we first give the following upper bounds:

|MAW(T [i..i+ d])�MAW(T [i..i+ d− 1])| ≤ d+ σi,i+d−1 + 1,

|MAW(T [i− 1..i+ d− 1])�MAW(T [i..i+ d− 1])| ≤ d+ σi,i+d−1 + 1,
(1.3)

where σx,y is the number of distinct characters in T [x, y]. We then show that our new upper

bounds in (1.3) are tight by showing a family of strings achieving these bounds.

Since σi,i+d−1 ≤ d always holds, we immediately obtain new asymptotic upper bounds

|MAW(T [i..i+ d])�MAW(T [i..i+ d− 1])| ∈ O(d),

|MAW(T [i− 1..i+ d− 1])�MAW(T [i..i+ d− 1])| ∈ O(d).
(1.4)

Our new upper bounds in (1.4) improve Crochemore et al.’s upper bounds in (1.1) for any

alphabet of size σ ∈ ω(1). Our upper bounds in (1.4) are also tight as there exists a family of

strings achieving the matching lower bounds Ω(d).

In this thesis, we also present a new upper bound for the total changes of MAWs:

n−d∑
i=1

(
|MAW(T [i..i+ d− 1])�MAW(T [i+ 1..i+ d])|

)
∈ O(min{σ, d}n) (1.5)

which improves the previous bound O(σn) in (1.2). We then show that this new upper bound

in (1.5) is also tight.

All of our new bounds aforementioned are tight for any alphabet of size σi,i+d−1 ≥ 3. We

further explore the case of binary alphabets with σi,i+d−1 = 2, and show that there exist even

tighter bounds in the binary case. Namely, for σi,i+d−1 = 2, we prove that

|MAW(T [i..i+ d])�MAW(T [i..i+ d− 1])| ≤ max{3, d},
|MAW(T [i− 1..i+ d− 1])�MAW(T [i..i+ d− 1])| ≤ max{3, d}.

(1.6)

We remark that plugging σi,i+d−1 = 2 into (1.3) for the general case only gives d+σi,i+d−1+1 =

d+3, which is larger than max{3, d} in (1.6). We consider the case σi,i+d−1 ≥ d in Lemmas 3.10

and 3.11. We also show that the upper bounds max{3, d} in (1.6) are tight by giving matching

lower bounds with a family of binary strings.

A part of the results reported in this article appeared in a preliminary version of this the-

sis [79]. In addition, this present article considers the case of binary alphabets and presents

tight upper and lower bounds for this case.

1.4.2 Computing MAWs in RLE-compressed strings

In this thesis, we initiate the study of computing MAWs for compressed strings. As the first

step of this line of research, we consider strings which are compactly represented by run-length

11
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encoding (RLE). Let m be the size of the RLE of an input string T . We first categorize the

elements of MAW(T ) into five disjoint subsets M1, M2, M3, M4, and M5, by considering

how the MAWs can be related to the boundaries of maximal character runs in T (Section 2.3).

In Section 3.2.2 and Section 3.2.1, we present matching upper bounds and lower bounds for

their sizes |Mi| (i = 1, 2, 4, 5) in terms of the RLE size m or the number σ′
T of distinct char-

acters occurring in T . Notice that σ′
T ≤ m always holds. The exception is M3, which can

contain Ω(n) MAWs regardless of the RLE size m. Still, in Section 3.2.4 we propose our RLE-

compressed O(m)-space data structure that can enumerate all MAWs for T in output-sensitive

O(|MAW(T )|) time. Since m ≤ n always holds, our result is an improvement over Crochemore

et al.’s and Fujishige et al.’s results both of which require O(n) space to store representations

of all MAWs. Charalampopoulos et al. [20] showed how one can use extended bispecial fac-

tors of T to represent all MAWs for T in O(n) space, and to output all MAWs in optimal

O(|MAW(T )|) time upon a query. While the way how we characterize the MAWs may be

seen as the RLE version of their method based on the extended bispecial factors, our O(m)-

space data structure cannot be obtained by a straightforward extension from [20], since there

exists a family of strings over a constant-size alphabet for which the RLE-size is m ∈ O(1)

but |MAW(T )| ∈ Ω(n). We note that, by the use of truncated RLE suffix arrays [104], our

O(m)-space data structure can be built in O(m logm) time with O(m) working space.

1.5 Related work

1.5.1 Compressed string data structures

A compressed string data structure is built on a compressed representation of the string and

supports efficient queries such as pattern matching and substring extraction within compressed

space. Since the string compressors and string repetitiveness measures that we deal with in this

thesis are models for highly repetitive strings, we mention some compressed string indexing

structures for highly repetitive sequences below.

The Block tree of a string of length n uses O(zSS log(n/zSS)) words of space and supports

random access queries in O(log(n/zSS)) time. Navarro [83] proposed an LZ-based indexing

structure that uses O(zSS log(n/zSS)) words of space and counts the number of occurrences of

a query pattern in the text string in O(m log2+ε n) time, where m is the length of the pattern

and ε > 0 is any constant. An O(log n)-time longest common extension (LCE) data structure

that takes O(zSS log(n/zSS)) space and is based on Recompression [59] was proposed by I [58].
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Nishimoto et al. [89] presented a dynamic O(min{zSS log n log∗ n, n})-space compressed data

structure that supports pattern matching and substring insertions/deletions in O(m ·polylog(n))
time, where m is the length of the pattern/substring.

Kociumaka et al. [66] proposed a compressed indexing structure that uses O(δ log(n/δ))

words of space, performs random access in O(log(n/δ)) time, and finds the occ occurrences of

a given pattern in O(m log n + occ logε n) time. Very recently, Kociumaka et al. [65] proposed

an improved data structure of O(δ log(n/δ))-space that supports pattern matching queries in

O(m + (occ + 1) logε n) time. Two independent compressed indexing structures, which are

based on grammar compression called GCIS (Grammar Compression by Induced Sorting) [94]

have been proposed [2, 35]. Our constant upper bounds on the multiplicative sensitivity for

zSS, δ, and gis imply that the aforementioned compressed data structures retain their asymptotic

space complexity even after one-character edit operation at an arbitrary position, though they

may incur a certain amount of structural changes.

The r-index [48], the refined r-index [5], and the OptBWTR [90] are efficient indexing

structures which are built on the RLBWT and use O(r) words of space. The result by Giuliani

et al. [54], which uses a family of strings of length n with r ∈ O(1), shows that the space

complexity of these indexing structures can grow from O(1) words of space to O(log n) words

of space, after appending a character to the string. In turn, our upper bound for the sensitivity of

r implies that after a one-character edit operation, the space usage of these indexing structures

is bounded by O(r log r log n) for any string of length n.

There also exist compressed data structures based on other string compressors and/or repet-

itiveness measures: Kempa and Prezza [61] presented an O(γτ logτ (n/γ))-space data structure

that allows for extracting substrings of length-
 in O(logτ (n/γ) + 
 log(σ)/ω) time, where

τ ≥ 2 is an integer parameter, σ is the alphabet size, and ω is the machine-word size in the

RAM model. Navarro and Prezza [85] gave a data structure of size O(γ log(n/γ)) that supports

pattern matching queries in O(m log n + occ logε n) time. Christiansen et al. [22] introduced

a compressed indexing structure that occupies O(γ log(n/γ) logε n) space and finds all the occ

pattern occurrences in optimal O(m+ occ) time (for other trade-offs between the space and the

query time are also reported, see [22]). Gawrychowski et al. [53] presented a data structure for

maintaining a dynamic set of strings, which is based on Recompression by Jeż [59]. Kempa and

Saha [62] developed a compressed data structure that occupies O(zEnd) space and supports ran-

dom access and LCE queries in O(polylog(n)) time. A compressed indexing structure that can

be built directly from the LZ77-compressed text is also known [60, 60]. For other compressed

string indexing structures, see this survey [84].
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Table 1.3: Needed space (in words) and query time for protect locatefor a pattern of length m re-

garding the grammar indexes of 1.5.2. Here, n is the length of T , z is the number of LZ77 [110]

phrases of T , γ is the size of the smallest string attractor [61] of T , gLyn is the size of the Lyndon

SLP of T , ĝ is the size of a given admissible grammar, ε > 0 is a constant, m is the length of a

pattern P , and occ is the number of occurrences of P in T .

Index Space Locate Time

[25] O(ĝ) O(m2 lg lgĝ n+ (m+ occ) lg ĝ)

[45] O(ĝ + z lg lg z) O(m2 + (m+ occ) lg lg n)

[22] O(γ lg(n/γ)) O(m+ lgε γ + occ lgε(γ lg(n/γ)))

[22] O(γ lg(n/γ) lgε(γ lg(n/γ))) O(m+ occ)

[105] O(gLyn) O(m+ lgm lg n+ occ lg gLyn)

1.5.2 Grammar indexes

One area of research in this field is devoted to grammar compression since a grammar can

eliminate repetitions while exhibiting powerful query abilities. A grammar index is a self-index,

i.e., a data structure that supports queries on the underlying text without storing the text in its

plain form.

Regarding indexing a general grammar for answering locate, the first work we are aware of

is due to [24] who studied indices built upon so-called straight-line programs (SLPs). An SLP

is a context-free grammar representing a single string in the Chomsky normal form. This result

got improved [25, 45, 26]. We present their complexity bounds in Table 1.3.

Other research focused on particular types of grammar, such as the ESP-index [77, 103,

102], an universal index [23] based on Re-Pair [72] and the Lempel–Ziv-77 parsing [110], a

dynamic index [89] based on signature encoding [78], the Lyndon SLP [105], or the grammar

index of [22]. We show the needed space and query time of these grammars in Table 1.3.

For the experiments, we will additionally have a look to other self-indexes capable of locate-

queries. In particular, we study Burrows–Wheeler-transform (BWT) [17]-based approaches,

namely the FM-index [41] and the r-index [47], the LZ-index [82, 23] and the RLZ-index [97].

Finally, GCIS has other interesting properties besides being locality sensitive. Nunes et

al. showed how to compute the suffix array and the longest-common-prefix array from GCIS

during a decompression step restoring the original text [93]. Recently, Dı́az-Domı́nguez and
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Navarro proposed an approach to compute the BWT directly from the GCIS grammar [34].

1.5.3 String monotonicity

A string repetitiveness measure C is called monotone if, for any string T of length n, C(T ′) ≤
C(T ) holds with any of its prefixes T ′ = T [1..i] and suffixes T ′ = T [j..n] [66]. Kociumaka

et al [66] pointed out that δ is monotone, and posed a question whether γ or the size b of the

smallest bidirectional macro scheme [101] are monotone. This monotonicity for C can be seen

as a special and extended case of our sensitivity for deletions, namely, if we restrict T ′ to be the

string obtained by deleting either the first or the last character from T , then it is equivalent to

asking whether maxT∈Σ{C(T ′)/C(T ) : T ′ ∈ {T [1..n − 1], T ′ = T ′[2..n]}} ≤ 1. Mantaci et

al. [76] proved that γ is not monotone, by showing a family of strings T such that γ(T ) = 2 and

γ(T ′) = 3 with T ′ = T [1..n− 1], which immediately leads to a lower bound 3/2 = 1.5 for the

multiplicative sensitivity of γ. Bannai et al. present a new lower bound for the multiplicative

sensitivity of γ, which is 2.5 [6] . Mitsuya et al. [80] considered the monotonicity of LZ77

without self-references z77 presented a family of strings T for which z77(T
′)/z77(T ) ≈ 4/3

with T ′ = [2..n]. Again, our matching upper and lower bounds for the multiplicative sensitivity

of z77, which are both 2, improve this 4/3 bound.

1.5.4 Comparison to sensitivity of other algorithms

The notion of the sensitivity of (general) algorithms was first introduced by Varma and Yoshida [106].

They studied the average sensitivity of well-known graph algorithms, and presented interesting

lower and upper bounds on the expected number of changes in the output of an algorithm A,

when a randomly chosen edge is deleted from the input graph G. The worst-case sensitivity

of a graph algorithm for edge-deletions and vertex-deletions was considered by Yoshida and

Zhou [109].

As opposed to these existing work on the sensitivity of graph algorithms, our notion of the

sensitivity of string compressors focuses on the size of their compressed outputs rather than the

perturbation of their structural changes. This is because the primary task of data compression

is to represent the input data with as little memory as possible, and the structural changes of the

compressed outputs can be of secondary importance.

We remark that most instances of Σn are not compressible, or in other words, a randomly

chosen string T from Σn is not compressible. Such a string T does not become highly com-

pressible just after a one-character edit operation, and hence C(T ) and C(T ′) are expected to
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be almost the same. Therefore, considering the average sensitivity of string compressors and

repetitiveness measures does not seem worth discussing, and this is the reason why we focus on

the worst-case sensitivity of string compressors and repetitiveness measures.

Still, our notion permits one to evaluate the worst-case size changes of several known com-

pressed string data structures in the dynamic setting, as will be discussed in the following

subsection.

1.5.5 Algorithms for MAWs computation

Given the above-mentioned motivations of MAWs, finding MAWs from a given string has been

an important and interesting string algorithmic problem and several nice solutions have been

proposed. The first non-trivial algorithm, which was given by Crochemore et al. [31], finds the

set MAW(T ) of all MAWs for a given string T of length n over an alphabet of size σ in Θ(σn)

time with O(n) working space. Since |MAW(T )| ∈ O(σn) for any string T of length n and

|MAW(S)| ∈ Ω(σn) for some string S of length n [31], Crochemore et al.’s algorithm [31] runs

in optimal time in the worst case. Later, Fujishige et al. [44] presented an improved data struc-

ture of O(n) space, which can report all MAWs in O(n + |MAW(T )|) time and O(n) working

space. Fujishige et al.’s algorithm [44] can easily be modified so it uses O(|MAW(T )|) time for

reporting all MAWs, by explicitly storing all MAWs when |MAW(T )| ∈ O(n). The key tool

used in these two algorithms is an O(n)-size automaton called the DAWG [15], which accepts

all substrings of T . The DAWG for string T can be built in O(n log σ) time for general ordered

alphabets [15], or in O(n) time for integer alphabets of size polynomial in n [44]. Charalam-

popoulos et al. [20] presented an algorithm that computes all MAWs in output-sensitive time

without using the DAWG of T . Belazzougui et al. [11] showed that MAW(T ) can also be com-

puted in O(n + |MAW(T )|) time, provided that the bidirectional Burrows-Wheeler transform

of a given string has already been computed. Barton et al. [8] proposed a practical algorithm to

compute MAW(T ) in Θ(nσ) time and working space3 based on the suffix array [75] of T . A par-

allel algorithm for computing MAWs has also been proposed [9]. Fici and Gawrychowski [42]

extended the notion of MAWs to rooted/unrooted labeled trees and presented efficient algo-

rithms to compute them.

3The original claimed bound in [8] is O(n), however, the authors assumed that σ ∈ O(1).
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1.6 Paper organization

Chapter 2 introduces necessary notations. In Chapter 3, we first present matching upper bounds

and lower bounds on the number of MAWs to be added/deleted when the current window is

shifted to the right by one character. Next, we show matching upper bounds and lower bounds

on the number of MAWs in the RLE strings. In the last section of Chapter 3, we present

matching upper bounds and lower bounds of the number of MAWs to be added/deleted in the

case of sliding window and RLE strings. In Chapter 4, we show how to compute our new

grammar index and show how one can locate all pattern occurrences efficiently. Implementation

and experiments are summarized in the last section of this chapter. In Chapter 5, we present

the worst-case sensitivity of string compressors and repetitiveness measures: Section 5.1 deals

with the GCIS grammar gis; Section 5.3 deals with the LZ-End zEnd; Section 5.4 deals with the

smallest grammar g∗, and its applications to approximation grammars such as AVL-grammars,

α-balanced grammars, and Recompression; Section 5.2 deals with the Bisection grammar gbsc;

In Chapter 6 we conclude the thesis and list several open questions of interest.
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Chapter 2

Preliminaries

2.1 Strings

Let Σ be an integer alphabet of size σ. An element of Σ is called a character. An element of

Σ∗ is called a string. The length of a string T is denoted by |T |. The empty string ε is the string

of length 0, namely, |ε| = 0. If T = xyz, then x, y, and z are called a prefix, substring, and

suffix of T , respectively. They are called a proper prefix, proper substring, and proper suffix of

T if x 
= T , y 
= T , and z 
= T , respectively.

For any 1 ≤ i ≤ |T |, the i-th character of T is denoted by T [i]. For any 1 ≤ i ≤ j ≤ |T |,
T [i..j] denotes the substring of T starting at i and ending at j. For convenience, let T [i..j] = ε

for 0 ≤ j < i ≤ |T |+ 1. For any i ≤ |T | and 1 ≤ j, let T [..i] = T [1..i] and T [j..] = T [j..|T |].
We say that a string w occurs in a string T if w is a substring of T . Note that by definition

the empty string ε is a substring of any string T and hence ε always occurs in T .

Let #Tw denote the number of occurrences of a string w in a string T . We will abbreviate

it to #w when no confusion occurs.

2.2 Run Length Encoding (RLE)

The run-length encoding rle(T ) of string T is a compact representation of T such that each

maximal run of the same characters in T is represented by a pair of the character and the length

of the maximal run. More formally, rle(T ) = ap11 · · · apmm encodes each substring T [i..i+p−1] by

ap if T [j] = a ∈ Σ for every i ≤ j ≤ i+p−1, T [i−1] 
= T [i], and T [i+p−1] 
= T [i+p]. Each

ap in rle(T ) is called a (character) run, and p is called the exponent of this run. The j-th maximal

run in rle(T ) is denoted by rj , namely rle(T ) = r1 · · · rm. The size of rle(T ), denoted R(T ), is
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the number of maximal character runs in rle(T ). E.g., for a string T = aacccccccbbabbbb of

length 18, rle(T ) = a2c7b2a1b4 and R(T ) = 5.

Our model of computation is a standard word RAM with machine word size Ω(log |T |), and

the space requirements of our data structures will be measured by the number of words (not

bits). Thus, rle(T ) of size m can be stored in O(m) space.

2.2.1 Bridges

A string w ∈ Σ∗ of length |w| ≥ 2 is said to be a bridge if w[1] 
= w[2] and w[|w|−1] 
= w[|w|].
In other words, both of the first run and the last run in rle(w) are of length 1. A substring of T

that is a bridge is called a bridge substring of T . Let B� denote the set of bridge substrings w of

T with R(w) = 
. Further let B =
⋃

� B� be the set of all bridge substrings of T . For example,

for the same string T = aacccccccbbabbbb as the above one, the substring ac7b2a of T is a

bridge, and B4 = {ac7b2a, cb2a1b}. For a string w with R(w) ≥ 3, we can obtain a bridge

substring of w by removing the first and the last runs of w and then shrinking the runs at both

ends so that their exponents are 1. We denote by shk(w) such shrunk bridge. For convenience,

let shk(w) = ε if R(w) ≤ 2. Also, for every k ≥ 2, we denote shkk(w) = shk(shkk−1(w)).

For example, consider the same T as the above again, shk(T ) = cbba, shk2(w) = b, and

shkk(w) = ε for any k ≥ 3.

In the rest of this thesis, we will consider an arbitrarily fixed string T of length n. For

convenience, we assume that n ≥ 3 and that there are special terminal symbols T [1] = T [n] =

$ 
∈ Σ not occurring inside T . Since $ /∈ Σ, we do not consider any MAW containing $ for T

in our arguments to follow (recall that a MAW must be an element of Σ∗). In addition, since $

does not occur elsewhere in T , MAW(T ) = MAW(T [2..n− 1]) holds.

Example 2.1. Consider T = $b2ac3ba2$ = $bbacccbaa$. All MAWs in MAW(T ) are divided

into the following five types: M1 = {aaa, bbb, cccc}; M2 = {ca, bc}; M3 = {acb, accb};

M4 = {cbac}; M5 = {bbaa}.

Let Σ′ denote the set of characters occurring in T except for $. Let σ′ = |Σ′| be the number

of distinct characters occurring in T [2..n− 1].

2.2.2 Truncated RLE Suffix Array (tRLESA)

We explain suffix array(SA) and truncated RLE Suffix Array (tRLESA)[104]. A suffix s of T

is called a truncated RLE(tRLE) suffix of T if s = tRLE(i) = airi+1 · · · rm where the first
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ai is the last character in the previous run ri. SA for T is an integer array of length n such

that SA(T )[i] = k iff T [k..] is the i-th lexicographically smallest suffix for T . tRLESA(T ) for

rle(T ) = r1 · · · rm is an integer array of length m such that tRLESA(T )[i] = k iff akrk+1 · · · rm
is the i-th lexicographically smallest tRLE suffix for T . tRLESA occupies O(m) space, and

can be built in O(m logm) time with O(m) working space [104]. Let LCP(x, y) be the longest

common prefix of x and y. tRLELCP(T ) for rle(T ) = r1 · · · rm is an integer array of length

m such that tRLELCP(T )[i] = k iff R(LCP(tRLE(tRLESA[i]), tRLE(tRLESA[i + 1]))) = k.

tRLELCP occupies O(m) space and can calculate in O(m logm) time [104].

Example 2.2. Let T = abbabbaa#. Then,

T [1..] = abbabbaa#,

T [2..] = bbabbaa#,

T [3..] = babbaa#,

T [4..] = abbaa#,

T [5..] = bbaa#,

T [6..] = baa#,

T [7..] = aa#,

T [8..] = a#,

T [9..] = #,

The following order is obtained by sorting the suffixes in lexicographical order.

T [9..] = #,

T [8..] = a#,

T [7..] = aa#,

T [4..] = abbaa#,

T [1..] = abbabbaa#,

T [6..] = baa#,

T [3..] = babbaa#,

T [5..] = bbaa#,

T [2..] = bbabbaa#,

Therefore, the suffix array is SA = [10, 9, 8, 3, 7, 2, 1, 6, 5, 4]. In addition, we also gain the
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following order by sorting the truncated suffixes in lexicographical order:

T [9..] = tRLE(6) = #,

T [8..] = tRLE(5) = a#,

T [4..] = tRLE(3) = abbaa#,

T [1..] = tRLE(1) = abbabbaa#,

T [6..] = tRLE(4) = baa#,

T [3..] = tRLE(2) = babbaa#,

Therefore, the truncated suffix array is tRLESA = [6, 5, 3, 1, 4, 2]. In this example,

tRLELCP [3] = R(LCP(T [4..], T [1..])) = R(abba) = 3.

2.3 Minimal Absent Words (MAWs)

A string w ∈ Σ∗ is called an absent word for a string T if w does not occur in T , namely if

#w = 0. An absent word w for T is called a minimal absent word or MAW for T if all proper

substrings of w occur in T .

We note that if w is a string of length 1 which does not occur in T (i.e. w is a single character

in Σ of size σ not occurring in T ), then w is a MAW for T since w[2..] = w[..|w| − 1] = ε is a

substring of T .

We denote by MAW(T ) the set of all MAWs for T . By the definition of MAWs, it is clear

that w = aub ∈ MAW(T ) iff the three following conditions hold:

(A) #(aub) = 0.

(B) #(ub) ≥ 1.

(C) #(au) ≥ 1.

For a MAW of length 1 (namely a character not occurring in T ), we use a convention that u = ε

and a and b are united into a single character.

Example 2.3. Let Σ = {a, b, c, d}. Then, the set of MAWs for string cbaaaa is:

MAW(cbaaaa) = {cc, bb, aaaaa, bc, ab, ca, ac, d}.

An alternative definition of MAWs is such that a string aub of length at least two with

a, b ∈ Σ and u ∈ Σ∗ is a MAW of T if #(aub) = 0, #(au) ≥ 1 and #(ub) ≥ 1. For a MAW
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of length 1 (namely a character not occurring in T ), we use a convention that u = ε and a and b

are united into a single character.

The MAWs in MAW(T ) are partitioned into the following five disjoint subsets Mi (1 ≤ i ≤
5) based on their RLE sizes R(aub):

• M1 = {aub ∈ MAW(T ) | R(aub) = 1};

• M2 = {aub ∈ MAW(T ) | R(aub) = 2, u = ε};

• M3 = {aub ∈ MAW(T ) | R(aub) = 3, a 
= u[1] and b 
= u[|u|]};

• M4 = {aub ∈ MAW(T ) | R(aub) ≥ 4, a 
= u[1] and b 
= u[|u|]};

• M5 = {aub ∈ MAW(T ) | R(aub) ≥ 2, a = u[1] or b = u[|u|]}.

For 1 ≤ i ≤ 5, a MAW aub in Mi is called of Type-i.

2.3.1 MAWs for sliding window

Given a string T of length n and a sliding window Si = T [i..j] of length d = j − i + 1 for

increasing i = 1, . . . , n−d+1, our goal is to analyze how many MAWs for the sliding window

can change when the window shifts over the string T . We will consider both the maximum

change per one shift, and the maximum total number of changes when sliding the window from

the beginning to the end.

As was done in [30], for simplicity, we separately consider two symmetric operations of

appending a new character to the right of the window and of deleting the leftmost character

from the window.

Example 2.4. Let Σ = {a, b, c, d}. Consider appending character c to the right of string

cbaaaa. Then,

MAW(cbaaaa) = {cc, bb, aaaaa, bc, ab, ca, d, ac},
MAW(cbaaaac) = {cc, bb, aaaaa, bc, ab, ca, dacb, bac, baac, baaac}.

Thus MAW(cbaaaa)�MAW(cbaaaac) = {ac, acb, bac, baac, baaac}, where the underlined

string is deleted from and the strings without underlines are added to the set of MAWs by

appending c to cbaaaa.
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2.4 Factorizations and grammars

For any non-negative integer n, let Σn denote the set of strings of length n over Σ.

A factorization of a non-empty string T is a sequence f1, . . . , fx of non-empty substrings of

T such that T = f1 · · · fx. Each fi is called a factor. The size of the factorization is the number

x of factors in the factorization.

A context-free grammar G which generates only a single string T is called a grammar com-

pression for T . The size of G is the total length of the right-hand sides of all the production

rules in G. The height of G is the height of the derivation tree of G.

2.5 Suffix type

SAIS [92] is a linear-time algorithm for computing the suffix array [75]. We briefly review the

parts of SAIS important for constructing the GCIS grammar. SAIS assigns each suffix a type,

which is either L or S: T [i..] is an L suffix if T [i..] � T [i+1..], or T [i..] is an S suffix otherwise,

i.e., T [i..] ≺ T [i+ 1..], where we stipulate that T [|T |] is always type S. Since it is not possible

that T [i..] = T [i+ 1..], SAIS assigns each suffix a type. An S suffix T [i..] is additionally an S∗

suffix (also called LMS suffix in [92]) if T [i − 1..] is an L suffix. The substring between two

succeeding S∗ suffixes is called an LMS substring. In other words, a substring T [i..j] with i < j

is an LMS substring if and only if T [i..] and T [j..] are S∗ suffixes and there is no k ∈ (i..j) such

that T [k..] is an S∗ suffix. A border case is T [|T |..], which has to be the smallest suffix of T (and

can be achieved by appending an artificial character $ to T lexicographically smaller than all

other characters appearing it T ) such that T ||T |..] in an S∗ suffix. We additionally treat T [|T |..]
as an LMS substring. Regarding the defined types, we make no distinction between suffixes and

their starting positions (e.g., the statements that (a) T [i] is type L and (b) T [i..] is an L suffix

are equivalent). In fact, we can determine L and S positions solely based on their succeeding

positions with the equivalent definition: T [i] is L if T [i] > T [i+1], T [i] is S if T [i] < T [i+1],

or T [i] has the same type as T [i+ 1] if T [i] = T [i+ 1].

Nong et al. [92, A3.4] compute the lexicographic order of all LMS substrings with the

induced sorting, which we omit here since we use it as a black box.
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2.6 Grammar Compression by Induced Sorting (GCIS)

With lg we denote the logarithm log2 to base two. We define that the element of Σ is small

enough to fit into a constant number of machine words.

The LMS substrings of #T for # being a special character smaller than all characters ap-

pearing in T , induce a factorization of T = F1 · · ·Fz, where each factor starts with an LMS

substring. We call this factorization LMS-factorization. By replacing each factor Fi by the

lexicographic rank of its respective LMS substring, we obtain a string T (1) of these ranks. We

recurse on T (1) until we obtain a string T (τT−1) whose characters are all unique or whose LMS-

factorization consists of at most two factors.

Example 2.5. Let Σ = {1, 2, 3}, T = 1231312313#. Then, GCIS factorizes it like this:

123|13|123|13|#

and then GCIS make rules:

4 → #

5 → 123

6 → 13

and we obtain T (1) = 56564. We recurse the same algorithm on it, then we GCIS makes the

rule below:

7 → 4

8 → 56

and we obtain T (2) = 887. There are only 2 factors in next GCIS factorization (88, 7), so GCIS

terminates the recursion.

2.7 Worst-case sensitivity of compressors and repetitiveness

measures

For a string compression algorithm C and an input string T , let C(T ) denote the size of the

compressed representation of T obtained by applying C to T . For convenience, we use the
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same notation when C is a string repetitiveness measure, namely, C(T ) is the value of the

measure C for T .

Let us consider the following edit operations on strings: character substitution (sub), char-

acter insertion (ins), and character deletion (del). For two strings T and S, let ed(T, S) denote

the edit distance between T and S, namely, ed(T, S) is the minimum number of edit operations

that transform T into S.

Our interest in this thesis is: “How much can the compression size or the repetitiveness

measure size change when a single-character-wise edit operation is performed on a string?” To

answer this question, for a given string length n, we consider an arbitrarily fixed string T of

length n and all strings T ′ that can be obtained by applying a single edit operation to T , that

is, ed(T, T ′) = 1. We define the worst-case multiplicative sensitivity of C w.r.t. a substitution,

insertion, and deletion as follows:

MSsub(C, n) = max
T∈Σn

{C(T ′)/C(T ) : T ′ ∈ Σn, ed(T, T ′) = 1},
MSins(C, n) = max

T∈Σn
{C(T ′)/C(T ) : T ′ ∈ Σn+1, ed(T, T ′) = 1},

MSdel(C, n) = max
T∈Σn

{C(T ′)/C(T ) : T ′ ∈ Σn−1, ed(T, T ′) = 1}.

We also consider the worst-case additive sensitivity of C w.r.t. a substitution, insertion, and

deletion, as follows:

ASsub(C, n) = max
T∈Σn

{C(T ′)− C(T ) : T ′ ∈ Σn, ed(T, T ′) = 1},
ASins(C, n) = max

T∈Σn
{C(T ′)− C(T ) : T ′ ∈ Σn+1, ed(T, T ′) = 1},

ASdel(C, n) = max
T∈Σn

{C(T ′)− C(T ) : T ′ ∈ Σn−1, ed(T, T ′) = 1}.

We remark that, in general, C(T ′) can be larger than C(T ) even when T ′ is obtained by

a character deletion from T (i.e. |T ′| = n − 1). Such strings T are already known for the

Lempel-Ziv 77 factorization size z when T ′ = T [2..n] [80], or for the smallest string attractor

size γ when T ′ = T [1..n− 1] [76].

The above remark implies that in general the multiplicative/additive sensitivity for insertions

and deletions may not be symmetric and therefore they need to be discussed separately for

some C. Note, on the other hand, that the maximum difference between C(T ′) and C(T )

when |T ′| = n − 1 (deletion) and C(T ′) − C(T ) < 0 is equivalent to ASins(C, n − 1), and

symmetrically the maximum difference of C(T ′) and C(T ) when |T ′| = n + 1 (insertion) and

C(T ′)−C(T ) < 0 is equivalent to ASdel(C, n+1), with the roles of T and T ′ exchanged. Similar

arguments hold for the multiplicative sensitivity with insertions/deletions. Consequently, it

suffices to consider MSins(C, n), MSdel(C, n), ASins(C, n), ASdel(C, n) for insertions/deletions.

25



CHAPTER 2. PRELIMINARIES

Consider two measures α and β. An upper bound for the multiplicative sensitivity of β can

readily be derived in the some cases, as follows:

Lemma 2.1. Let T be any string of length n and let T ′ be any string with ed(T, T ′) = 1. If the

following conditions:

• α(T ′)/α(T ) ∈ O(1);

• α(T ) ≤ β(T );

• β(T ) ∈ O(α(T ) · f · (n, α(T ))), where f is a function such that for any constant c there

exists a constant c′ satisfying f(n, c · α(T )) ≤ c′ · f(n, α(T )).

all hold, then we have the following upper bounds (1), (2), and (3) for the sensitivity of β:

(1) MSsub(β, n) ∈ O(f(n, α)) and ASsub(β, n) ∈ O(α · f(n, α));

(2) MSins(β, n) ∈ O(f(n, α)) and ASins(β, n) ∈ O(α · f(n, α));

(3) MSdel(β, n) ∈ O(f(n, α)) and ASdel(β, n) ∈ O(α · f(n, α)).

Proof. Let c = α(T ′)/α(T ), where c is a constant. Then we have

β(T ′)
β(T )

∈ O

(
α(T ′) · f(n, α(T ′))

α(T )

)

⊆ O

(
α(T ′) · f(n, c · α(T ))

α(T )

)

⊆ O

(
α(T ′) · c′ · f(n, α(T ))

α(T )

)

⊆ O(f(n, α(T ))).

Also,

β(T ′)− β(T ) ∈ O(α(T ′) · f(n, α(T ′))− α(T ) · f(n, α(T )))
⊆ O(α(T ′) · f(n, c · α(T ))− α(T ) · f(n, α(T )))
⊆ O(α(T ′) · c′ · f(n, α(T ))− α(T ) · f(n, α(T )))
⊆ O((c′ · α(T ′)− α(T )) · f(n, α(T )))
⊆ O((c′ · c · α(T )− α(T )) · f(n, α(T )))
⊆ O(α(T ) · f(n, α(T ))).

The functions satisfying f(n, c · α(T )) ≤ c′ · f(n, α(T )) include functions f which are

polynomial, poly-logarithmic, or constant in terms of α(T ).
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Combinatorics and Efficient Algorithms
for MAWs

3.1 MAWs for sliding window

In this section, we present our new and tight bounds for the changes of MAWs for the sliding

window over the string T . In Section 3.1.1 we consider the case of general alphabets of size σ.

In Section 3.1.2 we obtain tighter upper bounds in the case of binary alphabets where σ = 2.

3.1.1 Tight bounds on the changes to MAWs for sliding window

First, we look at the case of non-binary strings. we consider the number of changes of MAWs

when the current window T [i..j] is extended by adding a new character T [j + 1]. After that,

we show that leftmost removal is for the symmetric case where the leftmost character T [i] is

deleted from T [i..i+ j + 1]. Finally, we consider the total number of changes of MAWs while

the window has been shifted from the beginning of T until its end.

Changes to MAWs when a character is appended to the right

We consider the number of changes of MAWs when appending T [j + 1] to the current window

T [i..j].

For the number of deleted MAWs, the next lemma is known:

Lemma 3.1 ([30]). For any 1 ≤ i ≤ j < n, |MAW(T [i..j]) \MAW(T [i..j + 1])| = 1.
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Type A

Type B

Type C

Figure 3.1: Illustration for the three types of MAWs, where w1 ∈ MA, w2 ∈ MB, and w3 ∈
MC .

Next, we consider the number of added MAWs. We classify the MAWs in MAW(T [i..j +

1]) \MAW(T [i..j]) to the following three types1 (see Figure 3.1). A MAW w in MAW(T [i..j +

1]) \MAW(T [i..j]) is said to be of:

Type-A if neither w[2..] nor w[..|w| − 1] occurs in T [i..j];

Type-B if w[2..] occurs in T [i..j] but w[..|w| − 1] does not occur in T [i..j];

Type-C if w[2..] does not occur in T [i..j] but w[..|w| − 1] occurs in T [i..j].

We denote by MA, MB, and MC the sets of MAWs of Type-A, Type-B and Type-C,

respectively. Recall that w is a MAW for T [i..j + 1].

Let σi,j be the number of distinct characters occurring in the current window T [i..j].

The next three lemmas show the upper bounds of MA, MB, and MC :

Lemma 3.2 ([30]). For any 1 ≤ i ≤ j < n, |MA| ≤ 1. Also, if α is the character appended to

T [i..j], then the only element of MA is of the form αk for some k ≥ 1.

Lemma 3.3. For any 1 ≤ i ≤ j < n, |MB| ≤ σi,j .

Proof. It is shown in [30] that the last characters of all MAWs in MB are all distinct. Further-

more, by the definition of MB, the last character T [j + 1] of each MAW in MB must occur in

the current window T [i..j]. Thus, |MB| ≤ σi,j .

1At least one of w[2..] and w[..|w| − 1] does not occur in T [i..j], since w 
∈ MAW(T [i..j]).
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T
f(w1) = f(w2)

a1

β
i j j + 1

a2 x2

x1

x2

x1 b1

b2

α

Figure 3.2: Illustration for the contradiction in the proof of Lemma 3.5. Consider two strings

w1 = a1x1b1 and w2 = a2x2b2 that are MAWs for T of Type-C where a1, a2, b1, b2 ∈ Σ and

x1, x2 ∈ Σ∗. If |w1| > |w2| and f(w1) = f(w2), then x2 is a proper suffix of x1, and it

contradicts that a2x2b2 is absent from T .

Lemma 3.4. For any 1 ≤ i ≤ j < n, |MC | ≤ d− 1, where d = j − i+ 1.

Proof. We show that there is an injection f : MC → [i, j−1] which maps each MAW w ∈ MC

to the ending position of the leftmost occurrence of w[..|w| − 1] in the current window T [i..j].

First, we show that the range of this function f is [i, j − 1]. By definition, w is absent from

T [i..j + 1] and w[|w|] = T [j + 1] for each w ∈ MC , and thus, no occurrence of w[..|w| − 1]

in T [i..j] ends at position j. Hence, the range of f does not contain the position j, i.e. it is

[i, j − 1].

Next, for the sake of contradiction, we assume that f is not an injection, i.e. there are two

distinct MAWs w1, w2 ∈ MC such that f(w1) = f(w2). Without loss of generality, assume

|w1| ≥ |w2|. Since w1[|w1|] = w2[|w2|] = T [j + 1] and f(w1) = f(w2), w2 is a suffix of w1. If

|w1| = |w2|, then w1 = w2 and it contradicts with w1 
= w2. If |w1| > |w2|, then w2 is a proper

suffix of w1, and it contradicts with the fact that w2 is absent from T [i..j + 1] (see Figure 3.2).

Therefore, f is an injection and |MC | ≤ j − 1− i+ 1 = d− 1.

Summing up all the upper bounds for MA, MB, and MC , we obtain the following lemma:

Lemma 3.5. For any 1 ≤ i ≤ j < n, |MAW(T [i..j + 1]) \MAW(T [i..j])| ≤ σi,j + d, where

d = j − i+ 1.

Proof. Immediately follows from Lemmas 3.2, 3.3, and 3.4 and that MA, MB, and MC are

mutually disjoint.

Now we obtain the main result of this subsection, which shows the matching upper and

lower bounds for |MAW(T [i..j + 1])�MAW(T [i..j])|.

Theorem 3.1. For any 1 ≤ i ≤ j < n, |MAW(T [i..j + 1])�MAW(T [i..j])| ≤ σi,j + d + 1,

where d = j − i+ 1. The upper bound is tight when σ ≥ 3 and σi,j + 1 ≤ σ.
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Proof. By Lemma 3.1 and Lemma 3.5, we have |MAW(T [i..j + 1])�MAW(T [i..j])| =
|MAW(T [i..j + 1]) \MAW(T [i..j])|+ |MAW(T [i..j]) \MAW(T [i..j + 1])| ≤ σi,j + d+ 1.

In the following, we show that the upper bound is tight, i.e. there is a string Z of length d

and a character α, where |MAW(Z)�MAW(Zα)| = σ1,d + d + 1 for any two integers d and

σ1,d with 1 ≤ σ1,d ≤ d and σ1,d + 1 ≤ σ. Namely, in this example, we set i = 1 and j = d.

Let Σ = {a1, a2, · · · , aσ} be an alphabet. Given two integers d and σ1,d with 1 ≤ σ1,d ≤ d

and σ1,d + 1 ≤ σ, consider a string Z = a1a2 · · · aσ1,d−1a
d−σ1,d+1
σ1,d of length d and a character

α = aσ1,d+1. Then,

MAW(Z) \MAW(Zα) = {α}.

Also,

MAW(Zα) \MAW(Z) = {α2} ∪ {αai | 1 ≤ i ≤ σ1,d} ∪ {aiα | 1 ≤ i ≤ σ1,d − 1}
∪{aσ1,d−1a

e
σ1,d

α | 1 ≤ e ≤ d− σ1,d}.

This leads to the matching lower bound |MAW(Z)�MAW(Zα)| = σ1,d + d+ 1.

A concrete example for our lower-bound strings Z and Zα is shown below.

Example 3.1. Consider a string Z = abcddd with σ1,6 = 4, and let d = |Z| = 6. We have

d− σ1,6 + 1 = 3. Also, let α = e. Then,

MAW(abcddd) \MAW(abcddde) = {e}

and

MAW(abcddde) \MAW(abcddd)

= MA ∪MB ∪MC

= {ee} ∪ {ea, eb, ec, ed} ∪ {ae, be, ce, cde, cdde},

and therefore |MAW(Z)�MAW(Zα)| = σ1,6 + d+ 1 = 11.

Changes to MAWs when a character already occurring in the window is added to the right

In this subsection, we consider the case where a new character T [j + 1] that is appended to the

right of the current window T [i..j] already occurs in T [i..j]. This means that σi,j = σi,j+1, i.e.,

the alphabet size does not increase before and after the new character is added.

The next lemma shows that a conflict occurs between MA and MB when σi,j = σi,j+1.
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c c c

c c +1

c c c

c +1

c c c

c +1

c c c

c +2 c +1

c

Figure 3.3: Collision between the new Type-B MAW and Type-A MAW, where the rightmost c

in gray is the new appended character in each picture.

Lemma 3.6. For any T [i..j] such that d = j−i+1 ≥ 3 and σi,j = σi,j+1, |MA|+ |MB| ≤ σi,j .

Proof. Let c = T [j + 1] and let k be the length of the maximal run of c’s that is a suffix of

T [i..j]. If T [j] 
= c then let k = 0. By the definition of MA, ck+2 is the only candidate for the

Type-A MAW for T [i..j + 1], in which case au = ub = ck+1 occurs only once in T [i..j + 1] as

a suffix. This means that ck+2 can be a Type-A MAW for T [i..j + 1] only if ck is the longest

run of c’s in T [i..j].

Now suppose that ck+2 is a Type-A MAW for T [i..j + 1], and let a′u′c denote a Type-B

MAW for T [i..j + 1]. Then, by definition, a′u′ occurs only once in T [i..j + 1] as a suffix (see

also the middle of Figure 3.1).

• If |u′| ≥ k, then ck+1 is a suffix of u′ as shown in Figure 3.3. However, by the definition

of Type-B MAWs, u′c must occur in T [i..j] (see also the middle of Figure 3.1), which

implies that ck+1 occurs in T [i..j]. This contradicts that ck is the longest run of c’s in

T [i..j].

• If |u′| < k, then a′u′c = c|a
′u′c| with |a′u′c| ≤ k + 1 occurs in T [i..j + 1] as a suffix, and

this contradicts that a′u′c is a MAW for T [i..j + 1].

Hence a′u′c cannot be in MB, which leads to |MB| ≤ σi,j − 1 by Lemma 3.3. Thus, |MA|+
|MB| ≤ σi,j for any string T [i..j + 1] such that T [i..j] contains at least one character that is

equal to T [j + 1].

Recall that Lemma 3.2 and Lemma 3.3 in the case where σi,j+1 ≥ σi,j gives us |MA| +
|MB| = σi,j +1. Compared to this, Lemma 3.6 shaves the total size of MA and MB by one in

the case where T [j + 1] already occurs in T [i..j]. Coupled with Lemma 3.4, Lemma 3.6 leads

us to the following corollary:
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Corollary 3.1. For any 1 ≤ i ≤ j < n, |MAW(T [i..j + 1])�MAW(T [i..j])| ≤ σi,j+1 + d,

where d = j − i+ 1.

Changes to MAWs when the leftmost character is deleted

Next, we analyze the number of changes of MAWs when deleting the leftmost character from a

string. By a symmetric argument to Theorem 3.1, we obtain:

Corollary 3.2. For any 1 < i ≤ j ≤ n, |MAW(T [i..j])�MAW(T [i − 1..j])| ≤ σi,j + d + 1

where d = j − i+1 and σi,j is the number of distinct characters that occur in T [i..j]. Also, the

upper bound is tight when σ ≥ 3 and σi,j + 1 ≤ σ.

Finally, by combining Theorem 3.1 and Corollary 3.2, we obtain the next theorem:

Theorem 3.2. Let d be the window length. For any string T of length n > d and each position i

in T with 1 ≤ i ≤ n−d, |MAW(T [i..i+d−1])�MAW(T [i+1..i+d])| ∈ O(d). Also, there exists

a string T ′ with |T ′| ≥ d+1 which satisfies |MAW(T ′[j..j+d−1])�MAW(T ′[j+1..j+d])| ∈
Ω(d) for some j with 1 ≤ j ≤ |T ′| − d.

This theorem improves Crochemore et al.’s upper bound for |MAW(T [i..i+d−1])�MAW(T [i+

1..i+ d])| ∈ O(σd) for any alphabet of size σ ∈ ω(1).

Total changes of MAWs when sliding a window on a string

In this subsection, we consider the total number of changes of MAWs when sliding the window

of length d from the beginning of T to the end of T . We denote the total number of changes

of MAWs by S(T, d) = ∑n−d
i=1 |MAW(T [i..i+ d− 1])�MAW(T [i+ 1..i+ d])|. The following

lemma is known:

Lemma 3.7 ([30]). For a string T of length n > d over an alphabet Σ of size σ, S(T, d) ∈
O(σn).

The aim of this subsection is to give a more rigorous bound for S(T, d). We first show that

the above bound is tight under some conditions.

Lemma 3.8. The upper bound of Lemma 3.7 is tight when σ ≤ d and n− d ∈ Ω(n).

Proof. If σ = 2, the lower bound S(T, d) ∈ Ω(n − d) = Ω(σ(n − d)) is obtained by string

T = (ab)n/2 since MAW((ab)d/2)�MAW((ba)d/2) = {(ab)d/2, (ba)d/2}.
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In the sequel, we consider the case where σ ≥ 3. Let k be the integer with (k− 1)(σ− 1) ≤
d < k(σ − 1). Note that k ≥ 2 since σ ≤ d. Let Σ = {a1, a2, · · · , aσ} and α = aσ. We

consider a string T ′ = U e + U [..m] where U = a1α
k−1a2α

k−1 . . . aσ−1α
k−1, e = � n

k(σ−1)
�,

and m = n mod k(σ − 1). Let c be a character that is not equal to α. For any two distinct

occurrences i1, i2 ∈ occT ′(c) for c, |i1 − i2| ≥ k(σ − 1) > d. Thus, any character c 
= α is

absent from at least one of two adjacent windows T ′[i..i+ d− 1] and T ′[i+ 1..i+ d] for every

1 ≤ i ≤ n− d.

Now we consider a window W = T ′[p−d..p−1] where d+1 ≤ p ≤ n and T ′[p] = β 
= α.

Let Π = {b1, b2, · · · , bπ−1, α} ⊂ Σ\{β} be the set of all π characters that occur in W . Without

loss of generality, we assume that the current window is W = αrb1α
k−1b2α

k−1 · · · bπ−1α
k−1

and the next window is W ′ = W [2..]β where r = d mod k (see Figure 3.4). For any char-

acter b ∈ Π \ {b1, bπ−1, α}, bα�β is in MAW(W ′)�MAW(W ) for every 0 ≤ 
 ≤ k − 1.

If r > 0, b1α
�β is also in MAW(W ′)�MAW(W ) for every 0 ≤ 
 ≤ k − 1. Otherwise,

b1 is in MAW(W ′)�MAW(W ) and b1α
�b2 is in MAW(W ′)�MAW(W ) for every 0 ≤ 
 ≤

k − 2 since b1 is absent from W ′. Also, β is in MAW(W ′)�MAW(W ) and bπ−1α
�β is in

MAW(W ′)�MAW(W ) for every 0 ≤ 
 ≤ k − 2. Thus, at least (π − 3)k + k + 1 + (k − 1) =

(π−1)k MAWs are in MAW(W ′)�MAW(W ). Additionally, the number π−1 of distinct char-

acters which occur in W and are not equal to α is at least �(σ − 1)/2�, since k�(σ − 1)/2� ≤
k(σ−1)/2 = (k−k/2)(σ−1) ≤ (k−1)(σ−1) ≤ d where the second inequality follows from

k ≥ 2. Therefore, |MAW(W ′)�MAW(W )| ≥ (π−1)k ≥ �(σ−1)/2�k ∈ Ω(σk) = Ω(d). The

number of pairs of two adjacent windows W and W ′ where |MAW(W ′)�MAW(W )| ∈ Ω(d) is

Θ((n− d)/k). Therefore, we obtain S(T ′, d) ∈ Ω(d(n− d)/k) = Ω(σ(n− d)) = Ω(σn) since

n− d ∈ Ω(n).

Next, we consider the case where σ ≥ d+ 1.

Lemma 3.9. For a string T of length n > d over an alphabet Σ of size σ, S(T, d) ∈ O(d(n−d)),

and this upper bound is tight when σ ≥ d+ 1.

Proof. By Theorem 3.2, it is clear that S(T, d) ∈ O(d(n − d)). Next, we show that there

is a string T ′ of length n > d such that S(T ′, d) ∈ Ω(d(n − d)) for any integer d with

1 ≤ d ≤ σ−1. Let Σ = {a1, a2, · · · , aσ}. We consider a string T ′ = (a1a2 · · · ad+1)
ea1a2 · · · ak

where e = �n/(d + 1)� and k = n mod (d + 1). For each window W = T ′[i..i + d − 1] in

T ′, W consists of distinct d characters, and the character T ′[i + d] that is the right neighbor

of W is different from any characters that occur in W . Without loss of generality , we as-

sume that the current window is W = a1a2 · · · ad and the next window is W ′ = W [2..]ad+1 =
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T = b a a a c a a a d a a a b a a a c

W = T [4.. 12]

Σ = {a, b, c, d}, d = 9

W ́ = T [5.. 13]

(W)  = {aaaa, cc, cd, cad, caad, dd, dad, daad, daaad, dc, 
                    b, aac, cac, dac} 

(W ́) = {aaaa, cc, cd, cad, caad, dd, dad, daad, daaad, dc, 
                    ac, ba, bb, bc, bd, cb, cab, caab, caaab, db, dab, daab}

𝖬𝖠𝖶

𝖬𝖠𝖶

Figure 3.4: Illustration of examples of MAWs for adjacent two windows. In this example,

σ = 4, d = 9, and k = 4. The size of the symmetric difference of MAW(W ) and MAW(W ′) is

|MAW(W )�MAW(W ′)| = |{b, aac, cac, dac, ac, ba, bb, bc, bd, cb, cab, caab, caaab, db,
dab, daab}| = 16.

a2 · · · ad+1. Then, |MAW(W ′)�MAW(W )| = |{a12, ad+1, a2a1, . . . , ada1, a1a3, . . . , a1ad} ∪
{a1, ad+1

2, ad+1a2, . . . , ad+1ad, a2ad+1, . . . , ad−1ad+1}| = 4d−2 ∈ Ω(d). Therefore, S(T ′, d) =

Ω(d(n− d)).

The main result of this section follows from the above lemmas:

Theorem 3.3. For a string T of length n > d over an alphabet Σ of size σ, S(T, d) ∈
O(min{d, σ}n). This upper bound is tight when n− d ∈ Ω(n).

We remark that n− d ∈ Ω(n) covers most interesting cases for the window length d, since

the value of d can range from O(1) to cn for any 0 < c < 1.
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3.1.2 Tighter bounds for binary alphabets

In this section we consider the case where σ′ = 2, i.e. when both the current sliding window

S = T [i..i + d − 1] and the next window Sα = T [i..i + d] extended with a new character

α = T [i + d] consist of two distinct characters. The goal of this section is to show that when

σ′ = 2, there exists a tighter upper bound for the number of changes of MAWs than the general

case with σ′ ≥ 3.

In what follows, let us denote by Σ2 = {0, 1} the binary alphabet, and assume without loss

of generality that we append the new character α = 0 to the window S of length d and obtain

the extended window Sα = S0.

As a warm up, we begin with the two following lemmas which show that at most 3 MAWs

can change in the cases where d = 1 and d = 2 for any binary strings.

Lemma 3.10. For any string S over Σ2 with |S| = d = 1, |MAW(S)�MAW(S0)| ≤ 3.

Proof. For each S ∈ {0, 1} of length 1,

MAW(0)�MAW(00) = {00, 000},
MAW(1)�MAW(10) = {0, 00, 01},

where the underlined strings are those in MAW(S) \MAW(S0) and the strings without under-

lines are those in MAW(S0) \MAW(S). Thus the lemma holds.

Lemma 3.11. For any string S over Σ2 with |S| = d = 2, |MAW(S)�MAW(S0)| ≤ 3.

Proof. For each S ∈ {00, 01, 10, 11} of length 2,

MAW(00)�MAW(000) = {000, 0000},
MAW(01)�MAW(010) = {10, 101},
MAW(10)�MAW(100) = {00, 000},
MAW(11)�MAW(110) = {0, 00, 01},

where the underlined strings are those in MAW(S) \MAW(S0) and the strings without under-

lines are those in MAW(S0) \MAW(S). Thus the lemma holds.

We move onto the case where d ≥ 3. Our first observation is that it is sufficient to consider

the case that S is not unary. For any d, it is clear that |MAW(0d)�MAW(0d+1)| = 2. Now let

us consider 1d in the next lemma.
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Lemma 3.12. For any d ≥ 3 let V = 1d. Then, there exists another string S of length d over Σ2

such that S[k] = 0 for some 1 ≤ k ≤ d and |MAW(V )�MAW(V 0)| ≤ |MAW(S)�MAW(S0)|.

Proof. Since V = 1d, MAW(V ) \MAW(V 0) = {0}. Also, MAW(V 0) \MAW(V ) = {00, 01}.

Thus |MAW(V )�MAW(V 0)| = 3 for any d ≥ 1.

Let S = 01d−1 and S0 = 01d−10 with d ≥ 3. Then, MAW(S0) \MAW(S) = {01k0 | 1 ≤
k ≤ d−2}∪{101} and MAW(S0)\MAW(S) = {10}. Thus we have |MAW(S)�MAW(S0)| ≥
d ≥ 3.

According to Lemmas 3.10, 3.11 and 3.12, in what follows we focus on the case where

d ≥ 3 and the current window S = T [i..i + d− 1] contains at least one 0. The latter condition

implies that we focus on the case where the new character α = 0 already occurs in the window

S.

As in the case of non-binary alphabets, we analyze the numbers of added Type-A/Type-

B/Type-C MAWs in MA/MB/MC for binary strings. Recall that in the current context, for

any S = T [i..i+ d− 1], a MAW w in MAW(S0) \MAW(S) is said to be of:

• Type-A if neither w[2..] nor w[..|w| − 1] occurs in S;

• Type-B if w[2..] occurs in S but w[..|w| − 1] does not occur in S;

• Type-C if w[2..] is does not occur in S but w[..|w| − 1] occurs in S.

We first show the upper bound for the size of MC in the case where σ′ = 2.

Lemma 3.13. For any binary string S over Σ2 such that |S| = d ≥ 3, |MC | ≤ d− 2.

Proof. Recall the proof for Lemma 3.4. There, we proved that each MAW w of Type-C for

any non-binary string Rα = T [i..i + d] = T [i..j + 1] is mapped by an injection f to a distinct

position of T [i..j] in the range [i, j − 1], or alternatively to a distinct position of R in range

[1, d− 1]. This showed |MC | ≤ d− 1 for σ′ ≥ 3.

Here we show that the range of such an injection f is [2, d− 1] for any binary string S with

σ′ = 2. Since the appended character is α = 0, and since the candidate x for the MAW of

Type-C which should be mapped to the first position in S is of length 2, the candidate x has to

be either 00 or 10.

(1) If x = 00, then S[1] = 0. If 00 does not occur in S (see also the top picture of Figure 3.5),

then 00 is already a MAW for S (i.e. 00 ∈ MAW(S)). Thus 00 /∈ MAW(S0) \MAW(S)

in this case. Otherwise (00 occurs in S), then clearly 00 is not a MAW for S0 (see also

the middle picture of Figure 3.5).
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Figure 3.5: Characteristics of Type-C MAWs in the binary case with σ′ = 2, where the right-

most 0 in gray is the new appended character in each picture.

(2) If x = 10, then S[1] = 1. However, since the appended character is 0, 10 must occur

somewhere in S0 (see also the bottom picture of Figure 3.5). Thus 10 is not a MAW for

S0.

Hence, the first position of S cannot be assigned to any MAW of Type-C for S0, leading to

|MC | ≤ d− 2 for any binary string S of length d ≥ 3.

In other words, Lemma 3.13 shows that in the binary case with σ′ = 2, the maximum

number of added Type-C MAWs is 1 less than in the case with σ′ ≥ 3.

Next, we consider the total number of added Type-A/Type-B MAWs.

From Lemma 3.6, the next corollary holds.

Corollary 3.3. |MA| + |MB| ≤ 2 on any binary string S when the character to be appended

already occurs in S.

A direct consequence of Lemma 3.13 and Lemma 3.6 is an upper bound for the added

MAWs |MA|+ |MB|+ |MC | ≤ d for any binary string S0 with |S| = d ≥ 3. In what follows,

we further reduce this upper bound to |MA| + |MB| + |MC | ≤ d − 1. For this purpose, we

introduce the next lemma:

Lemma 3.14. For any binary string S over Σ2 such that |S| = d ≥ 3, |MB| is at most the

number of occurrences of 0 in S[1..d− 1], and |MC | is at most the number of occurrences of 1

in S[3..d].

Proof. First we consider Type-B MAWs for S0. Since S is a binary string, by Lemma 3.3, there

are at most two MAWs in MB. We assume that there are two MAWs in MB and let au0 and

a′1 be the two MAWs where a, a′ ∈ Σ2 and u, u′ ∈ Σ∗
2. By the definition of Type-B MAWs, u0

and u′1 occur in S and u[|u|] = u′[u′] = 0 since au and a′u′ occur in S0 as suffixes. For any
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two positions t0 and t1 such that S[t0..t0+ |u0|−1] = u0, S[t1..t1+ |u′1|−1] = u′1, t0+ |u| 
=
t1 + |u′|. Consequently, there are at least two occurrences of 0 in S since S[t0 + |u| − 1] = 0

and S[t1 + |u′| − 1] = 0. Since t0 + |u0| − 1 ≤ d, |MB| is at most the number of occurrences

of 0 in S[1..d− 1].

Second we consider Type-C MAWs for S0. let au0 be the Type-C MAW where a ∈ Σ2,

u,∈ Σ∗
2 since u0 must be a suffix of S0. By the definition of Type-C MAW, there has to be an

occurrence of au in S. Note that this occurrence has to be immediately followed by a 1 since

au0 does not occur in S0. Thus, for each au0 ∈ MC , we need an occurrence of au1 in S.

Since |au| ≥ 1, we clearly cannot use the first position of S as the ending position of au1. Also,

it follows from Lemma 3.13 (and its proof) that the second position of S cannot be the ending

position of au for any Type-C MAW aub for S0. This implies that there is no Type-C MAW

that corresponds to the 1 in the second position of S. Thus, the total number of Type-C MAWs

for S0 is upper bounded by the number of occurrences of 1 in S[3..d].

Intuitively, Lemma 3.14 implies that flipping substrings 1 in S[3..d − 1] does not increase

the total number of Type-B and Type-C MAWs for S0.

Lemma 3.15. For any binary string S over Σ2 with |S| = d ≥ 3, |MA|+|MB|+|MC | ≤ d−1.

Proof. S is not unary due to Lemma 3.12. It immediately follows from Lemma 3.13 and Corol-

lary 3.3 that |MA|+ |MB|+ |MC | ≤ d, and assume on the contrary that there exists a binary

string S ′ over Σ2 such that |MA| + |MB| + |MC | = d. Then, it has to be |MA| + |MB| = 2

and |MC | = d − 2, again by Lemma 3.13 and Corollary 3.3. Therefore, S ′[3..d] = 1d−2 by

Lemma 3.14, and |MA| = 0. Hence we must have |MB| = 2, which leads to S ′ = 001d−2.

Now the sets of all the added MAWs for S ′0 = 001d−20 are

MA = ∅,
MB = {100, 101},
MC = {01k0 | 1 ≤ k ≤ d− 3},

which leads to |MA|+ |MB|+ |MC | = d− 1, a contradiction. Thus the lemma holds.

We obtain our main theorem:

Theorem 3.4. For any binary string S over Σ2 with |S| = d ≥ 3, |MAW(S)�MAW(S0)| ≤ d,

and this upper bound is tight.
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Proof. The upper bound follows from Lemmas 3.1 and 3.15, and its tightness follows from and

our construction of the string S ′0 in the proof for Lemma 3.15.

The next corollary summarizes the results of this section.

Corollary 3.4. For any binary string S over Σ2 with |S| = d, |MAW(S)�MAW(S0)| ≤
max{3, d}, and this upper bound is tight for any d ≥ 1.

Proof. The upper bound follows from Lemmas 3.10 and 3.11, Theorem 3.4, and its tightness

follows from all possible binary cases shown in the proof for Lemmas 3.10 and 3.11 for d =

{1, 2}, and our construction of the string S ′0 in the proof for Lemma 3.15 for d ≥ 3.
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3.2 MAWs for RLE strings

In this section, we present our new bounds for the changes of MAWs for the Run-Length En-

coded (RLE) string T . We begin with lower bounds of Type-2,4,5 MAWs in Section 3.2.1.

After that, we show the upper bounds of Type-2,4,5 MAWs in Section 3.2.2. Note that Type-1

MAWs lower bound is omitted since we show the tight number of Type-1 MAWs in Section

3.2.2. Type-3 MAW lower bound is also omitted since it is unbounded by the RLE size m,

which we show in Section 3.2.2. In Section 3.2.4, we give the compact data structures which

can efficiently output each type MAWs for T upon query. Finally, in Section 3.2.5, we explain

how to construct the representation shown in Section 3.2.4 in O(m logm) time.

3.2.1 Lower bounds on the number of MAWs for RLE strings

In this section, we give tight lower bounds for the sizes of M2, M4, and M5 which asymptot-

ically match the upper bounds given in section 3.2.2. For Type-1 and Type-3 MAWs, we show

a tight bound |M1| = σ and the fact that |M3| is unbounded by the RLE size m in section

3.2.2. Throughout this section, we omit the terminal $ at either end of T , since our lower bound

instances do not need them.

Lemma 3.16. There exists a string T such that |M2| = σ′(σ′ − 2) + 1.

Proof. Let T = 123 · · · σ′, where all characters in T are mutually distinct. Any bigram occur-

ring in T is of the form i(i + 1) with 1 ≤ i < σ′. Thus, for each 1 ≤ i < σ′, bigram i · j with

any j ∈ {1, . . . , i−1, i+2, . . . , σ′} is a Type-2 MAW for T , and bigram σ′ ·j is a Type-2 MAW

for T . Namely, the set M2 of Type-2 MAWs for T is:

M2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

13, . . . , 1σ′,

21, 24, . . . , 2σ′,

31, 32, 35, . . . , 3σ′,

. . . ,

(σ′ − 1)1, . . . , (σ′ − 1)(σ′ − 2),

σ′1, . . . , σ′(σ′ − 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Thus we have |M2| = σ′(σ′ − 2) + 1 for this string T .

Since σ′ = m for the string T of Lemma 3.16, we obtain a tight lower bound |M2| ∈ Ω(m2)

in terms of m. The string T = 123 · · · σ′ can easily be generalized so that m < n, where
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n = |T |. For instance, consider T ′ = 1p12p23p3 · · · σ′pσ′ with pi > 1 for each i. The set of

Type-2 MAWs for T ′ is equal to that for T .

Lemma 3.17. There exists a string T with R(T ) = m such that |M4| ∈ Ω(m2).

Proof. Consider string T = abcp · ab2cp−1 · ab3cp−2 · ab4cp−3 · · · abp−1c2 · abpc · a, where a,

b, and c are mutually distinct characters.

Then the set of Type-4 MAWs for T is a superset of the following set:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

abca, abc2a, . . . , abcp−1a,

ab2ca, ab2c2a, . . . , ab2cp−2a,

ab3ca, ab3c2a, . . . , ab3cp−3a,

. . . ,

abp−2ca, abp−2c2a,

abp−1ca

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Since m = 3p+ 1, we have |M4| > p(p− 1)/2 ∈ Ω(p2) = Ω(m2).

Lemma 3.18. There exists a string T with R(T ) = m such that |M5| ∈ Ω(m).

Proof. Consider string T = abc · ab2c2 · ab3c3 · · · abpcp · a, where a, b, and c are mutually

distinct characters. Then the set of Type-5 MAWs for T is a superset of the set

{bi+1cia | 1 ≤ i ≤ p− 1}.

Since m = 3p+ 1, |M5| > p− 1 ∈ Ω(p) = Ω(m).
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3.2.2 Upper bounds on the number of MAWs for RLE strings

In this section, we present upper bounds for the number of MAWs in a string T that is repre-

sented by its RLE rle(T ) of size R(T ) = m.

Upper bounds for the number of MAWs of Type-1, 2, 3, 5

We first consider the number of MAWs except for those of Type-4.

Lemma 3.19. |M1| = σ.

Proof. By the definition of M1, any MAW in M1 is of the form ak. For any character α ∈ Σ′

that occurs in T , let aub = αp+1 such that αp is the longest maximal run of α in T . Clearly

αp = au = ub occurs in T and αp+1 does not occur in T . Since R(aub) = R(αp+1) = 1,

αp+1 ∈ M1 and it is the unique MAW of Type-1 consisting of α’s. For any character β ∈ Σ\Σ′

that does not occur in T , clearly β is a MAW of T and β ∈ M1 since R(β) = 1. In total, we

obtain |M1| = σ.

Note that this upper bound for |M1| is tight for any string T and alphabet Σ of size σ.

Lemma 3.20. |M2| ∈ O((σ′)2).

Proof. Any MAW in M2 is of the form ab with a, b ∈ Σ and a 
= b. By the definition of

MAWs, ab can be a MAW for T only if both a and b occur in T , which implies that a, b ∈ Σ′.

The number of such combinations of a and b is σ′(σ′ − 1).

Since σ′ ≤ m always holds, we have that |M2| ∈ O(m2). Later we will show that this

upper bound for |M2| is asymptotically tight.

Lemma 3.21. |M3| is unbounded by m.

Proof. Consider a string T = acn−2b, where a 
= c and c 
= b. Then ackb for each 1 ≤ k ≤ n−3

is a MAW of T and R(ackb) = 3. Since they are the only Type-3 MAWs of T , we have that

|M3| = n− 3. Clearly, the original length n of T cannot be bounded by m = R(T ) = 3.

While Lemma 3.21 is enough to show that |M3| can be linear in n and is unbounded by

m, the number of MAWs in a string is known to be O(σn) [30]. Indeed, we have a stronger

result than Lemma 3.21, namely, there is a string T such that the number of Type-3 MAWs in

T is Ω(σn). Let p be an integer which satisfies that n = 1 + (p + 1)(σ − 1), and ai be the i-th

character in Σ. Then,

T = a2a
p
1 · a3ap1 · · · aσ−1a

p
1 · aσ (3.1)

42



CHAPTER 3. COMBINATORICS AND EFFICIENT ALGORITHMS FOR MAWS

satisfies that the number of Type-3 MAWs in T is Ω(σn). For any triplet j1, j2, j3 with 1 ≤
j1 < σ, 1 < j1 ≤ σ, 0 ≤ j2 ≤ p, j1 
= j3 − 1, obviously aj1a

j2
1 aj3 is a Type-3 MAW of T , which

is at least σ · p · σ = Ω(σn).

Although the number of MAWs of Type-3 is unbounded by m, later we will present an

O(m)-space data structure that can enumerate all elements in M3 in output-sensitive time.

Lemma 3.22. |M5| ∈ O(m).

Proof. Any MAW aub ∈ M5 can be represented by ai+1vb or avbi+1 with maximal integer

i ≥ 1, where aiv = u in the former and vbi = u in the latter. Let us consider the case of ai+1vb

as the case of avbi+1 is symmetric. Then caivb with some character c 
= a must occur in T . Let

k be the beginning position of an occurrence of caivb in T . Then, T [k + 1..k + i] = ai is a

maximal run of a.

Now consider any distinct MAW ai+1v′b′ ∈ M5 \ {ai+1vb} with v′b′ 
= vb. Again, c′aiv′b′

with some character c′ 
= a must occur in T . Suppose on the contrary that c′aiv′b′ has an

occurrence beginning at the same position k as caivb. This implies that c′ = c, and both aivb

and aiv′b′ are prefixes of T [k + 1..|T |].

• If |aivb| < |aiv′b′|, then aiv′ contains aivb as a substring. Since ai+1v′ occurs in T , ai+1vb

must also occur in T . Hence ai+1vb is not a MAW for T , a contradiction.

• If |aivb| > |aiv′b′|, then aiv contains aiv′b′ as a substring. Thus ai+1vb is an absent word

for T but it is not minimal. Hence ai+1vb is not a MAW for T , a contradiction.

• If |aivb| = |aiv′b′|, then this contradicts that aiub 
= aiu′b′.

Hence, at most two element of M5 can be associated with a position k in T such that T [k] 
=
T [k + 1]. The number of such positions does not exceed 2m.

3.2.3 Upper bound for the number of MAWs of Type-4

In the rest of this section, we show an upper bound of the number of MAWs of Type-4. Namely,

we prove the following lemma.

Lemma 3.23. |M4| ∈ O(m2).

Firstly, we explain a way to characterize MAWs of Type-4.
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For any string w ∈ Σ∗ and integer t > 0, let Expt(w) be the set of bridges such that

Expt(w) = {w′ ∈ B | shkt(w′) = w}. Namely, Expt(w) is the inverse image of shkt(w′) = w

for bridge substrings w′ of T . We use Exp(w) to denote Exp1(w). Figure 3.6 gives an example

for Expt(w) (Expt+(w) in the figure will be defined later). Any MAW z in M4 is of the form

$b4c7ab3c3ab2c5ab2c5ab6c2$

$b4c7a
ab3c3a
ab2c5a
ab6c2$

bc

c5ab2c5ab6
c3ab2c5ab2

ab2c5a
ab2c5a

bc

ab3c3a
cab3c3ab

Figure 3.6: The bridge w1 = ab2c5a ∈ Exp(bc) is an element of Exp+(bc) since |Exp(w1)| ≥ 2.

On the other hand, the bridge w2 = ab3c3a ∈ Exp(bc) is not an element of Exp+(bc) since

|Exp(w2)| < 2.

aαiuβjb with a, b, α, β ∈ Σ, u ∈ Σ∗, and positive integers i, j where a, αi, βj, b are the first, the

second, the second last, and the last run of z, respectively. By the definition of MAWs, both the

suffix αiuβjb and the prefix aαiuβj of z occur in T . From this fact, we can obtain the following

observations.

Observation 3.1. Each MAW z ∈ M4 corresponds to a pair of distinct bridges (w1, w2) ∈
Exp(shk(z))×Exp(shk(z)). Formally, for each MAW z = aαiuβjb ∈ M4, there exist characters

a1, b1 ∈ Σ ∪ {$} and integers i1 ≥ i, j1 ≥ j such that w1 = a1α
i1uβjb, w2 = aαiuβj1b1 ∈

Exp(shk(z)) and w1 
= w2 (since these two occur in T but z does not occur in T ).

This observation gives a main idea of our characterization which is stated in the following

lemma.

Lemma 3.24. For any bridge w, |{z | shk(z) = w, z ∈ M4}| ≤ |Exp(w)|(|Exp(w)| − 1).

Proof. Let M4(w) = {z | shk(z) = w, z ∈ M4}. By Observation 3.1, each z ∈ M4(w)

corresponds to a pair (w1, w2) ∈ Exp(shk(z)) × Exp(shk(z)) where w1 
= w2. Let z1 =
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a1α
i1uβj1b1, z2 = a2α

i2uβj2b2 be distinct MAWs in M4(w) where shk(z1) = shk(z2) = w.

Assume towards a contradiction that z1 and z2 correspond to (a′αi′uβjb, aαiuβj′b′) ∈ Exp(w)×
Exp(w). This implies that, by Observation 3.1, i = i1 = i2, j = j1 = j2, a = a1 = a2, b =

b1 = b2. Thus z1 = z2 holds, a contradiction. Hence, for any distinct MAWs z1, z2 ∈ M4(w),

z1 and z2 correspond to distinct elements of Exp(shk(z)) × Exp(shk(z)). Since the number of

elements (w1, w2) in Exp(shk(z))× Exp(shk(z)) such that w1 
= w2 is |Exp(w)|(|Exp(w)| − 1),

this lemma holds.

Since each MAW z corresponds to an element (w1, w2) ∈ Exp(shk(z))× Exp(shk(z)) such

that w1 
= w2, it is enough for the bound to sum up all |Exp(w)|2 such that |Exp(w)| ≥ 2

holds. Let W be the set of bridges w such that |Exp(w)| ≥ 2 or w ∈ B2 ∪ B3. Let X =∑
w∈W |Exp(w)|. For considering such Exp(w), we also define a subset Expt+(w) of Expt(w) as

follows: For any string (bridge) w and integer t > 0,

Expt+(w) = {w′ | w′ ∈ Expt(w), |Exp(w′)| ≥ 2}.

We also use Exp+(w) to denote Exp1+(w). Figure 3.7 shows an illustration for Expi(w),Expi+(w),

W , and X . We give the following lemma that explains relations between Expi(w),Expi+(w), and

X .

Lemma 3.25.

X =
∑

w∈B2∪B3

⎛
⎝|Exp(w)|+

�m/2�−1∑
i=1

∑
z∈Expi+(w)

|Exp(z)|

⎞
⎠ .

Proof. Let zeven be a bridge where R(zeven) = 2i + 2 for some i ≥ 1. Notice that shk(zeven) =

c1c2 ∈ B2 for some distinct characters c1, c2. By the definition of Expi+(·), if |Exp(zeven)| ≥ 2,

then zeven ∈ Expi+(c1c2). Let zodd be a bridge where R(zodd) = 2i+3 for some i ≥ 1. Notice that

shk(zodd) = c1c
k
2c3 ∈ B3 for some characters c1, c2, c3 and an integer k ≥ 1. By the definition

of Expi+(·), if |Exp(zodd)| ≥ 2, then zodd ∈ Expi+(c1c
k
2c3). Therefore the statement holds.

This implies that |M4| ≤
∑

w∈W |Exp(w)|2 ≤ X 2. Thus, if X ∈ O(m), |M4| ∈ O(m2).

We can also observe that
∑�m/2�−1

i=1

∑
z∈Expi+(w) |Exp(z)| is the sum of the number of children

of black nodes (which have more than a single child) in the tree for w. The number of leaves

of the tree is an upper bound for the sum. It is also clear that |Exp(w)| can be bounded by the

number of leaves of the tree. Consequently, we obtain |X | ∈ O(m) as in Lemma 3.26.

Lemma 3.26. |X | ∈ O(m).
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Figure 3.7: This tree shows an illustration for Expi(w),Expi+(w),W , and X . The root node

represents a bridge w ∈ B2 ∪ B3. The set of children of the root corresponds to Exp(w),

namely, each child x represents a bridge such that shk(x) = w. Each black node represents a

bridge x such that |Exp(x)| ≥ 2 (i.e., each black node has at least two children) or the root.

Let W (w) be the set of nodes consisting of all the black nodes in the tree rooted at a bridge

w ∈ B2 ∪B3. Then W is the union of W (w) for all w ∈ B2 ∪B3, and X is the total number of

children of black nodes in W .

Proof. By Lemma 3.25 and the above discussion, we have

X =
∑

w∈B2∪B3

⎛
⎝|Exp(w)|+

�m/2�−1∑
i=1

∑
z∈Expi+(w)

|Exp(z)|

⎞
⎠

≤
∑

w∈B2∪B3

2#w

≤ 2 ((m− 1) + (m− 2)) ∈ O(m).

We are ready to prove Lemma 3.23:

Proof of Lemma 3.23. |M4| ≤
∑

w∈W |Exp(w)|2 ≤ |X |2 ≤ (2(2m− 3))2 ∈ O(m2).
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3.2.4 Efficient representations of MAWs for RLE strings

Consider a string T that contains σ′ distinct characters. In this section, we present compact data

structures that can output every MAW for T upon query, using a total of O(m) space, where

m = R(T ) is the size of rle(T ). We will prove the following theorem:

Theorem 3.5. There exists a data structure D of size O(m) which can output all MAWs for

string T in O(|MAW(T )|) time, where m is the RLE-size of T .

In our representation of MAWs that follows, we store rle(T ) explicitly with O(m) space.

The following is a general lemma that we can use when we output a MAW from our data

structures.

Lemma 3.27. For each MAW w ∈ MAW(T ), rle(w) of size R(w) can be retrieved in O(R(w))

time from a tuple (a, i, s, t, b, j) and rle(T ), where a, b ∈ Σ, 0 ≤ i, j ≤ |T |, and 0 ≤ s, t ≤ m.

Proof. When R(w) = 1 (i.e. w ∈ M1), then since w is of the form ai with i ≥ 1, we can

simply represent it by (a, i, 0, 0, 0, 0).

When R(w) ≥ 2, then let w = aub. When aub ∈ M2, then w = ab and thus it can be

simply represented by (a, 1, 0, 0, b, 1). When aub ∈ M3 ∪M4, then a 
= u[1] and b 
= u[|u|].
Hence it can be represented by (a, 1, s, t, b, 1) where rs · · · rt = rle(u). When aub ∈ M5, then

a = u[1] or u[|u|] = b. Let i, j be the maximal integers such that aiu′bj = aub. We can

represent it by (a, i, s, t, b, j) with rs · · · rt = rle(u′).

For ease of discussion, in what follows, we will identify each MAW w with its corresponding

tuple (a, i, s, t, b, j) which takes O(1) space.

Representation for M1

We have shown that |M1| = σ (Lemma 3.19), however, σ can be larger than σ′ and m. Still, a

simple representation for M1 exists, as follows:

Lemma 3.28. There exists a data structure D1 of O(σ′) ⊆ O(m) space that can output each

MAW in M1 in O(1) time.

Proof. For ease of explanation, assume that the string T is over the integer alphabet Σ =

{1, . . . , σ} and let Σ′ = {c1, . . . , cσ′} ⊆ {1, . . . , σ}. Let M = 〈cp11 , . . . , c
pσ′
σ′ 〉 be the list of

Type-1 MAWs in M1 that are runs of characters in Σ′, sorted in the lexicographical order of the

characters, i.e. 1 ≤ c1 < · · · < cσ′ ≤ σ. We store M explicitly in O(σ′) space. When we output
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$ab3cda9cde$

a b c d e

b c a c d a e $

$

a

Figure 3.8: The trie D2 for string T = $ab3cda9cde$. A bigram ab with a 
= b, a, b ∈ Σ′ is in

M2 iff ab is not in this trie D2. For instance, ae and db are MAWs of T .

each MAW in M1, we test the numbers (i.e. characters) in Σ = {1, . . . , σ} incrementally, and

scan M in parallel: For each c = 1, . . . , σ in increasing order, if cp ∈ M with some p > 1 then

we output cp, and otherwise we output c.

Representation for M2

Recall that |M2| ∈ O(σ′2) ⊆ O(m2) and this bound is tight in the worst case. Therefore

we cannot store all elements of M2 explicitly, as our goal is an O(m)-space representation of

MAWs. Nevertheless, the following lemma holds:

Lemma 3.29. There exists a data structure D2 of O(m) space that can output each MAW in

M2 in O(1) amortized time.

Proof. If |M2| ∈ O(m), then we explicitly store all elements of M2.

If |M2| ∈ Ω(m), then let D2 be the trie that represents all bigrams that occur in T . See

Figure 3.8 for a concrete example of D2. Note that for any pair a, b ∈ Σ′ of distinct characters

both occurring in T , ab is either in D2 or in M2. Since the number of such pairs a, b is σ′(σ′−1),

we have that σ′2 = Θ(|D2|+ |M2|), where |D2| denotes the size of the trie D2. Since |D2| < m,

we have σ′2 ∈ O(|M2| +m). Suppose that the character labels of the out-going edges of each

node in D2 are lexicographically sorted. When we output each element in M2, we test every

bigram ab such that a 
= b and a, b ∈ Σ′ in the lexicographical order, and traverse D2 in parallel

in a depth-first manner. We output ab if it is not in the trie D2. This takes O(σ′2 + |D2|) ⊆
O(|M2|+m) ⊆ O(|M2|) time, since |M2| ∈ Ω(m).

Representation for M3

Recall that the number of MAWs of Type-3 in M3 is unbounded by the RLE size m (Lemma 3.21).

Nevertheless, we show that there exists a compact O(m)-space data structure that can report

each MAW in M3 in O(1) time.
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Notice that, by definition, a MAW aub of Type-3 is a bridge and therefore, it is of the form

ackb with c ∈ Σ′
T \{a, b} and k ≥ 1. Furthermore, ack and ckb appear in T . Then, the following

observation gives an idea of representation.

Observation 3.2. A bridge ackb is in M3 iff (i) ackb /∈ BSc(T ) and (ii) ack
′ ∈ Lc with k′ ≥ k

and (iii) ck
′
b ∈ Rc with k′ ≥ k.

Let BSc(T ) be the ordered set of bridge substrings z of T with R(z) = 3 whose middle run

consists of c. For each character a ∈ Σ′
T \ {c}, let i be the largest exponent such that aci occurs

in T . Let Lc be the set of such aci’s for all characters a ∈ Σ′
T \ {c}. Similarly, let Rc be the

set of cjb’s for all characters b ∈ Σ′
T \ {c}, where j is the largest exponent such that cbj occurs

in T . Each element ackb of BSc(T ) is sorted in a’s lexicographical order. If a is the same, it

is sorted in b’s lexicographical order. If b is the same too, it is sorted in ascending order of the

exponent k. Each element ack of Lc is sorted in a’s lexicographical order. Each element ckb of

Rc is sorted in b’s lexicographical order.

See Figure 3.9 for a concrete example for Lc and Rc.

c7ac9bc5dc3bc3a4c3bcbc5eac7

ac3b
ac9b
bc3a
bc b
bc5d
bc5e
dc3b

ac9
bc5
dc3

c7a
c9b
c5d
c5e

ccc

Figure 3.9: BSc, Lc, and Rc for string T = c7ac9bc5dc3bc3a4c3bcbc5eac7 and character c.

By the observation 3.2, we have the following lemma:

Lemma 3.30. There exists a data structure D3 of O(m) space that can output all MAWs in M3

in O(|M3|) time.

Proof. Given BSc,Lc and Rc, we can enumerate all Type-3 MAWs. For each pair aci and cjb

of Lc and Rc, acb, ac
2b, . . . , aci

′
b are the candidates of MAWs of T where i′ = min(i, j). Note

that aci
′+1b, aci

′+2b, . . . are not MAWs of T . For each candidate ackb, it is a MAW of T if

ackb /∈ BSc(T ). Let σx,y denote the pair of the x-th element of Lc and the the y-th element

of Rc. See the algorithm illustrated in Algorithm 1. The algorithm first scans σ1,1 to σ1,|Rc|,
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and then σ2,1 to σ2,|Rc|, and so forth, and finally scans σ|Lc|,1 to σ|Lc|,|Rc|. Then, BSc(T ) has

been sorted in the same order as the pairs the algorithm scans. In other words, the algorithm

can verify whether the candidate is a MAW of T by comparing it with the current first element

of BSc(T ) that the algorithm has not verified yet. Therefore, one can determine whether the

candidate ackb is a MAW or not in O(1) time each.

The correctness of the algorithm follows from Observation 3.2. Since
∑

c∈Σ′
T
|BSc(T )| ∈

O(m), the total space requirement of the data structure for all characters in Σ′
T is O(m).

Let us consider the time complexity. Let occp be the MAW of M3, and occn be the The

algorithm takes O(|M3| + |BS|) ⊆ O(m + |M3|) time, where BS =
⋃

c∈Σ′
T
BSc. When

|M3| ∈ O(m), we can represent and store all elements in M3 in a total of O(m) space by using

Lemma 3.27. Therefore, the algorithm takes a total of O(|M3|) time.

Algorithm 1 Enumerate all Type-3 MAWs

Input: BSc,Lc and Rc

Output: all Type-3 MAW is output

1: for each aci in Lc do
2: for each cjb in Rc do
3: i′ = min(i, j)

4: for k with 1 to i′ do
5: if abkc ∈ BSc(T ) then
6: output ackb

7: end if
8: end for
9: end for

10: end for

Representation for M4

Recall that |M4| ∈ O(m2) and this bound is tight in the worst case. Therefore we cannot

store all elements of M4 explicitly, as our goal is an O(m)-space representation of MAWs.

Nevertheless, the following lemma holds:

Lemma 3.31. There exists a data structure D4 of O(m) space that can output each MAW in

M4 in O(1) amortized time.
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Our data structure D4 is based on the discussion in Section 3.2.3. We consider the following

bipartite graph Gw = (VL ∪ VR, E) for any bridge w ∈ W . We can identify each bridge

aαiuβjb ∈ Exp(w) by representing the bridge as a 4-tuple (a, i, j, b). Let Fw be the set of 4-

tuples which represents all elements in Exp(w). Two disjoint sets VL, VR of vertices and set E

of edges are defined as follows:

VL = {(a, i) | ∃(a, i, j, b) ∈ Fw},
VR = {(j, b) | ∃(a, i, j, b) ∈ Fw},
E = {((a, i), (j, b)) | ∃(a, i, j, b) ∈ Fw}.

VL (resp. VR) represents the set of the left (resp. right) parts of bridges in W . For each edge

in E represents a bridge in W . This implies that |E| = |Exp(w)|. Assume that all vertices in

VL (resp. VR) are sorted in non-decreasing order w.r.t. the value i (resp. j) which represents the

exponent of corresponding run. For any k ∈ [1, |VL|] and k′ ∈ [1, |VR|], vL(k) = (cL(k), eL(k))

denotes the k-th vertex in VL, and vR(k
′) = (cR(k

′), eR(k′)) denotes the k′-th vertex in VR. For

any vertex vL(k) ∈ VL and vR(k
′) ∈ VR, we also define

ELR
max(k) = max{eR(i) | ∃(vL(k), vR(i)) ∈ E},

ERL
max(k

′) = max{eL(i) | ∃(vR(i), vR(k)) ∈ E}.

Figure 3.10 gives an illustration for this graph. Due to Observation 3.1, each MAW z of Type-4

corresponds to an element of Exp(w) × Exp(w) where z(1) = w. By this idea, we detect each

MAW as a pair of vertices in VL×VR which is not an edge in E. The following lemma explains

all MAWs which can be represented by the graph.

Lemma 3.32. For any vertices vL(k) ∈ VL and vR(k
′) ∈ VR of Gαuβ , the string

cL(k)α
eL(k)uβeR(k′)cR(k

′) is a MAW iff the following three conditions hold (see also Figure 3.11

for an illustration):

• (vL(k), vR(k
′)) /∈ E,

• ELR
max(k) ≥ eR(k

′), and

• ERL
max(k

′) ≥ eL(k).

Proof. If (vL(k), vR(k
′)) /∈ E, cL(k)α

eL(k)uβeR(k′)cR(k
′) is an absent word. ELR

max(k) ≥ eR(k
′)

and ERL
max(k

′) ≥ eL(k) implies that cL(k)α
eL(k)uβeR(k′) and αeL(k)uβeR(k′)cR(k

′) occur in the

string. Thus cL(k)α
eL(k)uβeR(k′)cR(k

′) is a MAW.
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$ab2c2ab2cb4c5eb4c5a4bc5ab2c6d5ab2cb2$

ab2c2a
ab2c b
cb4c5e
eb4c5a
ab c5a
ab2c6d

bc

a
a
c
e

1
2
5
5
6

5
6
5
5

2
2
4
4
2

bc

1
2
4
4

b
a
e
a
d

(a,2,2,a)
(a,2,1,b)
(c,4,5,e) 
(e,4,5,a)
(a,1,5,a)
(a,2,6,d)

bc

Figure 3.10: This figure shows Gbc for T = $ab2c2ab2cb4c5eb4c5a4bc5ab2c6d5ab2cb2$. For

a bridge bc, Exp(bc) has 6 bridges. Fbc contains 6 tuples which represents all bridges in

Exp(bc). For instance, a bridge ab2cb = (a, 2, 1, b) where the first character is a, the expo-

nent of the second run is 2, the exponent of the second last run is 1, and the last character is

b. VL is the set of pairs by the left-half of elements in Fbc. In this example, VL has 4 vertices

{(a, 1), (a, 2), (c, 4), (e, 4)} which are sorted in non-decreasing order of the second key (rep-

resenting its exponent). VR is the symmetric set for the right parts. Each bridge corresponds

to an edge. For example, the second bridge ab2cb in the figure corresponds to the edge from

the second vertex (a, 2) in VL to the first vertex (1, b) in VR. Since the number of bridges in

Exp(bc)(Fbc) is 6, the graph has 6 edges.

On the other hand, if (vL(k), vR(k
′)) ∈ E, cL(k)α

eL(k)uβeR(k′)cR(k
′) occurs in the text.

ELR
max(k) < eR(k

′) implies that cL(k)α
eL(k)uβeR(k′) does not occur in the string. ERL

max(k
′) <

eL(k) implies that αeL(k)uβeR(k′)cR(k
′)) does not occur in the string. Thus all three conditions

hold if cL(k)α
eL(k)uβeR(k′)cR(k

′) is a MAW.

Proof of Lemma 3.31. Let x be the number of outputs. If x < m, we can just store all the

MAWs themselves. Assume that x ∈ Ω(m).

For all bridge w = αuβ ∈ W , Gw represents all MAWs which correspond to elements in

Exp(w)× Exp(w). Our data structure D4 consists of Gw for any w ∈ W . It is clear that Gw can

be stored in O(|Exp(w)|) space. This implies that the size of D4 is linear in X , namely, D4 can

be stored in O(m) space (Lemma 3.26).

We can output all MAWs which are represented by Gw based on Lemma 3.32 (see Algo-

rithm 2). For the k-th vertex vL(k), C represents all vertices vR(k
′) in VB such that (vL(k), vR(k

′))

/∈ E and ERL
max(k

′) ≥ eL(k) (the first and third condition in Lemma 3.32). For each vertex in

C, if ELR
max(k) ≥ eR(k

′) (the second condition in Lemma 3.32), the algorithm outputs a MAW
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Figure 3.11: This is an illustration for Lemma 3.32. For the k-th vertex vL(k) ∈ VL and k′-th

vertex vR(k
′) ∈ VR, this graph satisfies the three conditions of the lemma.

Algorithm 2 Compute all MAWs in M4

Input: bipartite graph Gαuβ = (VL, VR, E)

Output: all MAWs in M4 that are associated by αuβ, aαk1uβk2b for a, b ∈ Σ, k1, k2 ∈ N

1: CR ← VR

2: for each vL(k) ∈ VL do
3: C = {vR(k′) ∈ CR | eR(k′) ≤ ELR

max(k)} \ {v | (vL(k), v) ∈ E}
4: for each vR(k

′) ∈ C do
5: if ERL

max(k
′) ≥ eL(vL(k)) then

6: output cL(k)α
eL(k)uβeR(k′)cR(k

′)

7: else
8: CR ← CR \ {vR(k′)}
9: end if

10: end for
11: end for

cL(k)α
eL(k)uβeR(k′)cR(k

′). Then the running time of our algorithm is O(x +
∑

w∈W |Gw|) ⊆
O(x+m) = O(x), since x ∈ Ω(m).

Representation for M5

Lemma 3.33. There exists a data structure of size O(m) that outputs each element of M5 in

O(1) time.
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Proof. By Lemma 3.22, |M5| ∈ O(m). Recall that an element of M5 can be as long as O(n).

However, using Lemma 3.27 we can represent and store all elements in M5 in a total of O(m)

space. It is trivial that each stored element can be output in O(1) time.
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3.2.5 Constructing representations of MAWs for RLE strings

We have shown our representations which can efficiently output MAWs for each type. In this

section, we how to construct these representations in O(m logm) total time, for a given RLE

string of size m consisting of σ′ distinct characters.

Construction of D1

Lemma 3.34. We can construct D1 in O(m log σ′) time.

Proof. The goal of this lemma is how to construct D1 that we explained in Lemma 3.28. For

each ith run, we scan ai
pi and store the maximum exponent for each distinct character. Note

that we can omit the characters that do not occur in T , and therefore we can compute D1 in

O(m log σ′) time.

Construction of D2

Lemma 3.35. We can construct D2 in O(m log σ′) time.

Proof. For each pair of adjacent ith and (i+ 1)th runs, we scan aiai+1 to store all bigrams that

occur in T into a trie.

During our construction of the trie, we increment a counter e each time a new bigram is

inserted into a trie. If the final number e of edges in the resulting trie is at most σ(σ − 1)−m,

then we store this trie as D2. We can compute this trie in O(m log σ′) time.

As soon as the counter value e exceeds σ(σ − 1)−m at some point, then we can recognize

that there are at most m Type-2 MAWs of T . In this case, we rearrange the data structure D′
2

that explicitly stores all Type-2 MAWs in T . We can compute D′
2 using O(m) additional time,

using the representation strategy for M2.

Construction of D3

Lemma 3.36. We can construct D3 in O(m logm) time.

Proof. D3 consists of BSb, Lb and Rb. We first compute BSb, which is the set of all bridge of

size 3 occurring T such that its middle run has b. For each bridge of size 3, we classify them

based on the character of its middle run b. In this way we first compute BSb for each b ∈ ΣT in

O(m) time. We can sort each BSb by the exponent of its middle character in O(|BSb| log |BSb|)
time. The sum of |BSb| for any b ∈ ΣT is at most m− 2 since their elements are bridges of size
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3 that occurs in T . Therefore, we can sort all BSb in O(m logm) time in total. Lb and Rb is

computed in O(|BSb| log |BSb|) time from each BSb, which results in a total D3 computation

time of O(m logm).

Construction of D4

If we know the set Exp(αuβ), we can construct each bipartite graph Gαuβ = (VL ∪ VR, E) by

sorting in the exponents order of α and β. We can also compute all G from all Exp that we need

for Type-4 MAW in O(m logm) time by Lemma 3.26. Then, our target is how to output all Exp

for Type-4 MAWs.

Any element of Exp(αuβ) has αuβ as its substring. Moreover, the substring always starts

at the last position of the second run. Therefore, as we can see in Figure 3.12, there is a single

range in the sorted tRLE suffix array that contains all such substrings. We call this range a

block below. Let t be the first position of the block, and t′ be the last position of the block in

the tRLESA. Let k be the the RLE size of u, in other words u = u1 . . . uk. Then, the three

following statements hold:

1. for any i with t < i ≤ t′, tRLELCP(i) ≥ k + 2.

2. tRLELCP(t) < k + 2.

3. tRLELCP(t′ + 1) < k + 2.

Using these conditions, we can compute the all Exp(αuβ) that we need for D4. Let Br(i, j)

be the prefix bridge of tRLE(i) such that R(Br(i, j)) = j. Algorithm 3 shows a naı̈ve method

which computes all Exp(αuβ) that have common RLE size of u.

However, the naive method of Algorithm 3 is not enough to compute all in desired Exp in

O(m logm) time. The issues are the following:

1. The algorithm may multiply count the same string. It happens when Br(x − 1, k + 2) is

already in Exp(Br(x, k)).

2. The algorithm may create Exp such that |Exp(αuβ)| = 1. It is never used for D4.

3. Due to the two above issues, it can take O(m2) time to compute all Exp(αuβ) for D4 since

there can exist useless Exp and thus meaningless counting operations can be performed

in Algorithm 3.
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Figure 3.12: All occurrence of αuβ = αu1 . . . ukβ in T is laid out in a line inside lexicographi-

cally ordered tRLE suffix list. We obtain Exp(αuβ) from a corresponding maximum block that

tRLELCP is greater than R(αuβ). For each i that belongs to the block, (tRLESA[i]−1)-th tRLE

suffix is included in Exp(αuβ).

To resolve the first issue, we introduce SP which stores the nearest position of tRLESA

that occurs the string s before the tRLE suffix. We show an example of SP in Figure 3.13.

In this case, Algorithm 3 tries to count α2α..αu1...ukβ..ββ2 twice while scanning i. How-

ever, after SP (s) returns i′, the modified algorithm verifies that tRLESA[i′] − 1-th tRLE suf-

fix has α2α..α as its prefix. Then, if LCP (tRLESA[i′], tRLESA[i]) > k + 2, we can see that

α2α..αu1...ukβ..ββ2 occurs twice or more. We can easily maintain SP by placing SP (α2α
p) =

i′ whenever we encounter α2α
p while computing i′-th elements of tRLESA. Then, SP is always

updated by largest i′.

To resolve the second issue, we observe that we just need to check tRLELCP[i−1] to confirm

whether the block has strictly two or more elements, or not.

To resolve the third issue, we refine the algorithm so that it can process different lengths

k in parallel. The two ideas we mentioned above use the common SP , and verification of

tRLELCP[i − 1] is also a common operation. By Lemma 3.26, in the condition that there are

no useless Exp(αuβ) (in other words |Exp(αuβ)| = 1) and no duplicated counting operations,

there are O(m) elements that the algorithm counts.

Lemma 3.37. We can construct D4 in O(m logm) time.
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Algorithm 3 Compute all Exp(αuβ) for D4 where k is the RLE size of u

Input: tRLESA, tRLELCP, initialized trie SP

Output: All Exp(αuβ) with |Exp(αuβ)| ≥ 2 and the RLE size of u is k.

1: for each i from 1 to m do
2: x = tRLESA[i]

3: if tRLELCP[i] ≥ k then
4: add Br(x− 1, k + 2) to Exp(Br(x, k))

5: end if
6: end for

Proof. Algorithm 4 computes all Exp that are required for computing D4. For any tRLESA[t]

with i′ < t < i, tRLE(t) has the prefix Br(x, LCP(tRLE(x), tRLE(x′))).

If j < LCP(tRLE(x), tRLE(x′))), we do not have to include Br(x−1, j+2) in Br(x, j) since

Br(x− 1, j + 2) = Br(x′ − 1, j + 2) is included in Br(x, j). If j ≥ LCP(tRLE(x), tRLE(x′))),

Br(x−1, j+2) has not been included in Br(x, j) yet since Br(x−1, j+2) 
= Br(x′−1, j+2).

Therefore, the total number of element added to Exp in this algorithm is exactly equal to the

number of elements of all Exp, which is O(m) by Lemma 3.26.

Accessing any position of SP takes O(logm) time, LCP(tRLE(x), tRLE(x′)) is O(1) time

by range minimum queries of [x′, x]. Considering there are m steps, Algorithm 4 runs in

O(m logm) time in total.

Construction of D5

In Section 3.2.4 we showed that D5 naı̈vely stores all Type-5 MAWs. Therefore, we prove that

we can enumerate all MAWs in M5, which is enough to prove that we can construct D5 in its

time. We divide each u = u1u2 · um′ in M5 into 5 subtypes.

1. m′ = 2 and |u1| = 1. (Type 5-1)

2. m′ = 2 and |um′ | = 1. (Type 5-2)

3. m′ ≥ 3 and |u1| = 1. (Type 5-3)

4. m′ ≥ 3 and |um′ | = 1. (Type 5-4)

5. (else) |u1| ≥ 2, |um′ ≥ 2|. (Type 5-5)
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Figure 3.13: (tRLESA[i]− 1)-th tRLE suffix starts with α2α
p. i′ is the maximum number such

that i > i′ and (tRLESA[i′] − 1)-th tRLE suffix starts with α2α
p. At the time computing i-

th element of tRLESA, SP (α2α
p) returns such i′. Assume that the longest common prefix of

(tRLESA[i])-th tRLE suffix and (tRLESA[i′])-th tRLE suffix is greater than k + 2. Then, there

are two same strings α2α..αuβ..ββ2, which should be included in Exp(α2α..αuβ..ββ2) just

once.

α, β, γ are characters such that α 
= β, β 
= γ, γ 
= α. We can represent Type 5-1 MAW in the

form of u = αβk with k ≥ 2. Then the following lemma holds.

Lemma 3.38. Proposition A equals to B.

• A: βk′ ∈ D1 with k′ ≥ k and αβk−1 ∈ Lβ in D3

• B: αβk is MAW of T .

Proof. If βk′ ∈ D1 with k′ ≥ k, βk occurs in T . If αβk−1 ∈ Lβ , αβk−1 occurs in T , and αβk

does not occurs in T . Therefore, A ⇒ B is true. If αβk is MAW of T , βk′ ∈ D1 with k′ ≥ k,

since βk must occurs in T . In addition, αβk−1 ∈ Lβ since αβk−1 occurs in T , and αβk does not

occurs in T . Therefore, B ⇒ A is true.

Using this proof, we can compute Type 5-1 MAW. Since each Type 5-1 MAW has a corre-

sponding element of Lβ , for all elements of all D3, we just verify whether the corresponding

candidate is a MAW or not by D1. Each verification costs O(1) time, which leads to O(m) time

in total. The algorithm 5 show the procedure of enumerating all Type 5-1 MAW in this way.
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Algorithm 4 Compute all Exp(αuβ) for D4

Input: tRLESA, tRLELCP, initialized trie SP

Output: all Exp(αuβ) with |Exp(αuβ)| ≥ 2

1: for each i from 1 to m do
2: x = tRLESA[i]

3: i′ = SP [ax−1rx]

4: x′ = tRLESA[i′]

5: for each j with LCP(tRLE(x), tRLE(x′)) ≤ j ≤ tRLELCP[i] do
6: if Exp(Br(x, j)) = φ then
7: add Br(tRLESA[i− 1]− 1, j + 2) to Exp(Br(x, j))

8: end if
9: add Br(x− 1, j + 2) to Exp(Br(x, j))

10: end for
11: SP [ax−1rx] = i

12: end for

We can prove the case of Type 5-2 MAWs using a similar application.

We can represent Type 5-3 MAWs in the form of u = αγk1u′βk2 with k1 ≥ 2, k2 ≥ 2. u′

might be ε. For some following proofs, we define two new array for each Exp(γu′β). First,

Let HLR(i) be the maximum number of ELR
max such that eL ≥ i, and second, let HRL(i) be the

maximum number of ERL
max such that eR ≥ i. Then the following lemma holds.

Lemma 3.39. Proposition A1 ∧ A2 equals to B.

• A1: There are a node t that satisfies ELR
max(t) = k2 − 1, cL(t

′) = α, eL(t
′) = k1 in

Exp(γu′β).

• A2: HRL(k2) ≥ k1 in Exp(γu′β).

• B: αγk1u′βk2 is MAW of T .

Proof. If there is a node t that satisfies ELR
max(t) = k2−1, cL(t

′) = α, eL(t
′) = k1 in Exp(γu′β),

αγk1u′βk2−1 occurs in T and αγk1u′βk2 does not occurs in T . If HRL(k2) ≥ k1, γ
k1u′βk2 occurs

in T . Therefore, A1 ∧ A2 ⇒ B is true.
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Algorithm 5 Compute all Type 5-1 MAWs

Input: D1,D3

Output: All Type 5-1 MAWs are added to D5

1: for each c in Σ occurs in T do
2: for each element αck with Lc do
3: if ck+1 occurs in T then
4: add αck+1 to D5

5: end if
6: end for
7: end for

If αγk1u′βk2 is MAW of T , αγk1u′βk2−1 and γk1u′βk2 occurs in T . It means that There are

a node that satisfies (ELR
max, cL, eL) = (k2−1, α, k1) in Exp(γu′β). Furthermore, HRL(k2) ≥ k1

holds since γk1u′βk2 occurs in T . Therefore, B ⇒ A1 ∧ A2 is true.

Using this proof, we can compute Type 5-3 MAW. Since each Type 5-3 MAW has a corre-

sponding node in fixed D4, for all elements of all D4, we just verify whether the corresponding

candidate is a MAW or not by HRL. Each verification costs O(1) time, which leads to O(m)

time in total. The algorithm 6 show the procedure of enumerating all Type 5-3 MAW in this

way.

We can prove the case of Type 5-4 using a similar application.

We can represent Type 5-5 MAW in the form of u = αk1u′βk2 with k1 ≥ 2, k2 ≥ 2. u′

might be ε. Then the following lemma holds.

Lemma 3.40. Proposition A1 ∧ A2 equals to B.

• A1: HLR(k1) = k2 − 1 in Exp(αu′β)

• A2: HRL(k2) = k1 − 1 in Exp(αu′β)

• B: αk1u′βk2 is a MAW of T .

Proof. If proposition A1 is true, αk1u′βk2 does not occur in T , and αk1u′βk2−1 occurs in T . If

proposition A2 is true, αk1u′βk2 does not occur in T , and αk1−1u′βk2 occurs in T . Therefore,

A1 ∧ A2 ⇒ B is true.
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Algorithm 6 Compute all Type 5-3 MAWs

Input: D4, H
LR

Output: All Type 5-3 MAW are added to D5

1: for each γu′β with |Exp(γu′β)| ≥ 2 do
2: for each node t ∈ VL in Exp(γu′β) do
3: α = cL(t)

4: k1 = eL(t)

5: k2 = ELR
max(t) + 1

6: if HRL(k2) ≥ k1 then
7: add αγk1u′βk2 to D5

8: end if
9: end for

10: end for

If proposition B is true, αk1u′βk2 does not occur in T , which leads to HLR(k1) < k2,

HRL(k2) < k1 in Exp(αu′β) However, αk1u′βk2−1 occurs in T , which leads to HLR(k1) ≥
k2 − 1. Furthermore, αk1−1u′βk2 occurs in T , which leads to HRL(k2) ≥ k1 − 1. Therefore,

B ⇒ A1 ∧ A2 is true.

For this proof, we can compute Type 5-5 MAW. Since each Type 5-5 MAW has a corre-

sponding HLR in fixed D4, for all HLR of all D4, we just verify whether the corresponding

candidate is a MAW or not by HRL. Each verification costs O(1) time, which leads to O(m)

time in total.

To summarize, we have proven the following:

Lemma 3.41. We can construct D5 in O(m) time.
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Algorithm 7 Compute all Type 5-5 MAWs

Input: D4, H
LR, HRL

Output: All Type 5-5 MAWs are added to D5

1: for each αu′β with |Exp(αu′β)| ≥ 2 do
2: for each t such that t = eL(k) for some k do
3: t′ = HLR(t) + 1

4: if t = HRL(t′) + 1 then
5: add αtu′βt′ to D5

6: end if
7: end for
8: end for
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3.3 MAWs for sliding window on RLE strings

In this section we analyze a more advanced setting, which is a combination of the two models,

the sliding window and Run-Length Encoding. In this section, We show some lower bounds

of the amount of change that happens by adding one additional run to the end of the sliding

window. Without loss of generality, we assume that we add run of 0 to the sliding window.

Table 3.1 shows a summary of the changes of all 8 types MAWs we mentioned in the pre-

vious section, when the current window T is extended by a new run. Note that we cannot grasp

the fixed size of window by the total length that we defined in previous section. Without loss

of generality, we assume that the new run is 0p, and we assume that m = R(T ) is the sliding

window size, in other words m is the number of runs in the window. For that, we define d to be

the length of the string in this section, in other words d = |T |.

bounds lower bound upper bound

added substrings 0 0p 0 0p

Type-A 1 1 1 1

Type-B σ′ pσ′ σ′ Ω(min(pσ′, d))

Type-C d− 1 d− 1 d− 1 d− 1

Type-1 1 1 1 1

Type-2 2σ′ 2σ′ 2σ′ 2σ′

Type-3 Ω(d) Ω(d) O(d) O(d)

Type-4 Ω(m) Ω(m) O(m2) O(m2)

Type-5 Ω(m) Ω(m) O(m) O(m)

Table 3.1: The upper and lower bounds of the increase of MAWs in each type in the RLE string

in the sliding window. Note that we do not count the deleted MAWs by a shift since it is at most

one.

3.3.1 Bounds for the number of MAWs of Type-A, B and C

Lemma 3.42. |MA(T0
p) \MA(T )| ≤ 1.

Proof. any MAW in |MA(T0
p) \ MA(T )| is the form of 0x, and there are at most one value

which fits x. We define that 0v is the longest suffix run of 0. v might be 0. For any x with

x ≤ p + v, 0x is not a MAW since it occurs in T0p. For any x with x ≥ p + v + 2, 0x is not a
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MAW in |MA(T0
p) \MA(T )| since 0x−1 does not occur in T0p, or it is already in |MA(T )|.

Thus op+v+1 is the unique MAW in |MA(T0
p) \MA(T )|.

Lemma 3.43. There is a binary string T that satisfies |MB(T0
p) \MB(T )| ∈ Ω(p).

Proof. Consider string T = 0p · 1. Then the set of Type-B MAWs for only T0p is a superset of

the set

{10i1 | 1 ≤ i ≤ p}.

Therefore, |MB(T0
p) \MB(T )| ≥ p ∈ ω(m).

Lemma 3.44. There is a string T that satisfies |MB(T0
p) \MB(T )| ∈ Ω(min(pσ′, d)), where

σ′ is the number of distinct characters occurring in T .

Proof. Consider string T = 0p1 · 0p2 · · · 0pσ′, Then the set of Type-B MAWs for only T0p is a

superset of the set

{σ′0ic | 1 ≤ i ≤ p, c ∈ {1, 2...σ′}}.

Therefore, it means |MB(T0
p) \ MB(T )| ≥ pσ ∈ Ω(pσ′). Since p = n

σ′ , this string also

satisfies |MB(T0
p) \MB(T )| ≥ p · σ′ ∈ Ω(d).

Note that we have a simple upper bound |MB(T0
p) \ MB(T )| ∈ O(pσ′) by Lemma 3.3,

which now turns out to be tight.

Lemma 3.45. |MC(T0
p) \MC(T )| ≤ |T |.

Proof. Consider a pair of two distinct MAWs a1u10
x1 and a2u20

x2 in MC(T0
p) \ MC(T ).

Without loss of generality, let x2 ≥ x1 ≥ 1. By definition, a1u10
x1−1 and a2u20

x2−1 occur in T .

We define f(aiui0
xi−1) = hi with i = {1, 2} such that T [hi − |aiui|..hi + xi − 1] = aiui0

xi−1.

We prove that h1 
= h2. If h1 = h2:

• If |a1u1| < |a2u2|, u20
x2 has a1u10

x1 as its substring, which contradicts that a1u10
x1 is a

MAW of T0p. Figure 3.14 illustrates the contradiction briefly.

• If |a1u1| > |a2u2|, u1 has a2u2 as its substring, which contradicts that a2u20
x2 is a MAW

since a2u20
x2 occurs in T0p as a suffix. Figure 3.14 illustrates the contradiction briefly.

Therefore, h1 
= h2. It holds for any pairs of MAW in |MC(T0
p) \ MC(T )|. It means that

there is a mono-morphism from any position of T to all MAWs in MC(T0
p) \MC(T ).

This lemma can be regarded as an upward compatibility to Lemma 3.4.
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0 0

0 0

0 0

0 0

Figure 3.14: Contradiction of Type-C MAW. a1u10
x2−1 occurs in T . If |a1u1| > |a2u2|,

a1u10
x2−1 has a2u20

x2−1 as its substring. If |a1u1| < |a2u2|, u20
x2 has a1u10

x2 as its sub-

string.

3.3.2 Bounds for the number of MAWs of Type-1 to 5

Here, we show how the sliding window affects Type-1 to Type-5 MAW. To start, we explain

trivial upper and lower bounds by a shift in each of Type-1 and Type-2.

• The upper and lower bounds on the amount of change for Type-1, are identically the same

as for Type-A since both are unary strings and any other types (B, C, 2, 3, 4, 5) are not

unary strings.

• The upper bound on the amount of increase for Type-2 is at most 2σ′. Any Type-2 MAW

is a bigram, and any Type-2 MAW that is generated by a shift, must include the added

character 0 in its substring. The number of such bigrams is at most 2σ′, where σ′ is the

number of characters occurring in current window. Moreover, we can easily see that it

is also a tight bound by Lemma 3.16, which is the case that the amount of increase for

Type-2 is just 2σ′.

Therefore, from now on we focus on the the amount of change for Type-3 to 5.

Lemma 3.46. |M3(T0
p) \M3(T )| ∈ O(d).

Proof. Let t be the rightmost character which is not 0. Any MAW of Type-3 is a form of abic

with a, b, c ∈ Σ, a 
= b, b 
= c, i ≥ 1. Then, for any MAW abic ∈ M3(T0
p) \ M3(T ), the

following two rules hold.

• If abi occurs in T , bic does not occurs in T . Then, such MAW is a form of abi0 since bic

overlaps between T and 0p. therefore, such MAW belongs to M3(T0) \M3(T ). Since
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|M3(T0) \ M3(T )| ∈ O(d) holds by lemma 3.5, the number of such MAW is at most

O(d).

• If bic occurs in T , abi does not occurs in T . Then, such MAW is a form of t0ic since abi

overlaps between T and 0p. For each element 0p2c′ of R0, The number of candidate of

such MAW is at most p2 (a form of t0p3c′ with p3 ≤ p2). Since any two distinct element

of R0 never overlap, ‖R0‖ ∈ O(d). Therefore, the number of such MAW is at most O(d).

Finally, |M3(T0
p) \M3(T )| ∈ O(d) holds.

Lemma 3.47. There is a binary string T that satisfies |M3(T0) \M3(T )| ∈ Ω(d).

Proof. Consider string T = 01i, then the set of Type-3 MAWs for only T0 is a superset of the

set

{01i0 | 1 ≤ i < d− 2}.

Therefore, |M3(T0) \M3(T )| ≥ d− 2 ∈ Ω(d).

Lemma 3.48. There is a binary string T that satisfies |M4(T0) \ M4(T )| ∈ Ω(m), where

m = R(T ).

Proof. Consider string T = 10 · (1202)p · 1, Then the set of Type-4 MAWs for only T0 is a

superset of the set

{10(1100)i10 | 0 ≤ i < p}.

Since m = 2p+ 3, |M4(T0) \M4(T )| ≥ p− 1 ∈ Ω(p) = Ω(m).

Lemma 3.49. There is a binary string T that satisfies |M5(T0) \ M5(T )| ∈ Ω(m), where

m = R(T ).

Proof. Consider string T = 11 · (01)p · 0, Then the set of Type-5 MAWs for only T0 is a

superset of the set

{12(10)i02 | 0 ≤ i < p}.

Since m = 2p+ 2, |M5(T0) \M5(T )| ≥ p− 1 ∈ Ω(p) = Ω(m).

Note that we have a simple upper bound |M5(T0) \ M5(T )| ∈ O(m) by lemma 3.22.

Therefore, lemma 3.49, 3.22 are both tight bounds.
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Chapter 4

Grammar Index By Induced Suffix Sorting

GCIS[94, 93] is based on the idea from the famous SAIS algorithm [92] that builds the suffix

array of an input string in linear time. Recently, it is shown that GCIS has a locally consistent

parsing property similar to the ESP-index [77], the SE-index [89], and grammar-based indexing

structures based on GCIS have been proposed [2, 35].

4.1 Constructing the GCIS grammar

Let T be the string of length n over an integer alphabet Σ = {1, . . . , σ}. Let Γ = {σ+1, . . . , σ+

|Γ|} be the set of non-terminal symbols. For strings x, y over Σ or Π, we write x ≺ y iff x is

lexicographically smaller than y.

First we explain how the GCIS algorithm constructs its grammar from the input string. For

any text position 1 ≤ i ≤ |T |, position i is of type L if T [i..|T |] is lexicographically larger than

T [i + 1...|T |], and it is of type S otherwise. For any 2 < i < |T |, we call position i an LMS

(LeftMost S) position if i is of type S and i − 1 is of type L. For convenience, we append a

special character $ to T which does not occur elsewhere in T , and assume that positions 1 and

|T$| are LMS positions.

Let i1, . . . , iz+1 be the sequence of the LMS positions in T sorted in increasing order. Let

Dj = T [ij..ij+1 − 1] for any 1 ≤ j ≤ z. Dj is the j-th LMS-substrings. When z ≥ 2, then

T = D1, . . . , Dz is called the GCIS-parsing of T .

We assign each computed factor F
(h)
j a non-terminal X

(h)
j such that X

(h)
j → F

(h)
j , but omit

the delimiter $. The order of the non-terminals X
(h)
j is induced by the lexicographic order of

their respective LMS-substrings. We now use the non-terminals instead of the lexicographic

ranks in the recursive steps. If we set X(τT ) → T (τT ) as the start symbol, we obtain a context-
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free grammar GT := (Σ,Γ, π,X(τT )), where Γ is the set of non-terminals and a function π :

Γ → (Σ ∪ Γ)+ that applies production rules. For simplicity, we say that π(c) = c for c ∈ Σ.

Let g denote the sum of the right hand sides of all grammar rules. We say that a non-terminal

(∈ Γ) or a character (∈ Σ) is a symbol, and denote the set of characters and non-terminals with

S := Σ ∪ Γ. We understand π also as a string morphism π : S∗ → S∗ by applying π on each

symbol of the input string. This allows us to define the expansion π∗(X) of a symbol X , which

is the iterative application of π until obtaining a string of characters, i.e., π∗(X) ⊂ Σ∗. Since

π(X) is deterministically defined, we use to say the right hand side of X for π(X).

Lemma 4.1 ([94]). The GCIS grammar GT can be constructed in O(n) time. GT is reduced,

meaning that we can reach all non-terminals of Γ from X(τT ).

Although [94] did not state their model of computation, it is easy to verify that 4.1 holds in

the pointer machine model.

GT can be visualized by its derivation tree, which has X(τT ) as its root, and each production

X
(h)
k → X

(h−1)
i · · ·X(h−1)

j defines a node X
(h)
k having X

(h−1)
i , . . . , X

(h−1)
j as its children. The

height of the derivation tree is τT = O(lg n) because the number of LMS substrings of T (h) is

at most half of the length of T (h) for each recursion level h. The leaves of the derivation tree

are the terminals at height 0 that constitute the characters of the text T . Reading the nodes on

height h ∈ [0..τT−1] from left to right gives T (h) with T (0) = T . Note that we use the derivation

tree only as a conceptional construct since it would take O(n) words of space. Instead, we merge

(identical) subtrees of the same non-terminal together to form a directed acyclic graph (DAG),

which we call DAG. We let each non-terminal store a pointer to its parent such that we can

climb up from every non-terminal to the DAG root T (τT ).

By construction, each non-terminal appears exactly in one height of DAG. More precisely,

π maps a non-terminal on height h > 1 to a string of symbols on height h − 1. Hence, the

grammar is acyclic.

Unfortunately, there are strings with g = Ω(n), so for a particular input, the grammar does

not compress at all: Let T =
∏m

i=0 a
ib = b · ab · aab · aaab · · · with Σ = {a,b} and

a < b. Then we have the rules X
(1)
i → aib for i ∈ [0..m], with X(2) → ∏m

i=0 X
(1)
i being the

production of the start symbol X(2). Hence, τT = 2 and g = |T | + |π(X(2))| = |T | +m + 1.

Nevertheless, the experiments in 4.5 show that the grammar is suitable for most highly-repetitive

text collections.
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4.2 GCIS Index

In what follows, we want to show that we can augment GT with auxiliary data structures for

answering locate. Our idea stems from the classic pattern matching algorithm with the suffix

tree [55, APL1]. The key difference is that we search the core of a pattern in the right hand

sides of the production rules.

For that, we make use of the generalized suffix tree GST built upon R :=
∏

X∈Γ π(X)$, i.e.,

the right hand sides of all production rules, for a special delimiter symbol $ being smaller than

all symbols. Since we have a budget of O(g) words, we can afford to use a plain pointer-based

tree topology. Each leaf λ stores a pointer to the non-terminal X(h) and an offset 
 such that the

path from the root to λ has π(X(h))[
..] as its prefix. We need the following operation on GST:

• lca(u, v): gives the lowest common ancestor of two nodes u and v. We can augment GST

with the data structure of [16] in linear time and space in the number of nodes of GST.

This data structure answers lca in constant time.

• child(u, c): gives the child of the GST node u connected to u with an edge having a label

starting with c ∈ Γ. Our GST implementation answers child in O(lg |S|) time. For that,

each node stores the pointers to its children in a binary search tree with the first symbol

of each connecting edge as key.

• string depth(u): returns the string depth of a node v, i.e., the length of its string label,

which is the string read from the edge labels on the path from the root to v. We can

compute and store the string depth of each node during its construction.

The operation child allows us to compute the locus of a string S, i.e., the highest GST node u

whose string label has S as a prefix, in O(|S| lg |S|) time. For each π(X), we augment the

locus u of π(X)$ with a pointer to X such that we can perform

• lookup(S): returns the non-terminal X with π(X) = S or an invalid symbol ⊥ if such an

X does not exist. The time is dominated by the time for computing the locus of S.

The leaves of GST are connected with a linked list. Each internal node v stores a pointer to

the leftmost leaf in the subtree rooted at v. With that we can use the function

• lce(X, Y, i, j): returns the longest common prefix of π(X)[i..] and π(Y )[j..] for X, Y ∈ Γ

and i ∈ [1..|π(X)|], j ∈ [1..|π(Y )|]. We can answer lce(X, Y, i, j) be selecting the

leaves X.P [i] and Y.P [j], retrieve the LCA lca(X.P [i], Y.P [j]) of both leaves, and take
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its string depth, all in constant time. More strictly speaking, we return min(|π(X)[i..]|,
|π(Y )[j..]|, string depth(lca(X.P [i], Y.P [j]))), since the delimiter $ is not a unique

character, but appears at each end of π(·) in the underlying string R of GST.

Each rule X ∈ Γ stores an array X.P of π(X) pointers to the leaves in GST such that the

X.P [i] points to the leaf that points back to X and has offset i (its string label has π(X)[i..] as

a prefix). Additionally, each rule X stores the length of π(X), an array X.L of all expansion

lengths of all its prefixes, i.e., X.L[i] :=
∑i

j=1 |π∗(π(X)[j])|, and an array X.R of the lengths

of the right hand sides of all its prefixes, i.e., X.R[i] :=
∑i

j=1 |π(π(X)[j])|.

Complexity Bounds GST can be computed in O(g lg |S|) time with Weiner’s algorithm [107].

The grammar index consists of the GCIS grammar, GST built upon g + |Γ| symbols, and aug-

mented with an lca-data structure [16]. This all takes O(g) space. Each non-terminal is aug-

mented with an array X.P of pointers to leaves and X.L storing the expansion lengths of all

prefixes of π(X), which take again O(g) space when summing over all non-terminals.

4.3 Pattern matching algorithm

Like [99, Sect. 2], our idea is to first find the occurrences of C in the text, and then try to extend

all these occurrences to occurrences of P . However, we do not try to find the occurrences of

P directly, but rather the non-terminals lowest in DAG containing a core C in their expansions

that are large enough to contain the whole pattern P .

4.3.1 Cores

A core is a string of symbols C of the GCIS grammar GP built on the pattern P , which has the

property that all occurrences of C whose expansion can be extended to an occurrence of P are

(not necessarily proper) substrings of the right hand sides of the production rules of GT . Put

differently, given C consists of consecutive nodes on height h ≥ 0 in the grammar tree, if there

is an occurrence of C in the grammar tree that has at least two parent nodes on height h + 1,

then the expansion of this occurrence of C does not lead to an occurrence of P . We qualify a

core by the difference in the number of occurrences of P and C in the grammar tree. On the

one hand, although a character P [i] always qualifies as a core, the appearance of P [i] in T is

unlikely to be an evidence of an occurrence of P . (additionally, our algorithm would perform

worse than a standard pattern matching with the suffix tree when resorting to single characters
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as cores). On the other hand, the non-terminal covering most of the characters of P might not

be a core. Hence, we aim for the highest possible non-terminal, for which we are sure that it

exhibits the core property.

Finding a Core We determine a core C of P during the computation of the GCIS grammar GP

of P . During this computation, we want to assure that we only create a new non-terminal for a

factor F whenever lookup(F ) = ⊥; if lookup(F ) = X , we borrow the non-terminal X from

GT . By doing so, we ensure that non-terminals of GP and GT are identical whenever their right

hand sides of their productions are equal. In detail, if we create the factors P (h) = F
(1)
1 · · ·F (h)

zh ,

we first retrieve Y
(h)
i := lookup(P (h)) for each i ∈ [2..zh − 1]. If one of the lookup-queries

returns ⊥, we abort since we can be sure that the pattern does not occur in T . That is because

all non-terminals Y
(h)
2 , . . . Y

(h)
zh−2 classify as cores. To see this, we observe that prepending or

appending symbols to P (h) does not change the factors F
(h)
2 , . . . , F

(h)
z−1 =: C(h).

Correctness We show that when prepending or appending characters to F
(h)
1 C(h)F

(h)
zh , then

the LMS factorization of the resulting string still keeps the symbols of C(h) within a single

factor. What we show is that (a) we cannot change the type of any position C(h)[i] in C(h) to

S∗ on extending C(h) and (b) after appending a character, the last position of C(h) cannot be S∗.

Showing both claims makes it impossible to let a new factor start at C(h)[i].

Prepending The type of a position (S or L) depends only on its succeeding position, and hence

prepending cannot change the type of a position in C(h).

Appending If F
(h)
zh is non-empty, then appending characters can either prolong F

(h)
zh or create

a new factor since F
(h)
zh starts with S∗ and therefore appending cannot change C(h). If

F
(h)
zh is empty, then C(h) ends with P , and as a border case, the last position of C(h) is S∗.

In that case, when appending a symbol smaller than P [m] to F
(h)
1 C(h) changes the type

of the last position of C(h) to L. If we append a symbol larger than P [m], then the last

position of C(h) becomes S, but does not become S∗ since P (τP )[jk] > P (τP )[jk−1] due to

construction (otherwise F
(h)
zh would not be empty).

The construction of GP iterates the LMS factorization until we are left with a string of

symbols P (τP ) whose factorization consists of at most two factors. In that case, we split P (τP )

into three factors CpCCs with Cp and Cs possible empty, and defined as follows:

• If the LMS factorization consists of two non-empty factors F1 · F2, then Cp is F1.
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• Given P (τP ) = (P (τP )[j1])
c1 · · · (P (τP )[jk])

ck is the run-length-encoded representation

of P with 1 = j1 < . . . < jk = |P (τP )|, cji ≥ 1 for i ∈ [1..k], and P [ji] 
= P [ji+1]

for i ∈ [1..k − 1], we set Cs ← (P (τP )[jk])
ck if P (τP )[jk] < P (τP )[jk−1].

• In the other cases, Cp and/or Cs are empty.

In total, there are symbols P (1), . . . , P (τP−1) and S(1), . . . , S(τP−1) such that

P = π(F
(1)
1 · · ·F (τP−2)

1 P (1) · · ·P (τP−2)CS(τP−2) · · ·S(1)F
(τP−2)
zτP−2 · · ·F (1)

z1 ), and P (h), S(h) are

symbols at height h ∈ [0..τP − 2] that are cores of P , while F
(h)
1 and F

(h)
zh are single factors

containing symbols of height h− 1.

4.3.2 Pattern matching with Generalized Suffix Tree (GST)

Having C, we now switch to GST and use it to find all non-terminals of GT whose right hand

side contains C. Let occC ∈ O(g) denote the number of occurrences of C in the right hand

sides of all production rules of GT . Our first task is to find, for each occurrence O of C in

DAG, O’s lowest ancestor whose expansion is large enough to not only contain O but also P

by extending O to its left and right side. For that, we first spot the non-terminals containing C,

and then climb up DAG if necessary: We first compute the locus v of C in O(|C| lg |S|) time

via child. Subsequently, we take the pointer to the leftmost leaf in the subtree rooted at v, and

then process all leaves in this subtree by using the linked list of leaves. For each such leaf λ, we

compute a path in form of a list λL from the non-terminal containing C on its right hand side

up to an ancestor of it that has an expansion large enough to cover P if we would expand the

contained occurrence of C to P . We do so as follows: Each of these leaf stores a pointer to a

non-terminal X and a starting position i such that we know that π∗(X)[i..] starts with π∗(C).

By knowing the expansion lengths X.L[|π(X)|], X.L[i−1], and |π∗(C)|, we can judge whether

the expansion of X has enough characters to be able to extend its occurrence of C to P . If it

has enough characters, we put (X, i) onto λL such that we know that π∗(X)[X.L[i − 1] + 1..]

has C as a prefix. If X does not have enough characters, we exchange C with X and recurse on

finding a non-terminal with a larger expansion. By doing so, we visit O(lgm) non-terminals per

occurrence of C in the right hand sides of GT since the GCIS grammar of the pattern has a depth

of O(lgm). Given that occC denotes this number of occurrences of C in DAG, we perform all

operations in O(occC lgm lg |S|) time, since for each recursion step, we query child.

The previous step computes a path (Y (h), . . . , Y (τP )) in DAG for each occurrence of C and

an offset o(τP ) such that Y (τP )[o(τP )] = C.

73



CHAPTER 4. GRAMMAR INDEX BY INDUCED SUFFIX SORTING

By construction, these paths cover all occurrences of C in DAG. Note that we process the

DAG node Y (τP ) (but for different offsets o(τP )) as many times as C occurs in its right hand side).

In what follow, we try expand the occurrence of C captured by Y (τP ) and o(τP ) to an occurrence

of P . Naively, we would walk down from Y (τP )[o(τP )] to the character level and extend the

substring π∗(C) in both directions by character-wise comparison with P . However, this would

take O(occCm lgm) time since each non-terminal Y (τP ) is of height O(lgm), and the number

of occurrences of C in DAG is occC . Our claim is that we can perform the computation in

O(m+ occC lgm) time with the aid of lce and an amortization argument.

For that, we use the cores of P with P = π(F
(1)
1 · · ·F (τP−2)

1 P (1) · · ·P (τP−2)CS(τP−2) · · ·
S(1)F

(τP−2)
zτP−2 · · ·F (1)

z1 ) according to 4.3.1, which allows us to use LCE queries in the sense that

we can try to extend an occurrence of C with an already extended occurrence (that maybe does

not match P completely). For the explanation, we only focus on extending all occurrences

of C to the right to CCs (the left side side is done symmetrically). We maintain an array D

of length lgm storing triplets (X(h), oh, 
h) for each height h ∈ [1.. lgm] such that the non-

terminal X(h) with the respective offset oh has the currently longest extension of length 
h

of its occurrence of C with CCs at height h (more precisely, we mean π(h−τP )(CCs)). By

maintaining D, we can first query lce with the specific non-terminal in D, and then resort to

plain symbol comparison. Given that we matched 
 symbols, we descend to the child where the

mismatch happens and recurse until reaching the character level of DAG. This works since by

the core property the mismatch of a child means that there is a mismatch in the expansion of this

child. Since a plain symbol comparison with matching symbols lets us exchange the currently

used non-terminal in D with a longer one, we can bound (a) the total number of naive symbol

matches to O(m) and (b) the total number of naive symbol mismatches and LCE queries to

O(occC lgm).

In technical terms it works as follows: We start with D storing only invalid entries ⊥ to

indicate that there is no candidate on any height for LCE queries.

Now given a path (Y (h), . . . , Y (τP )) in DAG for each occurrence of C and an offset o(τP ) such

that Y (τP )[o(τP )] = C. Let 
 ← 0 be the number characters we matched π∗(Y (τP ))[o+ π∗(C)..]

with Cs so far, which is zero in the beginning. We scan the entries of D from j = τP to j = 1

while checking whether D[h] = ⊥: Suppose that D[j] = (Ỹ (j), õ(j), 
̃(j)) is not empty, we

compute o(j−1) := lce(Ỹ (j), õ(j), Y (j), o(j)), set Y (j−1) := Y (j)[o(j−1)] and 
 = 
 + Ỹ (o(j−1)) −
Ỹ (j)[õ(j)]. If D[j] = ⊥, we set o(j−1) = 0 and Y (j−1) := Y (j)[0]. On reaching j = 1, we

compare the right hand sides of Y (1) and its right siblings with Cs. On reaching a mismatch or

finding Cs, we update the entries of D while climbing up path, and store the node Y (h) with the
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starting position of the respective occurrence of P relative to its grammar subtree in a list W .

The traversal, the update of D, and LCE queries take O(lgm) time per occurrence of C, while

the total number of naive symbol matches accumulate to O(m) time.

Finding the Starting Positions It is left to compute the starting position in T of each oc-

currence captured by an element in W . We can do this similarly to computing the pre-order

ranks in a tree: For each pair (X, 
), climb up DAG from X to the root while accumulating the

expansion lengths of all left siblings of the nodes we visit (we can make use of X.L for that).

If this accumulated length is s, then 
 + s is the starting position of the occurrence captured

by (X, 
). However, this approach would cost O(lg n) time per element of W . Here, we use

the amortization argument of [25, Sect. 5.2], which works if we augment, in a pre-computation

step, each non-terminal X in Γ with (a) a pointer to its lowest ancestor YX that has X at least

twice in its subtree, and (b) the lengths of the expansions of the left siblings of the child of YX

being a parent of X or X itself. By doing so, when taking a pointer of a non-terminal X to

its ancestor YX , we know that X has another occurrence in DAG (and thus there is another oc-

currence of P ). Therefore, we can charge the cost of climbing up the tree with the amount of

occurrences occ of the pattern.

Total time To sum up, we spent O(m lg |S|) time for finding C, O(occC lgm lg |S|)) time

for computing the non-terminals covering C, O(m+ occC lgm) time for reducing these non-

terminals to W , and O(occ) time for retrieving the starting positions of the occurrences of P

in T from W . To be within our O(g) space bounds, we can process each occurrence of C in DAG

individually, and keep only D globally stored during the whole process. The total additional

space is therefore O(lgm) for maintaining D and a path for each occurrence of C. So we finally

obtain the claim of 1.1.

4.4 Implementation

The implementation deviates from theory with respect to the rather large hidden constant factor

in the O(g) words of space. We drop GST, and represent DAG with multiple arrays. For that,

we first enumerate the non-terminals as follows:

The height and the lexicographic order induce a natural order on the non-terminals in Γ,

which are ranked by first their height and secondly by the lexicographic order of their right

hand sides, such that we can represent Γ = {X1, . . . , X|Γ|}. By stipulating that all characters
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are lexicographically smaller than all non-terminals, we obtain the property is that π(Xi) ≺
π(Xi+1) for all i ∈ [1..|Γ| − 1]. In the following, we first present a plain representation of

DAG, then give our modified locate algorithm, and subsequently present a compressed version

of DAG using universal coding.

The plain variant, which we call GCIS-nep, represents each symbols with a 32-bit integer.

We use R =
∏|Γ|

i=1 π(Xi) again, but omit the delimiters $ separating the right hand sides. To

find the right hand side of a non-terminal Xi, we create an array of positions Q[1..|Γ|] such

that Q[i] points to the starting position of Xi’s right hand side in R. Finally, we create an array

L[1..|Γ|] storing the lengths of the expansion |π∗(Xi)| for each non-terminal Xi in L[i]. Due

to the stipulated order of the symbols, the strings R[Q[i]..Q[i + 1]− 1] are sorted in ascending

order. Hence, we can evaluate lookup(S) for a string S in O(|S| lg |S|) time by a binary search.

Locate Our implementation follows theory, but deviates after computing the core C. We

first compute GP , for which we use a binary search on the lexicographically sorted right hand

side rules represented by R and Q to query with lookup for the existence of a non-terminal.

Hence, we can determine the core C in the same time bound O(lg |S|) as before. To find all

non-terminals whose right hand sides contain C, we can use again a binary search if Cp is not

empty: in that case we know that all occurrences of πC are prefixes in the right hand sides.

Otherwise, we have to linearly scan the right hand sides of all non-terminals at level τP , which

we can do cache-friendly since the right-hands of R are sorted by the height of their respective

non-terminals. This takes O(g) time. Finally, for extending the found occurrences of a core C

to an occurrence of P , we follow the naive approach to descend DAG to the character level and

compare the expansion with P character-wise, which results in O(occC |P | lgm) time. The total

costs are O(g + |P |(occC lgm+ lgS)) time.

GCIS-uni To save space, we can leverage universal code to compress the right hand sides

of the productions. First, we observe that the first symbols F := π(X1)[1], . . . , π(X|Γ|)[1]

form an ascending sequence, which we encode in Elias–Fano [37]. The rest of each right hand

side π(Xi)[2..] is represented in delta-coding, i.e., Δ[i][k] := π(Xi)[k] − π(Xi)[k − 1] for

k ∈ [2..|π(Xi)|], and stored in Elias-γ code [38]. Figure 4.1 show how these coding works.

Finally, like in the first variant, we store the expansion lengths of all non-terminals in L. Here,

we separate L in a first part using one byte per entry, then two bytes per entry, and finally

four bytes per entry. This is done by representing L by three arrays, and continue with filling

the next array whenever we process a value that can no longer be stored in the current array.
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Since Elias–Fano code supports constant time random access and Elias-γ supports constant time

linear access, we can decode a non-terminal Xi by accessing F [i] and then sequentially decode

Δ[i]. Hence, we can simulate GCIS-nep with this compressed version without sacrificing the

theoretical bounds. We call the resulting index GCIS-uni.
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4.5 Experiments

In the following we present an evaluation of our C++ implementation and different self-indexes

for comparison, which are the FM-index [40]1, the ESP-Index [103] 2, and the r-index [47] 3.

All code has been compiled with gcc-10.2.0 in the highest optimization mode -O3, except

the code for LZ-index 4, which is not conform with newer compilers — the authors provided

a docker script to create a virtual environment with the compiler gcc-4.8.4. We ran all our

experiments on a Mac Pro Server with an Intel Xeon CPU X5670 clocked at 2.93GHz running

Arch Linux.

Table 4.1 shows the summary of index size. GCIS-uni occupies less space than other indexes

in terms of index size. For dataset DNA and COMMONCRAWL, FM-index produced a more

compact index size than our GCIS-uni. On the other hand, FM-index was unable to compress

the artificial data efficiently.

Tables 4.5 and 4.6 summarize construction time and peak memory during indexing. In

terms of peak memory, both GCIS-nep and GCIS-uni outperform ESP-index. However, both

GCIS-nep and GCIS-uni are slower than ESP-index in terms of the speed of indexing.

Table 4.1: Sizes of the used data sets and the indexes stored on disk. Sizes are in megabytes

[MB].
input text input size GCIS-nep GCIS-uni ESP-index FM-index r-index

ENGLISH.001.2 104.857 14.784 7.489 10.464 46.981 14.389

DNA 403.927 527.553 327.852 297.001 216.153 2123.817

COMMONCRAWL 221.180 220.119 138.856 156.006 122.575 454.124

TM29 268.435 0.002 0.001 0.002 69.347 0.009

FIB41 267.914 0.001 0.001 0.001 71.305 0.007

RS.13 216.747 0.002 0.001 0.002 57.653 0.009

KERNEL 257.961 21.298 10.469 12.545 125.087 28.947

INFLUENZA 154.808 23.373 13.871 15.729 53.066 28.775

WORLD LEADERS 46.968 5.415 2.573 3.611 21.097 5.627

EINSTEIN.DE.TXT 92.758 1.139 0.428 0.697 40.291 1.1458

We can observe in Figures 4.2 and 4.3 that our indexes answer locate(P ) fast when P is

sufficiently long or has many occurrences occ in T . In particular for ENGLISH.001.2, Our

implementations are faster than FM-index and r-index when the pattern length reaches 10000

characters and more. At this time, the pattern grammar reached a height τP of almost six, which

1https://github.com/mpetri/FM-Index
2https://github.com/tkbtkysms/esp-index-I
3https://github.com/nicolaprezza/r-index
4https://github.com/migumar2/uiHRDC
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is the height τT . The algorithm can extend an occurrence of a core to a pattern occurrence by

checking only 80 - 100 characters.

However, when the pattern surpasses 5000 characters, the computation of GP becomes the

time bottleneck. With that respect, the ESP-index shares the same characteristic. encoding

make slow down the location time by about 2 to 10 times approximately. Let us have a look

at the dataset FIB41, which is linearly recurrent [36], a property from which we can derive the

fact that a pattern that occurs at least once in T has actually a huge number of occurrences in T .

There are almost 3,000,000 occurrence of patterns with a length of 100. Here, we observe that

our indexes are faster than ESP-index.

ESP-index needs more time for locate than GCIS because GCIS can form a core that covers

a higher percentage of the pattern than the core selected by ESP.

FM-index, and ESP-index with |P | = 10 take 100 seconds or more on average – we omitted

them in the graph to keep the visualization clear.

Next, we investigate the influence of occ and occC on the query time of locate of our indexes.

For that, we focus again on ENGLISH.001.2 for patterns of fixed length |P | = 100, where we

observe that occC has a stronger influence on the running time than occ has.

In Figure 4.4, we study the maximum height τP = O(lg |P |) that we achieved for the

patterns with |P | = 10 to 10000 in each dataset. For this experiment, we randomly select a

position j in T and extracted P = T [j..j + 9] to P = T [j..j + 9999].

For every dataset, we could observe that τP is logarithmic to the pattern length, especially

for artificial dataset FIB41, TM29, and RS.13, where τP is empirically larger than measured in

other datasets.

In DNA and COMMONCRAWL.ASCII.TXT, τP is at most 3 , but this is because τT = 3 for

these datasets.

As a practical optimization, we prematurely abort the computation of GT at a certain height

τ ′ < τT when the reduction of T (τ ′−1) to T (τ ′) with the newly introduced production rules would

increase the grammar size (we measure the needed space in terms of GCIS-nep). Hence, we

may end up with a larger right hand side of the start symbol X(τ ′) → T (τ ′−1), which could be

in fact the text itself if the text is incompressible with GCIS. This heuristic takes effect in non-

highly-repetitive datasets such as DNA and COMMONCRAWL.ASCII.TXT. It also has an effect

on the height τP since the core must have a height less than the height of the start symbol of T .

Without the heuristic, we reach a height τT = 9 for DNA, and we also reach high values for

τP , on average τP = 6.55 for |P | = 10000, or τP = 5.81 for |P | = 5000.
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Figure 4.1: How to encode GCIS factors. The suffix type of each factor is divided two blocks,

type S in left blocks and type L in right blocks. We can extract the factor from the start num-

ber (41 in this example), the differences (6, 3, 0, 7, 0, 2) and the trigger that where the type is

changed (4 in this example).
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Figure 4.2: Relations of locate time and pattern length in dataset ”english.001.2”.

80



CHAPTER 4. GRAMMAR INDEX BY INDUCED SUFFIX SORTING

1

10

100

1000

10000

100000

100 1000 10000

T
im

e
[m

s]

Pattern length

GCIS-nep
GCIS-uni

ESP-index
r-index
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Chapter 5

Compression Sensitivity

5.1 Grammar Compression by Induced Sorting (GCIS)

In this section, we consider the worst-case sensitivity of the grammar compression by induced

sorting (GCIS) [94, 93].

For convenience, we again explain the GCIS grammar construction to introduce some new

symbols, which is explained in Section 5.1.1. The constructed GCIS grammar and the size is

identical to Chapter 4.

5.1.1 GCIS construction

Let i1, . . . , iz+1 be the sequence of the LMS positions in T1 = T sorted in increasing order.

Let Dj = T [ij..ij+1 − 1] for any 1 ≤ j ≤ z. When z ≥ 2, then T1 = D1 . . . Dz is called

the GCIS-parsing of T1. Next, we create new non-terminal symbols R1, . . . , Rz such that Ri =

1+σ+ |{Dj : Dj ≺ Di : 1 ≤ j ≤ z}| for each i. Intuitively, we pick the least unused character

from Π and assign it to Ri. Then, T2 = R1 · · ·Rz is called the GCIS-string of T1. Let G1 the

set of all z symbols in T2, and P1 = {Ri → Di : 1 ≤ i ≤ z} is the set of production rules.

Let D1 = {D1, . . . , Dz} be the set of all distinct factors. Then we define GCIS recursively, as

follows:

Definition 5.1. For k ≥ 1, let the sequence i1, i2, . . . , izk+1 be all LMS positions sorted in

increasing order, and Dj = Tk[ij . . . ij+1 − 1] for any 1 ≤ j ≤ zk. Tk = D1 . . . Dzk is the

GCIS-parsing of Tk. For all i in 1 ≤ i ≤ zk, we define R to satisfy :

Ri = |{Dj : Dj ≺ Di : 1 ≤ j ≤ zk)}|+
k−1∑
t=1

|Pt|+ σ + 1.
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Then, Tk+1 = R1 . . . Rzk is the GCIS-string of Tk. Gk+1 is the set of non-terminals, Pk = {Ri →
Di : 1 ≤ i ≤ zk} is the set of production rules. Dk = {D1, . . . , Dzk} is the set of all distinct

factors in the GCIS-parsing of Tk.

Again, each Ri is chosen to be the least unused character from Π. Tk+1 is not defined if there

are no LMS positions in Tk[2..|Tk|]. Then, the GCIS grammar of T is (Σ,
⋃k

t=1 Gt,
⋃k−1

t=1 Pt, Tk).

T is derived from the recursive application of the rules
⋃k−1

t=1 Pt, which is the third argument,

to the fourth argument Tk, which is the start string, until there are no non-terminal characters,

which is in the second argument
⋃k

t=1 Gt = Π, in the string. Let r = k be the height of

GCIS, in other words how many times we applied this GCIS method recursively to T . Let

gis(T ) be the size of GCIS grammar of T . Then, if r = 0, gis(T ) = |T |, and if r ≥ 1,

gis(T ) = ‖D1‖+ · · ·+ ‖Dr‖+ Tr, where ‖S‖ for a set of strings denotes the total length of the

strings in S.

Figure 5.1 shows an example on how GCIS is constructed from an input string.

2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 $

4 112
5 12
6 2

7 45
8 6

6   4    5    4    5    4    5  $

8 7         7         7     $

Figure 5.1: Construction of GCIS from string T = T1 = 2112121121211212$. In this case,

there are 8 LMS positions i1, . . . , i8 in T and 7 factors D1, . . . , D7. D1 = {112, 12, 2} is

the set of distinct factors of the GCIS-parsing for T1, and T2 = R1 · · ·R7 = 6454545 is the

GCIS-string of T1. Recursively, D2 = {6, 45}, T3 = 8777, and the start string of the GCIS

for T1 is T3 because the number of factors of the GCIS-parsing of T3 is 1 (excluding $), in

other words there are no LMS positions in T3[2..|T3|]. The size of the GCIS grammar of T is

gis(T ) = ‖D1‖+ ‖D2‖+ |T3| = 6 + 3 + 4 = 13.

From now on, we consider to perform an edit operation to the input string T and will con-

sider how the GCIS changes after the edit.

Definition 5.2. Let S and S ′ be strings. If S ′ is obtained from S by deleting the substring of

length a starting from a position c in S and by inserting a string of length b to the same position

c, then we write F (S, S ′) = (a, b).
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Our single-character edit operation performed to T can be described as F (T, T ′) = (1, 1)

for substitution, F (T, T ′) = (0, 1) for insertion, and F (T, T ′) = (1, 0) for deletion. We will use

this notation F to the GCIS-strings for T and T ′, in which case a, b can be larger than 1. Still,

we will prove that a, b are small constants for the GCIS-strings.

Let T ′
1 = T ′. As with the definitions for T , T ′

k = D′
1, . . . , D

′
z′k

is the GCIS-parsing of

T ′
k, T ′

k+1 = R′
1 · · ·R′

z′k
is the GCIS-string of T ′

k, G ′
k is the set of non-terminals for T ′

k, Dk =

{D′
1, . . . , D

′
z′k
} is the set of all distinct factors of the GCIS-parsing of T ′

k, P ′
k = {Ri → Di : 1 ≤

i ≤ z′k} is the set of production rules. Then we can recursively define T ′
2, T

′
3 . . . , Tr′ similarly

to T , where r′ is the height of the GCIS for T ′.

5.1.2 Upper bounds for the sensitivity of gis

This section presents the following upper bounds for the sensitivity of GCIS.

Theorem 5.1. The following upper bounds on the sensitivity of GCIS hold:

substitutions: MSsub(gis, n) ≤ 4. ASsub(gis, n) ≤ 3gis.

insertions: MSins(gis, n) ≤ 4. ASins(gis, n) ≤ 3gis.

deletions: MSdel(gis, n) ≤ 4. ASdel(gis, n) ≤ 3gis.

We will prove this theorem as follows: We unify substitutions, insertions, and deletions by

using the F function in Definition 5.2. First, we prove that edit operations do not affect the size

of the GCIS grammar. Second, we divide the size of GCIS grammar gis(T ) into each ‖Dk‖ and

prove that ‖D′
k‖ ≤ 4‖Dk‖. Then, gis(T

′) ≤ 4gis(T ) holds.

Lemma 5.1 ([92]). The type of T [k] is S if T [k] ≺ T [k + 1] and L if T [k] � T [k + 1]. If

T [k] = T [k + 1], the type of T [k] equals to the type of T [k + 1].

Let rankT [i] be the lexicographical rank of the character T [i] at position i in T . Let T̂ be

any string of length |T̂ | = |T | such that rankT̂ [i] = rankT [i] for every 1 ≤ i ≤ |T |.

Definition 5.3. If T̂ is the string that can be obtained by replacing the characters in T without

changing the ranks of any characters in T , we write F ∗(T, T̂ ) = (0, 0).

Lemma 5.2. If F ∗(T, T̂ ) = 0, then gis(T̂ ) = gis(T ).

Proof. The lemma immediately follows from Lemma 5.1 and definition 5.3 and that rankT̂ [i] =

rankT [i] for every 1 ≤ i ≤ |T |.
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Definition 5.4. If F ∗(T, T̂ ) = (0, 0), F (T̂ , T̂ ′) = (a, b), and F ∗(T̂ ′, T ′) = (0, 0), we write

F ∗(T, T ′) = (a, b).

Figure 5.2 shows a concrete example for Lemma 5.2.

2 1 2 3 1 3 1 2 3 1 3 1 2 3 1 3 $ 

6 4 5 4 5 4 5 $ 

2 1 4 5 1 5 1 4 5 1 5 1 4 5 1 5 $ 

8 6 7 6 7 6 7 $ 

Figure 5.2: Two strings T and T̂ that can be obtained by replacing some characters in T without

changing the relative order of any characters, result in the same number of factors in the GCIS-

parsing, and each length exactly matches in both of the strings. Therefore, ‖D1‖ = ‖D̂1‖ and

|T2| = |T̂2| holds, and T̂2 is recursively the string that can be obtained by replacing some char-

acters in T2 without changing the relative order of any characters. Therefore, we can consider

the size of GCIS of T using such a string T̂ instead of T itself.

A natural consequence of Lemma 5.2 is that edit operations which do not change the relative

order of the characters in T do not affect the size of the grammar.

From now on, we analyze how the size of the GCIS of the string T can increase after the

edit operation in the string T ′. In the following lemmas, let 1 ≤ h ≤ r, where r is the height of

the GCIS grammar for T .

Lemma 5.3. If F (Th, T
′
h) = (x, y), then |Dh \ D′

h| ≤ 2 + �x/2�.

Proof. First, let c be the position such that T ′
h can be obtained from Th by deleting a substring

of length x from position c and inserting a substring of length y to position c. Let z and z′

be the numbers of factors in the GCIS-parsing of Th and T ′
h, respectively. See Figure 5.3.

Considering k where ik ≤ c < ik+1 in Th, the LMS positions i1, . . . , ik−1 are also the LMS

positions in T ′
h, and for all j where 1 ≤ j ≤ k − 2, Dj = D′

j holds. Similarly, for l where

iz−l−1 ≤ c+ x < iz−l in Th, the positions iz−l, . . . , iz and corresponding positions iz′−l, . . . , iz′

in T ′
h are also LMS positions. Therefore, for z − l ≤ j ≤ z and j′ = j + (z′ − z), Dj = D′

j′ .

Note that iz−l−1 − ik < x. Since |Dj| ≥ 2, |D′
j| ≥ 2 with 2 ≤ j ≤ z, we obtain |Dh \ D′

h| ≤
|{Dk−1 . . . Dz−l−1}| ≤ 2 + �x/2�.
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Figure 5.3: The case of F (Th, T
′
h) = (x, y). When a substring of length x is replaced by an

another string of y at position c, most of parsing are not changed. The under example show the

detail of (the worst case of) the around of edited position. We can see Dk−1, ..., Dz−l−1 could

be changed to some new blocks, and no other block never changes.

Lemma 5.4. If F (Th, T
′
h) = (x, y), then |T ′

h+1| ≤ |Th+1|+ 1 + �y/2�.

Proof. Let c be the position such that T ′
h can be obtained from Th by deleting a substring of

length x from position c and inserting a substring of length y to position c. If c = 1, |T ′
h+1| ≤

|Th+1| + �y/2� holds since there are at most y positions which can be a new LMS position in

T ′
h.

Assume c ≥ 2. By Lemma 5.3, most of LMS position of T ′
h corresponds to Th. Let c′ < c be

the right most position such that T [c′] 
= T [c−1]. LMS positions i with c′+1 ≤ i ≤ c+x could

be lost, and the others have corresponding position in T ′
h. LMS positions i with c′+1 ≤ i ≤ c+y

could be generated, and the others have corresponding position in Th. Note that any LMS

position are not adjacent except position 1. Moreover, c′ + 1 and c cannot be LMS positions at

the same time, any position c′ + 2, ·, c− 1 cannot be LMS position. Then, the increase of LMS

positions is at most 1 + �y/2�. Additionally, if both position c′ + 1 and c + y is a new LMS

position in T ′
h, there is at least an LMS position in Th[c

′ + 1..c + x] (See Figure 5.4). Finally,

the increase of LMS positions is at most 1 + �y/2�. Therefore, the increase of the factor of T ′
h

is 1 + �y/2�. (Note that at least a factor of Th is lost.)

Lemma 5.5. Assume F (Th, T
′
h) = (x, y) and x ≤ 4, y ≤ 4. Then F ∗(Th+1, T

′
h+1) = (x′, y′),

where x′ ≤ 4, y′ ≤ 4.
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Figure 5.4: The case that there are 1 + �y/2� new LMS positions in T ′. The candidates of new

LMS position in T ′
h is c′ + 1, c, c + 1, . . . , c + y. These y + 2 position LMS position only can

choose position that are non-adjacent, which leads to �(y + 2)/2� = 1 + �y/2�. Therefore, T ′
h

divide a factor of Th into at most 2 + �y/2� new factors. In addition, the position c′ + 1 in Th

must be of type L to turn position c′ + 1 to a new LMS position in T ′
h. The position c+ x in Th

must be of type S to turn position c + y to a new LMS position in T ′
h. Then, there is at least an

LMS position in T [c′ + 1..c+ x].

Proof. Assume Th = D1, . . . , Dz and T ′
h = D′

1, . . . , D
′
z′ are the GCIS-parsings of Th and T ′

h,

respectively. By Lemma 5.3, there are at most j = 2+�x/2� consecutive factors Di, . . . , Di+j−1

in Dh+1 \D′
h+1, and at most ĵ = 2+�y/2� consecutive factors Dî, . . . , Dî+ĵ−1 in D′

h+1 \Dh+1

and Dk = D′
k for all 1 ≤ k ≤ max(i, î), and Dz−k = D′

z′−k for all 0 ≤ k ≤ max(z − i − j −
1, z′ − î− ĵ − 1). By Lemma 5.4, j + ĵ ≤ 4 + �y/2�+ �x/2�. Let

Ŝp = |{Ds : Ds ≺ Dp(1 ≤ s ≤ z)}|+ |{D′
s : D

′
s ≺ Dp(1 ≤ s ≤ z′)}|,

Ŝ ′
p = |{Ds : Ds ≺ D′

p(1 ≤ s ≤ z)}|+ |{D′
s : D

′
s ≺ D′

p(1 ≤ s ≤ z′)}|.

Then, the string T̂h+1 = Ŝ1 · · · Ŝz can be obtained from Th+1 by replacing some characters in

Th+1, T
′
h+1 without changing the relative order of any characters, and ˆT ′

h+1 as well. In addition,

F (T̂h+1, T̂
′
h+1) = (j, ĵ) holds because R̂k = R̂′

k for all 1 ≤ k ≤ max(i, î), and R̂z−k = R̂′
z′−k

for all 0 ≤ k ≤ max(z − i − j − 1, z′ − î − ĵ − 1), which leads to F ∗(Th, T
′
h) = (j, ĵ). See

Figure 5.5.

Lemma 5.6. If F (T, T ′) ∈ {(1, 1), (1, 0), (0, 1)}, then F ∗(T̂h, T̂ ′
h) = (x, y), where x ≤ 4, y ≤

4, h ≤ r.

Proof. Immediately follows from Lemma 5.5.

Lemma 5.7. If F (Th, T
′
h) = (x, y), ‖D′

h‖ ≤ 4‖Dh‖ − 1 + y.
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2 1 2 3 1 3 1 2 3 1 2 1 2 3 1 3 $ 2 1 2 3 1 3 1 2 3 1 2 4 2 3 1 3 $ 

7 5 6 5 4 5 6 $ 8 5 7 5 6 9 7 $ 

4 1 2
5 1 2 3
6 1 3
7 2

5 1 2 3
6 1 2 4
7 1 3 
8 2
9 2 3

4 1 3 1 0 1 3 $ 
0 1 2
1 1 2 3
2 1 2 4
3 1 3 
4 2
5 2 3

4 1 3 1 2 5 3 $ 

Figure 5.5: Examples of ˆTh+1 and T̂ ′
h+1 for strings Th and T ′

h, where T ′
h can be obtained from Th

by substituting a 1 with a 4. The box under the 2 other boxes shows the “common” productions

common to ˆTh+1 and ˆT ′
h+1, e.g., by applying 1 → 123 to the occurrences of 1 in T̂h+1 and

T̂ ′
h+1, we obtain the corresponding substrings 123 in Th and T ′

h. Since the common number is

assigned to each equal factors in Th and T ′
h, the size of the symmetric difference of T̂h+1 and

T̂ ′
h+1 equals to the number of factors changed by substitution, insertion, or deletion from Th to

T ′
h, which is four in this example.

Proof. Considering k where ik ≤ c < ik+1 in Th and l where iz−l−1 ≤ c+x < iz−l. As you can

see Figure 5.3 and from lemma 5.3, ‖D′
h‖ grow up by at most |Dk−1|+ |Dk|+ . . .+ |Dz−l−1|.

However, most of the factors overlap x, therefore ‖D′
h‖ only grow up by at most |Dk−1| +

|Dk|+ |Dz−l−1|+(y−x). Even if the 3 factors are the same and D′
h consists of only the factor,

The total length of new factors to be added in D′
h is at most 4‖Dh‖+ (y − x).

If x ≥ 1, ‖D′
h‖ ≤ 4‖Dh‖−1+y. If x = 0, at most 2 factors of D′

h can changed by Lemma

5.3, We show ‖D′
h‖ ≤ 3‖Dh‖+ y ≤ 4‖Dh‖ − 1 + y.

Lemma 5.8. Assume F (Th, T
′
h) = (x, y) with y ≤ 4, h < r. Then, ‖D′

h‖ ≤ 4‖Dh‖.

Proof. Since h < r, there are at least 2 rules of at least length 2 in Ph. By Lemma 5.7,

The number of factors not included in the editing range is at most 3. Even if the 3 factors

are the length of ‖Dh‖ − 2, The total length of new factors to be added in D′
h, is at most

4‖Dh‖ − 6 + (y − x) ≤ 4‖Dh‖.

Lemma 5.9. Assume F (Tr−1, T
′
r−1) = (x, y) with y ≤ 4. Then, gis(T ′

r−1) = ‖D′
r−1‖ +

gis(T
′
r) ≤ 4‖Dr−1‖+ 4|Tr|+ y.
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Proof. Consider the special case of lemma 5.8. Even if all factors of Tr−1 changed, D′
r−1 ≤

|Tr|‖Dr−1‖ + 4. Since gis(T ) ≤ 2|T | by GCIS construction, If |Tr| ≥ 4, gis(T
′
r) ≤ 2|T ′

r| ≤
4|Tr| = 4gis(Tr) holds by Lemma 5.5 and 5.4. If |Th+1| ≤ 3, let p = 4 − |Th+1|. Then

D′
r−1 ≤ |Tr|‖Dr−1‖+y ≤ 4|‖Dr−1‖−2p+y, and gis(T

′
r) ≤ 2|T ′

r| ≤ 2(2|Tr|+p) ≤ 4gis(T )+2p.

Finally, D′
r−1 + gis(T

′
r) ≤ 4‖Dr−1‖+ 4|Tr|+ y.

Lemma 5.10. If F (T1, T
′
1) ∈ {(1, 1), (1, 0), (0, 1)}, then gis(T

′
1) ≤ 4gis(T1).

Proof. Assume F (T1, T
′
1) ∈ {(1, 1), (1, 0), (0, 1)}. If r = 2, then ‖D′

1‖ ≤ 4‖D1‖ holds from

Lemma 5.7. Since |T ′
2| ≤ |T2|+1 by Lemma 5.4, gis(T

′
2) ≤ 2|T ′

2| ≤ 2|T2|+2 = 4gis(T2) holds.

Assume r > 2. Then, ‖D′
1‖ ≤ 4‖D1‖ − 5 holds by Lemma 5.8. By application of Lemma

5.8 and 5.9, we obtain,

gis(T
′
1) = ||D′

1||+ . . .+ ||D′
r−1||+ gis(T

′
r)

≤ (4||D1|| − 5) + 4||D2||+ 4||Dr−2||+ gis(T
′
r−1)

≤ (4||D1|| − 5) + 4||D2||+ 4||Dr−1||+ (4‖Dr−1‖+ 4|Tr|+ 4)

≤ 4||D1||+ 4||D2||+ 4||Dr−1||+ 4‖Dr−1‖+ 4|Tr|
≤ 4gis(T1).

5.1.3 Lower bounds for the sensitivity of gis

Theorem 5.2. The following lower bounds on the sensitivity of GCIS hold:

substitutions: lim infn→∞ MSsub(gis, n) ≥ 4. ASsub(gis, n) ≥ 3gis − 13 ∈ Ω(n).

insertions: lim infn→∞ MSins(gis, n) ≥ 4. ASins(gis, n) ≥ 3gis − 22 ∈ Ω(n).

deletions: lim infn→∞ MSdel(gis, n) ≥ 4. ASdel(gis, n) ≥ 3gis − 26 ∈ Ω(n).

Proof. Assume p > 1.

substitutions: Consider the following string of length n = 4p+ 4 ∈ Θ(p):

T = 2p32p32p32p3

By the construction of the GCIS grammar of T , we obtain D1 = {2p3}, T2 = 4444, gis(T ) =

‖D1‖+ |T2| = p+ 5. The following string

T ′ = 2p32p32p12p3
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can be obtained from T by substituting the third 3 with 1. By the construction of GCIS grammar

of T , we obtain T ′
2 = 564,D′

1 = {12p3, 2p3, 2p32p}, gis(T ′) = ‖D′
1‖+ |T ′

2| = 4p+ 7, which

leads to lim infn→∞ MSsub(gis, n) ≥ lim infp→∞(4p + 7)/(p + 5) = 4, and ASsub(gis, n) =

(4p+ 7)− (p+ 5) = 3p+ 2 = 3gis − 13 ∈ Ω(n).

insertions: Consider the following string of length n = 8p+ 8 ∈ Θ(p):

T = (12)p13(12)p13(12)p13(12)p13

By the construction of the GCIS grammar, we obtain D1 = {12, 13}, T2 = 3p43p43p43p4,

D2 = {3p4}, T3 = 5555, gis(T ) = ‖D1‖+ ‖D2‖+ |T3| = 4 + (p+ 1) + 4 = p+ 9.

The string

T ′ = (12)p13(12)p13(12)p113(12)p13

can be obtained from T by inserting 1 to just before the third (12)p1. By the construction of

GCIS grammar of T ′, we obtain D1 = {12, 13, 113}, T ′
2 = 5p65p65p45p6, T ′

3 = 897,D′
2 =

{45p6, 5p6, 5p65p}, gis(T ′) = ‖D′
1‖ + ‖D′

2‖ + |T ′
3| = 7 + (4p + 4) + 3 = 4p + 14, which

leads to lim infn→∞ MSins(gis, n) ≥ lim infp→∞(4p + 14)/(p + 9) = 4, and ASins(gis, n) =

(4p+ 14)− (p+ 9) = 3p+ 5 = 3gis − 22 ∈ Ω(n).

deletions: Consider the following string of length n = 8p+ 12 ∈ Θ(p):

T = (13)p132(13)p132(13)p132(13)p132

By the construction of the GCIS grammar of T , we obtain D1 = {13, 132}, T2 = 4p54p54p54p5,

D2 = {4p5}, T3 = 6666, gis(T ) = ‖D1‖+ ‖D2‖+ |T3| = 5 + (p+ 1) + 4 = p+ 10.

The string

T ′ = (13)p132(13)p132(13)p12(13)p132

can be obtained from T by deleting 3 in the third 132. By the construction of GCIS grammar of

T ′, we obtain D1 = {12, 13, 132}, T ′
2 = 5p65p65p45p6,D′

2 = {45p6, 5p6, 5p65p}, T ′
3 =

897, gis(T
′) = ‖D′

1‖ + ‖D′
2‖ + |T ′

3| = 7 + (4p + 4) + 3 = 4p + 14, which leads to

lim infn→∞ MSdel(gis, n) ≥ lim infp→∞(4p + 14)/(p + 10) = 4, and ASdel(gis, n) = (4p +

14)− (p+ 10) = 3p+ 4 = 3gis − 26 ∈ Ω(n).
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5.2 Bisection

In this section, we consider the worst-case sensitivity of the compression algorithm bisec-

tion [87] which is a kind of grammar-based compression that has a tight connection to BDDs.

Given a string T of length n, the bisection algorithm builds a grammar generating T as

follows. We consider a binary tree T whose root corresponds to T . The left and right children

of the root correspond to T1 = T [1..2j] and T2 = T [2j+1..n], respectively, where j is the largest

integer such that 2j < n. We apply the same rule to T1 and to T2 recursively, until obtaining

single characters which are the leaves of T . After T is built, we assign a label (non-terminal)

to each node of T . If there are multiple nodes such that the leaves of their subtrees are the same

substrings of T , we label the same non-terminal to all these nodes. The labeled tree T is the

derivation tree of the bisection grammar for T . We denote by gbsc(T ) the size of the bisection

grammar for T .

5.2.1 Lower bounds for the sensitivity of gbsc

Theorem 5.3. The following lower bounds on the sensitivity of gbsc hold:

substitutions: lim infn→∞ MSsub(gbsc, n) ≥ 2. ASsub(gbsc, n) ≥ gbsc − 4 and ASsub(gbsc, n) ≥
2 log2 n− 4.

insertions: lim infn→∞ MSins(gbsc, n) ≥ σ. ASins(gbsc, n) ∈ Ω(σgbsc) and ASins(gbsc, n) ∈
Ω
(
σ2

(
log n

σ

))
.

deletions: lim infn→∞ MSdel(gbsc, n) ≥ σ. ASdel(gbsc, n) ∈ Ω(σgbsc) and ASdel(gbsc, n) ∈
Ω
(
σ2

(
log n

σ

))
.

Proof. substitutions: Consider a unary string T = an with n = 2k. The set of productions for

T is

X1 = a (generating a),

X2 = X1X1 (generating aa),

X3 = X2X2 (generating aaaa),

. . .

Xk = Xk−1Xk−1 (generating a2
k
),

with gbsc(T ) = 2k− 1. Let T ′ = an−1b that can be obtained by replacing the last a in T with b.
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The set of productions for T ′ is

X1 = a (generating a),

X2 = X1X1 (generating aa),

X3 = X2X2 (generating aaaa),

. . .

Xk−1 = Xk−2Xk−2 (generating a2
k−1

),

Y1 = b (generating b),

Y2 = X1Y1 (generating ab),

Y3 = X2Y2 (generating aaab),

. . .

Yk = Xk−1Yk−1 (generating a2
k−1b)

with gbsc(T
′) = 2k − 1 + 2(k − 1) − 1 = 4k − 4. Thus lim infn→∞ MSsub(gbsc, n) ≥

lim infk→∞ 4k−4
2k−1

≥ 2. Also, ASsub(gbsc, n) ≥ (4k− 4)− (2k− 1) = 2k− 5 = gbsc(T )− 4 and

ASsub(gbsc, n) ≥ 2 log2 n− 4 as k = log2 n.

deletions: Assume that σ = 2i with a positive integer i ≥ 1. Let Q be a string that contains

t = σ2 distinct bigrams and |Q| = σ2 + 1. Let Q′ = Q[2..|Q|]. We consider the string

T = Q′[1]2
p · · ·Q′[|Q′|]2p .

Note that p = log(n/σ). The set of productions for T from depth 1 to p is:

Xi → σiσi (1 ≤ i ≤ p),

Xpσ+i → X(p−1)σ+iX(p−1)σ+i (1 ≤ i ≤ σ, 2 ≤ k ≤ p).

Thus, the derivation tree T has pσ internal nodes with distinct labels. Additionally, after height

σ, the string consists of t−1 distinct bigrams, and there is no run of length 2. Then the derivation

tree T has t−1 internal nodes with distinct labels in height above p. Finally, gbsc(T ) = pσ+t−1.

We consider the string T ′ where T [1] is removed, namely,

T ′ = T [2..|T |] = Q′[1]2
p−1Q′[2]2

p · · ·Q′[|Q′|]2p .

The set of productions for T ′ of height 1 is:

X(i−1)σ+j → σiσj (1 ≤ i ≤ σ, 1 ≤ j ≤ σ).
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Thus, the derivation tree T ′ for string T ′ has t = σ2 internal nodes with distinct labels at height

one. Because of this, the number of internal nodes of the derivation tree T ′ in each height

2 ≤ p′ ≤ p is also at least t = σ2. After that, the string of height p consists of t distinct bigrams,

and there is no run of length 2, which is the same condition of T . Then the derivation tree T has

additional t− 1 internal nodes with distinct labels in height above p. Finally, gbsc(T
′) = tp+ t.

Then, we obtain:

MSins(gbsc, n) ≥ lim
n→∞

tp+ t

pσ + t− 1
=

t

σ
≥ σ,

ASins(gbsc, n) ≥ lim
n→∞

(tp+ t)− (pσ + t− 1) ∈ Ω(σ · pσ) = Ω(σgbsc).

insertions: We use the same string T as in the case of deletions. We consider the string T ′

that is obtained by prepending Q[1] to T , namely,

T ′ = Q[1]T = Q[1]Q′[1]2
p · · ·Q′[|Q′|]2p .

The set of productions for T ′ of height 1 is:

X(i−1)σ+j → σiσj. (1 ≤ i ≤ σ, 1 ≤ j ≤ σ)

Xσ2+1 → Q[1].

Thus, the derivation tree T ′ has t+ 1 internal nodes with distinct labels at height one. Because

of this, the number of internal nodes of derivation tree T ′ of each height 2 ≤ p′ ≤ p is also at

least t = σ2 nodes. After that, the string of height p consists of t distinct bigrams, and there is

no run of length 2, which is the same condition of T . Then derivation tree T has additional t−1

internal nodes with distinct labels in height above p. Finally, gbsc(T
′) = (t+ 1)p+ t. Then, we

obtain:

MSins(gbsc, n) ≥ lim
n→∞

(t+ 1)p+ t

pσ + t− 1
=

(t+ 1)

σ
≥ σ,

ASins(gbsc, n) ≥ lim
n→∞

((t+ 1)p+ t)− (pσ + t− 1) ∈ Ω(σ · pσ) = Ω(σgbsc).

We show a concrete example of how the derivation tree changes by an insertion in Figure 5.6.
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a a a a a a a a a a a a a a a a b b b b ....

z a a a a a a a a a a a a a a a a b b b ....

Figure 5.6: An example of insertion. There are nodes X1, Xσ+1, X2σ+1, X3σ+1 in the leftmost

path of in the derivation tree of T = a2
4
b2

4
b2

4 · · · . After a z is prepended to T (= T ′),

new internal nodes X ′
1, X

′
σ+1, X

′
2σ+1, X

′
3σ+1 that correspond to za, za3, za7, za15 occur in the

derivation tree for T ′. This propagates to the other σ − 1 bigrams of form σiσj , which are ab,

bc, and so forth.
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5.2.2 Upper bounds for the sensitivity of gbsc

Theorem 5.4. The following upper bounds on the sensitivity of gbsc hold:

substitutions: MSsub(gbsc, n) ≤ 2. ASsub(gbsc, n) ≤ 2�log2 n� ≤ 2gbsc.

insertions: MSins(gbsc, n) ≤ σ + 1. ASins(gbsc, n) ≤ σgbsc.

deletions: MSdel(gbsc, n) ≤ σ + 1. ASdel(gbsc, n) ≤ σgbsc.

Proof. substitutions: Let i be the position where we substitute the character T [i]. We consider

the path P from the root of T to the ith leaf of T that corresponds to T [i]. We only need to

change the labels of the nodes in the path P , since any other nodes do not contain the ith leaf.

Since T is a balanced binary tree, the height h of T is �log2 n� and hence |P | ≤ h = �log2 n�.

Since h ≤ gbsc, we get MSsub(gbsc, n) ≤ 2. Since each non-terminal is in the Chomsky normal

form and since �log2 n� ≤ gbsc, ASsub(gbsc, n) ≤ 2�log2 n� ≤ 2gbsc.

insertions: Let i be the position where we insert a new character a to T , and let T and

T ′ be the derivation trees for the strings T and T ′ before and after the insertion, respectively.

For any node v in the derivation tree T , let T (v) denote the subtree rooted at v. Let 
(v) and

r(v) denote the text positions that respectively correspond to the leftmost and rightmost leaves

in T (v). We use the same analysis for the left children of the nodes in the path P from the

root to the new ith leaf which corresponds to the inserted character a. Let v′ denote a node in

T ′. From now on let us focus on the subtrees T ′(v′) of T ′ such that 
(v′) > i and v′ is not

in the rightmost path from the root of T ′. Let str(v′) denote the string that is derived from

the non-terminal for v′, and let v be the node in T which corresponds to v′. Observe that

str(v′) = T ′[
(v′)..r(v′)] = T [
(v) − 1..r(v) − 1], namely, str(v′) has been shifted by one

position in the string due to the new character a inserted at position i. Since T [
(v)..r(v)] is

represented by the node v in T , there exist at most gbsc distinct substrings of T that can be the

“seed” of the strings represented by the nodes v′ of T ′ with 
(v′) > i. Since the number of

left-contexts of each T [
(v)..r(v)] is at most σ, there can be at most σ distinct shifts from the

seed T [
(v)..r(v)]. Since the rightmost paths from the roots of T and T ′ are all distinct except

the root, and since inserting the character can increase the length of the rightmost path by at

most 1, overall, we have that

gbsc(T
′) ≤ σgbsc(T ) + �log2 n�+ 1 ≤ σgbsc(T ) + h+ 1, (5.1)

where h is the height of T . To analyze an upper bound, we can exclude the case of unary

alphabets with T = an and T ′ = an+1, since the sensitivity for Bisection is the minimum

possible with unary strings for insertions. For the case of multi-character alphabets gbsc ≥
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h + 1 holds, and hence gbsc(T
′) ≤ (σ + 1)gbsc(T ) follows from formula (5.1). Hence we get

MSins(gbsc, n) ≤ σ + 1 and ASins(gbsc, n) ≤ σgbsc.

deletions: By similar arguments to the case of insertions, we get MSdel(gbsc, n) ≤ σ + 1

and ASdel(gbsc, n) ≤ σgbsc.
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5.3 LZ-End factorizations

In this section, we consider the worst-case sensitivity of the LZ-End factorizations [69]. This is

an LZ77-like compressor such that each factor fi has a previous occurrence which corresponds

to the ending position of a previous factor. This property allows for fast substring extraction in

practice [69].

A factorization T = f1 · · · fzEnd
for a string T of length n is the LZ-End factorization

LZEnd(T ) of T such that, for each 1 ≤ i < zEnd, fi[1..|fi|−1] is the longest prefix of fi · · · fzEnd

which has a previous occurrence in f1 · · · fi−1 as a suffix of some string in {ε, f1, f1f2, . . . ,
f1 · · · fi−1}. The last factor fzEnd

is the suffix of T of length n − |f1 · · · fzEnd−1|. Again, if we

use a common convention that the string T terminates with a unique character $, then the last

factor fzEnd
satisfies the same properties as f1, . . . , fz−1, in the cases of LZ-End factorizations.

Let zEnd(T ) denote the number of factors in the LZ-End factorization of string T .

For example, for string T = abaabababababab$,

T = a|b|aa|ba|bab|ababab$|,

where | denotes the right-end of each factor in the factorization. Here we have zEnd(T ) = 6.

5.3.1 Lower bounds for the sensitivity of zEnd

Theorem 5.5. The following lower bounds on the sensitivity of zEnd hold:

substitutions: lim infn→∞ MSsub(zEnd, n) ≥ 2. ASsub(zEnd, n) ≥ zEnd −Θ(
√
zEnd) and

ASsub(zEnd, n) ∈ Ω(
√
n).

insertions: lim infn→∞ MSins(zEnd, n) ≥ 2. ASins(zEnd, n) ≥ zEnd −Θ(
√
zEnd) and

ASins(zEnd, n) ∈ Ω(
√
n).

deletions: lim infn→∞ MSdel(zEnd, n) ≥ 2. ASdel(zEnd, n) ≥ zEnd −Θ(
√
zEnd) and

ASdel(zEnd, n) ∈ Ω(
√
n).

Proof. Let σj denote the ith character in the alphabet Σ for 1 ≤ j ≤ |Σ|. For a positive integer

p, consider the string Q = σ1 · σ1σ2 · · · σ1 · · · σp of length q = |Q| = p(p + 1)/2 ∈ Θ(p2).

Consider the string

T = Q · σ1σp+1 ·Q[q]σ1σp+1σp+2 ·Q[q − 1..q]σ1σp+1σp+3 · · ·Qσ1σp+1σp+q+1

with |T | ∈ Θ(q2). As for the interval [1, q] in T , LZEnd(Q) = f1, . . . , fp such that fk =

σ1 · · · σk for every 1 ≤ k ≤ p. Since fp has no occurrences in f1 · · · fp−1, the decomposition
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is not changed by appending any character to Q. Hence, the next factor fp+1 starts at position

q + 1. Then fp+1 = σ1σp+1 holds, since σp+1 is a fresh character and σ1 = f1. As for the

remaining interval, we show fp+1+j = Q[q − j + 1..q]σ1σp+1σp+j+1 holds for each 1 ≤ j ≤ q.

At first, for j = 1, fp+2 = Q[q]σ1σp+1σp+2 holds since fp+2 starts with Q[q], Q[q]σ1σp+1 has

an occurrence as a suffix of T [1..q + 2], and σp+2 is a fresh character in the prefix. Next, we

assume that fp+1+j = Q[q − j + 1..q]σ1σp+1σp+j+1 holds with 1 ≤ j ≤ k − 1 for some integer

k. Then we consider whether fp+1+k = Q[q − k + 1..q]σ1σp+1σp+k+1 holds or not. By the

assumption, fp+1+k starts with Q[q− k+ 1]. Also, Q[q− k+ 1..q]σ1σp+1 has an occurrence as

a suffix of T [1..q + 2], and σp+k+1 is a fresh character in the prefix. Therefore, the assumption

is also valid for k. By the above argument, fp+1+j = Q[q − j + 1..q]σ1σp+1σp+j+1 holds for

each 1 ≤ j ≤ q by induction. Therefore,

LZEnd(T ) = σ1|σ1σ2| · · · |σ1 · · · σp|σ1σp+1|Q[q]σ1σp+1σp+2| · · · |Qσ1σp+1σp+q+1|

with zEnd(T ) = p+ 1 + q ∈ Θ(q) ∈ Θ(
√
n).

As for substitutions, consider the string

T ′ = Q ·#σp+1 ·Q[q]σ1σp+1σp+2 ·Q[q − 1..q]σ1σp+1σp+3 · · ·Qσ1σp+1σp+q+1

which can be obtained from T by substituting T [q + 1] = σ1 with a character # which does

not occur in T . Let us analyze the structure of the LZEnd(T ′). As mentioned above, f1, . . . , fp

are not changed after the substitution. The (p + 1)th factor in LZEnd(T ), namely, #σp+1 is

factorized as #|σp+1| in LZEnd(T ′) since both characters have no occurrence in T ′[1..q] = Q.

Then the next factor starts with Q[q]. Each of Q[q] and σ1 have some occurrence as a suffix

of a previous factor. On the other hand, each of Q[q]σ1 and σp+1σp+2 have no occurrences

previously. Therefore, Q[q]σ1σp+1σp+2 is factorized as Q[q]σ1|σp+1σp+2| in LZEnd(T ′). Sim-

ilarly, by induction, each (p + 1 + k)th factor in LZEnd(T ) for every 2 ≤ k ≤ q, namely,

Q[q − k + 1..q]σ1σp+1σp+k+1 is also factorized as Q[q − k + 1..q]σ1|σp+1σp+k+1|. Thus, the

LZ-End factorization of T ′ is

LZEnd(T ′) = σ1|σ1σ2| · · · |σ1 · · · σp|#|σp+1|Q[q]σ1|σp+1σp+2| · · · |Qσ1|σp+1σp+q+1|

with zEnd(T
′) = p + 2 + 2q. Recall p = Θ(

√
q). Hence we get lim infn→∞ MSsub(zEnd, n) ≥

lim infq→∞(p + 2q + 2)/(p + q + 1) ≥ 2, ASsub(zEnd, n) ≥ (p + 2q + 2) − (p + q + 1) =

zEnd −Θ(
√
zEnd), and ASsub(zEnd, n) ∈ Ω(

√
n).

Also, as for deletions (resp. insertions), we get Theorem 5.5 by considering the case where

the character T [q + 1] is deleted (resp. # is inserted between positions q and q + 1).
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5.3.2 Upper bounds for the sensitivity of zEnd

To show a non-trivial upper bound for the sensitivity of zEnd, we use the following known

results:

Theorem 5.6 ([69]). For any string T , zSSsr(T ) ≤ zEnd(T ).

Theorem 5.7 (Theorem 3.2 of [62]). For any string T of length n, zEnd(T ) ∈ O(δ(T ) log2(n/δ(T ))).

Theorem 5.8 (Lemma 3.7 of [61]). For any string T , γ(T ) ≤ zSSsr(T ).

Theorem 5.9 (Lemma 2 of [66]). For any string T , γ(T ) ≥ δ(T ).

Theorem 5.10 ([1]). The following upper bounds on the sensitivity of δ hold:

substitutions: MSsub(δ, n) ≤ 2. ASsub(δ, n) ≤ 1.

insertions: MSins(δ, n) ≤ 2. ASins(δ, n) ≤ 1.

deletions: lim supn→∞ MSdel(δ, n) ≤ 1.5. lim supn→∞ ASdel(δ, n) ≤ 1.

From Theorems 5.8, 5.9, 5.7, and 5.6, we obtain the following result:

Corollary 5.1. The following upper bounds on the sensitivity of zEnd hold:

substitutions: MSsub(zEnd, n) ∈ O(log2(n/δ)). ASsub(zEnd, n) ∈ O(zEnd log
2(n/δ)).

insertions: MSins(zEnd, n) ∈ O(log2(n/δ)). ASins(zEnd, n) ∈ O(zEnd log
2(n/δ)).

deletions: MSdel(zEnd, n) ∈ O(log2(n/δ)). ASdel(zEnd, n) ∈ O(zEnd log
2(n/δ)).

Proof. For any string T , δ(T ) ≤ zEnd(T ) holds from Theorems 5.9, 5.8, and 5.6. Let T ′ be

any string with ed(T, T ′) = 1. It follows from Theorem 5.10 that δ(T ′) ≤ 2δ(T ). Now

let c be the constant value such that δ(T ′) = cδ(T ) holds. Then, log2(n/δ(T ′)) = log2 n +

log2 cδ(T )−2 log n log cδ(T ) = log2 n+log2 δ(T )−2 log n log δ(T )+log2 c+2 log δ(T ) log c−
2 log n log c ∈ O(log2(n/δ(T ))). Following Lemma 2.1, we now obtain

zEnd(T
′) ∈ O(δ(T ′) log2(n/δ(T ′))) ∈ O(δ(T ) log2(n/δ(T ))) ∈ O(zEnd(T ) log

2(n/δ(T ))),

which leads to the claimed upper bounds for the sensitivity for zEnd.
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5.4 Smallest grammars and approximation grammars

In this section, we consider the sensitivity of the smallest grammar size g∗ and several grammars

whose sizes satisfy some approximation ratios to g∗.

5.4.1 Smallest grammar

In this section (and also in the following sections), we consider grammar-based compressors

for input string T .

It is known that the problem of computing the size g∗(T ) of the smallest grammar only

generating T is NP-hard [101, 21]. It is also known that zSS(T ) is a lower bound of the size of

any grammar generating T , namely, zSS(T ) ≤ g∗(T ) holds for any string T [98, 21].

We have the following upper bounds for the sensitivity of g∗(T ):

Theorem 5.11. The following upper bounds on the sensitivity of g∗ hold:

substitutions: MSsub(g
∗, n) ≤ 2. ASsub(g

∗, n) ≤ g∗.

insertions: MSins(g
∗, n) ≤ 2. ASins(g

∗, n) ≤ g∗.

deletions: MSdel(g
∗, n) ≤ 2. ASdel(g

∗, n) ≤ g∗.

Proof. Let T be any string of length n, and let G∗(T ) be a grammar of size g∗(T ) that only

generates T .

We describe the case of substitutions. Let T ′ be the string that can be obtained by substi-

tuting a character c for the ith character T [i] of T , where c 
= T [i]. Let X be a non-terminal of

G∗(T ) in the path P from the root to the leaf for the ith character in the derivation tree of G∗(T ).

Let X → Y1 · · ·Yk be the production from X , and let Yj (1 ≤ j ≤ k) be the non-terminal that is

the child of X in the path P . Then, we introduce a new non-terminal X ′ and a new production

X ′ → Y1 · · ·Yj−1Y
′
jYj+1 · · ·Yk, where Y ′

j will be the new non-terminal at the next depth in the

path P . By applying this operation in a top-down manner on P , we can obtain a grammar G(T ′)

of size g(T ′) ≤ 2g∗(T ) that generates T ′. Since g∗(T ′) ≤ g(T ′), we have the claimed bounds.

The cases with insertions and deletions are analogous.

5.4.2 Practical grammars

Since computing a smallest grammar of size g∗(T ) is NP-hard, a number of practical grammar-

based compressors have been proposed, including RePair [72], Longest-Match [64], Greedy [4],
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Sequential [108]1, and LZ78 [111]2. Charikar et al. [21] analyzed the approximation ratios

of these grammar compressors to the smallest grammar. Let grpair, glong, ggrdy, gseq, z78 de-

note the sizes of the aforementioned compressors, respectively. It is known that for any g ∈
{grpair, glong, ggrdy, z78} g(T ) ∈ O(g∗(T )(n/ log n)

2
3 ) holds, and gseq ∈ O(g∗(T )(n/ log n)

3
4 )

holds [21]. By combining these results with Lemma 2.1 and Theorem 5.11, we obtain the

following bounds:

Corollary 5.2. The following upper bounds for the sensitivity of g ∈ {grpair, glong, ggrdy, z78}
hold:

substitutions: MSsub(g, n) ∈ O((n/ log n)
2
3 ). ASsub(g, n) ∈ O(g∗ · (n/ log n) 2

3 ).

insertions: MSins(g, n) ∈ O((n/ log n)
2
3 ). ASins(g, n) ∈ O(g∗ · (n/ log n) 2

3 ).

deletions: MSdel(g, n) ∈ O((n/ log n)
2
3 ). ASdel(g, n) ∈ O(g∗ · (n/ log n) 2

3 ).

Corollary 5.3. The following upper bounds for the sensitivity of gseq hold:

substitutions: MSsub(gseq, n) ∈ O((n/ log n)
3
4 ). ASsub(gseq, n) ∈ O(g∗ · (n/ log n) 3

4 ).

insertions: MSins(gseq, n) ∈ O((n/ log n)
3
4 ). ASins(gseq, n) ∈ O(g∗ · (n/ log n) 3

4 ).

deletions: MSdel(gseq, n) ∈ O((n/ log n)
3
4 ). ASdel(gseq, n) ∈ O(g∗ · (n/ log n) 3

4 ).

5.4.3 Approximation grammars

There also exist (better) approximation algorithms in terms of the smallest grammar size g∗.

It is known that α-balanced grammar compressor [21], the AVL-grammar compressor [98],

and the really-simple grammar compressor [59] all achieve O(log(n/g∗))-approximation ratios

to g∗. Let gα, gavl, and gsimple denote the sizes of these compressors, respectively. Namely, for

every g ∈ {gα, gavl, gsimple}, g ∈ O(g∗ log(n/g∗)) holds. Since log(n/g∗) satisfies the condi-

tions for the function f(n, g∗) in Lemma 2.1, and since g∗ satisfies the conditions Lemma 2.1

by Theorem 5.11, we obtain the following:

Corollary 5.4. The following upper bounds for the sensitivity of g ∈ {gα, gavl, gsimple} hold:

substitutions: MSsub(g, n) ∈ O(log(n/g∗)). ASsub(g, n) ∈ O(g∗ log(n/g∗)).

insertions: MSins(g, n) ∈ O(log(n/g∗)). ASins(g, n) ∈ O(g∗ log(n/g∗)).

deletions: MSdel(g, n) ∈ O(log(n/g∗)). ASdel(g, n) ∈ O(g∗ log(n/g∗)).

We remark that zSS(T ) ≤ g∗(T ) always holds [98], and that α-balanced grammars and

AVL-grammars are known to achieve approximation ratios to zSS(T ). Namely, it is known that

gα(T ) ∈ O(zSS(T ) log n) and gavl(T ) ∈ O(zSS log n) hold [21, 98].

1Sequential is an improved version of Sequitur [88].
2The LZ78 factorization can also be seen as a grammar.
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Let fi be a factor of the LZSS factorization of T such that fi has previous occurrence(s) in

f1 · · · fi−1. When we compress the string T with LZSS, fi is encoded as a pair (b, e) such that

T [b..e] = fi and 1 ≤ b ≤ e < |f1 . . . fi−1|. The substring T [b..e] is called the source for fi.

Corollary 5.5. The following upper bounds for the sensitivity of g ∈ {gα, gavl} hold:

substitutions: MSsub(g, n) ∈ O(log n). ASsub(g, n) ∈ O(zSS log n).

insertions: MSins(g, n) ∈ O(log n). ASins(g, n) ∈ O(zSS log n).

deletions: MSdel(g, n) ∈ O(log n). ASdel(g, n) ∈ O(zSS log n).

Proof. zSS(T
′) ≤ 3zSS(T ) holds for any string T ′ with ed(T, T ′) = 1 [1]. The edit operation

that transforms T into T ′ may change the positions of the sources in the LZSS factorizations

(e.g., if the LZSS compression is implemented so that the source of each factor is always its

leftmost occurrence, then the three divided fragments f ′
i1
, f ′

i2
, f ′

i3
can have more left previous

occurrences than the original factor fi). However, an important observation is that the O(log n)-

approximation proofs for g given in [21, 98] hold for any choices of the sources for the factors.

Thus, we obtain g(T ′) ∈ O(zSS(T
′) log n) ⊆ O(zSS(T ) log n).

By combining it with zSS(T ) ≤ g(T ) and by Lemma 2.1, we get g(T ′)/g(T ) ≤ g(T ′)/zSS(T ) ∈
O(log n). Similarly we obtain g(T ′)− g(T ) ≤ g(T ′)− zSS(T ) ∈ O(zSS(T ) log n).

We remark that the O(log n)-bounds for the multiplicative sensitivity of Theorem 5.4 can

also be obtained using the smallest grammar size g∗. However, the O(zSS log n)-bounds for the

additive sensitivity of Theorem 5.4 can be better than the O(g∗ log(n/g∗))-bounds obtained via

g∗, since zSS ≤ g∗ always holds [98].
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Conclusions and future work

In Chapter 4, we discovered a local consistency property in parsing of the grammar produced

by the grammar compression by induced sorting (GCIS) [94], and apply it to our new gram-

mar index. On a theoretical level, we show we can compute the index from T of length

n in O(n) time, and the index locate all occ occurrences of a given pattern of length m in

O(m lg |S| + occC lgm lg |S| + occ) time, where S is the set of characters and non-terminals

of the GCIS grammar and occC the number of occurrences in the right side of the production

rules of the GCIS grammar of a selected core of the pattern. In particular for experiments of

ENGLISH.001.2, our implementations are faster than FM-index[40] and r-index[47] when the

pattern length reaches 10000 characters or more. In addition, GCIS can form cores that cover

a higher percentage of patterns than cores selected by ESP, so GCIS-index can compute locate

faster than ESP-index in experiments of FIB41.

In Chapter 5, we show the upper bounds and lower bounds for the sensitivity of some com-

pressors. In the seminal paper by Varma and Yoshida [106] which first introduced the notion of

sensitivity for (general) algorithms and studied the sensitivity of graph algorithms, the authors

wrote:

“Although we focus on graphs here, we note that our definition can also be ex-

tended to the study of combinatorial objects other than graphs such as strings and

constraint satisfaction problems.”

Our study was inspired by the afore-quoted suggestion, and our sensitivity for string compres-

sors and repetitiveness measures enables one to evaluate the robustness and stability of com-

pressors and repetitiveness measures.

The major technical contributions of this thesis are the tight and constant upper and lower

bounds for the multiplicative sensitivity of the GCIS and the smallest bidirectional scheme b.
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We also reported non-trivial upper and/or lower bounds for other string compressors, including

RLBWT, LZ-End, LZ78, AVL-grammar, α-balanced grammar, RePair, LongestMatch, Greedy,

Bisection, and CDAWG. Some of the upper bounds reported here follow from previous impor-

tant work [61, 66, 60, 69, 62, 21, 98, 59].

Apparent future work is to complete Tables 1.1 and 1.2 by filling the missing pieces and

closing the gaps between the upper and lower bounds which are not tight there. In addition, the

research for the relation of sensitivity between GCIS and our new Index is also counted a future

topic. If It is proved, GCIS Index has a robust compression ratio against single character edits.

Then, devising a new algorithm for GCIS that can handle small substitutions will become more

important future work.

While we dealt with a number of string compressors and repetitiveness measures, it has to

be noted that our list is far from being comprehensive: It is intriguing to analyze the sensitivity

of other important and useful compressors and repetitiveness measures including the size ν of

the smallest NU-systems [86], the sizes of the other locally-consistent compressed indices such

as ESP-index [77] and SE-index [89].

Our notion of the sensitivity for string compressors/repetitiveness measures can naturally

be extended to labeled tree compressors/repetitiveness measures. It would be interesting to

analyze the sensitivity for the smallest tree attractor [96], the run-length XBWT [96], the tree

LZ77 factorization [52], tree grammars [73, 49], and top-tree compression of trees [14].

In Chapter 3, we discussed Minimal absent words (MAWs), which is combinatorial string

objects that can be used in applications such as data compression (anti-dictionaries) and bioin-

formatics.

In the first section of Chapter 3, we also revisited the problem of computing the minimal

absent words (MAWs) for the sliding window model, which was first considered by Crochemore

et al. [30]. We investigated combinatorial properties of MAWs for a sliding window of fixed

length d over a string of length n. Our contributions are matching upper and lower bounds for

the number of changes in the set of MAWs for a sliding window when the window is shifted to

the right by one character. For the general case where the window S and the extended window

Sα contain three or more distinct characters (i.e. σ′ ≥ 3), the number of changes in the set

of MAWs for S and Sα is at most d + σ′ + 1 and this bound is tight. For the case of binary

alphabets (i.e. σ′ = 2), it is upper bounded by max{3, d} and this bound is also tight.

We eventually gave an asymptotically tight bound O(min{d, σ}n) for the number S(T, d)
of total changes in the set of MAWs for every sliding window of length d over any string T of

length n, where σ is the alphabet size for the whole input string T .
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An interesting open question is whether there exist other compressed representations of

MAWs, based on e.g. grammar-based compression [64], Lempel-Ziv 77 [110], and run-length

Burrows-Wheeler transform [74]. About the theme of the sliding window, the following open

questions are intriguing:

• We showed that a matching lower bound S(T, d) ∈ Ω(min{d, σ}n) when n− d ∈ Ω(n).

Is there a similar lower bound when n− d ∈ o(n)?

• Crochemore et al. [30] gave an online algorithm that maintains the set of MAWs for a

sliding window of length d in O(σn) time. Can one improve the running time to optimal

O(min{d, σ}n)?

In the second section of Chapter 3, we considered MAWs for a string T that is described by

its run-length encoding (RLE) rle(T ) of size m. We first analyzed the number of MAWs for a

string T in terms of its RLE size m, by dividing the set MAW(T ) of all MAWs for T into five

disjoint types. Albeit the number of MAWs of some types is superlinear in m, we devised a

compact O(m)-space representation for MAW(T ) that can output all MAWs in output-sensitive

O(|MAW(T )|) time. Additionally we show the algorithms to construct the representation for

each type MAWs in totally O(m) logm time. A simple future work of this part is to analyze

the amount of MAW in the other compressors. In this thesis, we proposed a representation

approach that takes just O(m) space even when the number of some types (3 and 4) much

greater than O(m). This technique might be a clue for finding compact MAW representations

for other compression methods.
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and Y. Tabei. Queries on lz-bounded encodings. In 2015 Data Compression Conference,

DCC 2015, Snowbird, UT, USA, April 7-9, 2015, pages 83–92, 2015.

[13] P. Bille, M. B. Ettienne, I. L. Gørtz, and H. W. Vildhøj. Time-space trade-offs for Lempel-

Ziv compressed indexing. Theor. Comput. Sci., 713:66–77, 2018.

[14] P. Bille, P. Gawrychowski, I. L. Gørtz, G. M. Landau, and O. Weimann. Top tree com-

pression of tries. In ISAAC 2019, volume 149 of LIPIcs, pages 4:1–4:18, 2019.

[15] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. I. Seiferas. The

smallest automaton recognizing the subwords of a text. Theor. Comput. Sci., 40:31–55,

1985.

[16] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. Linear-time pointer-

machine algorithms for least common ancestors, MST verification, and dominators. In

Proc. STOC, pages 279–288, 1998.

[17] M. Burrows and D. J. Wheeler. A block sorting lossless data compression algorithm.

Technical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

[18] S. Chairungsee and M. Crochemore. Using minimal absent words to build phylogeny.

Theor. Comput. Sci., 450:109 – 116, 2012.

[19] P. Charalampopoulos, M. Crochemore, G. Fici, R. Mercaş, and S. P. Pissis. Alignment-
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volume 6393 of Lecture Notes in Computer Science, pages 201–206, 2010.

[71] G. Lagarde and S. Perifel. Lempel-Ziv: a “one-bit catastrophe” but not a tragedy. In

SODA, pages 1478–1495, 2018.

[72] N. J. Larsson and A. Moffat. Offline dictionary-based compression. In Proc. DCC, pages

296–305, 1999.

[73] M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using repair.

Inf. Syst., 38(8):1150–1167, 2013.

[74] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding. Nord.

J. Comput., 12(1):40–66, 2005.

[75] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches.

SIAM J. Comput., 22(5):935–948, 1993.

[76] S. Mantaci, A. Restivo, G. Romana, G. Rosone, and M. Sciortino. A combinatorial view

on string attractors. Theor. Comput. Sci., 850:236–248, 2021.

[77] S. Maruyama, M. Nakahara, N. Kishiue, and H. Sakamoto. ESP-index: A compressed

index based on edit-sensitive parsing. J. Discrete Algorithms, 18:100–112, 2013.

[78] K. Mehlhorn, R. Sundar, and C. Uhrig. Maintaining dynamic sequences under equality

tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997.

[79] T. Mieno, Y. Kuhara, T. Akagi, Y. Fujishige, Y. Nakashima, S. Inenaga, H. Bannai, and

M. Takeda. Minimal unique substrings and minimal absent words in a sliding window.

In SOFSEM 2020, volume 12011 of Lecture Notes in Computer Science, pages 148–160.

Springer, 2020.

[80] S. Mitsuya, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda. Compressed commu-

nication complexity of hamming distance. CoRR, abs/2103.03468, 2021.

[81] G. Navarro. Indexing text using the Ziv-Lempel trie. J. Discrete Algorithms, 2(1):87–

114, 2004.

114



BIBLIOGRAPHY

[82] G. Navarro. Implementing the LZ-index: Theory versus practice. ACM Journal of Ex-

perimental Algorithmics, 13, 2008.

[83] G. Navarro. Document listing on repetitive collections with guaranteed performance.

Theor. Comput. Sci., 772:58–72, 2019.

[84] G. Navarro. Indexing highly repetitive string collections, part II: compressed indexes.

ACM Comput. Surv., 54(2):26:1–26:32, 2021.

[85] G. Navarro and N. Prezza. Universal compressed text indexing. Theor. Comput. Sci.,

762:41–50, 2019.

[86] G. Navarro and C. Urbina. On stricter reachable repetitiveness measures. In SPIRE 2021,

volume 12944 of Lecture Notes in Computer Science, pages 193–206. Springer, 2021.

[87] G. Nelson, J. C. Kieffer, and P. C. Cosman. An interesting hierarchical lossless data

compression algorithm, 1995. Invited Presentation.

[88] C. G. Nevill-Manning and I. H. Witten. Identifying hierarchical structure in sequences:

A linear-time algorithm. J. Artif. Intell. Res., 7:67–82, 1997.

[89] T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda. Dynamic index and LZ

factorization in compressed space. Discret. Appl. Math., 274:116–129, 2020.

[90] T. Nishimoto and Y. Tabei. Optimal-time queries on BWT-runs compressed indexes. In

ICALP 2021, volume 198 of LIPIcs, pages 101:1–101:15, 2021.

[91] T. Nishimoto and Y. Tabei. R-enum: Enumeration of characteristic substrings in BWT-

runs bounded space. In CPM 2021, volume 191 of LIPIcs, pages 21:1–21:21, 2021.

[92] G. Nong, S. Zhang, and W. H. Chan. Two efficient algorithms for linear time suffix array

construction. IEEE Trans. Computers, 60(10):1471–1484, 2011.

[93] D. S. Nunes, F. A. Louza, S. Gog, M. Ayala-Rincón, and G. Navarro. Grammar com-

pression by induced suffix sorting. ACM Journal of Experimental Algorithmics (JEA),

27:1–33, 2022.

[94] D. S. N. Nunes, F. A. da Louza, S. Gog, M. Ayala-Rincón, and G. Navarro. A grammar

compression algorithm based on induced suffix sorting. In Proc. DCC, pages 42–51,

2018.

115



BIBLIOGRAPHY

[95] D. Pratas and J. M. Silva. Persistent minimal sequences of sars-cov-2. Bioinformatics,

36(21):5129–5132, 2020.

[96] N. Prezza. On locating paths in compressed tries. In SODA 2021, pages 744–760. SIAM,

2021.

[97] S. J. Puglisi and B. Zhukova. Smaller RLZ-compressed suffix arrays. In Proc. DCC,

pages 213–222, 2021.

[98] W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-

based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003.

[99] S. C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of patterns

using a labeling paradigm (extended abstract). In Proc. FOCS, pages 320–328, 1996.
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