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1. Introduction 

 

1.1 Background on permanent magnet 

The tremendous momentum and rapid growth in global electricity 

production has forced researchers and engineers to innovate the design of 

motors, transformers and generators to convert energy more efficiently, 

which has prompted their minimization and lightweight with advanced 

performance. Especially, the demand on the improved traction motors have 

led to the revolution of the permanent magnets in the last century, i.e., the 

development of new hard magnetic materials as shown in Fig. 1.1 [1]. In the 

early history of magnet before the break of “shape barrier” occurred in the 

Netherlands in 1951 [2], the magnets could only be manufactured in 

awkward shapes such as needles, bars, and horseshoes [3]. The reason of 

shape limit for making the magnets is the demagnetization field (Hd). The Hd 

for a uniformly magnetized ellipsoid can be represented with magnetization 

(M) 

 

𝐻𝐻𝑑𝑑 = −𝒩𝒩𝒩𝒩,  (1.1) 

 

where 𝒩𝒩 stands for demagnetizing factor that takes values between 0 and 

1 and depends only on the shape of magnet. For example, 𝒩𝒩 is 0 for a long 

needle magnetized along its axis or a thin film magnetized in-plane and 1 for 

a thin film magnetized perpendicular to the plane. Other values of 𝒩𝒩 can 

be defined with reference to an ellipsoidal specimen. M represents the 
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magnetic moment (i.e., fundamental magnetic quantity for a magnet in the 

unit of Am2) per unit volume for which the unit of M (also H) is Am-1. The 

permanent magnet ideally has a broad M(H) hysteresis loop as shown in Fig. 

1.2 (a), in which the magnetic field of hysteresis loop represents the field 

acting in the magnet (i.e., 𝐻𝐻0 + 𝐻𝐻𝑑𝑑), where 𝐻𝐻0 stands for applied magnetic 

field. With the broad M(H) hysteresis loop, the coercivity (Hc) must exceed 

the critical value determined by the spontaneous magnetization (Ms), which 

means the shape barrier for magnet manufacture are broken. This 

breakthrough appeared in the 1950s with new family of materials called 

hexagonal ferrites, after which permanent magnets could be designed into 

any desired shape. Until now the ferrite has occupied the large portion of 

permanent magnet markets due to its low cost.  

Fig. 1.1 Improvement in the maximum energy product at room temperature of the 

permanent magnets in the 20th century with different types of permanent magnets 

[1].  
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The permanent magnet into thin films with perpendicular anisotropy (i.e., 

𝒩𝒩 ≈ 1) are useful for spintronics and magnetic recording. However, it can 

be pointless if permanent magnets are needed to provide force, torque, 

electromotive force or voltages without constant energy consumption 

because the film that are uniformly magnetized perpendicularly cannot 

produce the stray field [5]. Note that the stary field (Hs) represents H-field 

that are originated from the magnet outside its own volume, where H-field 

originated from the magnet within its own volume is used as same symbol 

Hd, i.e., demagnetization field.  

The maximum energy product |𝐵𝐵𝐻𝐻|𝑚𝑚𝑚𝑚𝑚𝑚  is an important property of a 

permanent magnet related to the B(H) loop of the magnet, as shown in Fig. 

1.2 (b). In vacuum region, the magnetic flux density B can be expressed by 

the magnetic field H: 

 

Fig. 1.2 Ideal hysteresis loop for a permanent magnet: (a) an M(H) loop and (b) a 

B(H) loop [4].  
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𝐵𝐵 = 𝜇𝜇0𝐻𝐻   (1.2) 

 

where the 𝜇𝜇𝑜𝑜  is the vacuum permeability. On the other hand, within the 

magnet, B can be represented by the equation of the sum of M and H: 

 

 𝐵𝐵 = 𝜇𝜇0(𝒩𝒩 + 𝐻𝐻)   (1.3) 

 

The energy density in the stray magnetic field is 1 2⁄ ∫|𝐵𝐵𝐻𝐻|𝑑𝑑𝑑𝑑  for the 

integral over the magnet volume, which provides the energy product is 

proportional to M2 [5]. We assume that the magnetization remains fully 

saturated well into the second quadrant in M(H) loop in Fig. 1.2 (a), and Eq. 

(1.4) can be given using Eq. (1.1) and (1.3): 

 

|𝐵𝐵𝐻𝐻| = 𝜇𝜇0(𝐻𝐻 + 𝒩𝒩)𝐻𝐻 = 𝜇𝜇0(1 −𝒩𝒩)𝒩𝒩𝒩𝒩𝑠𝑠
2.   (1.4) 

 

We can obtain 𝒩𝒩 = 1 2⁄  by differentiating with respect to 𝒩𝒩 to find the 

maximum, which can give the absolute upper limit deduced for the ideal B(H) 

loop of Fig. 1.2 (b). 

 

|𝐵𝐵𝐻𝐻|𝑀𝑀𝑀𝑀𝑀𝑀 = 1
4
𝜇𝜇0𝒩𝒩𝑠𝑠

2.    (1.5) 
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A shape of magnet for 𝒩𝒩 = 1/2 corresponds to a low cylinder of height 

whose height is roughly equal to its radius. Unfortunately, the magnetization 

curve for real magnet deviates from the ideal square loop of Fig. 1.2 (a), 

which results in the achievable maximum energy product: 

 

|𝐵𝐵𝐻𝐻|𝑚𝑚𝑚𝑚𝑚𝑚 < 1
4
𝜇𝜇0𝒩𝒩𝑠𝑠

2.   (1.6) 

 

The development trends of permanent magnet have been directed in seeking 

to improve the |𝐵𝐵𝐻𝐻|𝑚𝑚𝑚𝑚𝑚𝑚 as shown in Fig. 1.1. Alnico alloy (Fe-Al-Ni-Co) 

[3] is the new magnet developed in the early 20th century, which can be used 

for high application temperature due to high Curie temperature (~850℃). 

The |𝐵𝐵𝐻𝐻|𝑀𝑀𝑀𝑀𝑀𝑀  was improved to ~80 kJm-3 with large spontaneous 

magnetization (~1.1 MAm-1). However, low intrinsic coercivity was a 

problem originated from the low anisotropy field due to a fine needle-shaped 

ferromagnetic phase in a nonmagnetic matrix, which constrained the shape 

of the magnet to be rod-shaped or horseshoe-shaped (i.e., the shape barrier). 

After that, with the development of ferrites [6], magnet production became 

free from the shape barrier, but the ferrite magnets have low |𝐵𝐵𝐻𝐻|𝑚𝑚𝑚𝑚𝑚𝑚 (~40 

kJm-3) because of their low remanence. Sm-Co systems developed in the 

1966 [7,8] had the largest magnetic anisotropy constant, which had attracted 

the interests from researchers in the rare earth permanent magnets. Especially, 

the |𝐵𝐵𝐻𝐻|𝑚𝑚𝑚𝑚𝑚𝑚 of Sm2Co15 type magnet was improved to ~240 kJm-3, but the 

widespread use of Sm-Co based magnet were hampered by the complex heat 

treatment procedure and high cost of Sm and Co. From the late 1970s to the 

early 1980s, many efforts were made to obtain better rare earth permanent 
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magnets as replacing Sm with cheap elements such as Nd, replacing Co with 

Fe, and adding B to stabilize the R-Fe alloys. In the end of the efforts, the 

rare earth permanent magnets based on Nd2Fe14B were independently 

developed by two different research groups in 1982; Croat et. al. [9,10] 

obtained the Nd-Fe-B magnets with nanocrystallinity called 

MAGNEQUENCH, and Sagawa et. al. [11] produced the sintered Nd-Fe-B 

magnets, called NEOMAX, by powder metallurgy method. The Nd-Fe-B 

magnets, illustrated in Fig.1.3, is comprised of very cheap element Fe with a 

large ferromagnetic moment, a small amount of a relative abundant light rare 

earth element Nd providing large anisotropy, and B occupying 2 % of the 

volume of the unit cell to stabilize the tetragonal crystal structure. It is 

Fig. 1.3 Tetragonal unit cell of the Nd2Fe14B crystal. a= 8.80 Å  and c= 12.19 Å 
[12]. 
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reported that the maximum energy product for a laboratory magnet is 

increased by ~480 kJm-3, which almost approaches the theoretical maximum 

value of |𝐵𝐵𝐻𝐻|𝑀𝑀𝑀𝑀𝑀𝑀 =512 kJm-3. Also, the |𝐵𝐵𝐻𝐻|𝑚𝑚𝑚𝑚𝑚𝑚  of commercial grades 

showed over ~450 kJm-3 [13]. 

 

1.2 Development of Nd-Fe-B magnets for high coercivity 

The coercivity represents the measured value of critical magnetic field to 

induce undesired magnetization reversal and is used to characterize the 

ability of permanent magnet. In order for the magnetic domains to be 

reversed by the applied external magnetic fields or the thermal fluctuations, 

the energy barrier provides due to the magnetocrystalline anisotropy (Ku) 

must be overcome. However, the phenomenon on the magnetization reversal 

is complex because it depends not only on the crystallographic 

microstructure but also on magnetic domain structures, which is sensitive to 

Fig. 1.4 Energy product |𝑩𝑩𝑩𝑩|𝒎𝒎𝒎𝒎𝒎𝒎 and coercivity of commercial sintered magnets 
and their compositions [17]. 
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the magnetic dipolar interactions and the exchanging interactions between 

the neighboring magnetic domains. This makes the analysis of the coercivity 

mechanism more difficult [14]. The coercivity of permanent magnet is 

determined by the easiest path of these mechanism, in which the 

magnetization reversal can occur either continuously through a coherent or 

incoherent rotation, or discontinuously through a dynamic domain motion. 

High coercivity can be achieved by impeding magnetization rotation with 

magnetic anisotropy and hindering the nucleation or the growth of reverse 

magnetic domains [15].  

 

1.2.1 Current status of Nd-Fe-B magnet 

The growing demand of hybrid/electric vehicles, robots, and drones 

requires further improvement of the coercivity of permanent magnets 

because it enables the significant miniaturization of traction motors. Among 

the sintered permanent magnets that have been commercialized, the Nd-Fe-

B system provides a high maximum energy product attributed to the high 

magnetocrystalline anisotropy (Ku ≈ 4.5 MJ m-3) and high saturation 

magnetization (≈ 1.6 T) in the Nd2Fe14B phase [4,16,17]. However, with 

regard to a commercial Nd-Fe-B magnet subjected to optimized heat 

treatment, the value of coercivity at room temperature is approximately 1.2 

T, which is only ∼20% relative to the anisotropy field HA (µoHA ≈ 7 T) in the 

Nd2Fe14B phase. As another important problem, the coercivity is reduced 

significantly at elevated temperatures. For example, the value of coercivity 

is only approximately 0.2 T at the operating temperature (∼473 K) of traction 

motors. A solution to increase the coercivity is the substitution of Dy for Nd, 
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where a value of 3 T is achieved at room temperature due to the improvement 

in the magnetocrystalline anisotropy of Dy2Fe14B (~15 T). However, due to 

the antiferromagnetic spin coupling between Dy and Fe, this substitution 

reduces the saturation magnetization of the sintered magnet, and 

consequently in |𝐵𝐵𝐻𝐻|𝑚𝑚𝑚𝑚𝑚𝑚  as shown in Fig. 1.4 [17]. From an industrial 

viewpoint, Dy is a type of critical element with limited natural resources. To 

overcome this issue, there are many studies on coercivity enhancement of 

Nd-Fe-B magnets with free of Dy, which will be discussed in the next 

sections.   

 

1.2.2 Tailoring of magnetism in grain boundary 

An efficient way for improvement of the coercivity (Hc) is tailoring of the 

magnetism in the grain boundary (GB) region, which has finite thickness (i.e., 

<3 nm in commercial Nd-Fe-B magnets). Since the invention of the Nd-Fe-

B sintered magnet, the GB region had been considered to be in a 

nonferromagnetic state [18-23], which could achieve exchange decoupling 

between neighboring Nd2Fe14B crystal grains and accordingly suppress the 

avalanche propagation of reversed magnetic domains. However, Sepehri-

Amin et. al. [24] reported that an unexpectedly high concentration of Fe 

(>60%) within the narrow GB region was revealed by the three-dimensional 

(3-D) atom probe study. This result provided that the narrow GB was 

ferromagnetic by the magnetic measurements using the model thin film 

approximating the chemical compositions of the specimen. Their prediction 

was justified by several methods of direct magnetic measurements including 

soft X-ray magnetic circular dichroism [25], spin-polarized scanning 
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electron microscopy [26], and electron holography [27]. These studies 

recalled further examinations on the tailoring of GB magnetism and its 

impact on the improvement of coercivity [28-30]. For example, Sasaki et. al. 

[] confirmed that the coercivity of the sintered magnet increased by 1.8 T 

through the Ga-doping, which reduced the Fe content in the GB phase, while 

the Nd-rich composed of Ga and Cu increased due to the improved 

wettability of the Nd-rich phase. These results indicated that the GB 

magnetism tailoring (i.e., the formation of non-ferromagnetic GB) achieved 

the improvement of the coercivity due to the exchange decoupling of the 

neighboring Nd2Fe14B grains. Grain boundary diffusion process (GBDP) is 

known as useful method to form the non-ferromagnetic GB, which employed 

on various magnets including from the hydrogen disproportionation 

desorption recombination processed magnet [31,32] to the hot-deformed 

magnet [33-36]. The coercivity of the diffused magnets using various kinds 

of low melting point eutectic alloys at room temperature improved by ~2.6T. 

However, the GBDP provides the loss of the remanent magnetization 

because of rapid increase of Nd-rich phase within the magnet [37].  

 

1.2.3 Demagnetization field within Nd-Fe-B magnet 

Another important subject in regard to the coercivity mechanism is the 

distribution of Hd within the Nd-Fe-B magnet, as Hd is a factor responsible 

for the undesired magnetization reversal [38-41]. Although the magnitude 

and/or distribution of Hd in a sintered magnet depends on the shape, size, and 

the orientational dispersion of the Nd2Fe14B crystal grains, an enhancement 

of Hd can assist nucleation of the reverse magnetic domains, which leads to 



11 

 

deterioration of the coercivity [40, 41]. The impact of Hd on the coercivity 

mechanism has been studied using micromagnetic simulations, in which 

model specimens with simple shapes were addressed [41-47]. Among the 

models, Kronmüller model is used to analyze the coercivity 

phenomenologically, where the coercivity can be expressed as: 

𝐻𝐻𝑐𝑐(𝑇𝑇) = 𝛼𝛼𝐻𝐻𝑀𝑀(𝑇𝑇) − 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝒩𝒩𝑠𝑠(𝑇𝑇),    (1.7) 

where parameter 𝛼𝛼  describes the reduction of the 𝐻𝐻𝑀𝑀  due to the 

microstructural defects or the c-axis misalignment of grains, 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 describes 

the reduction of the coercivity due to the demagnetization field, which can 

be regarded as the microstructural factors influencing local effective 

demagnetization [48]. The micromagnetic parameters 𝛼𝛼  and 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒  for 

various types of Nd-Fe-B magnets can be deduced from the slope and the 

intercept by linear fitting of 𝐻𝐻𝑐𝑐/𝒩𝒩𝑠𝑠 versus 𝐻𝐻𝑚𝑚/𝒩𝒩𝑠𝑠. According to the study 

by Fischbacher et. al., the 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒 [49] increased as the artificial crystal grains 

became platelet shaped. In addition, as a result of the Hd calculations using 

the micromagnetic simulation (i.e., Landau-Lifshitz-Gilbert calculations 

[50,51]), Li et al. [41] indicated that both the edges and corners of crystal 

grains (approximated by a polyhedron) could provide potential nucleation 

sites for magnetization reversal, which is strongly related to the distribution 

of demagnetization field that is the largest at the c-plane surfaces of the 

grains as shown in Fig. 1.5. Bance et al. [43] calculated the demagnetization 

field for different diameters of artificial crystal grains (from 55 nm to 8.3 

μm) to discuss the roles of the surface grains on the magnetization reversal. 

However, despite these intensive studies with simulations, experimental 

tools that allow for discussion about Hd within real magnet are still lacking. 
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This provides us the motivation to obtain the information about Hd within a 

Nd-Fe-B magnet using electron holography observation, which will be 

discussed in Chapter 1.4.  

 

1.3 Background on electron holography 

Electron holography [52,53] is a powerful electron-interference technique 

that can be used through transmission electron microscopy (TEM). Initially, 

electron holography was proposed to recover the phase shift to overcome the 

problem of TEM imaging in which the phase shift information of the high-

energy electron wave passing through the specimen is lost [54]. Note that the 

phase shift of electron waves passed through specimen is directly related to 

Fig. 1.5 The z component of Hd distribution for the model specimen. The direction 
of c-axis indicates z direction [41]. 
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the in-plane of magnetic flux density and the electrostatic potential in the 

specimen, which can provide the quantitative measurement of electric and 

magnetic field with high resolution and sensitivity. Among the holography 

techniques, off-axis electron holography is commonly most used as 

illustrated schematically in Fig. 1.6. The specimen is examined using 

coherent illumination from an electron source with the region of interest 

positioned so that it covers approximately half the field of view. The 

electrostatic biprism located close to a conjugate image plane in the 

microscope functions to overlap the object wave passing through the region 

of interest on the specimen with the reference wave passing through the 

vacuum. The interference pattern (i.e., electron hologram) must then be 

processed to retrieve or reconstruct a complex electronic wavefunction that 

Fig. 1.6 Electron-beam diagram showing conventional electron holography 
experiments [27] 
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conveys the desired phase and amplitude information about the sample. 

Regarding magnetic materials, holograms are typically recorded with the 

conventional microscope objective lens turned off, as strong magnetic field 

derived from objective lens can make the specimen undesirably magnetized 

along the electron beam direction. For this point, specimen may be placed in 

a field-free environment using a Lorentz lens (e.g., mini-lens located under 

the lower objective pole-piece) to record holograms at high magnification. 

The phase information (i.e., reconstructed phase image) obtained from the 

electron hologram allows for the magnetic flux density measurement from a 

nanometer-scaled area, and reveals the magnetic domain structure.  

The practical use of electron holography could be achieved from the 

development of stable coherent field emission gun (FEG) on TEM [55]. 

Thereafter, the progress of peripheral techniques includes the rapid growth 

in computer speed and memory [52, 56], the multiple biprism [57-59] 

enabling the holograms to be collected free from undesired Fresnel fringes, 

the sophisticated aberration-correction systems bring about the reconstructed 

phase image in the improved lateral resolution, the advent of the slow-scan 

charge-coupled-device (CCD) camera [60] that records the hologram with 

sufficient contrast minimizing the specimen/beam drift within a reasonable 

exposure time, and in recent the development of the direct detection camera 

having an excellent modulation transfer function [61].  

 

1.4 Magnetic domain observation using electron holography 

 1.4.1 Advantages of electron holography 

In addition to electron holography, Lorentz microscopy, one of the TEM 
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techniques, is useful method to image the magnetic domain structures. 

Lorentz microscopy uses the sideways deflection of incident electrons (i.e., 

Lorentz force) derived from the magnetic field of the specimen. By Lorentz 

microscopy (i.e., using Fresnel mode) the position of magnetic domain walls 

can be indicated by black and white lines due to the deficiency and excess of 

electrons induced by Lorentz force in the defocused condition [62,63], which 

allows for in-situ observation of domain wall motion during magnetization 

reversal. However, it is difficult to observe the domain walls with high 

contrast in Lorentz image under the complex magnetization distribution such 

as the direction of magnetic flux lines across the domain walls, and difficult 

to obtain the quantification information of magnetic field. Several techniques 

used to investigate the local magnetic properties of materials, including 

micro-SQUID magnetometry [64], magnetic force microscopy (MFM) 

[65,66], photoemission electron microscopy (PEEM) [67] also have 

insufficient spatial resolution for the observation of magnetic domain 

structures in nanometer-sized magnetic materials and/or vortex-core 

structures.  

On the other hand, electron holography can provide the information of 

detailed magnetization distribution or the direction and strength of the 

magnetic flux density at high resolution that can approach the nanometer 

scale, and can reveal the leakage of the magnetic field outside the specimen. 

Therefore, it is possible to understand important magnetic properties such as 

coercivity and magnetization reversal behavior through in-depth analysis on 

the magnetic domain structure using electron holography.  
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1.4.2 Research review  

Thanks to useful features described in the above section, electron 

holography has been intensively applied to the various magnetic materials 

fields including both hard-magnetic and soft-magnetic materials [68-72], 

magnetic nanoparticles [73-80], magnetic recording system [81], fluxon in 

superconductor [82], magnetic skyrmions and chiral systems [83-88], etc. 

For the development of hard and soft magnetic materials with their high 

performance, many studies using electron holography has been conducted to 

obtain the information of magnetic domains. McCartney and Zhu [68,69] 

Fig. 1.7 (a) and (b) Overfocus and under focus Lorentz micrographs of Nd2Fe14B 
showing domains walls. (c) Reconstructed phase image from area outlined in (b), 
with phase contour spacings of 0.5𝝅𝝅 radians. (d) Magnetic induction map derived 
from phase gradients showing 90° and 180° domain walls [68, 69] 
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revealed the magnetic domain structures in sintered Nd2Fe14B permanent 

magnet using Lorentz microscopy in Figs. 1.7(a) and (b), and Fig. 1.7(c), 

magnified region from Fig. 1.7(b), showed the reconstructed phase image 

where the spacing of the contour lines (i.e., the phase shift per unit length 

[53]) provides information about the in-plane component of B. Direction and 

size of arrows in a vector map of Fig. 1.7(d) indicates the direction and 

strength of the B, which are given from the phase gradient information using 

Fig. 1.7(c). As a result, the magnetization of three magnetic domains for the 

top, middle, and bottom position were determined to be 0.8, 1.2, and 0.5 T, 

respectively. They thought that these differences happened because of 

unconsidered phase information immediately above and below the sample 

Fig. 1.8 (a) and (b) Reconstructed phase images of as-quenched Fe73.5Cu1Nb3Si13.5B9 
for the increase of tilting angle. (c) and (d) Reconstructed phase images of 
Fe73.5Cu1Nb3Si13.5B9 annealed at 973 K for the increase of tilting angle. In-plane 
components of the external magnetic field are (b) 8.3 A/m and (d) 16.6 A/m [71]. 
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surface or holography feature only sensitive to the in-plane components of 

the B.  

Especially, Hc is strongly related to not only microstructure but also 

magnetic domain structures, as described in Chapter 1.2. Shindo et. al. [71] 

investigated in-situ observation of magnetic domain structures in variably 

annealed Fe73.5Cu1Nb3Si13.5B9 soft magnets in Fig. 1.8 as the external 

magnetic field was applied perpendicular to the specimen. They figured out 

through the reconstructed phase images of Figs. 1.8 (c) and (d) the undesired 

increase of the Hc in terms of the soft magnetic magnet was because the 

Fig.1.9 Electron holography and micromagnetic simulations for a single isolated Fe 
nanocube. (a) TEM image reveals the cubic structure and an external iron oxide 
layer surrounding the nanocube. (b) Phase image corresponding to the magnetic 
contribution to the phase shift with 0.05 rad isophase contours. Note the cylindrical 
symmetry of the magnetic flux line. (c) Vector map of the in-plane induction [75]. 
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strong pinning of magnetic domain walls was induced by the increased size 

of precipitates during annealing at the grain boundaries.   

The analysis on magnetic nanostructures has significantly attracted many 

fundamental scientific interests [89] as magnetic nanoparticles can be 

applied for magnetic recording. However, the nanoparticles make the phase 

Fig.1.10 Magnetic flux maps of the skyrmion lattice. (a) Two-dimensional map 
showing the phase shift due to magnetic vector potential. A plot A-B is shown in (d). 
(b) Magnetic flux in the skyrmion lattice. (c) Enlarged image corresponding to the 
area indicated by the red square in (b). The asterisk in red indicates the region in 
which we determined the in-plane component of B. (d) Phase shift profile 
corresponding to line A-B in (a) [83]. 
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analysis difficult because magnetic phase change decreases with their 

reduced width (i.e., due to the size dependence of magnetic phase shift). Also, 

experimental parameters can affect the phase analysis because narrow fringe 

spacing in holograms to adapt for the limited specimen dimensions 

deteriorates the fringe contrast (i.e., visibility of holograms) [90], which 

results in the low quality of phase image. Great details about parameters 

determining the precision of phase analysis will be discussed in Chapter 6.  

Snoek et. al. [75] revealed magnetic domain structures (i.e., vortex states) 

at remanent state (with no external applied magnetic field) of room 

temperature for 30 nm Fe nanocubes with single crystallinity. They 

successfully characterized the vortex states in the assemblies of 4 nanocubes 

at high spatial resolution (~5 nm) with the combination of micromagnetic 

simulation, which is presented in Fig. 1.9. Park et. al. [83] showed that 

electron holography is also useful tool for visualization for complex 

magnetic structure (i.e., three-dimensional spin structures of a skyrmion 

lattice) in helimagnet Fe0.5Co0.5Si thin foil, as shown in Fig. 1.10. The 

magnetic flux density even in weak phase objects such as skyrmions could 

be determined as 0.04±0.005 T for the asterisk region of Fig. 1.10 (c) by 

separating the phase shift due to electrostatic potential and magnetic phase 

shift. The operation to only obtain the magnetic phase shift was also 

performed in this thesis, and the process will be explained in Chapter 2.  

 

1.4.3 Challenge in electron holography: phase information of 

demagnetization field 

As the research review suggests, electron holography is only sensitive to B, 
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which is comprised of the contributions from M and H in Eqs. (1.2) and (1.3). 

In addition, there are two sources for the magnetic field H, i.e., the Hd inside 

of the specimen, and Hs that exists outside of the specimen that are described 

in Chapter 1.1. Therefore, it remains challenging to extract phase 

information about Hd within a thin-foil specimen. This problem is common 

for other methods of electron microscopy, such as Lorentz microscopy and 

differential phase contrast method.  

 

1.5 Purpose and construction of this study 

The purpose of this study is to establish a method that allows for extracting 

the phase information related to Hd within a single-crystalline Nd2Fe14B foil. 

A process to determine the phase information approximating Hd will be 

explained in the subsequent chapters. The validity of this method is 

examined via the application to an artificial bar magnet (Nd2Fe14B) shaped 

in a square pillar. Finally, this method is applied to the mapping of Hd in a 

real specimen that is made of a single-crystalline Nd2Fe14B grain. On the 

other hand, the accuracy of this method proposed should improve, as the 

results (i.e., the phase map and the mapping about Hd) are obtained through 

various processes such as the subtraction or differentiation of the phase 

information. Towards the precision improvement of the method, the noise 

reduction, as one of useful imaging processing, is applied to the 

reconstructed phase image of a thin-foil Nd2Fe14B specimen, in which the 

author uses the wavelet hidden Markov model (WHMM) that allows the 

discrimination of weak signal than the threshold. This study is divided into 

7 chapters and the construction of this study is follows: 
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In Chapter 2, the basic principles and applications of electron microscopy 

techniques that are utilized in this study will be described, including TEM, 

electron holography, electron diffraction, and electron energy-loss 

spectroscopy (EELS).   

In Chapter 3, the method that extracts the phase information relevant to Hd 

from the electron holography observation will be proposed, for which the 

process to reduce undesired other phase components about M and Hs will be 

also explained using the surface integral for magnetic fields. Also, technical 

problems of this method and unsuccessful cases of the phase Hd mapping 

will be remarked.  

In Chapter 4, the method proposed in Chapter 3 will be applied to an 

artificial Nd2Fe14B specimen having a simple rectangular shape. Following 

the method, we shall figure out the effectiveness of this method that provides 

the phase information of Hd extracted from the phase shift representing B. 

The distribution of Hd within the artificial specimen will be mapped, derived 

from the phase shift Hd.  

In Chapter 5, the method will be also applied to a real thin-foil specimen 

consisting of a single Nd2Fe14B grain to obtain the map of Hd. For unwanted 

phase contributions due to M and Hs, diverse electron microscope techniques 

including TEM observations, the electron diffraction pattern and EELS will 

be exploited to obtain the crystallographic/morphologic features of the real 

specimen. As a result of applying the method, the map of Hd will be 

compared with the result of micromagnetic simulations to demonstrate the 

validity of the method. 

In Chapter 6, WHMM for denoising of electron holography observation for 
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a thin-foil Nd2Fe14B specimen will be conducted to examine the 

effectiveness of noise reduction that can be applied to the method for the 

precision improvement of phase analysis in the future. The impact of the 

noise reduction will be discussed in terms of the phase discontinuity induced 

by the low visibility of electron holograms.  

In Chapter 7, the achievements in this study are summarized.  
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E. Dunin-Borkowski (2018) Experimental observation of chiral magnetic 

bobbers in B20-type FeGe. Nature Nanotech. 13: 451-455. 

89. M. R. McCartney, & D. J. Smith (2007) Electron holography: Phase 

imaging with nanometer resolution. Annu. Rev. Mater. Res. 37: 729-767. 

90. A. Harscher and H. Lichte (1996) Experimental study of amplitude and 

phase detection limits in electron holography, Ultramicroscopy 64: 57-66. 

 

  



35 

 

2. Methods 

 

Electron holography is the most important tool in this study to obtain the 

magnetic phase information, so the principle and the application of electron 

holography are mainly addressed in this chapter. In addition to electron 

holography, conventional transmission electron microscopy (TEM) 

techniques and electron energy-loss spectroscopy (EELS) were utilized to do 

main work, and accordingly, this chapter also briefly explains the 

background and functions used in this thesis regarding TEM and EELS.    

 

2.1 Electron microscopy 

Electron microscope was initially proposed to overcome the limited image 

resolution in light microscopes, which is caused by the wavelength of visible 

light. Louis de Broglie in 1925 [1] first theoretically proposed that the 

electron had wave-like characteristics with a wavelength substantially less 

than visible light, which was independently demonstrated by Davisson and 

Germer [2], and Thompson and Reid in 1927 [3] through electron diffraction 

experiments demonstrating the wave nature of electron. Henceforth, an 

electron microscope was proposed and expanded from the first application 

of electron lenses into a practical reality by Knoll and Ruska in 1932 [4] to 

the widespread use of TEM by many groups, and when the effect of 

aberration is disregarded, the resolution (𝛿𝛿) of electron microscope can be 

represented in terms of the classical Rayleigh criterion []: 
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𝛿𝛿 = 0.61𝜆𝜆
𝑛𝑛 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠

,    (2.1) 

 

where 𝜆𝜆  is the wavelength of electron, 𝑛𝑛  is the refractive index of the 

medium between electron source and lens, and 𝛽𝛽  is the semi-angle of 

collection of the magnifying lens. Equation (2.1) provides that the imaging 

resolution are strongly related to the wavelength of incident electron beams. 

The wavelength depends on the acceleration voltage of the microscope, and 

this can be defined by Eq. (2.2). The 𝜆𝜆 can be expressed in terms of the 

particle momentum 𝑝𝑝(= 𝑚𝑚0𝑣𝑣 ) based on de Broglie’s ideas of the wave-

particle duality. 

 

𝜆𝜆 = ℎ
𝑚𝑚0𝑣𝑣

,   (2.2) 

 

where 𝑚𝑚0 , 𝑣𝑣  and ℎ  are the rest mass of electron, electron velocity and 

Planck’s constant, respectively. The momentum is imparted to the electron 

by accelerating it through the potential drop, i.e., the acceleration voltage in 

microscope V, giving it kinetic energy. This potential energy 𝑒𝑒𝑑𝑑 equals to 

the kinetic energy: 

 

𝑒𝑒𝑑𝑑 = 𝑚𝑚0𝑣𝑣2

2
.   (2.3) 
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With Eqs. (2.2) and (2.3), the wavelength can be rewritten in terms of the 

acceleration voltage to account for the relativistic effect (i.e., to consider the 

velocity of light in vacuum, 𝑐𝑐): 

 

𝜆𝜆 = ℎ

[𝑚𝑚0𝑒𝑒𝑒𝑒(1+ 𝑒𝑒𝑒𝑒
2𝑚𝑚0𝑐𝑐2

)]1 2�
 .   (2.4) 

 

This relationship provides an important concept that the wavelength of the 

electrons decreases by increasing the acceleration voltage of microscopy.   

 Incident electrons produces various interactions with the specimen as 

shown in Fig. 2.1. For thin specimen, many electrons traverse the specimen, 

where the traversed electrons can be divided into two groups: (1) elastic 

scattering and (2) inelastic scattering. The elastic scattered electrons change 

the direction of the incident electron motion without changing their velocity 

or energy. Scattering of incident electrons by the nucleus is mostly elastic 

scattering. Since the mass of the nucleus is much greater than the mass of the 

electron, when an incident electron moves near the nucleus, it is affected by 

the nucleus’s strong coulomb field. For this reason, the electron only changes 

the direction of motion without losing energy. Diffracted electrons fall into 

the category of elastic scattering where high-resolution electron microscopy 

and TEM imaging modes such as bright-field and dark field image can be 

utilized. In contrast, the inelastically scattered electrons change their velocity 

or energy, i.e., loss of the electron energy. The scattering of electrons from 

extranuclear electrons to incident electrons is primarily inelastic scattering. 

This is because extranuclear electrons easily obtain energy from the incident 
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electrons as the direction of incident electrons changes when they with 

similar properties to incident electrons collide with each other. Those 

incident electrons that lose energy and slow down their movement produce 

heat, light, characteristic X-ray, secondary electron signal, etc. Analytical 

electron microscopy utilizes the feature of inelastic scattering. EELS are 

most popularly used in analytical electron microscopy by utilizing inelastic 

electron scattering process.  

 

2.1.1 Transmission electron microscopy 

Fig. 2.1 Incident electron beam interaction with the sample [5]. 
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Transmission electron microscopy is a powerful method for characterizing 

the microstructure, and can be utilized with other analytical instruments such 

as EELS and energy-dispersive X-ray spectroscopy (EDS) providing useful 

information of chemical compositions, electronic states, thickness, etc. 

Electrons emitted from an electron gun, which are accelerated and passed 

through illumination lenses, are incident on a specimen. After traversing the 

specimen, the electrons form an image by appropriate action of the objective 

lens. The enlarged image is formed via image-forming lenses. The final 

image formed on the fluorescent scree is observed through a window of a 

viewing chamber, and the image is recorded on photo-film in the camera 

chamber.  

Electrons are emitted from an electron gun located at the top of the 

microscope column. There are two types of electron gun, i.e., thermionic 

emission type and field emission type, which determines the electron beam 

characteristics (e.g., the diameter of electron beam and the width of energy 

spread). The tungsten (W) hairpin filament of a thermionic emission type 

electron gun was widely used for a long time, but recently the lanthanum 

hexaboride (LaB6) single-crystal filament has been widely used because of 

its higher brightness than the W filament. However, the field emission gun 

(FEG) can produce the electrons in higher brightness and higher coherences 

than the thermionic emission gun. This is because electrons in metals pass 

through a potential barrier by the tunneling effect and can be emitted from 

the metal surface when a strong electric field is applied to the metal surface, 

which is called field emission. The FEG provides approximately 100 times 

higher electron brightness than thermionic emission gun made with LaB6 

filament and allows for a very small electron source, resulting in high 
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coherence of electrons. Thanks to the characteristics of FEG, it has been most 

widely introduced into analytical electron microscopes and makes the 

electron holography study possible and practically used, as mentioned in 

Chapter 1. The FEG has two types of guns, i.e., Cold and Thermal field 

emission gun. The cold FEG (also used in this thesis) uses tungsten emitter 

with the surface of the (310) plane and works at room temperature without 

heating. Since the energy spread is small (0.3-0.5 eV), we can obtain high-

energy resolution although the emission noise and/or instability of the 

emission is caused by the contamination of the residual gas on the emitter. 

This problem requires the regular maintenance that is flashing procedure. 

Thermal FEG, the other type of FEGs, works at high temperature (1600-1800 

K) under a strong electric field by which electrons are emitted that pass 

through a decreased potential barrier (i.e., Schottky effect). The thermal FEG 

has the disadvantage of a large energy spread (0.6-0.8 eV) due to the heating 

of the emitter but provides a stable emission current without the flashing 

procedure.  

Fig. 2.2 Cross section of polepiece of the objective lens [6]. 
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Objective lens is the first-stage lens to form an image after the electrons 

pass through the specimen. The objective lens consists of lens coil, a 

magnetic circuit (yoke), and a polepiece, which is illustrated in the cross 

section of a polepiece of the objective lens of Fig. 2.2. A strong magnetic 

field is generated in a space between the upper and lower polepieces, so the 

objective lens must be turned off to observe the intrinsic magnetic domains 

in the specimen, as explained in Chapter 1.3. An objective aperture, located 

on the back focal plane corresponding to the reciprocal space, selects the 

electron beam for subsequent imaging, and this function enables us to obtain 

the images with different contrast (e.g., dark-field imaging by selecting a 

specific diffracted wave by an objective aperture).  

Magnifying the image can be done by changing the focal length (i.e., 

changing the lens current). Figure 2.3(a) shows the lens system of normal 

imaging mode. At first, a transmitted image of the specimen illuminated with 

Fig. 2.3 Schematic imaging system in (a)conventional TEM imaging mode, (b) 

Low-Mag mode and (c) diffraction mode [7]. 
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electrons is magnified by the objective lens. Here, the magnifying lens 

system includes an objective minilens (OM lens), an intermediate lens, and 

a projector lens. In typical magnification mode of Fig. 2.3(a), the image is 

magnified by the first intermediate lens that is adjusted to the image plane of 

the objective lens in the OM lens turned off. Figure 2.3(b) shows the lens 

system of imaging mode at low magnification (i.e., Low-Mag mode) with 

the objective lens turned off. In Low-Mag mode, all the magnifying lens 

system contributes the formation of image except for the first intermediate 

lens. On the other hand, Fig. 2.3(c) shows the lens system of diffraction mode, 

resulting in the electron diffraction pattern. The electron diffraction is an 

indispensable part of TEM because it provides crystal structure, crystal 

orientation, lattice spacing and so on. In diffraction mode, the first 

intermediate lens is adjusted at the back focal plane of the objective lens in 

the state of the OM lens turned off, so the magnifying lens system magnifies 

the electron diffraction pattern formed on the back focal plane. The electron 

diffraction angle 2𝜃𝜃 depends on the crystal structure of specimen, which can 

be given by the Bragg’s law: 

 

2𝑑𝑑(ℎ𝑘𝑘𝑘𝑘)𝑠𝑠𝑠𝑠𝑛𝑛𝜃𝜃 = 𝑛𝑛𝜆𝜆,    (2.5) 

 

where 𝑑𝑑(ℎ𝑘𝑘𝑘𝑘), 𝑛𝑛 and 𝜆𝜆 represent the interplanar distance of crystal plane 

ℎ𝑘𝑘𝑘𝑘, the order of diffraction (usually 𝑛𝑛 =1 for first order) and the electron 

wavelength, respectively. The diffracted planes belong to specific zone axis 

[𝑈𝑈𝑑𝑑𝑈𝑈], which can be defined as the incident direction and follow the Weiss 

zone law: ℎ𝑈𝑈 + 𝑘𝑘𝑑𝑑 + 𝑘𝑘𝑈𝑈 = 0. Figure 2.4 (a) shows the electron diffraction 
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pattern of Si at the zone axis of [010] where the diffracted plans (ℎ𝑘𝑘𝑘𝑘) are 

parallel to the zone axis vector and the information crystal orientation can 

obtained. The direction of c-axis indicated by blue arrows in the electron 

diffraction pattern of Fig. 2.4(a) approximately corresponds to the real c-axis 

of Si unit cell in Fig. 2.4(b). In this study, the author calculated the orientation 

of c-axis of a single crystalline Nd2Fe14B specimen, and the process to 

determine the direction of c-axis will be explained in Chapter 5.  

 

2.1.2 Electron energy-loss spectroscopy 

As described in the above section, the electrons passing through a specimen 

can be divided into two groups. One group contains the elastically scattered 

electrons without energy loss. The other group includes the inelastically 

scattered electrons, and this inelastic scattering electrons can be observed by 

using a spectrometer of EELS. Previously, EELS was only effective for 

elemental analysis for light elements, but was generally considered useless 

Fig. 2.4 (a) Electron diffraction pattern of Si at the zone axis of [010]. (b) Cubic 

unit cell of Si 
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for quantitative analysis compared to EDS. For high performance of the 

detector and the development of FEG, the analysis accuracy of EELS was 

significantly improved, which has attracted many attentions for new 

applications such as elemental mapping, background subtraction in electron 

diffraction patterns, and measurement of specimen thickness and chemical 

states of elements. Representative energy-loss processes and their energy 

ranges are (1) Lattice vibration (phonon excitation, less than 0.1 eV), (2) 

Collective excitation of valence electrons (plasmon excitation, less than 30 

eV), (3) Interband transition (less than 10 eV), (4) Inner-shell electron 

excitation (core electron excitation, more than 13 eV), (5) Excitation of free 

electron (secondary electron emission, less than 50eV), and (6) 

Bremsstrahlung (emission of continuous X-rays, spectrum background). 

Figure 2.5 shows a typical energy-loss spectrum (for an iron oxide particle). 

A sharp peak appears at 0 eV, which is called zero-loss peak, and corresponds 

to the elastically scattered electrons (both transmitted and diffracted beams). 

Fig. 2.5 Typical energy-loss spectrum for an iron oxide particle [6].  
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Near the zero-loss peak, there is a peak that results from the plasmon 

excitation. In the higher energy-loss region, energy-loss peaks appear due to 

inner-shall excitation of the elements included in the specimen. The energy 

values and intensity distribution can be used to identify the elemental 

composition. Among useful analysis methods by utilizing these energy-loss 

process, this section mainly deals with the estimation method of specimen 

thickness, as it will be used in Chapter 5.     

The EELS can provide an approximate value of thickness from both 

crystalline and amorphous specimens by straightforward integration of the 

EELS spectrum. The intensity of the zero-loss peak I0 can be expressed with 

specimen thickness t: 

 

𝐼𝐼0 = 𝐼𝐼𝑡𝑡exp �− 𝑡𝑡
𝜆𝜆
�,   (2.6) 

 

where 𝐼𝐼𝑡𝑡  is the total intensity of the energy-loss spectrum and 𝜆𝜆  is the 

mean free path for inelastic scattering that depends on the collection angle 
𝛽𝛽 . For a thin-foil specimen, in general, the plasmon excitation is most 

probable inelastically scattering, thus the main components of 𝜆𝜆  can be 

considered to be due to plasmon excitation. The Eq. (2.6) can be rewritten in 

terms of specimen thickness t as follows: 

 

𝑡𝑡
𝜆𝜆

= ln 𝐼𝐼𝑡𝑡
𝐼𝐼0

.   (2.7), 
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which is called log-ratio technique. With Eq. (2.7) this technique provides 

the information of t. If 𝜆𝜆 is known, the specimen thickness can be obtained. 

To figure out the 𝜆𝜆, Iakoubovskii and Mitsuishi [8] measured the 𝜆𝜆 with a 

200 keV TEM for most of stable elements and their oxides. Malis et. al., [9] 

proposed an equation allowing for the determination of the 𝜆𝜆  for the 

specimen composing of various elements although the collection angle 𝛽𝛽 is 

necessary:  

 

𝜆𝜆 = 106𝐹𝐹(𝐸𝐸𝑜𝑜 𝐸𝐸𝑚𝑚⁄ )
ln(2𝐸𝐸𝑜𝑜𝑠𝑠/𝐸𝐸𝑚𝑚)

.    (2.8) 

 

In this study, the specimen thickness for a thin-foil Nd2Fe14B specimen was 

obtained by using the log-ratio method of EELS. However, the 𝜆𝜆 for the 

Nd2Fe14B phase has not been reported. To determine the 𝜆𝜆, in place of using 

Eq. (2.8), a complex analysis was performed through combination of a cross-

sectional TEM observation and magnetic field simulation, and this will be 

discussed in Chapter 5. 

 

2.2 Principle of electron holography 

To explain the basic principle of electron holography, Fig. 2.6 shows a 

schematic cross section of a bar magnet that is magnetized in the y direction. 

The magnet is irradiated by incident electrons propagating in the − z 

direction. Both the arrows P0-P and Q0-Q represent the trajectories of 

electrons. For simplicity, it is assumed that the points P0, P, Q0, and Q are 

distanced sufficiently from the bar magnet, and there is only negligible 
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magnetic flux density at those points. Regarding the point P below the bar 

magnet in Fig. 2.6, the phase of the electron wave that has traversed the 

specimen, i.e., the change in phase between P0 and P, is expressed by 

 

𝜙𝜙𝑃𝑃 = 𝜎𝜎 ∫ 𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑧𝑧𝑃𝑃
𝑃𝑃0

− 𝑒𝑒
ℏ ∫ 𝐴𝐴𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑧𝑧𝑃𝑃

𝑃𝑃0
,    (2.9) 

 

where σ, e and ℏ  are an interaction constant that depends on the 

acceleration voltage applied to the incident electrons, the elementary charge, 

and Planck’s constant divided by 2π, respectively. 𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) represents the 

electrostatic scalar potential. If the electric charging of the specimen is 

negligible, then this term approximates the mean inner potential of the 

specimen [10]. 𝐴𝐴𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is the z component of the vector potential (A) 

Fig. 2.6 Schematic illustration showing a cross section of a magnetic bar 

magnetized in the y direction. Incident electrons traverse in the −𝒛𝒛 direction.  
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with respect to the magnetic flux density (B). Similarly, the phase shift at 

point Q, i.e., 𝜙𝜙𝑄𝑄, can be expressed using the line integral with V(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and 

Az(𝑥𝑥,𝑦𝑦, 𝑧𝑧), as shown in Eq. (2.9).  

 

2.2.1 Phase shift due to magnetic flux density  

Note that the phase shift due to V(𝑥𝑥,𝑦𝑦, 𝑧𝑧) can be separated from that of 

Az(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  by the method referred to as a time-reversal operation using 

electron waves [11]. For TEM observations, the time reversal can be attained 

by flipping the specimen upside down with respect to the incident electrons. 

These operation remains the electric fields (E) contribution to the phase shift 

(𝜙𝜙 ) unchanged but makes the magnetic field contribution opposite sign. 

Conceptually, these effects can be understood with reference to the following 

relationships: 

 

Fig. 2.7 Schematic representation showing the time reversal of electron 

trajectories in electromagnetic fields [11].  
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𝑚𝑚𝑑𝑑𝝂𝝂
𝑑𝑑𝑡𝑡

= −𝑒𝑒(𝑬𝑬 + 𝝂𝝂 × 𝑩𝑩)    (2.10) 

𝑚𝑚𝑑𝑑𝝂𝝂
𝑑𝑑𝑡𝑡

= −𝑒𝑒(𝑬𝑬 − 𝝂𝝂 × 𝑩𝑩)    (2.11), 

 

where 𝑡𝑡  and 𝜈𝜈  stands for the specimen thickness and electron velocity, 

respectively. Equation (2.11) represents the situation that the electron beam 

is incident to the specimen along the same trajectory but from the opposite 

direction, as shown in Fig. 2.7. Therefore, by subtracting the two holograms 

for the time reversal the phase shift due to the magnetic field only, i.e., the 

second term of Eq. (2.9), can be obtained, as presented in Fig. 2.8 [separation 

between the field contributions of Fig. 2.8(a) and the magnetic field 

Fig. 2.7 Reconstructed phase images representing the contribution of (a) electric 

field and (b) magnetic field for a single crystalline Nd2Fe14B specimen.   
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contributions of Fig. 2.8(b) to 𝜙𝜙]. With regard to the contribution from the 

magnetic field, the phase shift between the two points P and Q below the 

specimen in Fig. 2.6 is presented by, 

 

𝜙𝜙𝑃𝑃𝑄𝑄 = − 𝑒𝑒
ℏ ∫ 𝐴𝐴𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑄𝑄

𝑄𝑄0
𝑑𝑑𝑧𝑧 + 𝑒𝑒

ℏ ∫ 𝐴𝐴𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑃𝑃
𝑃𝑃0

𝑑𝑑𝑧𝑧.    (2.12)  

 

The Stokes’ theorem and the relationship B = rotA are used to rewrite the 

phase shift 𝜙𝜙𝑃𝑃𝑄𝑄 of Eq. (2.12) using the surface integral in terms of the y 

component of the magnetic flux density By(𝑥𝑥,𝑦𝑦, 𝑧𝑧), resulting in Eq. (2.14): 

 

𝜙𝜙𝑃𝑃𝑄𝑄 = − 𝑒𝑒
ℏ ∮ 𝐴𝐴𝑧𝑧 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧𝑃𝑃0𝑄𝑄0𝑄𝑄𝑃𝑃

       (2.13) 

𝜙𝜙𝑃𝑃𝑄𝑄 = − 𝑒𝑒
ℏ∬ 𝐵𝐵𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧𝑃𝑃0𝑄𝑄0𝑄𝑄𝑃𝑃

,     (2.14) 

 

where the surface integral should be performed over the closed area 𝑃𝑃0𝑄𝑄0𝑄𝑄𝑃𝑃. 

In what follows in this paper, the phase shift will be calculated with reference 

to the surface integral using 𝐵𝐵𝑦𝑦, in place of the line integral using 𝐴𝐴𝑧𝑧. The 

reason for adopting the surface integral using 𝐵𝐵𝑦𝑦 instead of the line integral 

using 𝐴𝐴𝑧𝑧 in this thesis will be discussed in Chapter 3. It should be noted that 

Eq. (2.14) provides only the relative change in the phase between the 

measurement point Q and the reference point P. Therefore, when Eq. (2.14) 

is applied to a phase-shift analysis, the value of the phase at point P is 

assumed to be zero, so that 𝜙𝜙𝑃𝑃𝑄𝑄 simply provides the magnitude of the phase 
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shift between P and Q. To compare the phase-shift map calculated using Eq. 

(2.14) with an electron holography observation, the offset (i.e., initial value 

of the phase) should be determined for the reference point indicated by P. To 

determine the offset at the reference points, we referred to the values either 

in a reconstructed phase image determined by experiment (for analysis using 

the actual specimen) or in the calculations by the line integral using 𝐴𝐴𝑧𝑧 (for 

analysis using the artificial specimen), and this is discussed in great detail in 

Chapter 4 and 5.  

 

2.2.2 Process to obtain reconstructed phase image 

The phase shift in the object electron wave, which has traversed a specimen 

can be captured in an electron hologram that comprises interference fringes 

generated in association with the reference electron wave [12]. This 

reference wave should be free from phase modulation due to the 

electromagnetic field of the specimen. Digitized electron hologram can be 

considered as an interference pattern where the carrier fringes is modulated 

both in amplitude and frequency. Note that the frequency modulation is 

caused by the phase shift that includes the information about the 

electromagnetic fields of the specimen. Therefore, the reconstruction of the 

electron hologram must be conducted to recover the phase information [13]. 

Fourier transform (FT) has been commonly used to reconstruct the hologram 

and reveal the carrier frequency. First of all, the intensity distribution 𝐼𝐼(𝒓𝒓) 

in the hologram with carrier frequency 𝒒𝒒 can be written as [14]  

 

𝐼𝐼(𝒓𝒓) = 1 + 𝐴𝐴2(𝒓𝒓) + 𝐼𝐼𝑠𝑠𝑛𝑛𝑒𝑒𝑘𝑘(𝒓𝒓) + 2𝜇𝜇𝐴𝐴(𝒓𝒓)cos (2𝜋𝜋𝒒𝒒 ∙ 𝒓𝒓 + 𝜙𝜙(𝒓𝒓)),   (2.15) 
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where 𝜇𝜇 , 𝐼𝐼𝑠𝑠𝑛𝑛𝑒𝑒𝑘𝑘(𝒓𝒓) , 𝐴𝐴(𝒓𝒓)  and 𝜙𝜙(𝒓𝒓)  are the contrast of the fringes (to 

account for partial coherence), the inelastic (incoherent) background to the 

hologram, the amplitude and the phase of the image wave that modulate the 

cosinusoidal fringes, respectively. When the FT is applied to the hologram, 

Eq. (2.15) changes and consists of three parts: 

 

FT{𝐼𝐼(𝒓𝒓)} = FT{1 + 𝐴𝐴2(𝒓𝒓) + 𝐼𝐼𝑠𝑠𝑛𝑛𝑒𝑒𝑘𝑘(𝒓𝒓)}                  Centre band 

+𝜇𝜇FT�𝐴𝐴(𝒓𝒓)𝑒𝑒i𝜙𝜙(𝒓𝒓)� ⊗ 𝛿𝛿(𝒒𝒒 + 𝒒𝒒𝑐𝑐)     Side band 1 

+𝜇𝜇FT�𝐴𝐴(𝒓𝒓)𝑒𝑒i𝜙𝜙(𝒓𝒓)� ⊗ 𝛿𝛿(𝒒𝒒 − 𝒒𝒒𝑐𝑐)     Side band 2.   (2.16) 

 

Fig. 2.9 Schematic illustration of the reconstructed process [13]. 
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In Eq. (2.16), the centre band (or autocorrelation) is the FT of a conventional 

image and the two sidebands at 𝒒𝒒 ± 𝒒𝒒𝑐𝑐 are the parts representing the FTs 

of the complex image wave that includes the phase information, i.e., 𝜙𝜙(𝒓𝒓). 

The following process is to select one of the sidebands, cut it out and move 

it to the origin of Fourier space. Through an inverse FT with respect to a 

specific frequency zone (i.e., one of the sidebands), we can recover the real 

and imaginary parts of the complex image, and hence can obtain the 

reconstructed phase image. This sequence of processes is schematically 

presented in Fig. 2.9. Note that finding the precise centre of sideband must 

be careful as incorrect position induces a phase ramp across the reconstructed 

phase image. The centre is usually taken to be the pixel in the vicinity of the 

sideband with the highest intensity in the FT modulus. Although various 

methods have been reported to overcome this problem [10, 14], the most 

accurate method (also used in this thesis) is to use the blank hologram (i.e., 

reference hologram) recorded under identical conditions to the experiment, 

but not specimen. This method allows for the precise finding the centre 

because the fringes of blank hologram have not modulated by the object, and 

the removal of the spurious phase information due to the geometric 

distortions (caused by the projector system of the microscope like the lenses). 

After the sideband centre is precisely determined, the region around the 

sideband must be masked to move it to the origin, where the mask is circular 

and diffuse at the edges to minimize the abrupt loss of the information at the 

mask edge. The optimum size of mask depends on the materials [15], in 

general, the mask size is determined to be 1/3 of the carrier frequency. This 

represents that the high spatial resolution of the reconstructed phase image 

can be obtained with higher the frequency maintained over a larger radius, 



54 

 

which suggests importance of the requirement of narrow fringe spacing as 

possible in the electron hologram. However, narrow fringe spacing can 

deteriorate the fringe contrast, remaining the problem for the interferometry 

system, and this will be discussed in great details in Chapter 6. After the 

inverse FT, in addition, the values in the reconstructed phase image have 

discontinuities of 2𝜋𝜋 (i.e., phase jumps) because they are mathematically 

limited to the interval of (𝜋𝜋,𝜋𝜋] although the true phase span an interval larger 

than 2𝜋𝜋. To remove the phase jumps, true phase image determined from the 

wrapped the discontinuities in the phase, called phase unwrapping, is carried 

out by the simple method (i.e., a path-dependent method) that is identifying 

the phase jumps along a row or column of pixels and adding the appropriate 

integer multiple of 2𝜋𝜋 to each pixel in the wrapped phase. In practice, more 

sophisticated algorithms for phase unwrapping including the above 

algorithm have been suggested [16,17] because the presence of noise weaken 

the ability to reliably judge the existence of a phase jump. Finally, this 

process affords a reconstructed phase image, as shown in Fig. 2.7(b), which 

can be compared with the phase map that is calculated using the surface 

integral for 𝐵𝐵𝑦𝑦 (or line integral for 𝐴𝐴𝑧𝑧) as discussed in Chapter 5.  
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3. Method to extract phase information of demagnetization 

field 

 

3.1 Introduction  

Electron holography, an indispensable experimental tool in this study, 

enables us to observe the magnetic domains [1,2]. However, in principle, 

electron holography is only sensitive to magnetic flux density (B). More 

strictly, the phase shift in the incident electron wave is owing to the vector 

potential A, which is related to the magnetic flux by the relationship B = rot 

A. Other useful microscopy and spectroscopy have been used to analyze the 

local magnetic microstructure [3-7]. For example, X-ray magnetic dichroism 

(XMCD) [8,9], spin-polarized scanning tunneling microscopy (SP-STM) 

[10], and micro-SQUID magnetometry [11] are only sensitive magnetization 

(M), which is complementary functionality to electron holography. Magnetic 

force microcopy [12] does not provide the information straightforwardly on 

the near surface distribution of magnetization as it measures the magnetic 

force between the magnetic moment of the tip and the stray magnetic field 

(Hs) from the specimen. Among methods that can be used with transmission 

electron microscopy (TEM), Lorentz microscopy and differential phase 

contrast (DPC) microscopy are useful methods to reveal the magnetic 

domain structures [13-15], but they have the same issue for electron 

holography, i.e., only sensitive to B, which indicates difficulty of extracting 

the phase information due to demagnetization field Hd (also M) [16].  

This chapter pertains to this kind of discussion described above. 

Specifically, the author proposes a method for determining the phase maps 
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induced by each component of B (i.e., M and Hs) from electron holography 

observation and finally extracting phase information of Hd. In this chapter, 

we shall figure out some technical problem in the phase mapping that was 

obtained by using the surface integral with B. Namely, we shall discuss not 

only the successful cases of Hd mapping (as mentioned in the subsequent 

chapters) but also the unsuccessful cases in which the calculation of phase 

map was highly distorted due to the incorrect selection of the offset phase 

shift, as mentioned later in detail. On the other hand, it is commonly accepted 

that the phase shift of electron wave is induced by A, i.e., using line integral 

along the incident electron path (−𝑧𝑧 direction) passing through the specimen 

(refer to Chapter 2.2). However, in this study, the surface integral using B 

was employed. To show the correctness in the calculations using surface 

integral of B, the result was thoroughly compared with the calculation using 

the line integral of A. 

 

3.2 Proposal of the method to extract demagnetization field using 

electron holography 

The magnetic flux density B can be expressed using M (i.e., magnetic 

moment per unit volume), and the magnetic field H that is comprised of Hs 

outside of specimen and the Hd inside of specimen: 

 

𝐵𝐵 = 𝜇𝜇0𝒩𝒩 + 𝜇𝜇0𝐻𝐻 = 𝜇𝜇0𝒩𝒩 + 𝜇𝜇0𝐻𝐻𝑠𝑠 + 𝜇𝜇0𝐻𝐻𝑑𝑑 .   (3.1) 

 



59 

 

𝜇𝜇0 stands for the permeability of vacuum. In accordance with Eq. (3.1), we 

assume that the phase shift Δ𝜙𝜙𝐵𝐵  due to magnetic flux density, which is 

determined by electron holography, can be expressed using the three 

contributions: 

 

Δ𝜙𝜙𝐵𝐵 = Δ𝜙𝜙𝑀𝑀 + Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑 ,    (3.2) 

 

where Δ𝜙𝜙𝑀𝑀,  Δ𝜙𝜙𝐻𝐻𝑠𝑠 , and Δ𝜙𝜙𝐻𝐻𝑑𝑑  represent the phase shift due to 

magnetization, the stray magnetic field, and the demagnetization field, 

respectively. It is noted that the material parameter 𝑄𝑄(= 𝐾𝐾 𝐾𝐾𝑑𝑑⁄ ) is 4.5 in the 

Nd2Fe14B phase ,  where 𝐾𝐾  and 𝐾𝐾𝑑𝑑  represent the effective anisotropy 

constant (assumed to be equal to magnetocrystalline anisotropy Ku  =

4.5 × 106  J m-3) and the stray field energy coefficient (𝐾𝐾𝑑𝑑 = 𝜇𝜇0
2
𝒩𝒩𝑠𝑠

2 =

Fig. 3.1. schematic representations describing the principle and conditions of phase 
shift calculations using an artificial Nd2Fe14B bar magnet. (a) Cross section of 
specimen magnetized in the y direction. Incident electrons traverse in the −𝒛𝒛 
direction. (b) Parallelepiped specimen with a size of 3×2×10 nm3, and the cuboidal 
region (E, F, F0, E0, R, S, S0, and R0) irradiated by the object electron wave. (c) The 
area in which the phase images are revealed such as shown in Fig. 3.3. 
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1.0 × 106 J m-3), respectively [17-19]. The condition 𝑄𝑄 > 1 means that the 

magnetocrystalline anisotropy dominates the magnetic domain structure in a 

Nd2Fe14B specimen [19]. Therefore, it is reasonable to consider that the 

crystal grain is, in principle, magnetized along the c-axis (easy magnetization 

axis) of the Nd2Fe14B lattice. For the analysis using the experimental data, as 

shown in the subsequent chapter, both the direction of the c-axis and the 

thickness variation of the specimen could be determined from TEM 

observations. With reference to the cross-sectional view in the artificial bar 

magnet of Nd2Fe14B, as shown in Fig. 3.1(a) (identical to Fig. 2.6), M exists 

only in the area 2 (i.e., middle area in 𝑃𝑃0𝑄𝑄0𝑄𝑄𝑃𝑃). Therefore, we assume that 

the phase shift Δ𝜙𝜙𝑀𝑀 can be calculated using the surface integral for the area 

2: 

 

Δ𝜙𝜙𝑀𝑀 = − 𝑒𝑒
ℏ∬ 𝜇𝜇0𝒩𝒩𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧𝑚𝑚𝑎𝑎𝑒𝑒𝑚𝑚2 ,    (3.3) 

 

where 𝒩𝒩𝑦𝑦 represents the y component of magnetization: refer to the x-y-z 

coordinate system in Fig. 3.1. The surface integral should be performed over 

the entire cross-sectional area of the specimen. Note that Eq. (3.3) determines 

the phase shift due to magnetization, which is only one component that 

comprises Δ𝜙𝜙𝐵𝐵 observed in the P-Q line of Fig. 3.1(a). As a result of the 

surface integral to determine Δ𝜙𝜙𝑀𝑀 , we obtain another phase map that 

represents Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑, which is given by the subtraction of Δ𝜙𝜙𝑀𝑀 from 

Δ𝜙𝜙𝐵𝐵: 
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Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑 = Δ𝜙𝜙𝐵𝐵 − Δ𝜙𝜙𝑀𝑀.   (3.4) 

 

In regard to the Nd2Fe14B magnet, the residual phase map (Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑) 

by itself provides useful information on the demagnetization field within the 

specimen, as demonstrated in this chapter as well as in Chapter 4. However, 

for comprehensive studies on 𝐻𝐻𝑑𝑑, the contribution from 𝐻𝐻𝑠𝑠 (superposed to 

the phase map of Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑) should be reduced. For this purpose, in this 

study, the 𝐻𝐻𝑠𝑠  was calculated in three dimensions with reference to the 

specimen shape, the specimen thickness, and the orientation of the c-axis in 

the Nd2Fe14B crystal, using the commercial code ELF/MAGIC (ELF Corp.). 

After the calculation of Hs, the phase shift Δ𝜙𝜙𝐻𝐻𝑠𝑠 can be determined by the 

surface integrals for the area outside of the specimen [i.e., both area 1 and 

area 3 in 𝑃𝑃0𝑄𝑄0𝑄𝑄𝑃𝑃 as shown in Fig. 3.1(a)] as presented in Eq. (3.5), 

 

Δ𝜙𝜙𝐻𝐻𝑠𝑠 = − 𝑒𝑒
ℏ∬ 𝜇𝜇0𝐻𝐻𝑠𝑠

𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒 ,    (3.5) 

 

where 𝐻𝐻𝑠𝑠
𝑦𝑦  represents the y component of the stray magnetic field. As a 

result of the surface integrals of Eqs. (3.3) and (3.5), the phase shift due to 

demagnetization field can be determined by the subtraction expressed by 

 

Δ𝜙𝜙𝐻𝐻𝑑𝑑 = Δ𝜙𝜙𝐵𝐵 − Δ𝜙𝜙𝑀𝑀 − Δ𝜙𝜙𝐻𝐻𝑠𝑠 .    (3.6) 
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The usefulness of this method will be discussed in both Chapters 4 and 5 

through applications to an artificial bar magnet and a real thin-foil specimen 

of the Nd2Fe14B phase, respectively. However, various trials and errors have 

been made to obtain the appropriate phase map of Δ𝜙𝜙𝐻𝐻𝑑𝑑 from phase images, 

which is discussed in the next section.  

 

3.3 Simulations 

3.3.1 Calculations of three-dimensional magnetic field for Nd2Fe14B 

specimen 

To calculate the phase shift, an artificial Nd2Fe14B bar magnet was referred, 

as illustrated in Fig. 3.1(b). The size of the parallelepiped specimen is 3 nm 

in the x direction, 10 nm in the y direction (i.e., the long axis of the bar 

magnet), and 2 nm in the 𝑧𝑧 direction. The specimen is magnetized in the y 

direction, as indicated by the blue arrow, with the saturation magnetization 

𝜇𝜇𝑜𝑜𝒩𝒩 ≈ 1.6 T. As shown in Fig. 3.1(b), the small bar magnet was addressed 

in this simulation, since it reduced the calculation time about the three-

dimensional magnetic field and the repetition of surface integral to determine 

the phase shift. The aspect ratio (i.e., the length in the y direction divided by 

that in the x direction) can be an essential factor for the discussion about the 

demagnetization field, and the results affected by the aspect ratio will be 

discussed in Chapter 4. To obtain phase maps, the cuboidal region 

(10×4000×10 nm3) indicated by the letters E, F, F0, E0, R, S, S0, and R0 was 

assumed to be irradiated by the object electron wave: refer to Fig. 3.1(b). The 

electron wave traverses in the −𝑧𝑧 direction. Figure 3.1(c) represents an area 
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in the x-y plane (corresponding to the area EFSR), for which the phase 

contour maps, such as Figs. 3.3 (a) and (c), are presented. 

 

3.3.2 Calculations of vector potential using magnetization 

From the law of Biot- Savart, B can be written down in general form for a 

current density 𝑱𝑱(𝒓𝒓′) [20]: 

 

𝑩𝑩(𝒓𝒓) = 𝜇𝜇0
4𝜋𝜋 ∫ 𝑱𝑱(𝒓𝒓

′) × 𝒓𝒓−𝒓𝒓′

|𝒓𝒓−𝒓𝒓′|3
𝑑𝑑3𝒓𝒓′,   (3.7) 

 

Where 𝑱𝑱 stands for the current density. In the magnetostatic state, we know 

that in terms of the vector potential any 𝑩𝑩 = ∇ × 𝑨𝑨 (from now on, rot is 

denoted by ∇) has zero divergence and are generated by steady currents (i.e., 

Ampère’s law):  

 

∇ ∙ 𝑩𝑩 = 0,   (3.8) 

∇ × 𝑩𝑩 = 𝜇𝜇0𝑱𝑱,   (3.9)  

 

From Eq. (3.9) the general form of A can be expressed by 

 

𝑨𝑨(𝒓𝒓) = 𝜇𝜇0
4𝜋𝜋 ∫

𝑱𝑱(𝒓𝒓′)
|𝒓𝒓−𝒓𝒓′|

𝑑𝑑3𝒓𝒓′ + ∇𝝍𝝍(𝒓𝒓).   (3.10)  
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The added gradient of an arbitrary scalar function 𝝍𝝍 shows that for a given 

B the vector potential can be freely transformed according to 𝜜𝜜 → 𝜜𝜜 + 𝛻𝛻𝝍𝝍, 

which is called a gauge transformation. The transformations on A are 

possible because it does not affect the magnetic field that is specified as the 

curl of 𝜜𝜜 . The freedom of gauge transformations (i.e., freedom to add a 

constant to a scalar potential) allows us to make the divergence of 𝜜𝜜 have 

any convenient functional form we desire. On the other hand, the Ampère 

Law of Eq. (3.9) can be substituted into a second-order differential equation 

using 𝑨𝑨: 

 

𝜇𝜇0𝑱𝑱 = ∇ × (∇ × 𝑨𝑨)  

= ∇(∇ ∙ 𝐀𝐀) − ∇2𝑨𝑨.   (3.11)  

 

The convenience choice of the gauge for 𝑨𝑨 can be exploited to make the 

equation be simple as soon as possible, and we find 

 

∇ ∙ 𝑨𝑨 = 0.    (3.12) 

 

This particular choice is known as the Coulomb gauge. Then, the left term 

of Eq. (3.11) vanishes, and each component of the vector potential satisfies 

the Poisson equation, 
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∇2𝑨𝑨 = −𝜇𝜇0𝑱𝑱.    (3.13) 

 

From the electrostatic theory, the solution for 𝑨𝑨  in infinite space can be 

rewritten as Eq. (3.10) having 𝝍𝝍=constant: 

 

𝑨𝑨(𝒓𝒓) = 𝜇𝜇0
4𝜋𝜋 ∫

𝑱𝑱(𝒓𝒓′)
|𝒓𝒓−𝒓𝒓′|

𝑑𝑑3𝒓𝒓′.   (3.14) 

 

For the above equations, we have assumed that the current density was 

completely known function of position, in macroscopic problems, this is 

often not true. Atoms of matter have electrons that give rise to effective 

atomic currents, the current density of which is a rapidly fluctuating quantity. 

Only its average over macroscopic volume is relevant or known. Also, the 

atomic electrons contribute intrinsic magnetic moments in addition to the 

magnetic moments of orbital motion. All these moments can originate dipole 

fields that vary appreciably on the atomic scale of dimensions. The number 

of molecules or atoms per unit volume each with its molecular magnetic 

moment 𝑚𝑚𝑠𝑠 gives rise to an average magnetic moment density (i.e., M). For 

bulk magnetization, we suppose that there is 𝑱𝑱 from the flow of free charge 

in the medium. Then the vector potential from an infinitesimal volume 𝑑𝑑3𝒓𝒓′ 

can be written as the integral over all space, 
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𝑨𝑨(𝒓𝒓) = 𝜇𝜇0
4𝜋𝜋 ∫ �

𝑱𝑱(𝒓𝒓′) 
|𝒓𝒓−𝒓𝒓′|

+ 𝑀𝑀(𝒓𝒓′)×(𝒓𝒓−𝒓𝒓′)
|𝒓𝒓−𝒓𝒓′|3

� 𝑑𝑑3𝒓𝒓′.   (3.15)  

 

The second term of Eq. (3.15) represents the magnetic dipole’s contribution. 

For the hard magnet, i.e., M given and J=0, the solution for vector potential 

can be  

 

𝑨𝑨(𝒓𝒓) = 𝜇𝜇0
4𝜋𝜋 ∫

𝑴𝑴(𝒓𝒓′)×(𝒓𝒓−𝒓𝒓′)
|𝒓𝒓−𝒓𝒓′|3

𝑑𝑑3𝒓𝒓′.   (3.16)  

 

Therefore, the z component of vector potential (Az), which in principle 

contribute to the phase shift of incident electron, could be calculated from M 

Fig. 3.2. Schematic illustration representing the process of surface 
integral performed for the area P0Q0QP. The start positions of surface 
integral are fixed as P0 (-5, y0, 2000) and P (-5, y0, -2000). 
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with reference to Eq. (3.16), and phase image due to Az is presented in the 

next section.  

 

3.4 Remarks in phase mapping with the surface integral of B 

 3.4.1 The offset in phase shift  

In this study, to calculate the phase shift due to magnetic flux density, the 

surface integral was performed for the hatched area in Fig. 3.2, closed by the 

four points P0 (-5, y0, 2000), Q0 (x0, y0, 2000), Q (x0, y0, −2000), and P (-5, 

y0, −2000). For one value of y0, the positions of P0 and P are fixed at the 

coordinates (-5, y0, 2000) and (-5, y0, − 2000), respectively, while the 

positions of Q0 and Q are variable over the range −5 nm ≤ x0 ≤ 5 nm. 

Repeating the surface integral over this range determines the phase shift in 

the line that connects the two terminal points of Q, i.e., Q (−5, y0, −2000) 

and Q (5, y0, − 2000). Subsequently, the surface integral should be 

performed for a different value of y0, so that the phase-shift plot can be 

obtained in another line that connects the two terminal points of Q (−5, y0, 

−2000) and Q (5, y0, −2000), which shows a different value of y0. Therefore, 

the y0 series of the phase-shift plot (−5 nm ≤ y0 ≤ 5 nm) results in a two-

dimensional map of the phase-shift in the x-y plane (i.e., phase image) that 

represents Δ𝜙𝜙𝐵𝐵, as shown in Fig. 3.3(a). The magnitude and sense (increase 

or decrease) of the phase shift is indicated by colors, with reference to a color 

bar, such as that shown in Figs. 3.3 (a) and (b). (The extent of the phase shift 

shown in the color bar is small because of the small volume of the specimen.) 

However, this chapter mainly deals with the phase image from the 

methodological point of view of extracting the phase information of Hd, and 
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details about the description of the phase images, such as the sense and 

magnitude of phase gradient, will be discussed in Chapter 4. The position of 

the specimen edges is indicated by the gray lines in Figs. 3.3(a) and (c). Note 

that Fig. 3.3(c) represents a true phase map (i.e., a reasonable calculation of 

Fig. 3.3 Technical problem of the surface integral employed in the method. (a) Phase 
map using the surface integral for B. The surface integral started from 𝒎𝒎 = −5. (b) 
Line profile of phase shift 𝚫𝚫𝝓𝝓𝑩𝑩 at 𝒎𝒎 = −5. (c) Phase map using the line integral for 
A, showing the true plots of phase shift. (d) Line profile of phase shift 𝝓𝝓𝑨𝑨𝒛𝒛 at 𝒎𝒎 =0. 
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∆𝜙𝜙𝐵𝐵 obtained by using a vector potential A, as mentioned later in detail), 

which is identical to an electron holography observation.  

In the actual electron holography observation, the phase contours 

approximate the distribution of magnetic flux lines [2]. However, the phase 

image of Δ𝜙𝜙𝐵𝐵 [i.e., calculation using the surface integral as shown in Fig. 

3.3(a)] has asymmetric contour lines, unlike a phase image of Fig. 3.3(c). 

Here the result of Fig. 3.3(c) was obtained by the line integral using the 

vector potential A (i.e., referred to as the phase map 𝜙𝜙𝑀𝑀𝑧𝑧), approximating a 

true distribution of magnetic flux lines that is highly symmetric with 

reference to the long axis of the bar magnet. Figure 3.3(b) and (d) shows 

plots of phase shift measured along red dotted lines in Fig. 3.3(a) and (c), 

respectively. In reality, the symmetric shape of the specimen illustrated in 

Fig. 3.1 makes the phase shift zero at 𝑥𝑥 = 0, as shown in Figs. 3.3(c) and 

(d). In Fig. 3.3(a), however, the Δ𝜙𝜙𝐵𝐵 plots with zero value are located along 

a line of 𝑥𝑥 = −5. This result can be understood through the equation of the 

surface integral expressed using the summation operator under the 

coordinates system where y is fixed as one value: 

 

Δ𝜙𝜙𝐵𝐵 = − 𝑒𝑒
ℏ
∙ lim
∆𝑚𝑚𝑖𝑖,∆𝑧𝑧𝑘𝑘→0

∑ ∑ 𝐵𝐵𝑦𝑦(𝑥𝑥𝑠𝑠 , 𝑧𝑧𝑘𝑘)𝑛𝑛
𝑘𝑘=1  ∆𝑥𝑥𝑠𝑠  ∆𝑧𝑧𝑘𝑘𝑚𝑚

𝑠𝑠=1 .    (3.17) 

 

The surface integral should be zero (i.e., ∆𝑥𝑥 =0) at the start points of the 

calculations using Eq. (3.17), i.e., the reference points of P0 and P in Fig. 3.2. 

This means that the initial phase shift (i.e., offset of the phase shift) for all 

the reference points is zero when the phase map is calculated by using the 
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surface integral of B. A red dotted line in Fig. 3.3(a) indicates the trace of 

reference points of P0 and P in Fig. 3.2. The values of Δ𝜙𝜙𝐵𝐵 plots along the 

red dotted line are 0, as shown in Fig. 3.3(b). To avoid the undesired 

asymmetric phase distribution as shown in Fig. 3.3(a), we need the offset of 

phase shift (i.e., the initial values of the surface integral) that is consistent 

with the experimental data. For this purpose, regarding the evaluation of the 

artificial bar magnet, the author referred to the calculations using the vector 

potential A (i.e., the phase shift 𝜙𝜙𝑀𝑀𝑧𝑧). This compensates the offsets in ∆𝜙𝜙𝐵𝐵 

by adding 𝛼𝛼(= 𝜙𝜙𝑀𝑀𝑧𝑧 − ∆𝜙𝜙𝐵𝐵)  to ∆𝜙𝜙𝐵𝐵 , i.e., ∆𝜙𝜙𝐵𝐵 + 𝛼𝛼 , resulting in 

symmetric phase image identical to Fig. 3.3(c).   

 

Fig. 3.4 Schematic illustration representing the process of surface integral for 
P0Q0QP with different reference points, i.e., P0 (0.05, y0, 2000) and P (0.05, y0, 
-2000). 
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3.4.2 Phase gap and asymmetric phase image  

 The start points of the surface integral should be carefully determined 

because of the offset in phase shift, as discussed in the above section. For 

phase images of ∆𝜙𝜙𝑀𝑀  and ∆𝜙𝜙𝐻𝐻𝑠𝑠 , in this subsection, we refer to the 

coordinates of the reference points P0 (0.05, y0, 2000) and P (0.05, y0, 2000), 

i.e., the start points of the integral deviated from an equiphase line that means 

a line of 𝑥𝑥 = 0  along which ∆𝜙𝜙𝑀𝑀𝑧𝑧 = 0  [see the red dotted line in Fig. 

3.3(c)], which is presented in Fig. 3.4. Other conditions (the coordinates and 

range of Q0 and Q points) and the procedure of the surface integral are the 

same as described in subsection 3.4.1. Using Eq. 3.3 in accordance with the 

procedure of the surface integral, Fig. 3.5(a) shows the phase map 

representing ∆𝜙𝜙𝑀𝑀. The area shown in Fig. 3.5(a) is corresponding to EFSR 

area in Fig. 3.4. Then, as described in Eq. 3.4, the subtracting ∆𝜙𝜙𝑀𝑀 in Fig. 

3.5(a) from the reasonable Δ𝜙𝜙𝐵𝐵(=Δ𝜙𝜙𝐵𝐵 + 𝛼𝛼) in Fig. 3.3(c) was carried out, 

and this result is shown in Fig. 3.5(b), i.e., a phase map representing ∆𝜙𝜙𝐻𝐻𝑠𝑠 +

∆𝜙𝜙𝐻𝐻𝑑𝑑. The phase map of Fig. 3.5(b) has phase gaps, as indicated by the red 

arrow, which appears to occur in the process using the surface integral. One 

sources of the gap is attributed to the subtraction of phase the calculations of 

phase images (Δ𝜙𝜙𝐵𝐵 − Δ𝜙𝜙𝑀𝑀), which producing such as a horizontal line along 

the interface between specimen and vacuum. Another phase gap in the y 

direction indicated by the yellow circle was found, such as fluctuation of 

contour lines shown in the enlargement in Fig. 3.5(b). The phase fluctuation 

appeared to have been generated along the near edge of the specimen in the 

y direction. Considering the locations of the fluctuation, one cause could be 

assumed with reference to the calculations of magnetic fields in the x-y-z 

coordinate system (i.e., three-dimensional distribution of B, M and Hs): that 
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is, absent plots of phase shift at and/or very close to the specimen edges in 

the y direction. To avoid this defect, the plots in phase shift are revealed 

mainly within the specimen area [refer to the area closed by the grey lines in 

Figs. 3.3 (a) and (c)] by trimming the interface of specimen, and the results 

of applying this operation will be presented in Chapter 4.  

Fig. 3.5 Phase images having phase gaps and asymmetry derived the technical 
problem of the method. (a) Phase map related to ∆𝝓𝝓𝑴𝑴 . The area in (a) 
corresponding to EFSR in Fig. 3.4. (b) Phase map related to ∆𝝓𝝓𝑩𝑩𝒔𝒔 + ∆𝝓𝝓𝑩𝑩𝒅𝒅  by 
subtracting of (a)∆𝝓𝝓𝑴𝑴  from ∆𝝓𝝓𝑩𝑩  of Fig. 3.3(c). The red arrow and yellow lines 
indicate the phase gaps. (c) Phase map related to ∆𝝓𝝓𝑩𝑩𝒔𝒔. (d) Phase map related to 
∆𝝓𝝓𝑩𝑩𝒅𝒅 by removal of (c)∆𝝓𝝓𝑩𝑩𝒔𝒔 from (b)∆𝝓𝝓𝑩𝑩𝒔𝒔 + ∆𝝓𝝓𝑩𝑩𝒅𝒅. The asymmetrical distribution 
of ∆𝝓𝝓𝑩𝑩𝒅𝒅 plots shown in (d).  
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Phase map of Fig. 3.5(c) representing ∆𝜙𝜙𝐻𝐻𝑠𝑠 could be obtained by using Eq. 

(3.5). To obtain phase information of ∆𝜙𝜙𝐻𝐻𝑑𝑑, the phase map of Fig. 3.5(c) 

(i.e., ∆𝜙𝜙𝐻𝐻𝑠𝑠 ) was subtracted from the phase image of Fig. 3.5(b) (i.e., 

∆𝜙𝜙𝐻𝐻𝑠𝑠 + ∆𝜙𝜙𝐻𝐻𝑑𝑑), expressed as Eq. (3.6). The subtraction provides the phase 

map representing ∆𝜙𝜙𝐻𝐻𝑑𝑑, as shown in Fig. 3.5(d). Note that the distribution 

of ∆𝜙𝜙𝐻𝐻𝑑𝑑  plots shows the asymmetric contour lines, which could be 

considered as incorrect when referring to the effect of the specimen shape on 

Hd (i.e., fully symmetrical rectangular specimen with the long axis). This 

inappropriate Hd map is highly related to the offset of phase shift. As 

mentioned in the process of surface integral, the reference points of P0 (0.05, 

y0, 2000) and P (0.05, y0, 2000) were not completely placed on the equiphase 

line of 𝜙𝜙𝑀𝑀𝑧𝑧 = 0 [Fig. 3.3(c)], which represents the true distribution of phase 

shift obtained from the artificial, parallelepiped Nd2Fe14B specimen. In other 

words, the x coordinate value of the reference points is 0.005, but that of the 

equiphase line is 0, which induced the incorrect offset value for ∆𝜙𝜙𝑀𝑀 and 

∆𝜙𝜙𝐻𝐻𝑠𝑠 . This problem indicates the necessity for the modification of the 

reference points (i.e., the x coordinate of P0 and P is 0). The Hd map affected 

by this changed environment of surface integral will be addressed in the 

subsequent chapter. 

 

3.5 Summary 

This chapter proposed a new method that allows for extractions the phase 

information about the demagnetization field from electron holography 

observations. Δ𝜙𝜙𝑀𝑀 and Δ𝜙𝜙𝐻𝐻𝑠𝑠 can be determined using the surface integral 

for M and Hs, respectively, for which three-dimensional distribution of 
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magnetic field is calculated with reference to the specimen shape, the c-axis 

and thickness of the specimen by TEM observations. However, the method 

using the surface integral caused a critical problem that is an initial value of 

phase shift (i.e., the offset of phase shift) become zero, which led to the 

distorted distribution of Δ𝜙𝜙𝐵𝐵 plots in the phase map representing B. This 

problem could be avoided by compensating for the offset of phase shift, as 

referring to the calculations using vector potential (i.e., Δ𝜙𝜙𝑀𝑀𝑧𝑧). Furthermore, 

the improper offset of phase shift Δ𝜙𝜙𝑀𝑀 and Δ𝜙𝜙𝐻𝐻𝑠𝑠 affected the phase map 

related to 𝐻𝐻𝑑𝑑 , and this indicated the essential with regard to the correct 

consideration of the offset in phase shift for a reasonable phase map of Δ𝜙𝜙𝐻𝐻𝑑𝑑.  
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4. Evaluation of the method using an artificial specimen 

 

4.1 Introduction  

Regarding the examination of magnetic materials, electron holography 

allows for detecting the phase shift due to magnetic flux density (B) [1,2]. In 

other words, it has been difficult to discuss the demagnetization field (Hd), 

which is only one component of B, by using the electron holography 

observation, although revealing the Hd distribution within a crystal is of vital 

importance in the study of permanent magnet. Indeed, any tools which are 

widely used in materials science/engineering do not allow for direct 

observations of Hd. These tools include X-ray magnetic dichroism [3,4], 

spin-polarized scanning tunneling microscopy [5], micro-SQUID 

magnetometry [6], Lorentz microscopy and differential phase contrast 

microscopy [7].  

To solve this essential problem in magnetic imaging, the author proposed 

the method that extracts the phase shift due to Hd (∆𝜙𝜙𝐻𝐻𝑑𝑑) using the electron 

holography observation (i.e., phase shift due to magnetic flux density ∆𝜙𝜙𝐵𝐵), 

as described in Chapter 3. The phase shift ∆𝜙𝜙𝐵𝐵  are assumed to be a 

summation of three components of phase shift: that is, (1) phase shift due to 

magnetization (∆𝜙𝜙𝑀𝑀), (2) phase shift due to stray magnetic field outside the 

specimen (∆𝜙𝜙𝐻𝐻𝑠𝑠 ), and (3) ∆𝜙𝜙𝐻𝐻𝑑𝑑 (contribution of Hd that exists inside the 

specimen. To obtain phase information about Hd, other phase shift (i.e., ∆𝜙𝜙𝐵𝐵, 

∆𝜙𝜙𝑀𝑀 , and ∆𝜙𝜙𝐻𝐻𝑠𝑠 ) could be determined by experiments (for ∆𝜙𝜙𝐵𝐵 ) and 

calculations using surface integral with respect to in-plane component of 

magnetic field (for ∆𝜙𝜙𝐵𝐵 , ∆𝜙𝜙𝑀𝑀 , and ∆𝜙𝜙𝐻𝐻𝑠𝑠 ) As mentioned in Chapter 3, 
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particular solutions to avoid the technical problem of the method, which is 

initial phase shift of surface integral becoming 0 and phase gap occurred near 

the specimen edges due to the undetermined plots of phase shift at the 

interfaces, were suggested. The phase images relevant to ∆𝜙𝜙𝐵𝐵, ∆𝜙𝜙𝑀𝑀, ∆𝜙𝜙𝐻𝐻𝑠𝑠 

and ∆𝜙𝜙𝐻𝐻𝑑𝑑 subjected to these solutions are presented in this chapter, leading 

to a reasonable phase map of ∆𝜙𝜙𝐻𝐻𝑑𝑑. 

Therefore, in this chapter, we shall evaluate the usefulness of the method to 

extract the phase information about Hd which was proposed in Chapter 3. In 

particular, we shall discuss (1) the role of the offset in the phase shift, which 

should be referred to in the surface integral (i.e., calculations of ∆𝜙𝜙𝐵𝐵 , 

∆𝜙𝜙𝑀𝑀 , and ∆𝜙𝜙𝐻𝐻𝑠𝑠 ), and (2) operations to avoid the phase gap (i.e., the 

fluctuation of phase shift) near the specimen, which was applied all 

phase maps determined using the surface integral (except for ∆𝜙𝜙𝐵𝐵 

representing electron holography observation), and (3) the phase map of 

∆𝜙𝜙𝐻𝐻𝑑𝑑 derived from the correct offset for the phase shift ∆𝜙𝜙𝐵𝐵, ∆𝜙𝜙𝑀𝑀, and 

∆𝜙𝜙𝐻𝐻𝑠𝑠. For this purpose, the author applied the method proposed in Chapter 

3 to an artificial Nd2Fe14B magnet (identical to the model specimen referred 

to in Chapter 3). Note that, in this chapter, the proposed method will be 

assessed by using the artificial Nd2Fe14B specimen having a simple 

rectangular shape as shown in Fig. 4.1. as this is the first step in the 

evaluation of the method. Application to a more complex shaped specimen 

(i.e., actual TEM specimen) will be discussed in the subsequent chapter.  

 

4.2 Simulations of three-dimensional magnetic field for the artificial 

Nd2Fe14B specimen 
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The artificial Nd2Fe14B specimen in the form of a long bar, which is 

presented in Fig. 4.1, was adopted to evaluate the method. As shown in Fig. 

4.1(b), the specimen is magnetized in the y direction with 1.6 T of the 

saturation magnetization (𝜇𝜇0𝒩𝒩 ), where 𝜇𝜇0  represents the permeability of 

vacuum. This model specimen had a large aspect ratio of 3.3 (i.e., the length 

of the specimen in the y direction divided by the length in the x direction). 

This feature of the specimen will directly affect the distribution of Hd within 

the specimen, and the result will be presented later. To calculate the phase 

shift due to B, M and Hs, three-dimensional distribution of the magnetic field 

was calculated using the commercial code ELF/MAGIC (ELF Corp.). The 

simulated area indicates the cuboid (i.e., the area indicated by the letters E, 

F, F0, E0, R, S, S0, and R0) in Fig. 4.1(b), which is assumed to be irradiated 

Fig. 4.1. Schematic representations describing the principle and conditions of phase 
shift calculations using an artificial Nd2Fe14B bar magnet. (a) Cross section of 
specimen magnetized in the y direction. Incident electrons traverse in −𝒛𝒛 direction. 
(b) Parallelepiped specimen with a size of 3×2×10 nm3, and the cuboidal region (E, 
F, F0, E0, R, S, S0, and R0) irradiated by the object electron wave. (c) Area in which 
the phase images are revealed in Fig 4.3. 
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by the object electron wave. The incident electrons towards −z direction. 

The phase maps in this chapter will be presented for the area of EFSR in Fig. 

4.1(c), which are corresponding to that in Fig. 4.1(b). Refer to Chapter 3 for 

the details about the simulations.     

 

4.3 Results and discussion 

4.3.1 Procedure for the surface integral to obtain the phase maps 

The phase maps could be obtained using the surface integral, as explained 

in Chapter 3.4.2, but it led to the asymmetric phase map of ∆𝜙𝜙𝐻𝐻𝑑𝑑 shown in 

Fig. 4.8(b). This result indicated that we need essential modifications to the 

Fig. 4.2. Schematic representation describing the process of surface integral using 
an artificial Nd2Fe14B specimen magnetized in the y direction. The surface integral 
was performed for P0Q0QP area. P0 and P represent the start position of surface 
integral, fixed as (0, y0, 2000) and (0, y0, -2000) in the x-y-z coordinates system, 
respectively. 
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procedure for the surface integral, in order to obtain a reasonable, symmetric 

phase map that was calculated for a symmetric specimen as shown in Fig. 

4.3(e). For this purpose, the coordinates of the reference points of P0 and P 

(i.e., the start points of the surface integral) from P0 (0.05, y0, 2000) and P 

(0.05, y0, −2000) were changed to P0 (0, y0, 2000) and P (0, y0, −2000), as 

illustrated in Fig. 4.2. This modification enables that the trace of reference 

points P0 and P indicated by the red dotted line in Fig. 4.1(b) is placed on the 

equiphase line where the real values of phase shift that was assumed to be 

∆𝜙𝜙𝑀𝑀𝑧𝑧 in the artificial specimen have zero, as indicated by the red dotted line 

in Fig. 4.4, because the surface integral yields the initial value of phase shift 

(i.e., the phase shift located at the reference points of P0 and P) having 0, as 

discussed in Chapter 3. The effects of this change in the positions of P0 and 

P on the phase maps will be discussed for details in the next subsection. 

Details about the process of the surface integral are described in what follows. 

The surface integral using Eq. (4.1) representing Δ𝜙𝜙𝐵𝐵 was performed for 

the hatched area closed by the four points P0 (0, y0, 2000), Q0 (x0, y0, 2000), 

Q (x0, y0, −2000), and P (0, y0, −2000), as shown in Fig. 4.2 [where the 

cuboidal area indicated by E0, F0, S0, R0, E, F, S, and R is corresponding to 

that in Fig. 3.1(b)].  

 

Δ𝜙𝜙𝐵𝐵 = − 𝑒𝑒
ℏ∬ 𝐵𝐵𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧𝑃𝑃0𝑄𝑄0𝑄𝑄𝑃𝑃

,   (4.1) 

 

where By is the y component of magnetic flux density. For one value of y0, 

the positions of P0 and P are invariable which are fixed at the coordinates of 
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(0, y0, 2000) and (0, y0, −2000), respectively. Meanwhile, two positions of 

Q0 (x0, y0, 2000) and Q (x0, y0, −2000) are variable in the x0 range of [-5, 5]. 

By repeating the surface integral over this x0 range, the phase shift in the line 

connecting two terminal points of Q (-5, y0, −2000) and Q (5, y0, −2000) 

could be determined. Adopting the same process in the surface integral for a 

different value of y0 allows for the plots of phase shift in another line 

connecting Q (-5, y0, −2000) and Q (5, y0, −2000) with a different value of 

y0. Following the steps, we could obtain the phase map representing ∆𝜙𝜙𝐵𝐵, 

which consists of all plots of the phase shift determined for the y0 series, as 

shown in Fig. 4.3(a). This procedure of the phase-shift calculation was also 

applied to the determination of Δ𝜙𝜙𝑀𝑀  and Δ𝜙𝜙𝐻𝐻𝑠𝑠 . The phase maps 

representing Δ𝜙𝜙𝑀𝑀 and Δ𝜙𝜙𝐻𝐻𝑠𝑠 derived by this process are shown in the next 

subsection.  

 

4.3.2 Mapping of demagnetization field  

Figure 4.3(a) shows the phase map that represents Δ𝜙𝜙𝐵𝐵 of the artificial 

bar magnet [i.e., calculations by using Eq. (4.1)], where the magnitude 

and sense (increase or decrease) of the phase shift are indicated by colors 

with reference to a color bar shown in the mid of Fig. 4.3. The specimen is 

present in the area closed by the gray lines, which the outskirt area represents 

the vacuum region (i.e., outside of the specimen). As described in Chapter 

3.4, the small change in the phase was induced by the small volume of the 

specimen shown in Fig. 4.1(b). The contour gradient in Fig. 4.3(a) represents 

the phase contours, which can be a good approximation of the distribution of 

magnetic flux lines [2]. With reference to the phase map in Fig. 4.3(a), the 
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directions of the magnetic flux lines are indicated by the white arrows. Note 

that, as Eq. (4.1) indicates, the phase image in Fig. 4.3(a) was obtained by 

using the surface integral with respect to By. The result of the surface integral 

showed a good agreement with the calculation when using the line integral 

for Az shown in Fig. 4.4. The symmetric shape of the artificial specimen 

meant that the value of phase shift (Δ𝜙𝜙𝐵𝐵) in the red dotted line of Fig. 4.3(a) 

Fig. 4.3. Demagnetization field revealed using calculations of the phase images for 
an artificial Nd2Fe14B specimen. (a) Phase image of ∆𝝓𝝓𝑩𝑩  representing the 
contribution from the magnetic flux density. (b) Phase image of ∆𝝓𝝓𝑴𝑴 representing 
the contribution from the magnetization. (c) Phase image of ∆𝝓𝝓𝑩𝑩𝒔𝒔+∆𝝓𝝓𝑩𝑩𝒅𝒅 obtained 
by the subtraction of ∆𝝓𝝓𝑴𝑴 from ∆𝝓𝝓𝑩𝑩. (d) Phase image of ∆𝝓𝝓𝑩𝑩𝒔𝒔 representing the 
contribution from the stray magnetic field outside of the specimen. (e) Phase image 
of ∆𝝓𝝓𝑩𝑩𝒅𝒅 representing the contribution from the demagnetization field inside of the 
specimen. The result was obtained by the subtraction of ∆𝝓𝝓𝑩𝑩𝒔𝒔 from ∆𝝓𝝓𝑩𝑩𝒔𝒔+∆𝝓𝝓𝑩𝑩𝒅𝒅. 
(f) Mapping of the y component of the demagnetization field revealed using the 
result in (e). The phase images in (b)-(f) are presented in the area indicated by the 
black dotted line in (a). Line profiles of phase shift measured along the R-S line in 
(b), (c) and (d) are shown in Fig. 4.5   
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could be zero for both the calculations using the y component of magnetic 

field By (surface integral) and the z component of vector potential Az (line 

integral). The reference points in the surface integral (i.e., P0 and P) for this 

artificial specimen were placed on the red dotted line in Fig. 4.3(a). Great 

details about it will be discussed in subsection 4.3.3. 

Figure 4.3(b) provides a phase image that represents Δ𝜙𝜙𝑀𝑀  calculated 

using Eq. (4.2) with the y component of magnetization My: 

 

Δ𝜙𝜙𝑀𝑀 = − 𝑒𝑒
ℏ∬ 𝜇𝜇0𝒩𝒩𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧𝑚𝑚𝑎𝑎𝑒𝑒𝑚𝑚2 ,    (4.2) 

 

Fig. 4.4. Phase map calculated from the line integral for 𝑨𝑨𝒛𝒛  using the artificial 
specimen. 



85 

 

The specimen was magnetized along the y direction; therefore, the sense of 

the phase gradient is positive, i.e., the value of the phase shift increases in 

the x direction. The phase gradient measured along the R-S line in Fig. 4.3(b) 

is indicated by the blue plots representing Δ𝜙𝜙𝑀𝑀  in Fig 4.5, showing the 

positive gradient of phase shift with respect to the x direction. Figure 4.3(c) 

shows the phase map that represents Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑, which was obtained by 

the subtraction of Δ𝜙𝜙𝑀𝑀 from Δ𝜙𝜙𝐵𝐵, in accordance with Eq. (4.3).  

 

Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑 = Δ𝜙𝜙𝐵𝐵 − Δ𝜙𝜙𝑀𝑀.   (4.3) 

 

Fig. 4.5. Line profiles of phase shift measured along in the R-
S line (in the x direction) in Fig. 4.3. Blue, pink and green plots representing the 
phase shift due to M, phase shift due to Hs + Hd, and phase shift due to Hs. 
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The result of the subtraction is presented for the area closed by the black 

dotted lines; this closed area is identical to those in Figs. 4.3(a), (b), and (d)-

(f). The details related to this will be discussed in the next subsection. The 

result in the upper area of Fig. 4.3(c) (i.e., the plot in the vacuum region) 

simply shows the phase shift due to the stray magnetic field (Δ𝜙𝜙𝐻𝐻𝑠𝑠) and is 

identical to the upper area in Fig. 4.3(a). More importantly, in the lower area 

of Fig. 4.3(c), the sense of the phase gradient has become negative, i.e., the 

value of phase shift decreases in the x direction, and this result is indicated 

by the pink plots for Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑 in Fig. 4.5 that was measured along the 

R-S line in Fig. 4.3(c). This is in contradiction to the positive phase gradient 

observed in Figs. 4.3(a) and (b). Therefore, the result of Fig. 4.3(c) indicates 

the presence of a magnetic field, of which the direction is opposite to the 

magnetization M, in the specimen.  

To reduce the contribution of Δ𝜙𝜙𝐻𝐻𝑠𝑠, which is superposed to Fig. 4.3(c), the 

stray magnetic field outside of the specimen was calculated in three 

dimensions with reference to the specimen shown in Fig. 4.1. Using Eq. (4.4), 

which refers to the y component of Hs (𝐻𝐻𝑠𝑠
𝑦𝑦), a phase map that represents 

Δ𝜙𝜙𝐻𝐻𝑠𝑠 was obtained, as shown in Fig. 4.3(d).  

 

Δ𝜙𝜙𝐻𝐻𝑠𝑠 = − 𝑒𝑒
ℏ∬ 𝜇𝜇0𝐻𝐻𝑠𝑠

𝑦𝑦(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧𝑜𝑜𝑜𝑜𝑡𝑡𝑠𝑠𝑠𝑠𝑑𝑑𝑒𝑒 ,   (4.4) 

 

Because of the stray magnetic field that exists in both areas 𝑧𝑧 > 0  and 

𝑧𝑧 < 0, i.e., areas 1 and 3 in Fig. 4.1(a), the lower half region of Fig. 4.3(d) 

(showing the specimen position) is subject to a negative phase gradient in 
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the x direction, as referring to the green plots [estimated along the R-S line 

in Fig. 4.3(d)] for Δ𝜙𝜙𝐻𝐻𝑠𝑠 in Fig. 4.5. This result also indicates the presence 

of a stray magnetic field in the −y direction of this region. Figure 4.3(e) 

shows the contribution of Δ𝜙𝜙𝐻𝐻𝑑𝑑, which was obtained by subtraction of the 

result in Fig. 4.3(d) from Fig. 4.3(c). There is a significant phase shift in the 

plot of Δ𝜙𝜙𝐻𝐻𝑑𝑑 near the specimen edge. In contrast, there is only a negligible 

change in phase in the region away from the specimen edge. The distribution 

of the Δ𝜙𝜙𝐻𝐻𝑑𝑑  plots in Fig. 4.3(e) appears the symmetry, and the related 

discussion will be covered in the next subsection. The phase shift of 

Δ𝜙𝜙𝐻𝐻𝑑𝑑was converted to the y component of the demagnetization field (𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦, 

in the unit of magnetic flux density, tesla) using the relationship [1]: 

 

𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦 = −

𝜕𝜕Δ𝜙𝜙𝐻𝐻𝑑𝑑
𝜕𝜕𝑚𝑚

∙ ℏ
𝑒𝑒
∙ 1
𝑡𝑡
,    (4.5) 

 

where e, ℏ and 𝑡𝑡 is the elementary charge, Planck’s constant divided by 

2π and the specimen thickness, respectively. Figure 4.3(f) plots the value of 

𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦 for the area in which the specimen exists. As expected for the small 

parallelepiped specimen with the large aspect ratio, shown in Fig. 4.1(b), the 

demagnetization field is maximized in the vicinity of the specimen edge, 

although it is abruptly reduced with distance from the edge. The maximum 

value of 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦  was approximately -0.67 T (in the − y direction). This 

magnitude in terms of 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦  is considered as reasonable value when 

referring to the micromagnetic calculation reported by Bance et. al. [8], 

where the magnitude of 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦  estimated for a cuboidal shape of model 
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Nd2Fe14B specimen having a small Nd2Fe14B grain (~10 nm) indicated a 

value less than approximately 0.7 T. For further discussion regarding the 

validity of the method, the mapping of Hd using the real Nd2Fe14B thin foil 

is analyzed with the viewpoint of classical electromagnetism and 

calculations by micromagnetic simulations performed in this study.   

 

4.3.3 Discussion 

The phase map of Δ𝜙𝜙𝐵𝐵  of Fig. 4.6(a) [equal to Fig. 4.3(a)] that was 

obtained by using the surface integral for By shows the symmetric magnetic 

flux lines, which is consistent with the phase map using the line integral for 

Az [Fig. 4.4].The result of Fig. 4.3(a) it is in contrast with the previous phase 

map of Δ𝜙𝜙𝐵𝐵 shown in Fig. 4.6(b) [equal to Fig. 3.3(a)] although two phase 

Fig. 4.6. Phase maps representing the contribution of B. (a) Phase map of 𝚫𝚫𝝓𝝓𝑩𝑩 
identical to Fig. 4.3(a), where the reference points are P0 (0, y0, 2000) and P (0, y0, -
2000). (b) Previous phase map about 𝚫𝚫𝝓𝝓𝑩𝑩  due to incorrect offset of phase shift, 
equal to Fig. 3.3(a), where the reference points are P0 (0.05, y0, 2000) and P (0.05, y0, 
-2000).  
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maps were determined identically by the surface integral using By. As 

mentioned in the above subsection, the modification of reference positions 

[i.e., transfer to P P0 (0, y0, 2000) and P (0, y0, −2000)] could force the initial 

Δ𝜙𝜙𝐵𝐵 using the surface integral to be placed on the plausible locations of x=0, 

that is, placed along the equiphase line indicated by the red dotted line in the 

phase map of 𝜙𝜙𝑀𝑀𝑧𝑧 in Fig. 4.4 representing true phase shift inferred from the 

artificial specimen. However, regarding the real specimen, such as non-

symmetric shaped specimen and not completely uniaxial of the c-axis of the 

crystal grain, it is difficult to find the positions of the reference points to be 

placed perfectly on the equiphase line in the phase image. For this point, the 

offset of phase shift (i.e., the initial value of phase shift) should be 

determined by referring to the experimental result, that is, the electron 

Fig. 4.7. Phase maps representing the contribution of Hs and Hd. (a) Phase map of 
𝚫𝚫𝝓𝝓𝑩𝑩𝒔𝒔 + 𝚫𝚫𝝓𝝓𝑩𝑩𝒅𝒅, for which the entire plots (indicated by letters E, F, S, and R) for 
𝚫𝚫𝝓𝝓𝑩𝑩𝒔𝒔 + 𝚫𝚫𝝓𝝓𝑩𝑩𝒅𝒅  presented from Fig. 4.3(c). (b) Phase map about 𝚫𝚫𝝓𝝓𝑩𝑩𝒔𝒔 + 𝚫𝚫𝝓𝝓𝑩𝑩𝒅𝒅 
equal to the Fig. 3.5(b). Red arrow and yellow lines indicate the phase gap and 
fluctuation near the interfaces/surface of specimen.  
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holography observation. Results related to this will be discussed in Chapter 

5. As a result, for the artificial specimen, the reasonable offset for the phase 

shift ∆𝜙𝜙𝐵𝐵 could be determined on the basis of the calculations using the 

vector potential (i.e., 𝜙𝜙𝑀𝑀𝑧𝑧), and this operation was also applied to the offset 

for other phase shift ∆𝜙𝜙𝑀𝑀 and ∆𝜙𝜙𝐻𝐻𝑠𝑠 shown in Figs. 4.3(b) and (d). 

The map of Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑 [Fig. 4.3. (c)], as a result of the subtraction of 

Δ𝜙𝜙𝑀𝑀  from Δ𝜙𝜙𝐵𝐵 , shows a gap in the phase at the interface between the 

specimen and the vacuum region, as indicated by the red arrow in Fig. 4.7: 

that is, as described in Chapter 3.4, this simple method using the subtraction 

is unable to provide essential phase information in the surface/interface 

region. Nevertheless, the discussion on the phase gradient is valid for a wide 

area in the specimen, except for the limited portions in the surface and/or 

interface. Meanwhile, the map of Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑  in this chapter has 

improved than the previous map of Fig. 4.7(b) [equal to Fig. 3.5(b)], and the 

improved map of Fig. 4.7(a) showing all plots of Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑  for the 

entire region [corresponding to the EFSR area shown in Fig. 4.3(a)] to Fig. 

4.3(c). The previous result of Fig. 4.7(b) shows that the fluctuation of phase 

shift is observed near the specimen edges in the y direction, as indicated by 

the yellow line and referring to the enlargement. Otherwise, Fig. 4.7(a) 

provides the phase map with no phase fluctuation near the specimen edges 

in the y direction. The fluctuation of phase shift near the specimen edges in 

the y direction, as described in Chapter 3.4, appeared to be caused by the 

unconsidered magnetic fields located at (and/or very close to) the specimen 

edge, when performing the surface integral. For this source, in this study, the 

three-dimensional magnetic field with the coordinates of [𝑥𝑥1, 𝑦𝑦0, 𝑧𝑧0], where 
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the ranges of 𝑥𝑥1 , 𝑦𝑦0  and 𝑧𝑧0  are 𝑥𝑥1 = ±1.5 , −5 ≤ 𝑦𝑦0 ≤ 5 , and 

−2000 ≤ 𝑧𝑧0 ≤ 2000 , was calculated for the phase shift Δ𝜙𝜙𝐵𝐵 , Δ𝜙𝜙𝑀𝑀 , and 

Δ𝜙𝜙𝐻𝐻𝑠𝑠. Because of the existing the plots of phase shift placed on the specimen 

edges (in the y direction), the fluctuation of phase shift could be reduced in 

the phase map of Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑 , as shown in Fig. 4.7(a). For the real 

specimen, however, determining the true plots of phase shift located on the 

surfaces/interfaces of the specimen using the surface integral is somewhat 

difficult. Therefore, to effectively reveal the phase maps, the author used the 

operation that trims the unreliable areas derived from the vicinity of the 

specimen edges [i.e., elimination of the remaining except for the area closed 

by the black dotted line in Fig. 4.3(a)], as shown in the lower half regions of 

Figs. 4.3 (b)-(e). This operation was also applied to the phase maps using the 

real specimen, as discussed in Chapter 5.  

Fig. 4.8. Phase maps representing the contribution of Hd. (a) Phase map of 𝚫𝚫𝝓𝝓𝑩𝑩𝒅𝒅 
identical to Fig. 4.3(e) having the symmetric phase contours. (b) Previous phase map 
about of 𝚫𝚫𝝓𝝓𝑩𝑩𝒅𝒅 that is identical to Fig. 3.5(d).   
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Figure 4.8(a) shows the improved phase map representing Δ𝜙𝜙𝐻𝐻𝑑𝑑 that is 

identical to Fig. 4.3(e). The previous map of Fig. 4.8(b) approximating 

Δ𝜙𝜙𝐻𝐻𝑑𝑑, equal to Fig. 3.5(d), shows the asymmetric phase distribution. On the 

contrary, Fig. 4.8(a) reveals the symmetric distribution of the Δ𝜙𝜙𝐻𝐻𝑑𝑑 plots. 

This result was originated from the correctly determined offset in the phase 

shift Δ𝜙𝜙𝐵𝐵 , Δ𝜙𝜙𝑀𝑀  and Δ𝜙𝜙𝐻𝐻𝑠𝑠  because the phase map of Δ𝜙𝜙𝐻𝐻𝑑𝑑  was 

determined by the subtraction of phase maps for Δ𝜙𝜙𝑀𝑀 and Δ𝜙𝜙𝐻𝐻𝑠𝑠 from the 

phase map of Δ𝜙𝜙𝐵𝐵.  

 

4.4 Summary 

In this chapter, the validity of the proposed method was demonstrated using 

the artificial Nd2Fe14B specimen with the improved phase images. For the 

phase map of Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑, we found that the fluctuation in the phase shift 

near the specimen edges disappeared although the phase gap placed on the 

interfaces in the x direction was left. Unfortunately, this kind of improvement 

(i.e., removal of the phase fluctuation around the specimen edge) cannot be 

applied to the real specimen. Therefore, the phase map of Δ𝜙𝜙𝐻𝐻𝑠𝑠 + Δ𝜙𝜙𝐻𝐻𝑑𝑑 

(also other phase maps representing Δ𝜙𝜙𝑀𝑀, Δ𝜙𝜙𝐻𝐻𝑠𝑠 and Δ𝜙𝜙𝐻𝐻𝑑𝑑) only revealed 

the remained region inside the specimen by trimming the vicinity of the 

specimen edges. Furthermore, the phase map of Δ𝜙𝜙𝐻𝐻𝑑𝑑  showed a visible 

improvement with the symmetric distribution of the Δ𝜙𝜙𝐻𝐻𝑑𝑑  plots by 

correctly determining the offset for the phase shift Δ𝜙𝜙𝐵𝐵, Δ𝜙𝜙𝑀𝑀 and Δ𝜙𝜙𝐻𝐻𝑠𝑠 

with reference to the calculation using the vector potential. The characteristic 

feature of the Hd distribution derived from this phase map of Δ𝜙𝜙𝐻𝐻𝑑𝑑 showed 
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the maximized magnitude of 𝜇𝜇0𝐻𝐻𝑑𝑑 in the adjacent to the specimen edge, 

which was consistent with the expectation about Hd for the small 

parallelepiped specimen having the large aspect ratio.  
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5. Evaluation of the method using a real specimen  

 

5.1 Introduction 

In the field of electron microscopy, the observation of the demagnetization 

field (Hd) has been considered as a challenge. This issue has been also 

applied to electron holography that detects the phase shift induced by only 

magnetic flux density B (Δ𝜙𝜙𝐵𝐵) for the magnetic materials because Δ𝜙𝜙𝐵𝐵 is 

perceived as the summation of the phase shift due to magnetization M (Δ𝜙𝜙𝑀𝑀), 

the phase shift due to stray magnetic field Hs (Δ𝜙𝜙𝐻𝐻𝑠𝑠), and the phase shift due 

to Hd (Δ𝜙𝜙𝐻𝐻𝑑𝑑) [1,2]. Moreover, the discussion about Hd is important for the 

permanent magnets, i.e., the Nd-Fe-B system that is a typical sintered 

permanent magnet. The various industries including hybrid/electric vehicles, 

robots, and drones have required further improvement of the coercivity (Hc, 

the measured value of critical magnetic field to induce undesired 

magnetization reversal), as this demand allows traction motors to be 

significantly downsized. Note that the demagnetization field contributes to 

the coercivity mechanism: the region where Hd within the magnet are most 

distributed can trigger nucleation of the reverse magnetic domains, leading 

to a drop in the coercivity [3,4]. This effect of Hd on the coercivity 

mechanism has been revealed using micromagnetic simulations, and model 

specimens of simple shapes has been mainly dealt with [4-10] (refer to 

Chapter 1.2 for details about the study on Hd using micromagnetic 

simulation). However, studies on Hd using real magnetic specimens have not 

been intensively revealed due to the technical limit to the experimental tools.  



96 

 

In order to overcome the problems derived from Hd in both electron 

microscopy field and the magnetic material engineering, the method was 

proposed to extract the phase information of Hd and its validity was evaluated 

using the artificial Nd2Fe14B bar, as presented in Chapter 3 and 4. In this 

chapter, the method was applied to an actual thin-foil specimen comprised 

of a single crystal of the Nd2Fe14B phase using the electron holography 

observation. For this evaluation, the author attempted to obtain a rectangular 

specimen having a constant thickness by using a focused ion-beam system. 

However, the specimen that was analyzed showed an asymmetric shape with 

thickness variation. Although the irregularity in the specimen shape (i.e., 

deviation from an ideal rectangular specimen having a constant thickness) 

degrades the precision in extracting the phase information related to Hd, we 

used this thin-foiled specimen to discuss the effectiveness of the method. In 

addition, this chapter showed results of various electron microscopy 

observations and simulations involved in producing the phase maps that 

represent Δ𝜙𝜙𝑀𝑀  and Δ𝜙𝜙𝐻𝐻𝑠𝑠 . As it will be mentioned later, the phase 

information representing Hd (derived from the electron holography 

observation) will be compared with the result of micromagnetic simulation. 

 

5.2 Experimental methods  

5.2.1 Specimen preparation  

As discussed in section 5.3 in greater detail, we attempted to map Hd in a 

thin-foil Nd-Fe-B specimen. A system of focused ion beam / scanning 

electron microscope (FIB/SEM; Helios G4 UX, FEI Co.) in National 

Institute for Materials (NIMS) was used to obtain an approximately 

rectangle-shaped Nd2Fe14B crystal (in a single-crystalline state) from a 
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commercial Nd-Fe-B sintered magnet with micrometer sized crystal grains. 

The rectangular crystal was then polished into a thin foil using another FIB 

instrument (MI4000L, Hitachi Ltd.) in the Ultramicroscopy Research Center 

(URC) of Kyushu University. To reduce surface damage, the foil was 

polished using a Ga ion beam with a low acceleration voltage (5 kV) at the 

final stage of specimen preparation.  

 

5.2.2 Electron microscopy observations  

The orientation of the c-axis of the thin-foil single-crystalline specimen was 

determined using electron diffraction with a 300 kV transmission electron 

microscope (HF-3300X, Hitachi Ltd.) and lattice image observation with a 

200 kV transmission electron microscope (JEM-ARM200F, JEOL Ltd.) in 

the URC of Kyushu University. The specimen thickness (t) was determined 

using a log-ratio method (described in Chapter 2.1.2) of electron energy-loss 

spectroscopy [11] with a spectrometer GIF Quantum ER system (Gatan Inc.) 

attached to the JEM-ARM200F microscope in the URC of Kyushu 

University. EELS provided spectrum images, for which a region indicated 

by green lines in Fig. 5.1(a) was investigated. The intensity of the zero-loss 

peak was measured by 0.5 eV per channel where the convergence angle and 

an aperture size of condenser lens are 3 rad and 40 𝜇𝜇 m, respectively. 

Accordingly, Fig. 5.1(b) shows a log-ratio relative thickness map (i.e., the 

map representing 𝑡𝑡
𝜆𝜆
 , where 𝜆𝜆  stands for the mean free path of inelastic 

scattering in the Nd2Fe14B phase). To obtain only the thickness component 

from Fig. 5.1(b), 𝜆𝜆 for the Nd2Fe14B phase was determined by the complex 

analysis using cross sectional observations and the simulations, and details 
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of the process for the determination of 𝜆𝜆 is explained in the next section. 

After all, by using 𝜆𝜆  determined in this study, the thickness map of the 

specimen could be obtained, and results related to this is presented in the 

next section as well. 

 

5.2.3. Electron holography 

Electron holograms were acquired using the HF-3300X microscope (in 

the URC of Kyushu University) equipped with the double biprism system 

[12], where the specimen was placed in a position free from the magnetic 

Fig. 5.1 (a) Scanning transmission electron microscopy (STEM) image of a thin- 
foiled Nd2Fe14B specimen. Green lines indicate the investigated area for a spectrum 
image. (b) Log-ratio relative thickness map (= 𝒕𝒕

𝝀𝝀
) by EELS, corresponding to the 

area indicated by the green lines in (a). 
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field generated by the objective lens (i.e., Low-Mag mode mentioned in 

Chapter 2.1.1). The holograms were recorded using a high-sensitivity camera 

(K3 IS camera, Gatan Inc.). When the electron hologram was acquired, the 

electron biprism was put in the left side of the specimen, away from the right 

edge of the specimen by 1908 nm, which was measured from the origin (x=0 

nm) defined in Fig. 5.9(d). The width of interference between the object and 

reference waves was 2663 nm. The parameters for hologram acquisition 

were incorporated when a reconstructed phase image was simulated using 

the model specimen shown in Fig. 5.9(b). The model specimen was utilized 

to work out the three-dimensional distribution of magnetic fields (using the 

ELF/MAGIC code, EFL Corp.) for the prediction of Δ𝜙𝜙𝑀𝑀 and Δ𝜙𝜙𝐻𝐻𝑠𝑠, and 

the discussion addressing this is described in Chapter 5.3. 

 

5.3 Results and discussion 

 5.3.1 Crystal orientation (the direction of the c-axis) 

To determine the coordinates of c-axis of the thin-foil Nd2Fe14B specimen 

shown in Fig. 5.2(a), the author used a rotation matrix [13]. In the x-y-z 

coordinates system given in Fig.5.9, a rotation of 𝛼𝛼 radians about the x-axis, 

a rotation of 𝛽𝛽 radians about the y-axis are defined as  

 

𝑅𝑅𝑚𝑚(𝛼𝛼) = �
1 0 0
0 cos𝛼𝛼 − sin𝛼𝛼
0 sin𝛼𝛼 cos𝛼𝛼

�,   (5.1)  

𝑅𝑅𝑦𝑦(𝛽𝛽) = �
cos𝛽𝛽 0 sin𝛽𝛽

0 1 0
− sin𝛽𝛽 0 cos𝛽𝛽

�,   (5.2) 
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where 𝛼𝛼  and 𝛽𝛽  are the Euler angles [the other degree of freedom of 

rotation (𝛾𝛾) about the z-axis was disregarded, as a double-tilt transmission 

electron microscopy (TEM) holder that functionalizes the rotation for the 𝛼𝛼 

and 𝛽𝛽 angles was utilized for TEM observations]. The electron incidence is 

in the −z direction. The rotation matrix can be expressed by two rotations 

[i.e., 𝑅𝑅𝑚𝑚(𝛼𝛼)  and 𝑅𝑅𝑚𝑚(𝛽𝛽) ]. In principle, the elements of rotation matrix 

depend on the order of those rotations 𝑅𝑅𝑚𝑚(𝛼𝛼)  and 𝑅𝑅𝑚𝑚(𝛽𝛽)  that are 

multiplied. Among the several orders of the matrix about each axis, in this 

study, the general form of rotation matrix was considered as the rotation first 

about the x-axis, then the y-axis, which is represented as the matrix product 

by  

 

Fig. 5.2 Calculation of the direction of c-axis using electron diffraction pattern. (a) 
TEM image of the thin-foiled Nd2Fe14B specimen. (b) electron diffraction pattern of 
the specimen with the [510] zone axis. Yellow arrow approximately indicates the 
direction of c-axis of the specimen. (c) Schematic illustration representing the 
coordinate of c-axis, that is (𝐜𝐜𝐜𝐜𝐜𝐜𝜽𝜽 , 𝐜𝐜𝐬𝐬𝐬𝐬𝜽𝜽 ,𝟎𝟎), given from (b) in the x-y coordinate 
system. 
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𝑅𝑅 = 𝑅𝑅𝑚𝑚(𝛽𝛽)𝑅𝑅𝑚𝑚(𝛼𝛼).   (5.3)  

 

The direction of c-axis was analyzed by exploiting two results of TEM 

observations: (1) the electron diffraction pattern (DP) and (2) the lattice 

image. Figure 5.2(b) is a DP of the thin-foil specimen made up the single 

Nd2Fe14B grain at the zone axis of [510] where the Euler angles about the x- 

and y-axis were 𝛼𝛼1 and 𝛽𝛽1, respectively. The coordinates of the c-axis (i.e., 

the magnetization vector) was calculated by referring to the direction of the 

c-axis indicated by the yellow arrow in Fig. 5.2(b) and the angle (𝜃𝜃) that is 

from the x-axis in Fig. 5.2(c), which could be considered as the coordinates 

of ( cos𝜃𝜃 , sin𝜃𝜃 , 0 ) in the coordinates of x-y-z system. Then, when the 

electron holograms were acquired with the specimen rotated by of 𝛼𝛼0 and 

𝛽𝛽0, the rotation matrix using Eq. (5.3) should be applied to the magnetization 

vector [i.e., the coordinates of (cos𝜃𝜃 , sin𝜃𝜃 , 0 )] deduced from the DP], 

where 𝛼𝛼  and 𝛽𝛽  in Eq. (5.3) were inserted as 𝛼𝛼0 − 𝛼𝛼1  and 𝛽𝛽0 − 𝛽𝛽1 , 

respectively. Note that the electron diffraction pattern provides the 

Fig. 5.3 Calibration of rotation angle between (a) TEM image and (b) DP using the 
calibration reference standard manufactured from a single crystal silicon wafer. (c) 
Schematic illustration representing the process of determining the rotation angle to 
calibrate between (a) and (b) in the x-y coordinate system  



102 

 

approximation about the coordinates of the c-axis because this result should 

be calibrated by the rotation calibration between the DP and the projected 

image recorded by the cameras [e.g., the slow-scan charge-coupled-device 

(CCD) camera and the direct detection camera] in TEM. Regarding this 

rotation calibration, the calibration reference standard for TEM 

(MAG*I*CAL® NANORULER, Norrox Scientific Ltd.) was used, which 

was manufactured from a single crystal silicon wafer, and the results are 

presented by Fig. 5.3. Figure 5.3(a) shows a TEM image of the standard 

specimen. The [100] direction is considered as ‘up’ in the image (i.e., the 

[100] direction perpendicular to the specimen edge in the x direction) 

indicated by the red arrow in Fig. 5.3(a), that is almost 0.2 degrees from the 

y-axis shown in Fig. 5.3(c) that represents the coordinates system of the x-y 

plane. On the other hand, an angle to the (200) diffraction spot in a DP of the 

standard specimen [Fig. 5.3(b)] is approximately 2.2 degrees from the y-axis, 

as indicated by the blue arrow in Fig. 5.3(c). This result indicates that the 

rotation calibration from DP to the image is about 2.0 degrees in the anti-

clockwise direction, as presented in Fig. 5.3(c). Then, by applying this 

rotation calibration (Fig. 5.3) to the orientation of the c-axis using DP of Fig. 

5.2(b), the direction of magnetization vector was determined to be [0.05039, 

0.9947, -0.08922] with reference to the x-y-z coordinate system shown in Fig. 

5.9. This result shows the crystal orientation tilted from the y-axis that is 

nearly parallel to the long-axis of the specimen: namely, the direction of the 

c-axis on the surface grain of the specimen in the x-y plane is tilted by about 

2.9 degrees from the y-axis. On the contrary to DP, a lattice image enables 

us to straightforwardly obtain the crystal orientation. Figure 5.4(a) shows the 

lattice mage of the Nd2Fe14B thin-foil specimen with the [510] zone axis and 



103 

 

represents the direction of the c-axis indicated by the yellow arrow, which 

was observed under the condition of Euler angles having 𝛼𝛼2  and 𝛽𝛽2 . 

Through the observation of lattice image, we could know the rotation angle 

between (1) the specimen edge in the y direction and the [002] direction 

deduced from the lattice image, which was presented in the blue arrow in Fig. 

5.4 (b) (i.e., in the coordinates system of the x-y plane).One to be noted is the 

position of specimen edges should be carefully considered, as the specimen 

position put in the specimen holder was slightly different when taking (2) the 

electron holograms and (1) the lattice images. Following a careful 

consideration in terms of specimen edges, as shown in Fig. 5.4(b), we could 

obtain the calibrated direction of the c-axis that is indicated by the red arrow 

by using the rotation angle between the specimen edge and the [001] 

direction [i.e., (2) rotated by the blue arrow]. This result allowed us to 

determine the initial coordinates of the c-axis as the (cos𝜃𝜃 , sin𝜃𝜃 , 0) vector. 

Then, the same process (i.e., the rotation matrix) was applied to the result of 

c-axis (Fig. 5.4) deduced from the lattice image using Eq. (5.3), where the 

Fig. 5.4 Analysis on the direction of c-axis of the specimen using (a) a lattice image 
at the [510] zone axis. (b) Schematic illustration representing the process of 
determining the direction of c-axis with reference to the conditions of specimen edge 
between (1) lattice image and (2) electron hologram.  
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𝛼𝛼  and 𝛽𝛽  was substituted to 𝛼𝛼0 − 𝛼𝛼2  and 𝛽𝛽0 − 𝛽𝛽2 , respectively. As a 

result, the direction of the c-axis is [0.02671, 0.9957, −0.08836] in the x-y-

z coordinate system, which represents the crystal orientation of the specimen 

is slightly off the y-axis in the x-y plane (about 1.5 degrees), as indicated by 

the electron diffraction pattern [inset of Fig. 5.9(a)] via Fourier transform of 

the lattice image [Fig. 5.4(a)]. This is because the specimen position was not 

perfectly perpendicular to the electron beam (i.e., the specimen rotated by 

𝛼𝛼0 and 𝛽𝛽0) when acquiring the electron holograms. Nevertheless, the c-axis 

was aligned approximately parallel to the long axis of the thin-foil specimen; 

refer to the projection of the c-axis as indicated by the yellow arrow in Fig. 

5.9(a). 

 

5.3.2 Specimen thickness  

In this study, the thickness distribution of the specimen was obtained by 

EELS. However, in principle, the phase image showing the contribution from 

mean inner potential (V0) [Refer to the first term of Eq. (2.9)] can also 

provide the thickness map, as V0 for Nd2Fe14B is known [14]. The equation 

related to this is represented by  

 

𝜙𝜙𝑒𝑒𝑘𝑘𝑒𝑒𝑐𝑐𝑎𝑎𝑠𝑠𝑐𝑐 = 𝜎𝜎 ∫𝑑𝑑0 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝑑𝑑𝑧𝑧  

= 𝜎𝜎 ∙ 𝑑𝑑0 ∙ 𝑡𝑡 (𝑥𝑥,𝑦𝑦),   (5.4)  

 

where 𝜎𝜎 stands for an interaction constant that depends on the acceleration 

voltage applied to the incident electrons. Figure 5.5(a) shows the 
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reconstructed phase image representing V0 in the thin-foil specimen. 

Unexpectedly, this phase image revealed undesired residual phase shift in the 

vacuum region, which appeared to be caused by the contact potential 

difference between the Nd2Fe14B foil and the Mo support. For this problem, 

the specimen thickness of Fig. 5.5(b) given from Fig. 5.5(a) seems to be 

overestimated than the real values in 𝑡𝑡. Therefore, the specimen thickness 

was determined by EELS, for which 𝜆𝜆 in the Nd2Fe14B thin-foil specimen 

was evaluated by cross-sectional observation and simulations as follows. 

 Figure 5.6(a) is a backscattered electron - scanning electron microscope 

(BSE-SEM) image showing the cross-section of the specimen from which 

the electron holograms were collected. The cross-sectional observation 

straightforwardly determined the specimen thickness at the positions of a, b, 

Fig. 5.5 (a)Reconstructed phase image representing the mean inner potential. (b) 
Distribution map showing specimen thickness given from (a). 
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and c as shown in Fig. 5.6(a). The distance between specimen edge 1 and 

three-position (i.e., a, b, and c positions) represents ra, rb and rc, respectively. 

Figure 5.6(b) shows a SEM image of the specimen that had been cut when 

the projection direction to the specimen in Fig. 5.6(b) is corresponding to 

that in Fig. 5.1. The three-positions of a, b, and c positions could be placed 

in the specimen with reference to the distance of ra, rb and rc, as shown in 

Fig. 5.6(b). We assume that the origin of the x-y-z coordinate system 

corresponds to the right bottom of the specimen indicated by the blue circle 

Fig. 5.6 Estimation of 𝝀𝝀 for a Nd2Fe14B phase by electron holography observations. 
(a) BSE-SEM image providing the specimen thickness. (b) SEM image of the 
specimen that has been cut. (c) Log-ratio relative thickness map (= 𝒕𝒕

𝝀𝝀
 ) by EELS, 

equal to Fig. 5.1(b). The origin of the x-y-𝒛𝒛 coordinate system is corresponding to 
the right bottom of the specimen indicated by the blue circle in (b) and (c).  
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in Figs 5.6(b) and (c), so that the y-axis can be parallel to the right edge of 

the specimen, which was also applied to a model specimen explained in the 

next subsection. Based on this coordinates system, the coordinates each for 

the 𝑎𝑎 , 𝑏𝑏  and 𝑐𝑐  positions were evaluated as (𝑥𝑥𝑚𝑚 , 𝑦𝑦𝑚𝑚 ), (𝑥𝑥𝑏𝑏 , 𝑦𝑦𝑏𝑏 ) and (𝑥𝑥𝑐𝑐 , 

𝑦𝑦𝑐𝑐 ), respectively, which was adopted to the log-ratio relative map of Fig. 

5.6(c) [equal to the Fig. 5.1(b)]. Following the operation, 𝜆𝜆 at three-position 

could be calculated by using the information of 𝑡𝑡 given from Fig. 5.6(a) and 

the map representing 𝑡𝑡/𝜆𝜆  of Fig. 5.6(c). In the first step to find the 

optimized value for 𝜆𝜆, the author used one value for 𝜆𝜆 that is derived from 

the c position, i.e., 𝜆𝜆 = 60.6 nm. Then, the phase gradient (= 𝜕𝜕Δ𝜙𝜙𝐵𝐵
𝜕𝜕𝑚𝑚

) in the x 

direction was calculated with reference to the crystal orientation, the 

thickness variation of the specimen given from 𝜆𝜆 = 60.6 nm by simulations 

(ViewField, ELF corp.) that allows for obtaining the phase shift due to vector 

Fig. 5.7 Determination of 𝝀𝝀 using simulations. (a) Reconstructed phase image of the 
thin-foiled Nd2Fe14B specimen. (b) Plots of phase gradient ( = 𝝏𝝏𝚫𝚫𝝓𝝓𝑩𝑩

𝝏𝝏𝒎𝒎
 ) in the 

observations and simulations, measured along 𝒚𝒚 = 526 nm. 
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potential. The calculated phase gradient was investigated along a line at 𝑦𝑦 = 

526 nm, as shown in Fig. 5.7(a) that is the reconstructed phase image, that 

is, electron holography observation representing Δ𝜙𝜙𝐵𝐵 (discussion about the 

phase image will be addressed in the next subsection). Figure 5.7(b) shows 

the plots of observations and simulations. The yellow plots (for 𝜆𝜆 = 60.6) 

are quietly far away the black plots (observations) in both of specimen and 

vacuum regions, which may have occurred due to measurement errors in the 

process of determining the coordinates of a, b and c in Figs. 5.6(b) and (c) 

based on the cross-sectional observation of Fig. 5.6(a) with reference to the 

distance from specimen edge, i.e., ra, rb and rc. Therefore, 𝜆𝜆 should improve 

as the simulation plot approaches the black plot of in the observations. The 

operation for improvement of 𝜆𝜆 was performed, as indicated by the black 

and white arrows in Fig. 5.7(b), i.e., the simulation plots moving up in the 

specimen region and moving down in the vacuum. As a result, the mean free 

Fig. 5.8 Thickness variation of the specimen by EELS and 𝝀𝝀 (=72.7) determined in 
this study. 
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path of inelastic scattering in the Nd2Fe14B phase was evaluated to be 72.7 

nm as presented in the red plots in Fig. 5.7(b). The variation of the specimen 

thickness could be revealed by EELS with 𝜆𝜆 determined in this study, as 

shown in Fig. 5.8.  

 

5.3.3 Calculation of three-dimensional magnetic field using the 

modeled specimen 

Figure 5.9(a) shows a TEM image of the thin-foil specimen, equal to 5.2(a), 

from which electron holograms were acquired. With reference to the x-y-z 

coordinate system given in Fig. 5.9, the foil plane was assumed to be parallel 

to the x-y plane, while the electron incidence is in the − z direction. As 

described in subsection 5.3.1, the coordinate and direction of c-axis was 

evaluated to be [0.02671, 0.9957, −0.08836] in the x-y-z coordinate system 

and approximately parallel to the long axis of the thin-foil specimen, as 

indicated by the diffraction pattern and the yellow arrow in Fig. 5.9(a). The 

thickness map of the specimen shown in Fig. 5.8 was obtained by EELS with 

𝜆𝜆 of Nd2Fe14B phase estimated in this study, as described in subsection 5.3.2. 

These electron microscopy observations allowed for the construction of a 

model specimen made of small polyhedral meshes (i.e., 4.7×4.7 nm2 in the 

x-y plane), as shown in Fig. 5.9(b), which approximates the thin-foil 

specimen in terms of the shape, size, thickness variation, and crystal 

orientation. The magnetic-field distribution in this model specimen was 

calculated in three dimensions for the cuboidal region (1113×40000×1388 

nm3) indicated by the letters E, F, F0, E0, R, S, S0, and R0 in Fig. 5.9(c). Note 

that, the origin of the x-y-z coordinate system corresponds to the right bottom 
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of the specimen, so that the y-axis can be parallel to the right edge of the 

specimen, as shown schematically in Fig. 5.9(d). This model specimen was 

employed to determine the three-dimensional distribution of magnetic field 

for ∆𝜙𝜙𝑀𝑀 and ∆𝜙𝜙𝑀𝑀. For this performance, the phase map of ∆𝜙𝜙𝐵𝐵 induced 

by the model specimen was evaluated with the electron holography 

observation, which is discussed in the next subsection. 
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Fig. 5.9 Thin-foil specimen comprised of single crystalline Nd2Fe14B prepared using 

FIB. (a) TEM image of the thin-foil specimen and electron diffraction pattern (inset). 

The yellow arrow indicates the projection of the c-axis in the x-y plane. (b) Model 

specimen used in three-dimensional calculations of the stray magnetic field outside 

of the specimen. (c) Volume for which the stray magnetic field was calculated using 

the model specimen in (b). (d) Area in which the phase images in Fig. 5.10 are 

revealed. 
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Fig. 5.10 Demagnetization field revealed using electron holography observation of a 

thin-foil Nd2Fe14B specimen. (a) TEM image of the thin-foil specimen, which is 

identical to Fig. 5.9(a). (b) Phase image of ∆𝝓𝝓𝑩𝑩 revealed by electron holography. (c) 

Calculation of ∆𝝓𝝓𝑩𝑩, which shows good agreement with the phase image in (b). (d) 

Phase image of ∆𝝓𝝓𝑴𝑴 deduced from the magnetization vector determined by TEM 

observations. (e) Phase image of ∆𝝓𝝓𝑩𝑩𝒔𝒔  that was calculated using the model 

specimen in Fig. 5.9(b). (f) Phase image of ∆𝝓𝝓𝑩𝑩𝒅𝒅  determined for the thin-foil 

specimen. The phase images in (d)-(f) are presented in the area indicated by the 

black dotted lines in (b) and (c). 
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5.3.4 Visualizing phase information approximating Hd 

Figure 5.10(b) shows the reconstructed phase image representing Δ𝜙𝜙𝐵𝐵 

(i.e., the electron holography observation) acquired from the field of view 

shown in Fig. 5.10(a), which is identical to Fig. 5.9(a). The phase shift is 

represented by colors, based on the color scale in Fig. 5.10. The phase map 

reasonably explains that the specimen is magnetized in the y direction; the 

white arrows in Fig. 5.10(b) indicate the directions of magnetic flux both in 

the specimen region (bordered by grey lines) and the outskirt vacuum region. 

The result of the simulation [∆𝜙𝜙𝐵𝐵𝑠𝑠𝑠𝑠𝑚𝑚, Fig. 5.10(c)] using the model specimen 

was in good agreement with the observation (Δ𝜙𝜙𝐵𝐵) in Fig. 5.10(b). The result 

implies that use of the model specimen in Fig. 5.9(b) can be useful for the 

prediction of Δ𝜙𝜙𝑀𝑀 and Δ𝜙𝜙𝐻𝐻𝑠𝑠, and accordingly to have the approximation 

of Δ𝜙𝜙𝐻𝐻𝑑𝑑. Note that ∆𝜙𝜙𝐵𝐵𝑠𝑠𝑠𝑠𝑚𝑚 was calculated by the surface integral expressed 

by Eq. (5.5) in terms of the y component of magnetic flux density 𝐵𝐵𝑦𝑦: 

 

Δ𝜙𝜙𝐵𝐵 = − 𝑒𝑒
ℏ∬𝐵𝐵𝑦𝑦 (𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧,   (5.5) 

 

where 𝑒𝑒  and ℏ  represent the elementary charge and Planck’s constant 

divided by 2𝜋𝜋, respectively. The red dotted lines in Fig. 5.10(c) and in Fig. 

5.9(d) indicate the start position (i.e., reference position) of the surface 

integral for each slice of the x-z plane. The red dotted lines thus represent the 

trace of the reference positions P0 and P as defined in Chapter 3. For 

convenience in calculations, the red dotted line was fixed at the position of x 

= −283 nm, so that the red dotted line is closed to an equiphase line (i.e., a 
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line along which ∆𝜙𝜙𝐵𝐵 = 0) within the thin-foil specimen, as indicated by 

the blue dotted line in Fig. 5.10(b). Regarding the simulation in Fig. 5.10(c), 

to determine the offset in the phase shift (i.e., to determine the initial value 

of ∆𝜙𝜙𝐵𝐵𝑠𝑠𝑠𝑠𝑚𝑚 in the red dotted line at x = −283 nm), the author referred to the 

values of phase shift in Fig. 5.10(b) that were determined by experiment. 

This offset enables a thorough analysis using the simulation [Fig. 5.10(c)], 

which should be compared with the observation [Fig. 5.10(b)].  

Figure 5.10(d) provides the phase image relevant to the y component of 

magnetization (Δ𝜙𝜙𝑀𝑀) calculated using Eq. (5.6).  

 

Δ𝜙𝜙𝑀𝑀 = − 𝑒𝑒
ℏ∬𝜇𝜇0𝒩𝒩𝑦𝑦 (𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧,   (5.6) 

 

where 𝜇𝜇0  and 𝒩𝒩𝑦𝑦  stands for the permeability of vacuum and the y 

component of magnetization: refer to the x-y-z coordinate system in Fig. 5.9. 

The surface integral was performed with reference to the TEM observations 

of the specimen shape, the thickness variation, and the orientation of the c-

axis (i.e., easy magnetization axis indicating the magnetization vector). Note 

that Δ𝜙𝜙𝑀𝑀 was plotted for the limited area closed by the black dotted lines 

in Fig. 5.10, as we can disregard the artificial gap of the phase (i.e., 

discontinuity of the phase) caused by the surface integral using Eq. (5.6) 

across the specimen border (both the left and right borders of the specimen), 

which was explained as the technical problems for the method using the 

surface integral in Chapter 3 and 4. As demonstrated using the artificial 

specimen in Chapter 4, the sense of the phase gradient in Fig. 5.10(d) is 
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positive (i.e., increase of the value of phase shift) in the x direction because 

the specimen is magnetized along the y direction. Figure 5.10(e) shows the 

phase image that represents the contribution of the stray magnetic field 

(Δ𝜙𝜙𝐻𝐻𝑠𝑠) outside of the specimen, which was calculated using Eq. (5.7) applied 

to the model specimen in Fig. 5.9(b):  

 

Δ𝜙𝜙𝐻𝐻𝑠𝑠 = − 𝑒𝑒
ℏ∬𝜇𝜇0𝐻𝐻𝑠𝑠

𝑦𝑦 (𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧,   (5.7) 

 

where 𝐻𝐻𝑠𝑠
𝑦𝑦  represents the y component of the stray magnetic field that 

exists outside the specimen. Again, the result was plotted for the limited area 

closed by the black dotted lines. Within the area where the specimen exists 

[i.e., the lower area in Fig. 5.10(e)], the sense of the phase gradient is 

negative (i.e., decrease of the value of phase shift) in the x direction. This 

result is also attributed to the stray magnetic field directed opposite to the 

direction of magnetization. Figure 5.10(f) shows a phase map relevant to the 

demagnetization field (Δ𝜙𝜙𝐻𝐻𝑑𝑑) within the thin-foil specimen, representing the 

subtraction of Δ𝜙𝜙𝑀𝑀 + Δ𝜙𝜙𝐻𝐻𝑠𝑠 [summation of Figs. 5.10(d) and 5.10(e)] from 

the phase image (Δ𝜙𝜙𝐵𝐵 ) in Fig. 5.10(b) determined experimentally. As 

demonstrated for the artificial specimen, the phase gradient is significant in 

the regions near the specimen edge, while there is only a negligible change 

in the phase in the inner area of the thin-foil specimen. The results indicate 

the effectiveness of this method. Note that the offset in the surface integral 

[i.e., the initial value of the phase at the reference point P indicated by the 

red dotted line in Fig. 5.9(d)] was incorporated in the calculations of Fig. 
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5.10(d) (for the region inside of the specimen) and Fig. 5.10(e) (for the region 

outside of the specimen). Therefore, in the phase plot of Fig. 5.10(f), which 

represents the subtraction of Δ𝜙𝜙𝑀𝑀 + Δ𝜙𝜙𝐻𝐻𝑠𝑠 from Δ𝜙𝜙𝐵𝐵, we simply assumed 

that there is no contribution from the offset. In other words, the plots for 

Δ𝜙𝜙𝐻𝐻𝑑𝑑 at the reference points have zero value. However, for more precise 

analysis about Δ𝜙𝜙𝐻𝐻𝑑𝑑 using a real specimen having an irregular shape, we 

need further considerations about the offset: this point remans a challenge in 

this phase analysis.  

 

5.3.5 Visualizing the demagnetization field distribution 

Fig. 5.11 Mapping of demagnetization field within the thin-foil Nd2Fe14B specimen 
deduced from this method. (a) showing the plots for the y component of Hd. (b) 
showing the plots for the x component of Hd.  
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The application of Eq. (5.8) [1] with Δ𝜙𝜙𝐻𝐻𝑑𝑑 in Fig. 5.10(f) allowed the y 

component of the demagnetization field ( 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦 ) within the thin-foil 

specimen to be plotted, as shown in Fig. 5.11(a). The area shown in Fig. 

5.11(a) is identical to those indicated by the dotted lines in Fig. 5.10.   

 

𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦 = −

𝜕𝜕∆𝜙𝜙𝐻𝐻𝑑𝑑
𝜕𝜕𝑚𝑚

∙ ℏ
𝑒𝑒
∙ 1
𝑡𝑡
.   (5.8)  

 

As predicted by the classical electromagnetism, the demagnetization field 

(oriented in the −y direction) can be maximized in the positions near the 

upper and lower specimen edges, although there is only a negligible amount 

of demagnetization field in the inner region of the thin-foil specimen. It is 

noted that the gradient of Δ𝜙𝜙𝐻𝐻𝑑𝑑 in the y direction could reveal a map of the 

x component of the demagnetization field by using Eq. (5.9). 

 

𝜇𝜇0𝐻𝐻𝑑𝑑𝑚𝑚 =
𝜕𝜕∆𝜙𝜙𝐻𝐻𝑑𝑑
𝜕𝜕𝑦𝑦

∙ ℏ
𝑒𝑒
∙ 1
𝑡𝑡
.   (5.9)  

 

 However, when the rectangle-shaped specimen was magnetized in the y 

direction, the x component of demagnetization field was too small to allow 

for comprehensive discussion, as shown in Fig. 5.11(b). Therefore, for 

further discussion on 𝐻𝐻𝑑𝑑 , we focus on the y component of the 

demagnetization field observed in the area enclosed by the blue line in Fig. 

5.12(a) that is equal to Fig. 5.11(a). This area is enlarged in Fig. 5.12(b). The 
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magnitude of 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦 at the position labeled as #1 was evaluated to be −0.38 

T, where the negative value represents the magnetic field that is directed to 

the −y direction. The map of 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦 indicates that the demagnetization field 

is enhanced at the right side of position #1, while it is reduced at the left side. 

The result can be explained by the wedge-shaped cross section of the thin-

foil specimen prepared using FIB, as shown in Fig. 5.9(a). With regard to the 

variation in the y direction (i.e., toward the midpoint of the specimen), the 

magnitude of 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦  at position #2 (75 nm from position #1) was reduced 

to −0.14 T. The value of 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦  was further reduce to −0.034 T at position 

#3, which was 146 nm from #1. It should be noted that the rate of reduction 

in 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦 can be explained by a power law of 𝑟𝑟−2, where 𝑟𝑟 is the distance 

from the magnetic charge (magnetic pole), as predicted by classical 

electromagnetism [15]. This result also shows the usefulness of this method 

to extract the demagnetization field from reconstructed phase images. 

For further examination of 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦 , Fig. 5.12(c) provides the result of 

micromagnetic simulation (i.e., Landau-Lifshitz-Gilbert calculations 

[16,17]) obtained using the commercial EXAMAG LLG code (Fujitsu). The 

simulation was performed using another model specimen that approximated 

the actual thin-foil specimen in terms of the shape, size, thickness variation, 

and crystal orientation. The model specimen, which was also made of many 

small polyhedra, was produced using Hyper Works software (Altair 

Engineering). As input magnetic parameters for the Nd2Fe14B phase, the 

exchange stiffness constant and the magnetocrystalline anisotropy were 

assumed to be 12 pJ m-1 and 4.5 MJ m-3, respectively [18,19]. In terms of the 

distribution of the demagnetization field within the specimen, the simulation 
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in Fig. 5.12(c) shows good agreement with the observation in Fig. 5.12(b). 

The simulation reproduced (1) the demagnetization field, which is affected 

by the wedged specimen shape, and (2) a reduction rate of 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦 that could 

be explained by a power law of 𝑟𝑟−2 , both of which were observed 

experimentally. There were slight deviations in the values of 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦   that 

were measured at positions #1, #2, and #3. In this examination, the values of 

𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦  determined by electron holography were smaller than the predictions 

by the micromagnetic simulation. A plausible source of the deviations is the 

Fig. 5.12 Evaluation of y component of the demagnetization field (𝝁𝝁𝟎𝟎𝑩𝑩𝒅𝒅
𝒚𝒚) in the thin-

foil Nd2Fe14B specimen. (a) Plot of the y component of the demagnetization field 

within the thin-foil specimen, which is equal to Fig. 5.11(a). (b) Enlargement of the 

area enclosed by the blue line in (a). (c) Result of micromagnetic simulation. 
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ambiguity in the determination of the foil thickness, crystal orientation, and 

other geometric parameters in the specimen. We should also consider the 

effect of a surface damage layer that may be induced by polishing with FIB. 

Nevertheless, the observation of 𝜇𝜇0𝐻𝐻𝑑𝑑
𝑦𝑦 agrees with the simulation within an 

accuracy of <0.065 T. 

 

5.4 Summary 

In this chapter, the effectiveness of the method was demonstrated using the 

electron holography observation for the single-crystalline Nd2Fe14B thin-foil. 

The analysis on the direction of c-axis in the specimen was performed by the 

TEM observations (i.e., the electron diffraction pattern and the lattice image), 

as referring to the rotation matrix. The mean free path for inelastic scattering 

in the Nd2Fe14B phase was evaluated to be 72.7 nm by the complex analysis 

using the cross-sectional observation by electron microscopy and the 

simulations. With this result, the distribution map of specimen thickness 

could be obtained by EELS. Through various electron microscopy 

observations, the model specimen that approximated the actual thin-foil 

specimen could be made with reference the specimen shape, the direction of 

c-axis, and the variation of specimen thickness. The validity of the model 

specimen for determining Δ𝜙𝜙𝑀𝑀 and Δ𝜙𝜙𝐻𝐻𝑠𝑠 was verified by comparing the 

electron holography observation and the calculated phase image of Δ𝜙𝜙𝐵𝐵 

given from the three-dimensional distribution of magnetic fields using the 

model specimen. The phase information approximating Hd was visualized by 

the application of this method (i.e., by reducing the calculated phase 

components of Δ𝜙𝜙𝑀𝑀 and Δ𝜙𝜙𝐻𝐻𝑠𝑠 from the electron holography observation), 
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which deduced the plot of the demagnetization field. For further discussion 

about the y component of Hd, the plot for Hd was in good agreement with the 

predictions from both classical electromagnetism and micromagnetic 

simulations. The results indicate the usefulness of the method that was 

applied to examinations using a single-crystalline specimen, although we 

need an approximately rectangular specimen to reduce uncertainties in the 

data processing related to the offset in phase shift. 
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6. Toward the precision improvement in phase-shift analysis: 

application of noise reduction with the wavelet hidden 

Markov model to electron holography observations 

 

6.1 Introduction 

To attain the observation of demagnetization field (Hd), which is crucial for 

both electron microscopy and the magnetic material engineering, this study 

proposed the method that allows the phase imaging due to Hd (i.e., 

visualizing the phase shift due to Hd, Δ𝜙𝜙𝐻𝐻𝑑𝑑 ) for the magnetic material 

specimen using the electron holography observation corresponding to the 

reconstructed phase image (Chapter 3). Subsequently, the method was 

evaluated to demonstrate the validity and effectiveness by the applications 

to the artificial and real specimens composed of the single crystal Nd2Fe14B 

grain (Chapters 4 and 5). The plots for Hd deduced from the method could 

be considered reasonable as discussed along with the prediction of classical 

electromagnetism and the micromagnetic simulation. However, this method 

requires the manifold analyses including the subtraction and differential 

operation for the phase images to obtain the Δ𝜙𝜙𝐻𝐻𝑑𝑑  and Hd, respectively, 

which may deteriorate the accuracy in the mapping of Δ𝜙𝜙𝐻𝐻𝑑𝑑 . When 

considering the solutions to enhance the quality of the phase image Δ𝜙𝜙𝐻𝐻𝑑𝑑, a 

technique of noise reduction can contribute to the precision improvement of 

the method for the in-depth discussion on Hd. 

 To reduce the noise in the phase image, the author used the image 

processing that is a useful technique to decrease the noise without any 
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changes in optical and/or interferometry parameters when taking the electron 

hologram. Among the image processing techniques, the wavelet thresholding 

(i.e., the wavelet transform of the images to which thresholds are applied) [1] 

is a useful and conventional noise reduction. This method eliminates the 

noise which is lower than the value of the threshold. However, this 

conventional noise reduction causes a critical problem that also removes the 

weak signal than the threshold. To solve this problem, Midoh and Nakame 

[2] established the wavelet hidden Markov model (WHMM) which is a type 

of the noise reduction from electron microscopy images (including electron 

holograms and reconstructed phase images) using the wavelet transform. An 

essential point is that WHMM allows for separating the weak signal from the 

noise with a sufficiently high probability, based on the approach of the 

optimization problem in information science [2]. Indeed, Tamaoka et. al. [3] 

demonstrated the effectiveness of the noise reduction using WHMM in the 

electron holography observations from the LaFeO3/SrTiO3 film. These 

studies imply that WHMM can be as well promising for the phase-shift 

analysis associated with the mapping of Δ𝜙𝜙𝐻𝐻𝑑𝑑, which was demonstrated in 

the previous chapters. It is expected that the noise reduction using WHMM 

can be effective especially for Nd2Fe14B specimens, which (on many 

occasions) provide only a poor contrast of electron holograms due to the 

strong absorption of electrons by the heavy elements Nd. The noise reduction 

can be accordingly beneficial to the process using image 

subtraction/differential as employed in the mapping of Δ𝜙𝜙𝐻𝐻𝑑𝑑 . However, 

WHMM has not yet been applied to electron holography studies on Nd2Fe14B 

thin foils.  

The aim of this chapter is to assess the effectiveness of the noise reduction 
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using WHMM in the phase-shift analysis of Nd2Fe14B thin-foils. This 

examination is essential for the future applications of WHMM to the 

precision improvement in the method that extracts the Hd information from 

electron holography observations. For this purpose, electron holograms were 

acquired from a Nd2Fe14B thin-foil specimen. In this case, as mentioned later 

in detail, the spacing (sobj) of interference fringes in the electron hologram 

can be an essential factor representing the image quality. Indeed, the fringe 

spacing is important parameter for the interferometry system because a high 

spatial resolution in the phase image can be attained when the value of sobj is 

small [4]. Note that this narrow fringe spacing deteriorates the visibility of 

the electron hologram, which determines the phase detection limit [5]. In 

other words, the phase analysis can be less precise due to the reduced 

visibility derived from the narrow sobj. To overcome this dilemma between 

the interferometric parameter, such as sobj, and the phase resolution, the noise 

reduction was applied to the experimental data (i.e., the electron holography 

observations) with varying the fringe spacing, and the noise-reduced results 

were mainly discussed in terms of the discontinuity in the phase shift induced 

from the low visibility in this chapter.  

 

6.2 Methods 

 6.2.1 Noise reduction using the wavelet hidden Markov model 

 For ease of understanding of the wavelet transform and the essence of 

WHMM, we shall refer to the wavelet transform using a one-dimensional 

spectrum. Figure 6.1(a) shows a spectrum that can be expressed using several 

wavelets with different frequencies and amplitudes. When the wavelet 
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transform is applied to the original spectrum shown in Fig. 6.1(a) using a 

type of the mother wavelet as shown in the inset, the original spectrum is 

resolved into a scaling coefficient of Fig. 6.1(b) representing the original 

shape of the spectrum, and a wavelet coefficient of Fig. 6.1(c) representing 

the contribution of the wavelet at individual pixels. Figures 6.1(b) and (c) 

can be considered as data series generated by the wavelet transform at Level 

1, in which the wavelet transform was conducted with reference to a specific 

frequency of the mother wavelet. Subsequently, the wavelet transform to 

produce the scaling and the wavelet coefficient is repeated with reference to 

lower frequencies of the mother wavelet, as schematized in Figs 6.1(d)-(g). 

In the illustration shown in Fig. 6.1, the wavelet transform was carried out 

for three conditions (three different frequencies) of the mother wavelet, 

which are respectively presented as Level 1, Level 2, and Level 3. This 

Fig. 6.1 Overview of wavelet transform for one-dimensional spectrum. (a) Original 
spectrum. (b) and (c) Scaling and wavelet coefficient at Level 1. (d) and (e) Scaling 
and wavelet coefficient at Level 2. (f) and (g) Scaling and wavelet coefficient at Level 
3 [6]. 
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process represents the forward wavelet transform. Importantly, the original 

spectrum can be reproduced using the inverse wavelet transform, as 

indicated by the red arrow in Fig. 6.1. When a threshold is applied to each 

level of the wavelet coefficient, during the inverse transform, the wavelet 

coefficient smaller than the threshold is not reflected in the reproduction of 

the original spectrum. In other words, noise in the spectrum can be reduced 

through the application of the threshold in the inverse wavelet transform. 

This is the essence of noise reduction using a wavelet transform. In the 

conventional method of noise reduction using the wavelet transform, the 

threshold (𝑇𝑇𝑇𝑇𝐻𝐻 ) can be represented by the general expression using the 

standard deviation of the wavelet coefficients (𝜎𝜎 ) and the number of 

sampling (𝑁𝑁0): 

 

𝑇𝑇𝑇𝑇𝐻𝐻 ≈ 𝜎𝜎�2 ln𝑁𝑁0.    (6.1) 

 

However, as mentioned earlier, this conventional method reduces not only 

noise, but also weak signals below the threshold.  

The problems in the conventional thresholding method also arise in the 

Fig. 6.2 Illustrative example for two-dimensional wavelet transform [7]. 
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noise reduction using the two-dimensional wavelet transform. Figure 6.2 

schematizes the two-dimensional wavelet transform applied to an image, 

where LL represents the scaling coefficient, and others (i.e., LH, HL and HH) 

represents the distribution of the wavelet coefficients for the vertical, 

horizontal, and diagonal directions, respectively. Again, the noise can be 

reduced via the inverse wavelet transform by applying the threshold to each 

wavelet coefficient in LH, HL and HH components, whereas the signal 

weaker than the threshold are lost. 

To improve the method of noise reduction in this study, a wavelet hidden 

Markov model that was reported by Midoh and Nakamae [2] was employed 

to distinguish between a weak signal and noise. To explain the concept of 

WHMM, Fig. 6.3 schematically shows as to how the image size (or number 

of image pixels) is reduced by the forward wavelet transform: i.e., from top 

to bottom. Similarly, Fig. 6.3 shows how the image size (or number of image 

pixels) is increased by the inverse wavelet transform: i.e., from bottom to top. 

When the inverse wavelet transform using a two-dimensional image is 

referred to, one pixel (Si) at the bottom level (S0 at Level 3) corresponds to 

four pixels at the upper level (S1, S2, S3 and S4 at Level 2). Importantly, in 

WHMM, each pixel at all levels has two hidden states, which are represented 

Fig. 6.3 Schematic diagram showing the noise reduction using WHMM. S0 indicates 
one pixel at Level 3, which is corresponding to S1, S2, S3 and S4 at Level 2. L and S 
are the hidden state representing the noise and signal, respectively.   
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as L and S, respectively. The hidden state S produces noise with a high 

probability, whereas the hidden sate L produces signal with a high probability. 

With regard to the hidden state S, as shown in Fig. 6.4(a), the probability to 

attain the wavelet coefficient wi is expressed by a Gaussian function 𝑔𝑔(𝑤𝑤) 

(as a function of the wavelet coefficient) whose standard deviation is small. 

This sharp Gaussian function allows for only a limited range of the wavelet 

coefficient that is achieved by experiments, and accordingly represents the 

signal. In contrast, with regard to the hidden state L, as shown in Fig. 6.4(b), 

the probability to attain the wavelet coefficient wi is expressed by a Gaussian 

function 𝑔𝑔(𝑤𝑤)  whose standard deviation is large. The broad Gaussian 

function well explains the dispersion of noise components which exist over 

a wide range of the wavelet coefficient. Note that WHMM assumes the state 

probability σS, representing that one pixel (to be considered for all pixels in 

all levels) occupies the hidden state S with the probability σS. In addition, 

this pixel occupies the hidden state L with the probability σL. An essential 

point in WHMM is, when the hidden state S is dominant in one pixel of 

Level 3, this dominance can be inherited by the inverse wavelet transform to 

the corresponding, upper pixels in Level 2 with a high probability 𝜀𝜀. This 

tendency (i.e., inheriting the dominance to the upper level) represents the 

Markov property. For simplicity, those probability parameters are referred to 

as the Markov parameters 𝜃𝜃. The parameters 𝜃𝜃 should be optimized using 

the Baum-Welch algorithm [8,9] (one of the expectation-maximization 

algorithm) so that the values of the parameters explain well the wavelet 

coefficients wi in all the pixels, which were determined by the analysis using 

the experimental observation.  

Once the Markov parameters are optimized by the Baum-Welch algorithm, 
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the nose reduction can be performed for all the pixels by using the expression 

of Eq. 6.2. This equation related the wavelet coefficient after the noise 

reduction 𝑤𝑤𝑠𝑠′ with the original coefficient wi [2].  

 

𝑤𝑤𝑠𝑠′ = ∑ 𝑝𝑝(𝑆𝑆𝑠𝑠 = 𝑚𝑚|𝑤𝑤,𝜃𝜃) 𝜎𝜎𝑖𝑖,𝑚𝑚
2

𝜅𝜅𝜎𝜎𝑛𝑛2+𝜎𝜎𝑖𝑖,𝑚𝑚
2 𝑤𝑤𝑠𝑠𝑀𝑀

𝑚𝑚=1 .    (6.2) 

 

Here, i identifies the pixels, 𝑚𝑚 indicates one of the hidden states (the hidden 

state S or L), 𝑝𝑝(𝑆𝑆𝑠𝑠 = 𝑚𝑚|𝑤𝑤,𝜃𝜃) is the state probability (a type of condition 

probability) to takes the hidden state m (S or L) when the wavelet coefficient 

w and the set of the Markov parameter 𝜃𝜃 are given. 𝜎𝜎𝑛𝑛2 is the variance of 

wavelet coefficients in HH in the first Level of the wavelet transform (refer 

to Fig. 6.2). 𝜅𝜅  is the denoising factor related to the strength of noise 

Fig. 6.4 Principle of the noise reduction with reference to WHMM. (a) Variance of 
the wavelet coefficient 𝝈𝝈𝒊𝒊,𝒔𝒔 with low value in the hidden state S, which contributes 
the strong noise reduction. (b) Variance of the wavelet coefficient 𝝈𝝈𝒊𝒊,𝑳𝑳  with high 
value in the hidden state L, which contributes the negligible noise reduction. 
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reduction. 𝜎𝜎𝑠𝑠,𝑚𝑚2  is the variance of the wavelet coefficient given 𝑆𝑆𝑠𝑠 is in the 

state 𝑚𝑚, and this is also one of the Markov parameters that can be optimized 

by the Baum-Welch algorithm. Consequently, we could identify pixels which 

have a significant probability as noise pixels. Strong noise reduction 

attributed to low 𝜎𝜎𝑠𝑠,𝑠𝑠 was applied to pixels representing noise (the hidden 

state S), as shown in Fig. 6.4(a). In contrast, only negligible noise reduction 

attributed to high 𝜎𝜎𝑠𝑠,𝑚𝑚2   was applied to the other pixels representing the 

signal (the hidden state L), as presented in Fig. 6.4(b). For details about the 

principal and practically evaluation of WHMM, refer to [2].  

In this study, a mother wavelet “farras wavelet” was used for the two-

dimensional wavelet transform. The noise reduction was applied not to 

electron holograms as the raw data, but to the complex images (i.e., both real 

part and the imaginary part) that were obtained by Fourier transform of the 

electron holograms. This is because WHMM applied to electron holograms 

attains the noise reduction for a limited range of frequencies, while the 

application to the complex images results in the noise reduction for a wide 

frequency range. In what follows, the real and the imaginary parts are 

abbreviated as ℜ and ℑ, respectively.   

 

 6.2.2 Specimen preparation and electron holography observation 

A thin-foil Nd2Fe14B specimen was used to evaluate the denoising effect 

with reference to the wavelet hidden Markov model. A system of focused ion 

beam / scanning electron microscope (FIB/SEM; Helios G4 UX, FEI Co.) in 

National Institute for Materials (NIMS) was exploited to provide a poly-

crystalline rectangle-shaped block, including grain boundaries (GBs) and a 
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triple junction made of a Nd-rich phase, as shown in Fig. 6.5(a) (the gray 

dotted line indicates an artificial damaged line to remark the positions within 

the specimen). Then, the rectangular block was polished into a thin foil using 

another FIB instrument (MI4000L, Hitachi Ltd.) in the Ultramicroscopy 

Research Center (URC) of Kyushu University, while some areas near the 

specimen edges presented by the blue areas in Fig. 6.5(b) were lost during 

the shaping. To reduce surface damage, the foil was polished at low 

acceleration voltages (5 kV and 2 kV) using Ga ion beam at the final stage 

of specimen preparation. Following the operation by various FIB 

instruments, the thin-foil Nd2Fe14B specimen shown in Fig. 6.5(c) was 

obtained. The thin-foiled area corresponds to the region marked with the red 

in Fig. 6.5(b). The crystal orientations (the direction of c-axis of grains) in 

the x-y-z coordinates system are nearly parallel to the long-axis of the 

rectangular foil in the y direction indicated by the red arrows in Fig. 6.5(c). 

The incidence of electron beam is −z direction. 

Fig. 6.5 Schematic illustrations representing the process to prepare a thin-foiled 
Nd2Fe14B specimen by FIB. (a) Poly-crystalline rectangle-shaped block. (b) 
Polishing (a) into a thin foil. Blue areas in (b) indicates the eliminated area during 
the shaping. (c) Thin-foil Nd2Fe14B specimen subjected to polishing at low 
acceleration voltages to reduce the surface damage.  
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Electron holograms were acquired in various conditions of fringe spacing. 

To collect the data series with variable sobj, the author used the double 

biprism system in the HF-3300X microscope in the URC of Kyushu 

University presented in Fig. 6.6, which allows the control of sobj by 

controlling the voltage of the upper filament electrode (i.e., the voltage of 

upper biprism, VBP1), while the voltage of the lower filament electrode (i.e., 

the voltage of lower biprism, VBP2) is constant (refer to [10] for details about 

the control of interference parameters including sobj in the double biprism 

system). With reference to this operation, the electron holograms were 

acquired at VBP1 = − 50 V, − 70V, − 90V, − 110V, − 130V, and − 150V, 

which attained the values of sob at 5.2 nm, 3.7 nm, 2.9 nm, 2.5 nm, 2.1 nm, 

and 1.7 nm, respectively. For all holograms, the electron exposure time (ta) 

was 3.0 s. The variation of sobj affected the visibility of electron holograms, 

at the expense of the coherency of electron waves (in addition to other factors) 

Fig. 6.6 External view of electron holography (HF-3300X, Hitachi Ltd.) [13]. 
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as described in later. Results of applying the noise reduction to these 

observations are also presented in the next section. The holograms were 

recorded using a high-sensitivity camera (K3 IS camera, Gatan Inc.) that can 

identify the individual electrons as discrete counts at a particular pixel, as 

leading up to the improved visibility of the hologram compared to using the 

slow-scan charge-coupled-device (CCD) camera [11]. 

 

6.3 Results and discussion 

 6.3.1. Visibility of electron holograms depending on fringe spacing 

 Figure 6.7 shows the observed visibility (𝑑𝑑), which is defined as Eq. (6.3), 

of electron holograms as function of the fringe spacing sobj.  

 

Fig. 6.7 Visibility of electron holograms as function of the fringe spacing 
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𝑑𝑑 = 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚−𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛 
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚+𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛 

,   (6.3)  

 

where, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐼𝐼𝑚𝑚𝑠𝑠𝑛𝑛  represents the peaks and troughs of the fringe 

profile. As the fringe spacing decreased, V gradually decreased, which can 

be explained by Eq. (6.4): 

 

𝑑𝑑 = 𝑑𝑑0(𝑡𝑡) × 𝑆𝑆0(𝑁𝑁𝑜𝑜�) × 𝒩𝒩𝑇𝑇𝑀𝑀(𝑘𝑘0).    (6.4) 

 

Here, 𝑑𝑑0(𝑡𝑡) is the time-dependent part of visibility raised from instrument 

instabilities that are slower than the fastest exposure time. 𝑆𝑆0(𝑁𝑁𝑜𝑜�)  is the 

spatial coherence envelope of the wavefield as a function of the average 

number of incident electrons per pixel (𝑁𝑁0) per unit time (𝑡𝑡), 𝑁𝑁𝑜𝑜�  (= 𝑁𝑁0
𝑡𝑡

). 

𝒩𝒩𝑇𝑇𝑀𝑀(𝑘𝑘0) is the modulation transfer function (MTF) of the camera at the 

fringe spatial frequency 𝑘𝑘0. The relationship indicates that, in addition to the 

coherency of electrons, MTF affects the visibility of electron holograms 

when the fringe spacing is narrow.  

The impact of sobj on the visibility could be revealed in the reconstructed 

phase image (i.e., electron holography observations) shown in Fig. 6.8. 

Figure. 6.8(a) is a transmission electron microscopy (TEM) image of the 

thin-foil Nd2Fe14B specimen, for which the electron holograms were 

acquired. Figures 6.8 (b)-(c) show the reconstructed phase images 

representing the phase shift (𝜙𝜙) of incident electron waves that is defined as 

follows:  
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𝜙𝜙 = 𝜎𝜎 ∫𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝑑𝑑𝑧𝑧 − 𝑒𝑒
ℏ ∫𝐴𝐴𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝑑𝑑𝑧𝑧,   (6.5)  

 

where 𝜎𝜎, 𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧), 𝑒𝑒, ℏ and 𝐴𝐴𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧) stand for an interaction constant 

that depends on the acceleration voltage applied to the incident electrons, the 

electrostatic scalar potential, the elementary charge, Planck’s constant 

divided by 2𝜋𝜋  and the z component of the vector potential, respectively. 

Here, the z direction is corresponding to the electron incidence. The change 

in the phase is presented by colors with respect to the color bar in Fig 6.8. 

The position of specimen borders is indicated by the white dotted lines. As 

the fringe spacing was reduced [i.e., in the order of (b), (c), and (d) in Fig. 

6.8], the population of the artificial phase discontinuities (indicated by the 

abrupt change in colors) increases. The values of 𝑠𝑠𝑜𝑜𝑏𝑏𝑜𝑜 are 2.4 nm, 2.1 nm, 

Fig. 6.8 Reconstructed phase images representing phase shift 𝝓𝝓. Area indicated by 
the blue lines in (a) is corresponding to the areas in Fig. 6.9. (a) TEM image of the 
Nd2Fe14B thin-foil specimen. (b)-(d) Phase images subjected to 𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐 = 5.2 nm, 2.4 
nm, and 1.7 nm, respectively.  
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and 1.7 nm, respectively. The artificial phase discontinuities, which are 

produced by the process of phase retrieval using Fourier transform, are due 

to the poor visibility of electron holograms. Note that the specimen thickness 

is not uniform, but the right region of the foil (with reference to the 

presentation in Fig. 6.8) is thicker than that of the left region. Accordingly, 

as the visibility of holograms is poor in the thick region, many phase 

discontinuities are observed in the thick region of the specimen.  
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Fig. 6.9 Data series of phase images collected in three conditions of fringe spacing 
(1) 𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐 =  2.4 nm, (2) 𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐 =  2.1 nm, and (3) 𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐 =  1.7 nm. (a), (d) and (g) 
Ground truth images for (1), (2) and (3) conditions, respectively. (b), (e) and (h) 
Original phase image for (1), (2) and (3) conditions, respectively, to which the noise 
reduction using WHMM has not applied. (c), (f) and (i) Phase images after applying 
the noise reduction to (b), (e) and (h), respectively.  
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6.3.2. Evaluation of noise-reduced images subjected to WHMM 

Figure 6.9 shows data series of phase images collected in three conditions 

of fringe spacing: (1) 𝑠𝑠𝑜𝑜𝑏𝑏𝑜𝑜 = 2.4 nm, (2) 𝑠𝑠𝑜𝑜𝑏𝑏𝑜𝑜 = 2.1 nm, and (3) 𝑠𝑠𝑜𝑜𝑏𝑏𝑜𝑜 = 

1.7 nm. The area shown in Fig. 6.9 is identical to the region closed by the 

blue lines in Fig. 6.8(a). In Fig. 6.9, “ground truth” represents the phase 

images having only negligible phase discontinuities. Practically, the ground 

truth images were obtained by a long electron exposure to improve the image 

quality of electron holograms: i.e., in this study, the exposure time 𝑡𝑡𝑚𝑚 was 

determined at 15 s. These ground truth images [Figs. 6.9 (a), (d), an

d (g)] will be used to calculate the peak signal-to noise ratio (PSNR) in 

the later part of this subsection. Figures 6.9(b), (e) and (h) represent the 

original phase images to which the noise reduction by WHMM was not yet 

been applied: see the images labelled by “Noised” in each series of 

observations. Figures 6.9(c), (f) and (i) provide the phase images after the 

noise reduction using WHMM. As mentioned in the above subsection, the 

narrow fringe spacing results in many phase discontinuities within the 

reconstructed phase images, as shown in Figs. 6.9(b), (e), and (h). However, 

the phase discontinuity distributed in the specimen area could be reduced by 

applying the noise reduction method using WHMM, as shown in Figs. 6.9(c), 

(f), and (i) Although the phase discontinuities could not be completely 

removed, the effectiveness of the noise reduction is clearly shown in Fig. 6.9. 

 For further examinations, the phase shift was measured in the position 

indicated by the R-S line shown in Fig. 6.9. The plots of the phase shift 𝜙𝜙 

are presented in Fig. 6.10. Note that Fig. 6.10 (a) plots three sorts of line 

profiles that were respectively measured in the phase images of Figs. 6.9 (a), 

(d), and (g). Similarly, Fig. 6.10 (b) and Fig. 6.10 (c) present the plots from 
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Figs. 6.9 (b), (e), (f) and Figs. 6.9 (c), (f), (i), respectively. In Fig. 6.10, the 

blue dots representing the electron holography observation scatter 

significantly as the fringe spacing becomes narrow. In contrast, all the red 

plots representing the results after noise reduction appear to be smooth 

showing only negligible scattering. These results show the effectiveness of 

the noise reduction, which allows the precision improvement of phase 

analysis providing the improved phase images with the denoised 𝜙𝜙 plots. 

Furthermore, the author evaluated the denoised phase images in terms of 

the peak signal-to noise ratio (PSNR) defined as follows: 

 

𝑃𝑃𝑆𝑆𝑁𝑁𝑅𝑅 = 20 ∙ log10 �
255

�1/𝑀𝑀𝑁𝑁∑ ∑ �𝐼𝐼(𝑠𝑠,𝑜𝑜)−𝐺𝐺(𝑠𝑠,𝑜𝑜)�2𝑁𝑁
𝑗𝑗=1

𝑀𝑀
𝑖𝑖=1

�,   (6.6)  

 

where 𝐼𝐼(𝑠𝑠, 𝑗𝑗) and 𝐺𝐺(𝑠𝑠, 𝑗𝑗) are the pixel value of the evaluated phase image 

and the ground truth phase image at the coordinate 𝑠𝑠, 𝑗𝑗 with a size of 𝒩𝒩 × 𝑁𝑁 

Fig. 6.10 Plots of the phase shift 𝝓𝝓 measured along R-S line in Fig. 6.9 for (a) 𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐 = 
2.4 nm, (b) 𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐 = 2.1 nm, and (c) 𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐 = 1.7. 
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pixels [12]. The region that was referred to in the PSNR calculation was 

indicated by the yellow lines in Fig. 6.11(a). Figure 6.11(b) shows the results 

representing PSNR as function of the biprism voltage VBP1 (i.e., lower 

horizontal axis) that determines the fringe spacing 𝑠𝑠𝑜𝑜𝑏𝑏𝑜𝑜  (i.e., upper 

horizontal axis), where the open and closed plots indicate PSNR calculated 

from the noised phase image (i.e., the original electron holography 

observation) and the denoised phase images, respectively. For the open plots 

in Fig. 6.11(b), PSNR at 𝑠𝑠𝑜𝑜𝑏𝑏𝑜𝑜  = 1.7 nm was reduced to -1.9, meaning that 

the signal was much weaker than the noise for the evaluated area. As a result 

of applying the noise reduction, all the closed plots in Fig. 6.11(b) show a 

noticeable improvement of PSNR compared with the open plots. For a more 

detailed evaluation, the difference of PSNR (∆𝑃𝑃𝑆𝑆𝑁𝑁𝑅𝑅) between noised and 

denoised plots was measured, as indicated by the black arrows in Fig. 6.11(b). 

Figure 6.11(c) represents the result of measuring ∆𝑃𝑃𝑆𝑆𝑁𝑁𝑅𝑅 and shows that 

the largest improvement in terms of PSNR are obtained as estimated to be 37 

Fig. 6.11 Evaluation of noise reduction in terms of PSRN. Area indicated by the 
yellow lines in phase image of (a) represents the area for PSNR calculation. (b) 
PSNR as function of the biprism voltage VBP1 (lower horizontal axis) that determines 
the fringe spacing 𝒔𝒔𝒐𝒐𝒐𝒐𝒐𝒐  (upper horizontal axis). (c) Difference of PSNR between 
noised (in original phase images) and denoised plots (in phase images of applying 
the noise reduction by WHMM to original images).  
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at the narrowest sobj (= 1.7 nm) resulting in the lowest visibility of electron 

hologram described in Fig. 6.7.  

 

6.4 Summary 

In this chapter, the effectiveness of the noise reduction was demonstrated 

by applying it to the electron holography observations (i.e., the complex 

image reconstructed from the electron holograms) for the polycrystalline 

Nd2Fe14B thin foil specimen. The noise reduction was performed by 

exploiting the wavelet hidden Markov model that can discriminate the signal 

even weaker than the threshold. The electron holograms were acquired 

depending on the fringe spacing. As the fringe spacing narrowed, the 

visibility of the holograms decreased, which led to increasing the 

discontinuity of the phase shift in the reconstructed phase images. The 

denoised 𝜙𝜙 plots were much improved than the noised 𝜙𝜙 plots originated 

from the reduced visibility with reference to the line profiles of plotting 𝜙𝜙 

and the evaluations using PSNR. These results indicate that the noise 

reduction is promising tool for the precision improvement of phase analysis, 

which can be applied in the future to the method of extracting the phase 

imaging due to demagnetization field.      

 

Chapter 6 References 

1. M. Jansen (2012) Noise reduction by wavelet thresholding. (Springer 

Science & Business Media, New York) 

2. Y. Midoh and K. Nakamae (2020) Accuracy improvement of phase 



144 

 

estimation in electron holography using noise reduction methods, 

Microscopy 69: 123-131. 

3. T. Tamaoka, Y. Midoh, K. Yamamoto, S. Aritomi, T. Tanigaki, M. 

Nakamura, K. Nakamae, M. Kawasaki, and Y. Murakami (2021) Denoising 

electron holograms using the wavelet hidden Markov model for phase 

retrieval-Applicatiions to the phase-shifting method, AIP adv. 11: 025135. 

4. M. Lehmann and H. Lichte (2002) Tutorial on off-axis electron holography, 

Microsc. Microanal. 8: 447-466. 

5. A. Harscher and H. Lichte (1996) Experimental study of amplitude and 

phase detection limits in electron holography, Ultramicroscopy 64: 57-66. 

6. Y. Midoh, K. Nakamae, H. Shinada, and Y. Murakami (2020) Noise 

reduction of electron holograms by using wavelet hidden Markov model, 顕

微鏡 552: 53-59. 

7. L. Boubchir and B. Boashash (2013) Wavelet denoising based on the MAP 

estimation using the BKF prior with application to images and EEG signals, 

IEEE Trans. sign. proc. 61: 1880-1894. 

8. L. E. Baum and T. Petrie (1966) Statistical inference for probabilistic 

functions of finite state Markov chains, The annals of mathematical statistics 

37: 1554–1563.  

9. L. E. Baum, T. Petrie, G. Soules, and N. Weiss (1970) A maximization 

technique occurring in the statistical analysis of probabilistic functions of 

Markov chains. The annals of mathematical statistics 41: 164-171. 

10. K. Harada and A. Tonomura (2004) Double-biprism electron 



145 

 

interferometry. Appl. Phys. Lett. 84: 3329. 

11. S. L. Chang, C. Dwyer, J. Barthel, C. B. Boothroyd, and R. E. Dunin-

Borkowski (2016) Performance of a direct detection camera for off-axis 

electron holography, Ultramicroscopy, 161: 90-97. 

12. S. Arora, J. Acharya, A. Verma, and P. K. Panigrahi (2008) Multilevel 

thresholding for image segmentation through a fast statistical recursive 

algorithm. Pattern Recognition Letters 29: 119-125. 

13. https://www.hvem.kyushu-u.ac.jp/en/atomicscale.html 

 

  



146 

 

7. Conclusions  

 

Electron holography (EH) is a powerful tool that enables us to observe the 

magnetic domain structure for a thin-foil specimen by measuring the phase 

shift of incident electron wave that has traversed the specimen. For magnetic 

materials, however, EH is only sensitive to magnetic flux density (B) that is 

perceived as the summation of magnetization (M), stray magnetic field (Hs) 

outside the specimen, and demagnetization field (Hd) inside the specimen. In 

other words, the discussion of Hd has been difficult for EH. Note that this 

problem was common for other methods of magnetic imaging that uses the 

electron probe, including Lorentz microscopy and differential phase contrast 

(DPC) microscopy. From an engineering viewpoint, the analysis on Hd is 

important for the research and development of sintered permanent magnets 

including the Nd-Fe-B magnet that is widely used in traction motors in 

electric/hybrid vehicles. Until now, the automobile industry has demanded a 

further improvement of the coercivity, which represents critical magnetic 

field to induce undesired magnetization reversal for the sintered magnet. 

Indeed, Hd is regarded to be a source for the undesired magnetization reversal. 

However, direct observation of Hd has been hampered because of the lack of 

the experimental tools.  

To overcome the problem, in this study, the author developed a method that 

allows for extracting the phase information about Hd from EH observation, 

along with the sophisticated analysis using various electron microscopy 

observations and simulations. The validity of this method was examined via 

the application to an artificial bar magnet (Nd2Fe14B) shaped in a square 
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pillar. For further evaluations using an actual specimen, this method was 

applied to the mapping of Hd in a thin foil made of a single-crystalline 

Nd2Fe14B. The Hd map determined by this method showed a good agreement 

with the prediction by theories. On the other hand, this method requires the 

manifold analyses including the subtraction and differential operation for the 

phase images to obtain the Δ𝜙𝜙𝐻𝐻𝑑𝑑  and Hd, respectively, which may 

deteriorate the accuracy in the mapping of Δ𝜙𝜙𝐻𝐻𝑑𝑑 . Therefore, toward the 

precision improvement of this method, the effectiveness of a noise reduction 

technique was assessed. In order to reduce the noise in the phase image, this 

study employed the wavelet hidden Markov model (WHMM) which allows 

a reasonable separation of weak signal from noise. It was demonstrated that 

WHMM could be effective for the noise reduction in the phase images 

acquired from a Nd2Fe14B thin-foil, which provides a poor contrast of 

electron holograms due to the strong absorption of electrons by the heavy 

elements (i.e., Nd element).  

The achievements in this study are summarized as follows: 

(1) A method was proposed to obtain the phase map representing Hd that 

was determined by using the EH observation showing the phase shift due to 

B (Δ𝜙𝜙𝐵𝐵). The phase map related to Hd (Δ𝜙𝜙𝐻𝐻𝑑𝑑) can be obtained by subtracting 

the undesired phase component due to M (Δ𝜙𝜙𝑀𝑀) and Hs (Δ𝜙𝜙𝐻𝐻𝑠𝑠) from Δ𝜙𝜙𝐵𝐵. 

When the crystallographic and morphological features of the specimen, such 

as the c-axis and the thickness of specimen, are unveiled by the observation 

of transmission electron microscopy (TEM), the three-dimensional 

distribution of the in-plane component (i.e., the y component in this study) 

of M and Hs in the x-y-z coordinates system can be calculated in three 
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dimensions. Subsequently, Δ𝜙𝜙𝑀𝑀  and Δ𝜙𝜙𝐻𝐻𝑠𝑠  can be estimated using the 

surface integral for the y component of M and Hs multiplied by factors 𝜇𝜇0, 

e, and ℏ, where𝜇𝜇0, e and ℏ stand for the vacuum permeability, elementary 

charge and Planck’s constant divided by 2π. Consequently, the phase image 

of Δ𝜙𝜙𝐻𝐻𝑑𝑑 can be obtained by eliminating the contributions due to Δ𝜙𝜙𝑀𝑀 and 

Δ𝜙𝜙𝐻𝐻𝑠𝑠  from the EH observation representing Δ𝜙𝜙𝐵𝐵 . Thus, a process to 

determine Δ𝜙𝜙𝐻𝐻𝑑𝑑 was formulated. 

(2) Before the application of this process to the artificial and real specimens 

of Nd2Fe14B [as mentioned in (3) and (4)], the authors have assessed this 

method from a theoretical viewpoint. Since this process uses the surface 

integral with reference to the y component of M and Hs, it assumes that the 

offset phase shift in the calculation is zero. As a result, the calculation causes 

a distortion in the phase contour lines when the specimen shape is 

asymmetric. However, this problem can be solved if we provide the 

reasonable offset, which can be deduced from either phase calculations by 

using the line integral with reference to the vector potential A (in place of the 

magnetic flux density B) or analysis of the EH observation. To avoid the 

unwanted distortion in the phase map, this technique was employed in the 

estimation of Δ𝜙𝜙𝐻𝐻𝑑𝑑.  

(3) The effectiveness of the method to determine Δ𝜙𝜙𝐻𝐻𝑑𝑑was demonstrated 

using the artificial Nd2Fe14B specimen having a simple rectangular shape. 

Following the process mentioned in (1) and the selection of the correct offset 

in the surface integral, Δ𝜙𝜙𝐻𝐻𝑑𝑑  could be extracted from the phase image 

representing EH observation due to Δ𝜙𝜙𝐵𝐵. The mapping of Hd was derived 

from the differential for Δ𝜙𝜙𝐻𝐻𝑑𝑑 . The magnitude of demagnetization field 
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( 𝜇𝜇0𝐻𝐻𝑑𝑑 ) was maximized close to the specimen edge, resulting in the 

maximum value of 0.67 T. The result was reasonable when referred to 

micromagnetic calculations (reported in previous studies) carried out for 

small crystal grains (~10 nm) in in the Nd2Fe14B phase.  

(4) The effectiveness of the method was examined in greater detail using 

the EH observation for a real thin-foiled, single-crystalline Nd2Fe14B 

specimen. As mentioned in (1), to obtain the crystallographic/morphological 

information of the real specimen, the observations for the real specimen by 

multiple electron microscopy techniques, which includes the electron 

diffraction pattern and electron energy-loss spectroscopy (EELS), enabled us 

to calculate the y component of M and Hs. The surface integral calculations 

with reference to these results yielded Δ𝜙𝜙𝑀𝑀  and Δ𝜙𝜙𝐻𝐻𝑠𝑠 , to which the 

removal operation from EH observation of Δ𝜙𝜙𝐵𝐵 was applied to obtain the 

phase map about Δ𝜙𝜙𝐻𝐻𝑑𝑑. As a result, the mapping of Hd could be determined 

for the real specimen having an asymmetric shape with thickness variation.  

The Hd map showed a good agreement with the micromagnetic simulation. 

Indeed, in terms of the magnetic flux density, the deviation from the 

theoretical calculation was less than 0.065 T. Therefore, this method is able 

to provide a reasonable map of Hd for actual sintered magnets, which can 

serve as a foundation in the study of the coercivity.   

(5) It was demonstrated that the noise reduction using WHMM could be 

effective for suppressing the unwanted phase discontinuities, which were 

artificially produced by the process of phase retrieval using electron 

holograms with a poor contrast. The noise reduction of WHMM could be 

useful as well for the extraction of Δ𝜙𝜙𝐻𝐻𝑑𝑑 , which is obtained after the 
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subtraction and differential using the phase images, and accordingly help us 

improve the precision in the analysis of demagnetization field within a 

magnetic specimen.  
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