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Abstract 
Graduate School of Systems Life Sciences 

The Relevancy between Visual Cortex and Motor Cortex and Its 

Spatio-Temporal Neural Dynamics 

by Zhaoxuan LI 

 

Although the cerebral cortex has been divided into different regions according to their 

function in cognitive process, many researches in past decades have demonstrated that 

the neurons in a region do not just work locally; on the contrary, the correlation between 

neurons from different function regions, which can be observed as functional 

connectivity, happens frequently. In this thesis, we studied about the cerebral activity 

when normal healthy people were presented with visual stimulus, and the relevancy 

between occipital lobe and the other cortical areas, and revealed its features in both time 

and space. 

 

Firstly, previous studies have reported that a series of sensory–motor-related cortical 

areas are affected when a healthy human is presented with images of tools. Obviously, 

these images caused a relevancy between the neurons here and at occipital lobe. This 

phenomenon has been explained as seeing familiar tools launching a memory-retrieval 

process to provide a basis for using the tools. Consequently, we postulated that this 

theory may also be applicable if images of tools were replaced with images of daily 

objects if they are graspable (i.e., manipulable). Therefore, we designed and ran 

experiments with human volunteers (participants) who were visually presented with 
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images of three different daily objects and recorded their electroencephalography (EEG) 

synchronously. Additionally, images of these objects being grasped by human hands 

were presented to the participants. Dynamic functional connectivity between the visual 

cortex and all the other areas of the brain was estimated to find which of them were 

influenced by visual stimuli. Our results showed that manipulable objects caused a 

series of cerebral activity at several motor-sensory-related regions, corresponding with 

the two pathway of visual object recognition. Moreover, many evidence indicated that 

looking at images of interactions did not induct similar activity as seeing the same object 

alone, and so did images of hand. In addition, we also investigated the ability of using 

phase synchrony to track the two pathways of visual information. 

 

With the findings in above research, we noticed the potential of estimating phase 

locking value to measure how much a cerebral region participated in current cognitive 

process. Therefore, we tried to apply it to solve a problem in the field of neurorobotics—

make machines be able to distinguish brain’s activity when someone is imagining a 

movement from actually making a movement, and seeing a movement made by others. 

To collect data for training and evaluating a machine learning model, another brand new 

EEG experiment was created and run on 17 healthy volunteers. Based on the support 

vector machine (SVM), we proposed a data-driven method to searching for cerebral 

regions that were to the benefit of above classification. Consequently, the system we 

built achieved an average accuracy which has been significantly greater than random 

probability, and there is still room for improvement. In the meantime, several substantial 

differences of cerebral region activation were discovered by the approach of analyzing 

features selected by three classifiers. Results showed that when someone is watching, 

imagining, and executing a movement, the Broca’s area, motor cortex, the Wernicke’s 

area, and visual cortex performed differently. Finally, although the development of 

machine learning has been tremendous in recent years, its benefits have barely been 

brought to the studies in the field of cognitive neuroscience. This thesis proposed a 
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viable methodology to cover this shortage preliminarily. 

 

In the final part, we shared several un-mentioned questions and possible future 

directions. Firstly, the role of that ERS when saw interactions is not clear; it might 

suggested the difference between non-tool manipulable objects and tools, which is the 

expectation of a third-party. Secondly, all of the findings here are obtained by studying 

right-handed volunteers, which lead to a shortage on inferring the lateralization; same 

experiment can be run on more left-handed participants in the future. Moreover, 

participation of visual cortex was observed during movement imagination; its purpose 

and function is worthy to be studied. All these topics are worthy for a further study. 
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Chapter 1  

General Introduction 

 

1.0 Structure and Topics 

This thesis consists of four parts. The first part talks about the background of our 

study in a general way, including instructions of related theories and demonstrations of 

basic data processing method we used in researches. The second and third parts are two 

researches we mainly focused on during my doctoral study. The final part is a general 

summary of our findings and conclusions, and a discussion about possible directions in 

the future. 

 

The first research we shared is about exploring the spatial and temporal features during 

visually recognizing different targets. A general opinion is that when normal human sees 

a familiar graspable object in view, neurons near postcentral gyrus (somatosensory 

cortex) fires to get prepared for a potentially coming interaction with the target object. 

During the preparing, these neurons have to decide the posture to contact with that 

object. However, we were curious about what if a proper posture is already given. For 

exploring this topic, we asked volunteers to recognize objects presented to them, and 

also shows images of grasping those objects with proper postures, and recorded their 

EEG data. 

 

The other research is about making machines be able to distinguish human’s brain 
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activity when someone is seeing, imagining, and executing movements. This research 

used our findings in last one that quantify the degree that an area participated in current 

cognition task by measuring the functional connectivity between it and other areas. In 

this way, the spatial information can be integrated into features for pattern recognition.  

 

1.1 Two pathway from visual cortex 

Visual cortex is defined as a cerebral region which receives and processes the nerve 

impulse from optic nerve, and locates at occipital lobe. The optical information in the 

environment is collected by retina and coded into nerve impulse, then transmitted to 

visual cortex, where those optical information is presented to brain in the form of visual 

sense. Thereby, human sees. Note that, seeing is different with understanding. People 

cannot understand the things in sight if above information flow ends at visual cortex, 

although they are still able to see them clearly. This phenomenon is called as visual 

agnosia. Patients with visual agnosia can normally see the objects in their view, but meet 

difficulties in recognizing those things when only rely on their eyes. 

 

By studying the patients with above agnosia, scientists have proposed a widely accepted 

model to describe the output of visual cortex: two pathways at dorsal and ventral side 

(Milner & Goodale, 2006; Milner & Goodale, 2008). As a general speaking, the dorsal 

stream transmits information from occipital lobe to frontal lobe. The function of dorsal 

stream is believed to be concerned with establishing an egocentric coordinate system in 

real-world scale and planning the movement to reach the target object. Therefore the 

system supported by dorsal stream is called the “vision for action”. On the other hand, 

ventral pathway transmits information from occipital lobe to temporal lobe. The 

function of ventral pathway is related to understand the representation of the target 

object in a relative scale, and the description of relationship with surroundings. It is 

actually the perceptive information, so the system mediated by ventral stream is also 
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called the “vision for perception”.  

 

Just as most entities that consist of multiple sub-systems, the dorsal stream vision 

system is not totally separated with the ventral stream. Milner described their 

relationship as that the ventral stream determine the proper posture (or gesture) to 

interactive with the target object, and the dorsal stream maps the determined posture 

into real-world scale, including the process of transforming the relative information into 

the egocentric coordinate system.  

1.2 Purposed movement 

Making movements is a gifted ability of almost every animal. It includes voluntary 

movement, such as move your hand to approach the cup when you are thirsty; and 

involuntary movement, or reflex, such as the knee jerk reflex. A significant difference 

is involuntary movement does not need the participation of central nervous system. In 

other words, making a voluntary movement needs brain to give orders for controlling 

muscles (see Figure 1.1) (Nicholls & Nicholls, 2001).  

 

Voluntary movement usually have a purpose: adjusting body to a certain position. For 

example, when you want to drink a cup of coffee, you have to move your arm and hand 

to a certain position by which you would be able to approach the cup. We call this a 

purposed movement, which is actually a complicated operation consists of two stages. 

Firstly, you need to know where the cup is. This stage usually need the participation of 

eyes, to recognize the cup on the table. Secondly, planning a route to reach the cup, 

which is almost an automatic procedure and be finished unconsciously. This stage 

contained an inferior step—decide the posture (or gesture) to contact with the cup. 

Possibly, make a precise movement to let index finger pass through the handle ring and 

cooperate with thumb to hold it. Besides, when you actually execute the movement, 

visual monitoring is usually needed.  
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Above example reflects a fact that a series of neuron activity are behind a simple 

purposed movement. These neurons mostly located in several cerebral cortices, which 

have different functions with each other. In above example, neurons in visual cortex 

receive information from optic nerves and transmit it via both the dorsal and ventral 

streams, and finally motor cortex execute the movement. During the process, 

somatosensory cortex helps to know where our body parts are. Consequently, at least 

the occipital lobe, temporal lobe, and parietal lobe are involved in the visual recognition 

procedure before actually make a movement. Obviously, a purposed movement is 

completed by the joint effort of many different cortices. 

 

Figure 1.1 General scheme for motor system organization. Movement is finished by 

muscles controlled by motoneurons which receive orders from the upper structure. 

Brainstem and spinal cord constitute the central pattern generators that transmit nerve 
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impulse from higher control to motoneurons, but not all of the orders have to go through 

this procedure. Generally, the higher control includes cortex, basal ganglia, and 

cerebellum. Movement will lead to an activation of sensory receptors, and these 

receptors will feedback to every level of motor control to help with guiding and 

monitoring the executing of movement. 

 

1.3 Cooperation among cortices 

Integrating information for decision making usually happens in daily life. For 

example, prior studies have defined driving as a complex combination includes a series 

of cognitive procedures (Weiler et al., 2000). Drivers use their eyes to observe 

surroundings, based on which they decide to push the accelerator or turn the steering. 

In the meantime, they have to recall the map in memory or get lost. This simple example 

includes the use of vision, motor ability, and memory, which is the result of a 

cooperation among visual cortex, motor cortex, somatosensory cortex, and prefrontal 

cortex (Groeger, 2013). Another study precisely indicated five cortical regions that 

associated with driving via fMRI as shown in Figure 1.2. 
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Figure 1.2 Brain circuits associated with driving. (A—E) Axial slices of where the five 

circuits locate. (F) Functional connectivity among them during driving simulation 

(Rzepecki-Smith et al., 2010).  

 

To be specific, external information would be collected by sensory organs (eyes, ears, 

skin, and so on) and transmitted to brain, where several cortices work together to 

understand the situation, and sometimes give out an order for the other part of body to 

execute as a result. The perception that integrates more than 2 different sensory 

modalities is called as a crossmodal perception. Crossmodal perception is always 

accompanied with a synchronous activity between corresponding neurons, which can 

be observed by several neuroimaging techniques. 

1.4 Neuroimaging 

Like the other imaging techniques, neuroimaging aims to let us be able to see the 

neurons (which generally means the neurons in brain). Based on the content that the 

image shows, it can be divided into 2 classes: structural imaging, which shows the 
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anatomy of cerebral cortex, and functional imaging, which reflects the firing of neurons 

and usually used for studying brain function. Figure 1.3 shows an example from a prior 

study to describe the difference between structural and functional imaging. 

 

Figure 1.3 (A) Structural imaging, which presents the anatomical look of body tissues. 

(B) Diffusion imaging reveals the orientation of white matter fibers which lay under the 

gray matter. (C) Functional neuroimaging suggests the activation of neuron groups 

when individuals are processing on a specific task (Hirsch et al., 2015). 

 

Firing neurons is actually proceeding a series of biochemical reactions, during which 

the energy and oxygen are consumed and results in the potential flip of the inside and 

outside of nerve cells. Based on these phenomena, scientists have created several non-

invasive methods to image the activity of neurons (see Table 1). These methods have 

been proved to be reliable and admitted by a large number of neurosciences, cognitive 

science, and psychology studies. As the oldest non-invasive functional neuroimaging 

technique, EEG is the mostly used one since its economy, almost non-limits on subjects 

and environment, and the ability to record instantaneous cerebral activities. 

 

Table 1.1 Compare of different functional neuroimaging approaches. 

Name Principle 

Features 

Temporal 

resolution 

Spatial 

resolution 
Cost 

Special Requirements 

EEG Bioelectricity Highest Lowest Lowest None 

MEG Bioelectricity High Low High Magnetic shield room 

fMRI BOLD* Middle Highest High Metal-free room 

fNIRS BOLD* Middle Middle Low None 

PET Radiation Middle High High Radiation shield room 

*: Blood oxygen level dependent. A firing neuron consumes energy and oxygen outside 

the cytomembrane, which will lead to a rapidly decrease of them around the activated 
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neuron. In order to meet the demand of that neuron, much more sugar and oxygen will 

be delivered to the firing neuron then by blood, which finally lead to a change of relative 

of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) near the activated neuron. 

FNIRS measures the HbO and HbR via the absorption of near-infrared light (specifically, 

HbO and HbR have different absorption coefficients on both sides of the 810nm light), 

while fMRI measures them based on their magnetic performance (specifically, HbR is 

paramagnetic while HbO is diamagnetic).  

1.5 EEG 

EEG records the electrical activity on the scalp which caused by 

electrophysiological activities of thousands or millions of neurons at similar spatial 

location, via several electrodes (generally from a few to as many as 256) and an 

amplifier. Neurons’ electrical activity have to go through the skull before the scalp 

electrodes are able to record the slight change, which lead to a distortion due to the 

effect of volume conduction and finally caused the poor spatial resolution. Although 

there have been a lot of methods (either with or without hardware supporting) proposed 

to be useful for analyzing the source of electrical signal recorded by electrodes since 

last century (Domingo Pascual-Marqui, 1999) till recent years (Asadzadeh et al., 2020), 

the reliability is still controversial. 

 

Anyway, in order to describe the location of electrodes on scalp, the 10—20 system was 

created (see Figure 1.4 A). The original 10—20 system defined locations of electrodes 

by the distance between 2 neighboring electrodes which was either 10% or 20% of the 

total front-back or left-right distance of the skull. This location system provided 19 

channels (i.e. place 19 electrodes on scalp) for EEG recording (Klem et al., 1958). With 

a further demand for recording EEG with more electrodes to collect more details, an 

improvement was made to allow a layout of up to 69 electrodes (Figure 1.4 B) by 

replacing the 20% with 10% in the definition of 10—20 system, which is called as 10—

10 system (Chatrian et al., 1985). Moreover, there has been location system with higher 

resolution known as 10—5 system (Figure 1.4 C), based on similar principle 
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(Oostenveld & Praamstra, 2001). However, it is doubted that whether a single increase 

in the number of electrodes pays off because the poor spatial resolution associated with 

EEG, especially when more electrodes means consuming much more time in the 

preparation phase before experiment, which may let subject feel exhausted even before 

the start of experiment. 

 

 

Figure 1.4 (A) Original 10—20 system with 19 EEG channels. (B) A 10—10 system 

with 69 EEG channels, which is generated by adding electrodes into the empty space. 

Sometimes this system would be extended to make accommodate for more channels by 

creating an extra layer. (C) A 10—5 system provides locations for from 128 to 345 

electrodes (Oostenveld & Praamstra, 2001). 
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Although a single neuron’s electrophysiological activity generally happens on the scale 

of tens of millivolt, with the attenuation before the potential change reaches scalp, the 

firing of millions of neurons finally results in a weak change of EEG on the scale of 

tens of microvolts. Moreover, slight movements also change the potential of surface of 

the skin, which always have a greater amplitude than the one caused by cerebral cortices. 

Based on the above reasons, the SNR of EEG is extremely low. Thus, a difference 

amplifier would be used for reduce the effect from common-mode signal via two inputs 

of EEG electrodes and reference electrodes respectively. In other words, what is 

recorded by an EEG device is the difference between potential changes detected on 

scalp and the reference potential detected at a position that almost be not affected by 

cerebral activity (i.e. a theoretical zero-potential point). However, it is still necessary to 

preprocess the recorded signals before trying to analyze. 

1.6 Basic preprocesses of raw EEG data 

 In most cases, an analog filter has been applied during EEG recording to reduce the 

noise that definitely not belongs to the frequency band of detectable scalp 

electrophysiological activity. However, it does not mean that all the rest of them is 

worthy to be analyzed. Based on the topic of study, a digital band-pass filter is usually 

applied as the first step of preprocess. Figure 1.5 shows a segment of EEG signal before 

and after band-pass filter. 
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Figure 1.5 Using a 1—30 Hz band-pass filter to remove the frequency components that 

not belongs to the brain activity that the current study is focusing on.  

 

The next step is re-reference, which has become more popular in recent years. During 

EEG recording, the data actually reflects the difference between potentials recorded at 

scalp and at reference spot (which is earlobe generally). In other words, for an EEG 

electrode 𝑒, one sample it recorded 𝐸𝐸𝐺𝑒  is: 

𝐸𝐸𝐺𝑒 = 𝑈𝑒 − 𝑅𝑒𝑓 

where 𝑈𝑒 is the potential on scalp, and 𝑅𝑒𝑓 is the one at reference spot. However, the 

reference spot is just a theoretical zero potential spot, which means the potential there 

actually changes along time. In order to erase the effect from reference spot, the 

recorded EEG data would be re-referenced to common average reference, by: 

𝐸𝐸𝐺𝑒
′ = 𝐸𝐸𝐺𝑒 − 𝐸𝐸𝐺𝑎𝑣𝑔 

where 𝐸𝐸𝐺𝑎𝑣𝑔 represents the mean value of all EEG electrodes at one sample, and 

𝐸𝐸𝐺𝑒
′
 is the new EEG data that would be analyzed in future step. In this way, the 

reference potential does not participate in the calculation anymore, so its variation 

would not affect the EEG. To be specific, the process can be descripted as: 
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𝐸𝐸𝐺𝑒
′ = 𝐸𝐸𝐺𝑒 −

∑ 𝐸𝐸𝐺𝑛
𝑁
𝑛=1

𝑁
 

= 𝑈𝑒 − 𝑅𝑒𝑓 −
∑ (𝑈𝑛 − 𝑅𝑒𝑓)𝑁

𝑛=1

𝑁
 

= 𝑈𝑒 − 𝑅𝑒𝑓 −
∑ 𝑈𝑛

𝑁
𝑛=1

𝑁
+ 𝑅𝑒𝑓 

= 𝑈𝑒 − 𝑈𝑛
̅̅̅̅  

however, average potential of human scalp should be zero, so 𝑈𝑛
̅̅̅̅ = 0, and 𝐸𝐸𝐺𝑒

′ =

𝑈𝑒. 

 

Another essential operation is to remove ocular artifacts. During EEG recording, 

movement of eyes will cause distortions of EEG, even if subjects are asked try not to 

blink in trials. Due to the greater potential of EOG, electrodes near eyes will be affected 

obviously (see Figure 1.6). Thus, scientists have proposed many approaches to reduce 

the distortion. The mostly used method is ICA, which considers this problem as a blind 

source separation question. 

 

 

Figure 1.6 A segment of EEG signal recorded at O1 position was affected by a blink 

happened at 401.5—402 seconds. ICA successfully corrected this distortion with almost 

no effect on the rest of the EEG signal. 
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After above procedures, the EEG recordings are ready to be cut into epochs for 

following analysis. Epochs containing drastic potential changes are usually caused by 

accidental events (e.g. unexpected head movements) during experiment and considered 

as wrong data and will be abandoned as a general operation. 

1.7 Time and Frequency 

 For each channel, EEG is recorded as a series of values that changes along time. 

This kind of data is considered as time series. Analyzing its variation in both time 

domain and frequency domain usually tells its characteristics.  

1.7.1 Fourier Transform 

 In order to see how a time series looks like in frequency domain, a useful tool is 

the Fourier Transform. When apply this method with a computer, it turns to be the 

Discrete Fourier Transform due to the fact that computer can only treat discrete data in 

a limited length. Figure 1.7 gives time series data which are generated by put two 

periodical signals together, and shows the result of doing DFT on them (via FFT which 

is a faster algorithm of DFT). From this example, it is found that although the frequency 

components are exposed in the result, the sequence of them is not told. In the other word, 

the DFT is not able to reflect the change of frequency across time. 
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Figure 1.7 Generate two sinusoidal signals 𝑋1 = 10sin(10 × 2𝜋)  and 𝑋2 =

5sin(20 × 2𝜋), then connect them with different order to form two new signals 𝑌1 and 

𝑌2. DFT of the two new signals are totally same because DFT cannot reveal the sequence 

of frequency components. 

1.7.2 Short-time Fourier transform 

 A doable solution for the above problem is cutting the signal into short time 

segments and then do DFT on every one of them to get the frequency variation. Analyze 

the signals in Figure 1.7 by STFT, frequency variation is successfully observed (see 

Figure 1.8). However, it would lead to another distortion problem when it is necessary 

to observe a low frequency band due to the generalized uncertainty principle: lower 

frequency component needs longer time series. Thus, a short time series leads to worse 

estimation of the spectrum of low frequency component. In the meantime, high 

frequency component can still be distinguished even with a shorter time series, which 

means that the time resolution of high frequency component would be improved by 

apply DFT on shorter time series. Ideally, a shorter time window is expected when 
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analyze high frequency component while a longer one when analyze low frequency 

component.  

 

 

Figure 1.8 STFT results of 𝑌1 and 𝑌2. A slide hamming window with length of 0.2 

second was applied to reduce frequency leak and keep temporal resolution at an 

acceptable level. In this situation, the frequency resolution would be decreased to 5 Hz. 

1.7.3 Wavelet transform 

 Wavelet can extract signal’s frequency and energy by making a convolution with 

the signal. Changing the scale of a certain wavelet would generate a wavelet family with 

many wavelets of which the length and frequency are inverse. Then, convolute every 

one of them with the time series and the time-frequency characteristics would be 

exposed as shown in Figure 1.9. Moreover, there has been researches reported that 

Morlet wavelet is useful in EEG study (Roach & Mathalon, 2008). 
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Figure 1.9 Using wavelet transform to balance the temporal and frequency resolution. 

Obviously, the frequency band is narrower than the result of STFT. Note that the 

boundary effect will lead to a widening of frequency range and also the decreasing of 

power estimation, especially in low frequency because low frequency band is estimated 

by wavelets with larger scale. An often-used solution is to extent the data symmetrically 

before wavelet transform. 

 

1.7.4 ERD, ERS and ERSP 

 Brain never stops its activity, which means the time-frequency features always exist 

whatever a stimulus is given or not. Therefore, the emphasis of time-frequency analysis 

is to answer “what is changed after apply the stimulus?” The variation of EEG energy 

is usually used to represent the changes of cerebral activity after subjects are given 

stimulus and considered as the variation is caused by the event that stimulus is given to 

subject. In order to quantify this variation, it is necessary to calculate the energy of EEG 

before and after stimulus onset. The energy many changes differently according to the 

frequency component, so the first step is to calculate the time-frequency spectrum. Then, 

for a certain frequency 𝑓, calculate the energy of sample 𝑛:  

𝐸𝑛,𝑓 = √𝑈𝑛,𝑓
2 

and the average energy before stimulus onset can be calculated as: 

𝐸0,𝑓 =
∑ 𝐸𝑛,𝑓

𝑁
𝑛=1

𝑁
 

where 𝑁 is the number of samples in the range of baseline period, and 𝑈𝑛,𝑓 means 

the potential recorded. Now the energy data is ready and the nest step is to evaluate how 
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much does the energy changed by: 

𝑃𝑛,𝑓 = 10 × log10

𝐸𝑛,𝑓

𝐸0,𝑓
 

where 𝑃𝑛,𝑓 represents the difference between 𝐸𝑛,𝑓 and 𝐸0,𝑓 in dB. In this way, we 

can know how the stimulus affects brain’s activity at a certain frequency component. If 

the energy is decreased after stimulus onset, it is called as an ERD phenomenon (Figure 

1.10 A). Inversely, if the energy is increased, it is called as an ERS phenomenon. Extend 

this concept to all of the frequency components, a spectrum that reflects the difference 

between each sample and energy baseline is generated, which is called as ERSP (Figure 

1.10 B). The role of analyzing ERSP will be discussed with a truly example later in 

Chapter 2. 
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Figure 1.10 Examples of ERD and ERS phenomena, and ERSP figures. (A) After 

subjects began imagining a movement of right hand, the alpha band (8—12 Hz) power 

of EEG recorded at C3 was decreased. While, when it turned to be foot, the power of 

10—12 Hz was enhanced (Neuper & Pfurtscheller, 2001). These phenomena are called 

ERD and ERS respectively. In the past, they are usually quantified by the change as a 

percentage of baseline. However, ERS in percentage might be an extremely great 

number if the baseline is close enough to zero. Therefore, later studies preferred to 

describe it after logarithmic transformation. (B) ERSP when subjects were trying to 

recognize both the left and right hands with different orientations (Chen et al., 2013). 

Investigation of ERSP allows observing both frequency and temporal changes at the 

same time. Note that power is shown in dB. 
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1.8 Network and Connectivity 

 In the past days, most of the cognitive science studies focused on locating the 

neuron groups that are in charge of specific cognitive functions. This research strategy 

is based on a hypothesis that functions are undertaken by modules, which means 

cognitive functions corresponding to function regions is separated and independent with 

each other. In this way, another control group is necessary for comparing with the 

experiment group and so that it is possible to highlight the region that is concerned with 

current cognition process. 

 

Many studies have supported above hypothesis that activities from different regions are 

able to be considered as performing independently. However, as mentioned in 1.2, 

sometimes cortices with different functions would work as a team. A part of complicated 

cognitive functions need participation of multi regions and can only be finished by 

integrate their specialties. Thus, in order to study about how human cognizes more 

comprehensively, more and more scientists have proposed to not only focus on 

cognitive function locating but also cooperation and integration between different 

function regions.  

 

The latter one studies the relevancy and interaction between two or more regions in 

cerebral cortices, which means it brings a network formed by activities recorded at 

different locations of brain.  

 

Network is based on a series of connections. These connections are generally classified 

into three classes by the observed object: structural connectivity, effective connectivity, 

and functional connectivity. Structural connectivity studies the physical connection 

among anatomic structures and tissues in brain. Effective connectivity is defined as the 

effect that a neuron subsystem imposed on another neuron subsystem, and aims to 

discover the causality among neurons. Functional connectivity considers the temporal 
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relevancy between neurons located at different spatial regions, which reflects the 

coordination among neuron modules with different functions during cognition process. 

 

In the situation mentioned in section 1.2, the neuron groups located in one cortex will 

communicate with other neuron groups belongs to another cortex, and this process still 

relies on the activation of neurons to transmit information. Therefore, scientists 

considered that approaches from information theory can be useful in analyzing 

functional connectivity in cerebral cortex. However, due to the volume conductor effect, 

the EEG signal recorded at scalp is a result of field effect which does not reflect the 

actual position that electric activity happened, so a functional connectivity between two 

cortices is an estimation. 

1.8.1 Functional connectivity 

 Functional connectivity reflects the relevance between signals recorded from two 

different locations. Approaches for estimating functional connectivity are mainly based 

on statistics, causality, and mutual information. Table 1.2 shows a list of methods that 

used to estimate functional connectivity. 

 

Table 1.2 Methods for estimating functional connectivity. 

Method Directed Principle 

Corr NO Common variation on amplitudes 

DTF YES Causal influence 

MI NO Amount of information 

PS NO Tendency to keep a relative phase angle 

TE YES Amount of directed transfer of information 

 

In general, these methods can be classified into two classes: directed and undirected 

estimation. However, directed estimations like DTF usually require a long signal length 

to reach a reliable result. This leads to a problem when study on a cognitive process 

which would be completed rapidly. Therefore, undirected functional connectivity 

estimation methods still play irreplaceable roles in cognitive neurosciences. One of 
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them is the phase synchronization, which is able to analyze functional connectivity with 

the same temporal resolution as sampling rate. 

1.8.2 Phase Synchronization 

 A directed evidence to prove that brain processes information in a network way is 

that coherence appeared between EEG recorded at two far parted cerebral regions. 

Phase synchronization assumes two related signals could performs a synchronization 

phenomenon (i.e. coherence) even if they have no correlation on their amplitudes which 

means linear methods such as correlation is not able to reveal it. 

 

Based on the dimension that phase synchronization is calculated, it is divided into 2 

kinds of indicator: PLV and PLI. PLV quantifies the average functional connectivity 

during a continuous time series, while PLI reflect the variation of functional 

connectivity along samples by examining the stability of phase synchronization among 

different trials. 

 

The first step of estimating phase synchronization is to obtain the phases of a time series, 

which can be finished by using Hilbert Transform to a time-domain signal. Figure 1.11 

shows how the Hilbert Transform helps with compute the instantaneous phase. Then, 

for an estimation of phase synchronization between two channels, the next step is to 

calculate their phase difference at every sample pair. PLV and PLI are both estimated 

by the average distribution of phase difference on a unit circle, while the direction of 

taking the average is not the same as shown in Figure 1.12.  

 

In order to test the method before apply it to analyze EEG, a simulation of using phase 

synchronization to estimation the relationship between concerned and non-concerned 

signal is demonstrated. 
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Figure 1.11 Hilbert Transform adds a delay of 90° on the phase of all the frequency 

components of a given signal. For example, the first second of a sinusoidal signal 
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𝑥(𝑡) = 𝑠𝑖𝑛(2𝜋 ∙ 5 ∙ 𝑡) is given in the left figure of (A). The right one shows the result 

of its Hilbert Transform 𝑦(𝑡) = ℎ𝑖𝑙𝑏𝑒𝑟𝑡(𝑥). Construct the signal 𝑧(𝑡) = 𝑥(𝑡) + i𝑦(𝑡) 

and show it in (B). At a specific time 𝑡 = 𝑡0, the position of 𝑧(𝑡0) can be indicated as 

a point in the complex plane. In this way, the phase of 𝑥(𝑡0)  can be calculated as 

𝜑(𝑡0) = tan−1 𝑦(𝑡0)

𝑥(𝑡0)
. 

 

 

Figure 1.12 Method for estimating PLI and PLV between two signals. After phases are 

exposed, phases at corresponding time and trial are subtracted to obtain their phase 

difference. For estimation of PLI, place the unit vectors belonging to all of the trials at 
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current time together at a unit circle. For estimation of PLV, it turns to be placing the 

ones from all the sample points at current trial. Finally, the average vector length is the 

indicator of phase synchronization. Therefore, PLI is able to analyze the variation of 

functional connectivity along time, while PLV is estimated with a single trial and 

suitable for analyzing the difference of functional connectivity among trials. 

 

1.8.3 Simulation 

Prior studies have demonstrated several different approaches about how to generate 

functional connected and non-connected data for testing the performance of all kinds of 

estimation methods in simulation (Glomb et al., 2017; Monti et al., 2015). However, 

they were not specially aiming at phase-concerned features in signals. Fortunately, a 

recent study proposed a novel method for generating phase synchronized and non-

synchronized simulation data for evaluating all kinds of phase-based functional 

connectivity estimation methods (Basti et al., 2022). In this section, similar approach 

would be used for generating simulation data. 

 

The core feature of a generated signal has to be modulated phase variation while its 

amplitude is randomly distributed. 

 

Firstly, the frequency bands for generating signals was determined. Since this study 

aimed to analyze EEG signals, it was defined based on the general demarcation of EEG 

bands, which is delta (1—3 Hz), theta (4—7 Hz), alpha (8—13 Hz), and beta (14—30 

Hz). For two signals of a certain band, they were generated as the sum of a series of 

sinusoids with frequencies from current band in steps of 0.01 Hz. Hereby, amplitudes 

and phases of each frequency component are randomly distributed from a uniform 

distribution from 0 to 50 and −π  to π  respectively. After passing through an 

autoregressive filter, two signals without coupling of phases 𝑆1(𝑡)  and 𝑆2(𝑡)  were 

generated. To obtain phase synchronized signals, calculate instantaneous phase of 

𝑆1(𝑡) through its analytic signal computed by Hilbert transform, and then re-construct 
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𝑆2(𝑡) as below: 

𝑆2
′(𝑡) = 𝐴2(𝑡) ∙ sin(𝜑1(𝑡) + Δ𝜃) 

where 𝐴2(𝑡) is the instantaneous amplitude of the original 𝑆2(𝑡), and 𝜑1(𝑡) is the 

instantaneous phase of 𝑆1(𝑡). Δ𝜃 is a randomly chosen value in the range of [−π, π] 

to represent the constant phase difference between two coupling signals. As a 

demonstration of above procedures, Figure 1.13 gives examples of analyzing PLV and 

PLI between two generated signals. From these examples, it is obvious that PLI has an 

advantage that cannot be neglected: reveal connectivity that would be finished during a 

short time window. 
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Figure 1.13 (A) 𝑆1(𝑡)  and 𝑆2(𝑡)  are a pair of phase-synchronized signals. By 

calculating their PLV with the method mentioned in 1.7.2, it is found that their phase 

difference at each moment almost always stays in the range of [0, 
𝜋

2
], and resulted in a 

PLV close to 1. 𝑆3(𝑡) and 𝑆4(𝑡) are with randomly distributed phases, which caused 

random distribution of phase differences as well, and resulted in a very low PLV. (B) 
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However, there is still another situation that two signals are partly coupled (as the 𝑆5(𝑡) 

and 𝑆6(𝑡)); their phase synchrony only happened at a certain period of the cognition 

process. This kind of coupling phenomenon can be observed by averaging phases across 

trials. It results in another shape of PLV, and some researchers proposed calling it phase 

locking index (PLI). 

 

1.9 Summary 

In this chapter, we introduced basic theory of the neural mechanism of motor, and 

the methods to observe the cerebral activity via EEG. In the latter part, we emphasized 

the features of EEG and introduced a reliable method to reveal the co-operation 

processes between two different functional regions. In the next chapter, the above was 

applied into a study about the visual perception and motor-related neural activities. 

  



28 

 

 

 

Chapter 2  

Spatio-Temporal Neural Dynamics of Visual 

Recognizing Manipulable Objects and 

Interactions 

 

Abstract: Previous studies have reported that a series of sensory–motor-related cortical 

areas are affected when a healthy human is presented with images of tools. This 

phenomenon has been explained as that familiar tools launching a memory-retrieval 

process to provide a basis for using the tools. Consequently, we postulated that this 

theory may also be applicable if images of tools were replaced with images of daily 

objects if they are graspable (i.e., manipulable). Therefore, we designed and ran 

experiments with human volunteers (participants) who were visually presented with 

images of three different daily objects and recorded their electroencephalography (EEG) 

synchronously. Additionally, images of these objects being grasped by human hands 

were presented to the participants. Dynamic functional connectivity between the visual 

cortex and all the other areas of the brain was estimated to find which of them were 

influenced by visual stimuli. Our results showed that manipulable objects caused a 

series of cerebral activity at several motor-sensory-related regions, corresponding with 

the two pathway of visual object recognition. Moreover, many evidence indicated that 

looking at images of interactions did not induct similar activity as seeing the same object 

alone, and so did images of hand. 
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2.1 Introduction 

 Tools play a special role among the objects that people usually come in contact with 

in daily life. Neuroscientists have found confirmatory evidence that using tools can lead 

to a lasting, discernible change on the perception of someone’s own body (Cardinali et 

al., 2009). Furthermore, looking at a tool can also initiate a series of changes in cerebral 

activity. Many previous studies demonstrated that observing tools resulted in a left 

hemisphere advantage, while this did not occur with other objects (Chao & Martin, 2000; 

Garcea et al., 2012; Verma & Brysbaert, 2011). The most popular explanation for the 

neural mechanism behind this phenomenon is that tools have the property of 

“manipulability” and their appearance suggests an associated action or movement 

(McNair & Harris, 2012; Ni et al., 2019). In other words, it is reasonable to consider 

that the tool-associated cerebral activity is concerned with a motor to interact with the 

presented object. However, in past decades, most studies paid attention on comparing 

seeing manipulable objects with seeing other objects (such as a chair or plane that could 

not be grasped by hand), but few focused on the difference and relation between seeing 

the object and seeing interacting with them. Therefore, we decided to investigate the 

cognitive process when normal human are shown with images of manipulable objects, 

and then try to figure out what is changed when they are shown with images 

representing interactions with these objects. 

 

As mentioned above, the first purpose of this study is to search for the representative 

characteristic of cerebral cortex activity after normal humans are presented with 1) 

images of manipulable objects, and 2) images of interactions (with those objects). In 

the meantime, due to the “hand” that contained in the images of interactions, the activity 

when shown with images of hand has to be studied as well. Furthermore, a condition 

that shows a combination of hand and object but without the motor of interaction is 

designed to reveal the unique component belongs to the motor of interaction. 
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In this study, we collected electroencephalography (EEG) data when volunteered 

participants were executing visual presentation tasks. By analyzing event-related 

potentials (ERPs), the functional connectivity, and time-frequency features, the 

characteristics of each condition is demonstrated. Furthermore, we also discussed 

possible explanations for several unexpected results. 

2.2 Materials and methods 

2.2.1 Experiments 

 Materials: Our hypothesis requires that the objects used as the stimuli need to be 

manipulable but are not tools. Additionally, a previous visual–somatosensory cross-

modal study reported that objects from different categories may not lead to the same 

neural activity. Therefore, we chose only three objects that often appear in daily life, are 

easy to hold by hand, and do not have immediate associations with each other. 

Meanwhile, this design allowed us to use the same stimuli a number of times before 

participants felt tired. When creating the condition of “seeing an object being grasped” 

(i.e., participants saw an interaction with an object), to control the variables as much as 

possible, the conception of an interaction was analyzed first. An interaction includes 

three elements: subject, object, and a solution to draw a relation between them. 

Therefore, two more kinds of stimuli were added between “object” and “interaction”: 

in our design, we used a normal human hand as a subject; orange, bottle, and smart 

phone as objects; and hand grasping as the solution, which is one of the most common 

forms of manipulability in our daily life. Figure 2.1 (a) shows the images used as visual 

stimuli in the experiment. 
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Figure 2.1 (a) Four kinds of images used in our experiment. Condition A presented 

participants with images of an orange, bottle, and smart phone (three objects). Condition 

B presented images of hands. Condition C combined the three objects and hands within 

the images. Condition D showed whole actions of hands grabbing objects (interactions). 

(b) Workflow of the trial. The images after the cross were randomly chosen from images 

corresponding to the current session (e.g., orange session, bottle session, and phone 

session). 

 

Participants: A total of 20 healthy humans (including 8 females; mean age 24.05 years, 

range 22–27 years) with normal or corrected-to-normal vision participated in this 

experiment. This study was reviewed and approved by the Department of Informatics, 

Faculty of Information Science and Electrical Engineering, Kyushu University 

(admission No. 2021-13), and every participant signed the informed consent form 

voluntarily before the experiment began. As all volunteers were right-handed, in this 

paper, we do not discuss the situation containing the left hand as a stimulus. 

 

Stimulus presentation: Visual stimuli were presented to participants on a 17-inch LCD 

display. The resolution and refresh rate were set at 1280 × 720 pixels and 60 Hz, 
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respectively. The distance between the eyes and display was in the range of 90–100 cm. 

Two runs were executed for each participant, and each run included three sessions with 

different topics: orange session, bottle session, and smart phone session. At the 

beginning of each run, the sequence of the three sessions was decided randomly. In 140 

trials for each session, images containing the chosen object (five images from conditions 

A, C, and D) and subject (two images from condition B) were shown randomly and 

repetitively (20 times each image) after a fixed cross sign at the center of the screen and 

then back to a black screen, shown after 1 s, as depicted in Figure 1b. An interval with 

a duration of 1000–2000 ms was randomly placed between two trials. 

 

EEG recording. A multi-channel EEG recording device (EEG-1100; Nihon Kohden 

Cooperation, Tokyo, Japan) was used for recording EEG with a sampling rate of 500 

Hz. Electrodes were set based on the extended international 10–20 system with an 

electrode cap (M64 montage without FT9, FT10, TP9, and TP10, EASYCAP GmbH, 

Herrsching, Germany). Electrodes were connected to a 64-channel amplifier, including 

one channel for reference in the left earlobe, two channels for horizontal and vertical 

electrooculogram (EOG) respectively, and 61 channels for EEG. Ground was set 

between the eyebrows. 

2.2.2 Data Analysis 

EEG data processing: Data from nineteen participants were included for analyses; data 

for one were excluded due to an unexpected technical malfunction. The recorded data 

were re-referenced to a common average, and then sent through a zero-phase-shift 

frequency domain band-pass filter with the cut-off frequency set at 1 and 30 Hz. Next, 

the Independent Component Analysis (ICA) completed by the Algorithm for Multiple 

Unknown Signals Extraction was used to remove EOG artifacts (Tong et al., 1991). 

Trials with potentials over 100 µV were seen as ab-normal and abandoned. Finally, over 

97.5% of trials of each condition remained for further analysis. The data recorded from 
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200 ms before stimulus onset (as the baseline) to the end of a trial were extracted as an 

epoch. 

 

Statistical test based on Monte Carlo method: Most of the statistical analysis 

revealed that the data were not normally distributed; there-fore, we chose one-tailed 

nonparametric test methods for this research. Many researches have proven that the 

permutation test is reliable for testing neural signals (Groppe et al., 2011; Maris & 

Oostenveld, 2007). In this research, the workflow can be described as follows: 

a. For two independent sample sets, 𝑠𝑎𝑚𝑝𝐴  and 𝑠𝑎𝑚𝑝𝐵 , where 𝐻0: 𝑠𝑎𝑚𝑝𝐴̅̅ ̅̅ ̅̅ ̅̅ ̅  ≤

 𝑠𝑎𝑚𝑝𝐵̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑣0 was calculated as follows: 

𝑣0 = 𝑠𝑎𝑚𝑝𝐴 − 𝑠𝑎𝑚𝑝𝐵, (1) 

where 𝐻0 is the null hypothesis and 𝑣0 is the test statistic. 

b. 𝑠𝑎𝑚𝑝𝐴  and 𝑠𝑎𝑚𝑝𝐵  were put into the same group. Then, the elements of this 

group were randomly divided into two sub-groups: 𝑠𝑎𝑚𝑝𝐴1 and 𝑠𝑎𝑚𝑝𝐵1, which 

had the same size. The new statistic of test 𝑣1 was calculated as follows: 

𝑣1 = 𝑠𝑎𝑚𝑝𝐴1 − 𝑠𝑎𝑚𝑝𝐵1, (2) 

c. Step b was repeated 10,000 times to obtain 𝑣1, 𝑣2, … , 𝑣10000; 

d. The 𝑣1, 𝑣2, … , 𝑣10000 values were sorted in ascending manner, and the sequence 

number of the first value that was greater than 𝑣0 was identified as the “𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛”. 

The p-value of the statistic test was calculated as follows: 

p = 1 −
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

10000
, (3) 

Similarly, when it comes to a paired test, we used the bootstrap resampling approach to 

obtain the confidence interval of the difference between the paired samples. The 

bootstrap statistical method is also a nonparametric approach with proven validity and 

has been approved in many studies (Darvas et al., 2004; Delorme & Makeig, 2004; 

Graimann et al., 2002). The procedures are shown below: 

1. For two paired sample sets, 𝑠𝑎𝑚𝑝𝐶  and 𝑠𝑎𝑚𝑝𝐷 , where 𝐻0: 𝑠𝑎𝑚𝑝𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅  ≤
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 𝑠𝑎𝑚𝑝𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , we constructed a paired sample set 𝑠𝑎𝑚𝑝𝑃, as follows: 

𝑠𝑎𝑚𝑝𝑃 = 𝑠𝑎𝑚𝑝𝐶 − 𝑠𝑎𝑚𝑝𝐷, (4) 

2. Resampling was performed from 𝑠𝑎𝑚𝑝𝑃 with a replacement to generate a new 

sample set, 𝑠𝑎𝑚𝑝𝑃1; then, its mean value 𝐴1 was calculated as follows: 

𝐴1 = 𝑠𝑎𝑚𝑝𝑃1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (5) 

3. The last step was repeated to obtain 𝐴2, 𝐴3, … , 𝐴10000, which were then sorted in 

ascending manner, and then, the index of the first value that was greater than zero 

was identified as the 𝑖𝑛𝑑𝑒𝑥. The p-value of this test was calculated as follows: 

𝑝′ =
𝑖𝑛𝑑𝑒𝑥

10000
, (6) 

 

Functional connectivity and effective phase-locking value (ePLV): We estimated the 

phase-locking values (PLVs) to measure the connectivity between the data recorded 

near the occipital lobe (a fusion of EEG recorded from electrodes Oz, O1, O2, POz, 

PO3, and PO4) and all the other electrodes (Catrambone et al., 2019). The result of the 

Hilbert Transform (HT) of each epoch was used to generate analytic signals for 

computing the instantaneous phase at each moment. The PLV between regions 𝑖 and 

𝑗 at time 𝑡 is estimated as follows: 

𝑃𝐿𝑉𝑖,𝑗,𝑡 = √
[

1

𝑛
∑ 𝑐𝑜𝑠(𝜃𝑖,𝑘,𝑡 − 𝜃𝑗,𝑘,𝑡)𝑛

𝑘=1 ]
2

+ [
1

𝑛
∑ 𝑠𝑖𝑛(𝜃𝑖,𝑘,𝑡 − 𝜃𝑗,𝑘,𝑡)𝑛

𝑘=1 ]
2, (7) 

where 𝑛  is the number of epochs and 𝜃  is the phase in radians obtained from HT 

(Lachaux et al., 1999). For each subject, one PLV time series was estimated. However, 

these values do not always mean that there is a relationship between the two regions 

because even noise signals would have a PLV between 0 and 1. To know which of them 

are significantly different from the baseline (effective PLV, ePLV), estimated PLVs were 

submitted to a bootstrap-resampling-based, paired statistical test program to eliminate 

false positives by testing with the PLVs during baseline. This program works in two 

steps: (i) for each participant, the PLVs during the baseline period (i.e., before the 
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stimulus was given) were resampled to extract the mean value according to central-limit 

theorem, and then (ii) paired tests between PLVs at each moment and the mean value 

were conducted. The workflow can be described as follows: 

For each PLV time series, 

1. Values during the baseline period were extracted and were put into the baseline 

vector; 

2. Resampling was performed from 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 with a replacement to obtain a new 

vector 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒′ with the same size; 

3. The mean 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒′ across time was calculated; 

4. Steps 2–3 were repeated 10,000 times and then a grand mean value of the results in 

step 3 was obtained. 

 

After the above procedures were executed on every PLV time series, a mean value 

vector was generated as the 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, which was used as a sample set of the control 

group in the following paired test. Finally, we could determine which of the PLVs 

represented a meaningful functional connectivity and could be considered as ePLVs. 

 

Event-related spectral perturbation (ERSP): Every epoch was conducted with 

continuous Morlet wavelet transform to unfold their frequency dimension via the 

Wavelet Toolbox in MATLAB (MathWorks, Natick, MA, USA). ERSP reflects the 

energy changes in EEG after providing a stimulus, which is defined as the ratio of power 

at the current time and baseline mean (Makeig, 1993). For each epoch, ERSP at time 𝑖 

of a specific frequency component 𝑗 can be calculated as follows: 

𝐸𝑅𝑆𝑃𝑖,𝑗 = 10 × log10
𝑢𝑖,𝑗

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑗
, (8) 

where 𝑢𝑖,𝑗 is the absolute value of potential at time 𝑖 and frequency 𝑗, and 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑗 

is the average of the one at frequency 𝑗 before the stimulus was presented. To highlight 

the source of ERSP variation at the sensor level, a finite difference-based spatial 

Laplacian transformation was conducted via Brainstorm (Carvalhaes & De Barros, 
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2015; Nunez & Westdorp, 1994; Pernier et al., 1988). This procedure used the ERSP 

data to replace the potential data in the algorithm (Oostenveld et al., 2011). 

2.3 Results 

2.3.1 Functional Connectivity 

 It is noticed that functional connectivity estimated by EEG filtered at different 

bands is totally inconsistent (Pockett et al., 2009). Therefore, the preprocessed EEG 

epochs were filtered into four different bands (delta: 1–3 Hz, theta: 4–7 Hz, alpha: 8–

13 Hz, and beta: 14–30 Hz); next, the PLVs between EEG recorded at the occipital lobe 

and other locations were then calculated and the ePLVs were then screened out. The 

number of ePLVs varied over time. The topography shown in Figure 2.2 displays the 

distribution of ePLVs calculated with data from the four frequency bands at different 

moments. These moments were selected to show as many connections as possible. 
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Figure 2.2 Functional connectivity between visual cortex and other regions when 

participants were shown with images from condition A. Colored electrode indicates that 

connectivity between that region and the occipital lobe actually exists. Time is 

determined based on the principle of showing the connections as many as possible. 

 

At the delta and alpha bands, the number of ePLVs was fewer than that of the other 

bands; furthermore, across the three objects, there was a noteworthy change in the 

moment that the maximum number of connections appeared. By contrast, the ePLVs 

estimated at the theta band and the beta band were more credible because of the number 
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of observed connections, especially their stability across time and objects. Results from 

beta band suggested that, regions connected with occipital lobe were mainly the central 

frontal area and the right angular gyrus, but a further analysis in time domain showed 

that beta band PLVs did not changed a lot than baseline (see Figure 2.3). This false 

positive suggested beta band is not good at representing the cerebral activity connected 

with current task. In theta band, it was noticed that the right frontal area (RF), bilateral 

central sulcus (L/RCS), right temporal lobe (RT), and right angular gyrus (RAG) did 

establish functional connectivity with occipital lobe. Obvious increase of PLV was 

noticed at about 200 ms after stimulus onset (as shown in Figure 2.4). Compared with 

others, theta band showed a unique advantage on measuring functional connectivity by 

estimating PLV, and consist with the opinion that the theta band has advantages in 

observing functional connectivity (Fellrath et al., 2016; Murias et al., 2007; Sauseng et 

al., 2005). 

 

 
Figure 2.3 Variation of PLV along time at central frontal (CF) and right angular gyrus 

(RAG) in condition A. Red line means average value across subjects, and shaded area 

means standard error (𝑁 = 19). Obvious increase could only be observed near the end 

(after 900 ms) and in a narrow time band. It is possibly a false positive due to the Gibbs 

phenomenon when apply Hilbert Transform on a wide-band signal. Beside this, most of 

the values were at the same level with baseline. 
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Figure 2.4 Variation of PLV along time at central frontal (CF) and right angular gyrus 

(RAG) in condition A. Red line means average value across subjects, and shaded area 

means standard error (N=19). All of the curves increased significantly in the interval of 

0 to 400 ms after stimulus onset, and peaked at about 200 ms. Baseline level varies in 

different areas, but not related with the Euclidean distance to occipital lobe.  
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Distribution of occipital-lobe-connected ePLVs of each condition was shown in Figure 

2.5. Results suggested more regions joint the process when a hand is included in visual 

stimulus. These new-appeared regions are mainly left frontal lobe and left temporal-

parietal junction (including left angular gyrus, LAG). 

 

 

Figure 2.5 Distribution of ePLVs in each condition. Each colored electrode means there 

is a connection between that electrode and occipital lobe, at the moment indicated on 

the bottom-right corner of each topography. Larger area participated in condition C and 

D than only seeing objects. The moment that most connections were observed is earlier 
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in condition D. 

 

Additionally, the moment that a maximum connection number was reached showed a 

regular pattern: condition D is the earliest, then condition C follows, and condition A is 

the latest.  

 

In summary, the topography demonstrated that functional connectivity between the 

occipital lobe and regions of RF, L/RCS, RT, and RAG were established similarly when 

participants saw images either the three conditions. To make it more intuitive, the PLV-

over-time plot of the regions mentioned above is shown in Figure 2.6. On the contrary, 

the difference is embodied in the area covered by electrodes F5, F7, FC5, and FT7, 

which is believed to be Broca’s area (BA) (Fadiga et al., 2009; Fadiga & Craighero, 

2006; Fazio et al., 2009; Rizzolatti et al., 1996) and the left angular gyrus (LAG). Same 

as before, we demonstrated these differences in the plot of PLV over time in Figure 2.7. 

The results of paired test suggested that these differences are significant. 

 

Additionally, we noticed that the distribution of PLVs when participants were shown 

with images of hand is similar with condition C and D. This phenomenon revealed that 

human brain treats hand differently with objects. Figure 2.8 was drawn to figure out the 

relation and difference between them. Although they both established functional 

connectivity between occipital lobe and right temporal lobe, it was stronger when seeing 

objects.  
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Figure 2.6 PLVs over time. Red line shows phase locking values (of theta band) when 

participants were shown images in condition A; green line when condition C; blue line 

when condition D. Shaded areas are standard error. Besides the sporadic unstable 

difference between condition A and D, PLVs among the three conditions varied 

similarly at these regions. The green curve seems to consist with either the red or blue 

curve of the same plot randomly, or part of the red curve followed by part of the blue 

one (e.g. RAG-Orange plot). 
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Figure 2.7 Red line shows phase locking values (of theta band) when participants were 

shown images in condition A; green line when condition C; blue line when condition D. 

Shaded areas are standard error. Significant difference was noticed between seeing 

objects and seeing interactions at 200 ms after presenting the stimulus to participants (α 

= 0.05). Green curve tends to between the red and blue curve. 
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Figure 2.8 Comparison between seeing object and hand. Red curve shows the PLV-time 

plot of condition A, and yellow curve shows that of condition B. Shaded area means 

standard error. In these regions, right temporal area performed specially—significant 

difference of average PLV during 0—400 ms was noticed. Right temporal cortex 

connected with occipital lobe stronger when seeing objects than when seeing hand. 
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Many visual object recognition related studies has proved that temporal lobe contributes 

to object recognition process (“vision for perception”, Mishkin et al., 1983). Therefore, 

we also measured the functional connectivity between temporal lobe and the other 

regions, as shown in Figure 2.9. These regions are mainly the frontal lobe and 

contralateral parietal lobe. The right hemisphere of temporal lobe (T8) seemed to be 

more essential than its left part in all the four conditions. Therefore, we compared the 

PLVs between right temporal lobe and left parietal lobe (LP), and the result suggested 

a stronger connection when seeing interactions (see Figure 2.10). 
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(A) 
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(B) 

Figure 2.9 Effective PLVs between (A) left temporal lobe and other regions, and 

between (B) right temporal lobe and other regions. A notable feature was that temporal 

lobe connected to contralateral parietal lobe when participants saw interactions, and this 

phenomenon was not obvious when seeing objects, especially for right hemisphere—

no ePLV between right temporal lobe and left parietal lobe was observed when seeing 

only objects. The time that most ePLVs appeared in (A) varied more dramatically than 

(B), which may suggested right temporal lobe was modulated more than the left part. 
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Figure 2.10 PLV-time plot of the PLVs between right temporal lobe and left parietal 

lobe. Difference between condition A and D was noticed at about 230 ms.  

 

 

2.3.2 Power Variations 

As mentioned in the Introduction, we were expecting to find some motor-related 

EEG features when participants looked at non-tool objects. Thus, our attention was 

turned to power changes in the mu rhythm (Caldara et al., 2004; Jeannerod, 1994; 

Pfurtscheller & Neuper, 1997), and clear event-related desynchronization (ERD) was 

noticed with both “seeing objects” and “seeing interactions”, as shown in Figure 2.11a. 

The topography was drawn with EEG data filtered at 8–13 Hz and then was Laplacian 

spatial filtered to highlight the changes. ERD was mainly observed at the region of the 

bilateral postcentral gyrus, which may suggest the participation of the primary 

somatosensory cortex (Oostenveld & Praamstra, 2001). Among all three objects, the 

most obvious ERD occurred at the area covered by electrodes C5, CP3, and CP5 in the 

left hemisphere (LS), as well as the corresponding position in the right hemisphere (RS). 

Figure 2.11b revealed its dynamic changes over time. Although all of these plots 

performed clear ERD at the end, there was obvious event-related synchronization (ERS) 

observed during the process when participants saw objects being grasped. This ERS 

was widespread from 100 to 200 ms, especially in LS. 



49 

 

 

 

Figure 2.11 (a) Topography of ERSP at 400 ms. Mu rhythm ERD distributed at bilateral 

posterior central gyrus with a little left advantage and performed similarly in all six 

situations. (b) ERSP over time. Red line shows ERSP when participants were shown 

objects, while the blue line shows ERSP when they were shown objects being grasped 

by human hands. Shaded areas are standard error. A clear ERS was observed only when 

seeing interactions, and its peak time is indicated with an arrow. The significance of 

ERS was confirmed by a permutation test on the ERSP value in the two conditions at 

the corresponding time (α = 0.05). 

 

Undoubtedly, the difference in power change in the somatosensory cortex is due to the 

difference in visual stimuli, which means that the ERS may be caused by the hand 

contained within the image or the combination of a hand and the object. Fortunately, we 

have collected EEG data from when participants were shown only a hand and both a 

hand and an object. By comparing the topography in Figure 2.12a, we found that they 
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showed ERS in the left somatosensory cortex for both conditions, although the values 

were not completely the same. This suggests that the hand seen in the visual stimuli 

partly contributed to the ERS. We also analyzed the data from condition C and 

interestingly found that it was different from that of the other three kinds of stimulus. It 

seems that participants recognized the hand and object in each image as two entities. 

We found that, at about 200 ms after visual stimulus onset, a positive event-related 

potential (ERP) component appeared at both the PO7 and PO8 electrodes but with a 

right hemisphere asymmetry. The plot in Figure 2.12b shows the ERP difference 

between the PO7 and PO8 electrodes. Evidently, two clear peaks were observed in 

condition C, while only one was observed in the other two conditions. A further test 

with a one-way ANOVA-based multiple comparison suggested that the lateralization 

phenomenon in condition C was significantly different from the others (p < 0.05). 
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Figure 2.12 (a) Topography of 8–13 Hz ERSP when seeing human right hand and 

seeing interactions using the right hand at 152, 180, and 158 ms. ERS at LS is weaker 

when only images of a hand are presented to participants. (b) Plot shows a grand 

averaged ERP difference between electrodes PO7 and PO8. A remarkable second peak 

(black line) appeared when participants were presented with images in condition C. The 

bar graph on the right shows mean and standard error of the difference data in the range 

from 246 to 300 ms. 

 

2.3.3 ERPs 

Event-related potentials (ERPs) were observed via EEGLAB, and the result from 

Orange series stimulus were shown in Figure 2.13 as an example (Delorme & Makeig, 

2004). High SNR ERPs can only be observed at occipital lobe. In occipital lobe, three 

components were found, which sourced at PO7 and PO8 electrodes. But there was no 

difference among the four conditions. We then paid attention to temporal lobe, because 

it is a part of the ventral stream in visual object recognition. Finally the statistic test 

proved that the FT8 electrode performed differently when participants were shown with 

images in condition C (𝑝 = 0.0015 ). Moreover, we also expected that the ERPs in 

Broca’s area might be different since there is no cue to launch the MNS, but still no 

significant difference among them. 
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Figure 2.13 Grand average ERPs of Orange series (𝑁 = 19). Sources of components 

were located by searching maximum value at sensor level. The P1 and N1 components 

sourced at electrode PO7, while the P2 component sourced at PO8. No significant 

difference was found by ANOVA multi-comparison. Due to the existence of ventral 

stream, we then paid attention to temporal lobe, and the potential of condition C at FT8 

showed a significant difference with condition A and D (𝑝 = 0.0015). Additionally, we 

looked into Broca’s area (F3), but no significant different appeared (𝑝 = 0.2403). 

 

2.4 Discussion 

ERP analysis was not effective enough in this study. ERP technique relies on the 

phase-locking phenomenon during cognition process. Those well-locked components 

would be remained while the others would be erased during averaging procedure. This 

characteristic makes it can only reveal the evoked process, but not the induced process. 

In our experiment, visual evoked potentials were exposed successfully, but the other 

regions were not. It suggested that the processes happened in other regions more tended 

to be induced ones. In visual cortex, difference between PO7 and PO8 electrode exposed 

the particularity of condition C—two entities in view. This evidence proved the number 

of entities was perceived at visual cortex. In addition to this point, no more difference 

was found. However, in temporal lobe, ERP of condition C was highlighted. Considered 

with the function of ventral stream of visual object recognition, it is reasonable to infer 

that temporal lobe launch the process for evaluation relationship between the two 

entities, while no such need in other conditions. 

 

Functional connectivity between occipital lobe and temporal lobe performed differently 

when saw object and when saw human hand. A possible explanation is that perception 

of a human hand does not need that much resources as perception of artificial objects. 

However, the regions that were involved in recognition of hand was more than that of 

objects. All the signs indicated that human hand is special in visual perception. 

 

Another very interesting result is from the observation of functional connectivity 
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between temporal lobe and left parietal lobe. When showing participants the images that 

already contained a proper posture to grasp the target object with right hand, that 

connection get stronger than only present them with images of objects. The ventral 

stream of visual cortex output was changed. In condition C, this cross-hemisphere 

information sharing phenomenon was not observed as obvious as in condition D. 

Therefore, the contralateral communication between temporal lobe and parietal lobe 

may be a marker of the concept “interact” or “contact”. This is worthy to investigate in 

the future. 

 

Many studies considered that the particularity of tools is derived from the action applied 

to use them, which they come naturally with (Creem-Regehr & Lee, 2005). Therefore, 

we suspected that the presentation of a manipulable object may cause a similar cerebral 

activity to that which occurs upon seeing an interaction with that object. However, our 

experimental results rejected this inference with the additional functional connectivity 

between the occipital lobe and BA as well as between the occipital lobe and LAG when 

participants were shown images of objects being grasped. Although the controversy 

about its location is still on-going, a large majority of scholars believe that the mirror 

neuro system (MNS) exists near Broca’s area (or BA44), the inferior parietal lobule 

(near the LAG), and the superior temporal sulcus (Cerri et al., 2015; Gallese et al., 1996; 

Papitto et al., 2020; Rizzolatti & Craighero, 2004). Hence, connectivity observed at BA 

and LAG can be reasonably regarded as activity of the MNS evoked by seeing the action 

of grasping objects. This may explain the different distributions of functional 

connectivity for seeing objects vs. seeing interactions with objects; nevertheless, ERS 

in the somatosensory cortex, which can only be noticed in the latter case, still exists. All 

of this evidence led us to the conclusion that the changes observed in the cerebral cortex 

after seeing objects being grasped were not the same as those that occurred after seeing 

only objects. 
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In summary, this study investigated the functional connectivity related with visual 

cortex, and related with temporal cortex, after healthy participants saw daily objects that 

are manipulable. We figured out the spatial and temporal features of seeing manipulable 

objects. Next, we assessed whether seeing a manipulable object led to a similar mu 

rhythm change to seeing an interaction with the same object; however, the evidence 

rejected our hypothesis: additional activation of Broca’s area and the left angular gyrus, 

and early alpha band ERS in the somatosensory cortex were only observed when 

participants saw interactions. Finally, we found that the connection between temporal 

lobe and parietal lobe might be related with the cue of interaction in vision. 

2.5 Summary 

 In this chapter, the PLV calculated across trials (or PLI, in some definitions) 

revealed which regions participated in the post-process after normal human saw a 

manipulable object. However, in consideration of application, this kind of multi-trial 

based algorithm is not suitable in actual using. Therefore, in the next chapter, another 

study about classifying human’s EEG when seeing other’s movement, imagining a 

certain movement, and actually executing a movement through the approach of 

calculating PLV in a single trial will be introduced. 
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Chapter 3  

Classify EEG Signal among Movement 

Observation, Imagination, and Execution 

 
Abstract: It has been found that the functional connectivity is useful in recognize the 

cerebral regions that take part in a specific cognitive process. In this research, we tried 

to use this method to study which areas participated in the movement observation, 

imagination, and execution process. A total of 17 healthy volunteered participants 

provided their electrophysiological data in the experiments. Then, a series of methods 

based on Support Vector Machine (SVM) were used to search for effective features from 

electroencephalograph (EEG) to distinguish those processes from each other. 

Consequently, an average classification accuracy of 44.0% was achieved via both the 

phase locking value features and power variation features. Moreover, during the 

classification, it was confirmed that the Broca’s area, motor cortex, the Wernicke’s area, 

and visual cortex participated in these processes. Additionally, we proposed to pay more 

attention on the late component of EEG in doing researches because their importance 

were exposed in this study. 

3.1 Introduction 

In previous study, it has been noticed that a huge range at cerebral cortex 

participated in the cognitive process after the images showing an interaction movement 

were presented to normal human volunteers. Not only the visual cortex, but the activated 

neurons also included the (pre-)motor cortex, somatosensory cortex, and the region 
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believed to be related to the mirror neuron system as well (as shown in Figure 2.2). 

Therefore, the reason why these neurons engaged in this process can be speculated as: 

1) the observation of movement just lead to their firing; or, 2) the observation of 

movement caused an involuntary imagination of that movement, which then caused the 

activations; or, 3) the volunteers tried to execute the observed movement. In order to 

figure out which of them were the actual reason, a novel EEG experiment were 

conducted in this study. 

 

Moreover, as is well known, imagination of movements causes electrophysiological 

activities at similar neural circuit as when execute the same movement actually. Based 

on this principle, scientists have invented the motor-imagining brain-computer interface 

(MI-BCI) and applied it into many occasions in different fields. Similarly, the discovery 

of mirror neuron system also uncovered an acknowledged theory that human are 

intendent to imitate in the meantime seeing other people making a movement. However, 

these phenomena come to be a problem when we try to make machines understand when 

someone is trying to make a movement and when someone just saw other’s movement, 

because theoretically they induce similar neural activities (Sté Phanie Cochin et al., 

1999). 

 

Hence, this study focused on the topic of distinguishing the EEG signal recorded when 

volunteered participants were taking these tasks: movement observation, imagination, 

and execution. In the following sections, a whole sketch was provided to show how we 

studied the topic with a data-driven thinking, and particularly using the feature selection 

method to figure out the spatio-temporal activity of cerebral cortex. 
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3.2 Materials and methods 

3.2.1 Experiment 

Materials: A total of 20 gestures were determined as stimulus. Movies that show 

moving right hand from an open palm to pose these gestures and finally back to an open 

palm were created by Unity (San Francisco, CA, US). Figure 3.1 shows static images 

of these gestures, and the processes contained in the movie is shown in Figure 3.2. In 

the beginning of a trial, one of the short movie was chosen randomly and shown to 

participants. Then, the screen back to empty and participants were asked to recall the 

movement shown in the movie. Finally, a progress bar was presented and participants 

were asked to finish the gesture shown in that movie before the progress bar was at its 

end. These three procedures in a trial were named as “observation phase”, “imagination 

phase”, and “execution phase” (see Figure 3.3). During the experiment, a camera was 

set against participant’s right hand and take photos during execution phase, in order to 

check whether participants finished the target gesture successfully. The gesture of a trial 

was chosen randomly from those 20 gestures mentioned above. 30 trials were run for 

each participant. 
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Figure 3.1 The 20 gestures used in experiments. They were determined based on the 

principle of hard to be named in case participants easily memorized them through 

semantic coding. 
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Figure 3.2 The construction of the movie shown to participants during the observation 

phase. In the first 0.5 s of the video, the scene kept showing an open palm; then the 

palm turned to move until it showed a gesture (the target gesture) listed in Figure 3.1 in 

the next 0.5 s, and it kept at the gesture for another 0.5 s. Finally, it back to the open 

palm in 1 s with reverse procedures. 

 

 

Figure 3.3 Three phases in a trial. Participants were asked not to make any movement 

with their right hand when the border color was red, and imitate the presented gesture 

shown at observation phase as soon as the border color turned to green. They had 2.5 s 

to finish the movement and keep the gesture till the end of process bar. A camera would 

take a photo at the end so that we can confirm whether participants made the correct 

gesture during analysis. 
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Participants: A total of 17 healthy humans (including one female; mean age 23.05 

years, range 22–27 years) with normal or corrected-to-normal vision participated in this 

experiment. This study was reviewed and approved by the Department of Informatics, 

Faculty of Information Science and Electrical Engineering, Kyushu University 

(admission No. 2021-13), and every participant signed the informed consent form 

voluntarily before the experiment began. As 16 volunteers were right-handed as they 

own reported, in this paper, we shows results from right-handed volunteers if we do not 

indicate specially. During experiment, participants were ask to set on a comfortable 

chair and put right arm at a certain place where can be captured by the camera, as shown 

in Figure 3.4. 

 

 

Figure 3.4 Image of the experiment environment. A white foam board was set at the 

location of the light grey rounded rectangle to block out the sight of participant from 

seeing their own right hand, in case they observed the movement of their own hand 

during execution phase. 

 

Stimulus presentation: The stimulus presentation program was created with PsychoPy 

(Jonathan Peirce et al., 2019), and stimulus were presented to participants via a 15.6-
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inch LED display. The resolution and refresh rate were set at 1920 × 1080 pixels and 

60 Hz, respectively. The distance between the eyes and display was in the range of 60–

80 cm. 

 

EEG recording: A multi-channel EEG recording device (Polymate V; Miyuki Giken 

Co., Ltd, Tokyo, Japan) was used for recording EEG with a sampling rate of 500 Hz. 

Electrodes were set based on the international 10–20 system with an electrode cap (19 

channels; ). Ground was set between the eyebrows. 

3.2.2 Data Analysis 

A whole framework of the data processing procedures is shown in Figure 3.5. Before 

analysis, we manually confirmed that all the participants posed correct gesture in 

execution phase. Moreover, data from 8 random-chosen participants was used for 

training the machine learning model and the others for evaluation. 

 

 

Figure 3.5 A whole framework of the data processing procedures. Note that the Feature 

Selection will only be done during training the models for the classifiers; in evaluation, 

the feature selection solution generated during training would be applied to the end of 

feature extraction procedure and then the classification would be run with only the 

determined features. 

 

EEG data preprocess: We used the EEGLAB toolbox for preprocessing the recorded 

EEG data (Delorme & Makeig, 2004). These data were firstly re-referenced to a 

common average, and then filtered into 1 to 30 Hz. Here, we set an abnormal value 
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threshold at 100 V and a whole trial will be excluded from the following analysis if it 

contained any value over the threshold. Then, ICA were carried out for the rest of data 

to remove EOG components included in them. Finally, the EEG data belongs to the 

period of baseline, observation phase, imagination phase, and execution phase were 

extracted respectively. 

 

Feature extraction: Based on the findings in Chapter 2, we proposed to use two kinds 

of features included in EEG data: phase locking value (PLV) and event-related 

(de-)synchronization (ERD/S). The procedures for extracting PLV features from each 

trial are described as below: 

1. Filter the signals into theta band (i.e. 4—7 Hz), 

2. Calculate the analytic signals of the above signals via Hilbert transform, 

3. For each signal, calculate its phase angle at each moment, 

4. Calculate PLV between signals from each two channels: 

𝑃𝐿𝑉𝑢1,𝑢2
= √

[
1

𝑛
∑ 𝑐𝑜𝑠(𝜃𝑢1,𝑡 − 𝜃𝑢2,𝑡)𝑇

𝑡=𝑡0
]

2

+ [
1

𝑛
∑ 𝑠𝑖𝑛(𝜃𝑢1,𝑡 − 𝜃𝑢2,𝑡)𝑇

𝑡=𝑡0
]

2, 

where 𝜃𝑢1,𝑡 means phase angle at moment 𝑡 of signal 𝑢1, and 𝜃𝑢2,𝑡 means those 

of signal 𝑢2. 𝑡0 and 𝑇 means the start and end of the interval for calculation. 

5. For each channel, calculate its average PLV between itself and all the others, 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑐,1 =
1

𝑁 − 1
(∑ 𝑃𝐿𝑉𝑐,𝑝

𝑐−1

𝑝=1

+ ∑ 𝑃𝐿𝑉𝑐,𝑞

𝑁

𝑞=𝑐+1

) 

Therefore, 19 features were extracted after above procedures. Similarly, the ERD/S 

features of each trial could be easily extracted by: 

1. Execute wavelet transform on data from each channel via the Wavelet Toolbox in 

MATLAB (MathWorks, Natick, MA, USA) and acquire the power variation on both 

time and frequency. 

2. Calculate the variation of power in alpha band (8—13 Hz) compared with baseline, 
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𝑃𝑐,𝑡 = 10 × log10
𝑢𝑐,𝑡

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑐
, 

where 𝑢𝑐,𝑡  is the absolute value of potential at channel 𝑐  and time 𝑡 , and 

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑐 is the average of the one at channel 𝑐 before the stimulus was presented. 

3. For each channel, we got a feature value by calculate the average during a 

determined interval, 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑐,2 =
1

𝑇
∑ 𝑃𝑐,𝑘

𝑡

𝑘=𝑡0

, 

where 𝑡0 and 𝑡 mean the start and end of the interval, and 𝑇 = 𝑡 − 𝑡0. 

Till now, another 19 features were extracted. Finally, for each trial we got a 38-

dimension feature vector.  

 

Feature selection: A selection method named as Sequential Forward Floating Selection 

(SFFS) was used for a wrapper based feature selector. It traverse the combination of 

features included in input feature vector and find out which one gives best performance. 

The workflow of SFFS is described as: 

1. Take a feature from the feature vector 𝐹𝐸𝐴𝑇𝑈𝑅𝐸 and put it into a subset 𝑓𝑒𝑎𝑡𝑢𝑟𝑒. 

2. Classify the samples with the subset, and its accuracy is 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

3. Take a new feature from 𝐹𝐸𝐴𝑇𝑈𝑅𝐸 and add it into the subset 𝑓𝑒𝑎𝑡𝑢𝑟𝑒. 

4. Classify the samples with the subset, and its accuracy is 𝑛𝑒𝑤_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. 

5. Compare the 𝑛𝑒𝑤_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  with 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , if 𝑛𝑒𝑤_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 < 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , 

remove the last feature and jump to step 3; otherwise, give 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 the value of 

𝑛𝑒𝑤_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, and go to step 6. 

6. Classify the samples without the first feature in 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 , and its accuracy is 

𝑛𝑒𝑤_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. If all of the features in 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 have been evaluated, jump to step 

3. 

7. Compare the 𝑛𝑒𝑤_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  with 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , if 𝑛𝑒𝑤_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 < 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , 

move the first feature in 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 to the end, and jump to step 6; otherwise, remove 

the first feature in 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 , and give 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  the value of 𝑛𝑒𝑤_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , 
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and go to step 6. 

After the above steps, a feature subset that with best performance for classification is 

generated. A graphical description of the procedures of SFFS is given in Figure 3.6. 
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Figure 3.6 Flow chart of SFFS. The 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  was initialized to zero before the 

algorithm began. This process would be terminated when all the features in FEATURE 

had been traversed. 

 

Classification: We used the LIBSVM toolbox for classify the samples (Chang & Lin, 

2011). During the feature selection procedure, the performance of selected feature 

subset was evaluated by calculate an n-fold cross validation function defined in the 

toolbox. We have to note that for the three-class classification problem, we constructed 

classifier groups based on the one-against-one strategy manually so that the features 

used for different classification task is also different (i.e. the input of each classifier is 

different) in order to reach the best performance. Thus, the training of the three 

classifiers was also finished respectively. Figure 3.7 is drawn for explaining the 

principles in an intuitional way. 
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Figure 3.7 The conceptual diagram of combining the feature selection with different 

classifiers. This method customize the solution of selecting features for each classifier 

with different missions. In this way, all of these classifiers were able to work with the 

most appropriate input feature vectors in the meantime, so that they can show the best 
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performance without any burden from others. 

3.3 Results 

3.3.1 Training 

In order to create a SVM model with both the spatial and temporal information, each 

epoch was divided into five isometric sections (i.e. 500 ms for each section) and sent 

for feature extraction independently after features from each entire epoch. Therefore, it 

resulted in that each feature vector had dimensions of 288 finally. A detailed description 

of features are stated in Table 3.1.  

 

Table 3.1 Description of features 

Feature Description 

F1 PLV of each channel calculated with EEG data from 0 ms to 2000 ms. 

F2 PLV of each channel calculated with EEG data from 0 ms to 400 ms. 

F3 PLV of each channel calculated with EEG data from 400 ms to 800 ms. 

F4 PLV of each channel calculated with EEG data from 800 ms to 1200 ms. 

F5 PLV of each channel calculated with EEG data from 1200 ms to 1600 ms. 

F6 PLV of each channel calculated with EEG data from 1600 ms to 2000 ms. 

F7 ERD/S of each channel calculated with EEG data from 0 ms to 2000 ms. 

F8 ERD/S of each channel calculated with EEG data from 0 ms to 400 ms. 

F9 ERD/S of each channel calculated with EEG data from 400 ms to 800 ms. 

F10 ERD/S of each channel calculated with EEG data from 800 ms to 1200 ms. 

F11 ERD/S of each channel calculated with EEG data from 1200 ms to 1600 ms. 

F12 ERD/S of each channel calculated with EEG data from 1600 ms to 2000 ms. 

 

Data from the first 8 participants was used during the training process, and they 

provided 188 samples in total. All these samples were sent to the feature selections 

procedure together to make sure the determined selection solution had minor influence 

from individual difference. Moreover, the parameter n of n-fold cross validation was set 

to equal to the number of participants so that the samples could be partitioned perfectly. 

The accuracy of each classifier is shown in the Table 3.2 below. 
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Table 3.2 Accuracy of each classifier 

 Mission Accuracy (%) 

Classifier I Observation vs. Execution 65.87 

Classifier II Observation vs. Imagination 72.22 

Classifier II Execution vs. Imagination 66.67 

 

The features used to achieve the accuracies mentioned above is shown in Table 3.3.  

 

Table 3.3 Result of feature selection 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

FP1        □     

FP2        □     

F7             

F3          □   

Fz             

F4             

F8             

T3             

C3             

Cz ○ △           

C4           ○  

T4            △ 

T5          △   

P3          △   

Pz             

P4             

T6         ○    

O1           ○  

O2       □    ○  

△: Selected feature for Classifier I 

□: Selected feature for Classifier II 

○: Selected feature for Classifier III 

3.3.2 Evaluation 

Three classifiers were modified with the data from participant No. 1 to No. 8 according 

to those feature selection solutions respectively. Then the data from participant No. 9 to 

No. 17 (except for No. 11 which belongs to a left-handed participant) was processed to 
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obtain features for classification. Due to the application of one-against-one strategy, 

another majority voting procedures was necessary before output the final results of 

classes. Classification accuracy for each participant is shown in the Table 3.4 below. 

 

Table 3.4 Classification accuracy in evaluation 

Participant No. Accuracy (%) 

9 38.9 

10 54.4 

12 34.4 

13 38.9 

14 54.2 

15 41.4 

16 40.0 

17 50.0 

Average 44.0 

 

In order to test whether these accuracies had a statistic meaning, the bootstrap 

resampling method which was mentioned in section 2.2.2 was applied again to obtain 

the distribution of these accuracies. As shown in Figure 3.8, the average of classification 

accuracy is significantly higher than the random probability (which is 33.3% in this 

case). 
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Figure 3.8 Estimated distribution of the classification accuracy (𝜇 = 46.50, σ = 1.27). 

Bootstrap resampling was run for ten thousand times. 

 

3.4 Discussion 

The first thing that need to be discussed is the selected features and their function in 

revealing the spatio-temporal feature of EEG signals recorded during different tasks. 

The result in Table 3.3 has been mapped to a topography (ignoring temporal axis) as 

shown in Figure 3.9 so that the electrodes which played important roles during classify 

the three different movement-related cognitive processes could be exposed intuitively. 

It is noticed that some classifiers shared the features from same electrode. The Classifier 

I (which is responsible for distinguish between observation and execution) and 

Classifier III (which classifies imagination and execution) both selected electrode Cz as 

a useful sensor, while Classifier II did not. This result suggested that the cerebral activity 

recorded by electrode Cz was a private one belonged to movement imagination process. 
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Similarly, the signal collected by electrode Oz was suggested to contain the information 

belonged to execution a movement. Cz’s activation during movement imagination was 

expected since the very beginning (Beisteiner et al., 1995; Jankelowitz & Colebatch, 

2002). However, the reason why the visual cortex participated in the execution process 

is still not clear. It might be due to the visual presentation of progress bar although there 

is no more evidence to support this conjecture. 
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Figure 3.9 Electrodes that played a part in classification. (A) Features extracted from 

T5, P3, Cz, and T4 electrodes were used to classify EEG signals recorded from 

movement observation and execution. (B) Features extracted from FP1, FP2, F3, and 

O2 electrodes were used to classify EEG signals recorded from movement observation 

and imagination. (C) Features extracted from Cz, C4, T6, O1 and O2 electrodes were 

used to classify EEG signals recorded from movement observation and imagination. 

 

Power variation at electrode T5 and P3 during period of 800 to 1200 ms were both 

selected to distinguish observation from execution. Comparisons were done as shown 

in Figure 3.10. In alpha band, the ERD phenomenon was more dramatic when 

observation movements. According to other studies, the area covered by electrode T5 

and P3 is usually been considered as the Wernicke’s area (Fiori et al., 2011; Harpaz et 

al., 2009; Hong et al., 1996; Jung et al., 2010). In consideration of the function of 

Wernicke’s area, it is reasonable to speculate that participant were trying to encoding 

the gestures semantically during they saw them (Eulitz et al., 2000; Levelt et al., 1998; 

Proskovec et al., 2016). 

 

 

Figure 3.10 Power variation compared to baseline (ERD/S) in 8 to 13 Hz of EEG 

recorded at electrode T5 and P3, during the period of 800 to 1200 ms after stimulus 

onset. Both the comparison at electrode T5 and P3 showed significant difference 

between observation and execution (p < 0.001, N = 404 for each comparison). 
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When the Wernicke’s area was activated, another region with similar function 

participant in the process as well—the Broca’s area. Significant difference of alpha band 

power variation between observation and imagination were observed at F3 electrode 

(see Figure 3.11). This is pretty reasonable because many scientists have reported that 

the mirror neuron system is related to the neurons at Broca’s area, although it is still 

controversial (Fazio et al., 2009; Heiser et al., 2003; Marshall et al., 2009). This result 

could be considered as a new evidence to prove that Broca’s area participated in the 

neural circuit caused by hand movement observation. 

 

Through the same approach, we particularly looked into the activity recorded by 

electrode C3 and C4 which have been usually considered as the indicator in motor 

imagination based BCI systems. In our result, alpha band power feature recorded at 

electrode C4 during 1200 to 1600 ms was taken into account for the classification 

between imagination and execution. Generally, imagining the movement of someone’s 

right hand would lead to the alpha band ERD of motor cortex (which is known as mu 

rhythm) in left hemisphere; in the meantime, signal from C4 electrode is expected to 

perform a beta band ERS. Same tendency could be observed slightly in Figure 3.12. 

Moreover, this result suggested that right hemisphere seemed to be effective when 

distinguish whether someone was making a movement with their right hand or just 

imagining or preparing for it. It is hard to say if the process is a contralateral one due to 

the limits of our experiment design. 
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Figure 3.11 Clear alpha band desynchronization was observed during 800 to 1200 ms 

at the position of F3 during movement observation. Error bar shows the standard error, 

and the significance of the difference between observation and imagination was 

confirmed (p < 0.001, N = 404). 

 

 

Figure 3.12 Alpha band power changes in electrode C3 and C4. EEG recorded from 

both the C3 and C4 position showed obvious ERD during reproduce the observed 

gestures. However, when imagine the gestures, ERS appeared at C4 while slight ERD 

at C3 electrode. In-electrode tests suggested significance for both (p < 0.001, N =

404). 

 

Only two PLV features from same electrode were chosen by two of the three classifiers, 
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which suggested the three process shared similar pattern of functional connectivity. The 

whole brain functional network during movement observation, imagination, and 

execution are shown in Figure 3.13 below. As we mentioned above, the common-chosen 

electrode in both observation-execution and execution-imagination pairs, Cz, was 

expected to contain the information that represent the EEG activity related to movement 

execution. From Figure 3.14, it was found that PLV of Cz electrode had a lowest value 

in the first 400 ms when participants were actually pose the gestures. This phenomenon 

suggested that measuring how much the motor cortex took part in the functional 

network would be an effective method to recognize the EEG when users were making 

a movement. 
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Figure 3.13 Grand average of theta band PLV during whole (A) observing movements, 

(B) imagining movements, and (C) executing movements. Colored lines indicate that 

the grand average PLV between the two electrodes at the end points is over 0.6.  
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Figure 3.14 Average PLV between Cz and other electrodes. A bootstrap-resampling 

based statistic test indicated that the value of observation and execution were 

significantly different during 0 to 400 ms after stimulus onset. Additionally, the 

difference between imagination and execution was marginally significant (p = 0.0610) 

at the same period. 

 

General EEG analysis focuses on the several hundred milliseconds after stimulus onset, 

since most responses happened in this narrow period. Nevertheless, as a result, half of 

the selected features were extracted from the EEG data recorded over 800 ms after the 

stimulus onset. This may be because that the first dynamic movement happened at 500 

ms in the stimulus video in observation period, however, it cannot explain that the 

Classifier III also considered the latter features to be useful. Therefore, we think it is 

important to pay more attention to the late components of EEG signal in the future 

researches.  

 

In summary, this research studied about the difference of normal human scalp 

electrophysiological activity among people are taking three different tasks: movement 

observation, imagination, and execution. We successfully found several representative 

features to distinguish them with each other, which included information collected from 
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the Broca’s area, motor cortex, the Wernicke’s area, and visual cortex. The procedure 

of searching those features was finished with a special methodology—wrapper based 

feature selection method, which was usually used in machine learning and pattern 

recognition in the past days. We think this methodology has the potential to be more 

helpful in studying other problems as well as cognitive neuroscience. 

3.5 Summary 

In this study, we demonstrated how to use those findings in Chapter 2 to solve problem 

in the field of neurorobotics. We successfully proposed a possible approach to make 

machines be able to know whether someone is making a movement or just imagining a 

movement, or even just saw a movement made by someone else, although its accuracy 

still have the space to be improved.  
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Chapter 4  

General Conclusion & Future Plan 

 
In the beginning of this thesis, our attention was firstly drawn to the phenomenon that 

an activation of the motor-sensation-related cerebral region was observed when normal 

healthy human participants were presented with images of tools. A further investigation 

suggested that this phenomenon might appear as long as there is a manipulable object 

in view, even it is not a tool. After a careful consideration, we decided to verify this 

inference with EEG, which has the highest temporal resolution in all of the mainstream 

neuroimaging technique.  

 

Cognitive activity leads to variation of neurons’ electrophysiological signs, and these 

signs are easily to be analyzed through the existing signal process methods and theory 

from modern information science. Therefore, the major methods for EEG analysis was 

firstly introduced in Chapter 1, and all the methods we used in further researches (in 

Chapter 2 and Chapter 3) were included in them or a development based on them. We 

emphasized on the wavelet transform for calculating ERSP and the estimation of 

functional connectivity via extracting phase information in EEG. Results from 

simulations were given to prove the validity of the methods we used. 

 

The study about the hypothesis mentioned above was descripted in Chapter 2. We 

designed the experiment and ran it with 20 volunteered participants to collect necessary 

EEG data. Results from rigorous analysis indicated that seeing manipulable daily goods 

caused activity at a wide range of motor-sensory-related regions. But, seeing someone 

grasping a these object is different. Extra activity was observed. In the meantime, we 

found different performance of temporal-parietal connection between seeing objects 
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and seeing interaction, and between seeing hand. These finding revealed human’s 

different understanding on objects, body part, and relationship (interaction). 

 

Another question is, what the immediate reason was that seeing those grasping images 

led to the activation in a wide range of cerebral cortex. We suspected that it might be 

the result of a superposition of a series of cognitive processes, at least including 

movement observation, and might contained a movement imagination to imitate the 

seen stimulus as well. Therefore, another experiment aimed at distinguish which 

activations (cerebral regions) belonged to which cognitive process (movement 

observation, imagination, and execution) was done as descripted in Chapter 3. During 

analyzing the data we acquired from the experiments in Chapter 2, we noticed PLV’s 

ability to indicate how much a cerebral region participated in current cognitive process. 

Traditionally, participation of a certain area could only by the approach of detecting the 

power or potential change near this area, but with the PLV we have been able to find 

more area that is concerned with the process in the domain of phase. Hereby, we applied 

a data driven method into our research (as descripted in Chapter 3), and found that the 

activation of the Broca’s area and the Wernicke’s area were related with the movement 

observation process; the right hemisphere of motor cortex (or somatosensory cortex 

which are close to each other) seemed to be a good indicator in distinguishing right hand 

movement imagination from making an actual movement; EEG recorded near electrode 

Cz was different between movement observation and execution, and had a potential to 

classify between imagination and execution. In brief, it is possible to distinguish 

human’s brain activity when someone is seeing a movement, imagining a movement, 

or actually making a movement by analyzing cerebral activity of the Broca’s area, the 

Wernicke’s area, motor cortex, and visual cortex. 

 

Additionally, we founded that the late EEG signal seemed to be more useful than what 

we thought before. Our results showed that the motor-related EEG signal was still 
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meaningful even after 800 ms since the beginning of visual stimulus or the onset cue of 

movement imagination and execution (Chapter 3). This was not expected before we ran 

the experiment because either the visual process or the movement execution process 

would be finished in a shorter time. It may suggest the existing of a post processing 

process, and could be observed at least at the Broca’s area, the Wernicke’s area, and 

visual cortex. Moreover, many EEG research have been focusing on the signal in the 

first second, but above results reminded us the late component need to be considered 

equally.  

 

Furthermore, we noticed the participation of visual cortex during movement 

imagination; more evidence is needed to infer its purpose and function, but we thought 

it may suggested the dorsal pathway for visual information forwarding might be a 

bidirectional one. This topic is worthy to be studied in the future. 

 

Finally, we want to summarize how this topic could be studied further in the future. 

Firstly, the purpose or function of the late activity during movement observation still 

need to be investigate. Secondly, whether there is a lateralization phenomenon at motor 

cortex when distinguishing motor imagination from motor execution is still not clear, 

and thirdly, what the role that visual cortex plays here. Additionally, a further think 

about using data-driven methods and machine learning to study normal cognitive 

neuroscience problems is recommended.  
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