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Chapter 1

Introduction

Schrodinger operators have been studied so far in the spectral analysis of mathematics.
In 1932 John von Neumann [27] constructed the mathematical foundation of quantum
mechanics. In quantum mechanics, an observable is expressed by a self-adjoint operator
on a Hilbert space and the spectrum of the self-adjoint operator corresponds to the observed
value of the observable.

In this thesis, we consider a graph Laplacian H; on a sparse tree and continuous
Schrodinger operators H. on L%([0,00)) of the form H.f = —Af + V f, where A is the
one-dimensional Laplacian, V' a multiplication operator. One of the important problems
concerning Schrodinger operators is to prove their self-adjointness. In 1951, Toshio Kato
[17] proved the self-adjointness of Schrodinger operators with Coulomb type potentials.
Since his work, the self-adjointness of several types of Schrodinger operators has been
proven. Once we prove the self-adjointness of a Schrédinger operator, we can consider its
spectral properties.

We study the singular continuous spectrum of Schrodinger operators. For a self-adjoint
operator T" acting in a Hilbert space H, there exists the spectral resolution E associated
with 7. Let ¢ € H and ¢ # 0. Then we have the probability measure p, : By — [0, 1]

defined by (0. E(B)Y)
@, ®
meB) =0

where By is the Borel o-field of R and (+,-) denotes the inner product on H. The closed
subspaces Hqe, Hse and H,, of ‘H are defined by

Hae = {¢ € H | py is absolutely continuous with respect to the Lebeasgue measure on R},
Hse = {p € H | p1, is singular continuous with respect to the Lebeasgue measure on R},
H,p = {p € H | 11y is a pure point measure}.

Then H can be decomposed as H = Hqe @ Hse @ Hpp and H is reduced by the closed
subspaces Hae, Hse and H,,. Thus we can define 0,.(T"), 04.(T) and o,,(T) by
0ac(T) = 0(T|n,.),

)
Usc(T) ( )a
opp(T) = U(T|pr)

’

3



It follows that o(T") = 04(T) U 05c(T") U 0,p(T'). We call 0,.(T) (resp. os.(T") and 0,,(T))
the absolutely continuous spectrum (resp. the singular continuous spectrum and the pure
point spectrum) of 7. We consider which Schrédinger operators have singular continuous
spectrum and we investigate the spectral properties of such Schrodinger operators.

It is known that certain random Schrodinger operators have singular continuous spec-
trum; the critical almost Mathieu operator [14]. Simon and Stoltz [22] show that both
continuous and discrete Schrodinger operators with sparse potentials have singular con-
tinuous spectrum. In this thesis, we consider both continuous and discrete Schrodinger
operators with sparse potentials.

In Chapter 2, we consider a graph Laplacian H, on a I'-sparse tree, I' € (0,1). Our aim
is to estimate the Hausdorff dimension of the spectral resolution for Hy;. The Hausdorff
dimension is defined for both a set and a measure. Let A C R, and the diameter d(A) of
A is defined by

d(A) = sup{|z —y[ | z,y € A}.

Let 6 > 0. A family {4;}°, of subsets of R is called a d-cover of A, if A C J;=, A; and
sup;ey d(A;) < 9. For a € [0,00), h, h* : 2% — [0, 0c] are defined by

h§(A) = inf {Z d(A;)" | {A;}2,is a o-cover of A} :
i=1
h*(A) = (lsiné h§(A).

We call h® the a-dimensional Hausdorff measure on R. Actually, the restriction of h* to
B is a measure on R. For A C R, dimA is defined by

dimA = sup {a | hA*(A) # 0} .

This is called the Hausdorff dimension of A. It follows that if 0 < a < dimA, then
h*(A) = oo, and that if dimA < a, then h*(A) = 0. Then Hausdorff dimension is also
defined for measures on R. Let p : By — [0,00] be a measure. We define the lower
Hausdorff dimension dim,pu and the upper Hausdorff dimension dim*u of u by

dim,p = inf {dimA | A € B, such that u(A) # 0},
dim*p = inf {dimA | A € By such that y(R\ A) =0}.

If o = dim,p = dim*p, then p is said to have the exact a-Hausdorff dimension.

The Hausdorff dimension of the spectral resolution for H; can be estimated in terms
of the so-called intermittency functions. We see that Hy can be identified with the direct
sum @, H® of Jacobi matrices H®. Let H be a Jacobi matrix acting in [?(Z) and
Y € 1*(Z) with ||¢]] = 1. For t € R and n € Z, let

b(t) =e My



where (-, ) denotes the inner product on (*(Z) and 6, : Z — C is defined by

1, n=m,
5n(m)={0 n#m

We define the time-averaging probability measure a,(n,T’) and the time-averaging mo-
mentum (| X|P),(T) for ¢ € I*(Z), n € Z, T > 0, and p > 0, by

1 [/ .
wnT) =5 [ e HutemPar,

(IX[P)u(T) =) InfPay(n,T).

nez
bt (1XPo(T)
1. log(| X |P)u(T
Pow) = M o

We call 3, an intermittency function of ¢. Let o = dim” p1,. Barbaroux, Combes, and
Montcho [3, Theorem 3.1] show that for € > 0, there exists C' = C, > 0 such that for any
T,p>0,

(X7} (T) > €T,

This inequality implies that the intermittency function gives an upper bound of «a:
By(p) = o
Breuer [5] shows that
Uac(Hd) = 0,
0

Jpp(Hd> N (07 4) =
Usc<Hd) N (07 4) = (074)

I

Let E be the spectral resolution of Hy and E be the restriction of E to the interval (0, 4).
Let

dim, E = inf {dimA | A € By such that B(A) P{O}} ,
dim*E = inf {dimA | A € By such that B(R\ A) = P{o}} ,
where Ppo; denotes the projection of the subspace {0}.

We show the exact Hasudorff dimension of E. Breuer [5] shows that

- - 2
I'<dim,F <dm*F < ——.
1+7T

We can identify H; with Jacobi matrices. Under this identification, we can consider an
intermittency function of a Jacobi matrix. In order to show the intermittency function

bt



exactly, we estimate the operator kernel by Hellfer-Sjostrand formula. Then we can show
that . )
I'<dim,F <dm*E <T.

and we can conclude that E has the exact [-Hausdorff dimension.

In Chapter 3, we consider a one-dimensional continuous Schrodiner operator H, with
a sparse potential. Since H,. is regular at zero and in the limit point case at infinity,
H. has self-adjoint extensions Hy which is parametrized by 6. We prove the absence
of embedded eigenvalues in the singular continuous spectrum for any 6. The singular
continuous spectrum for a Schrodinger operator with a sparse potential is an interval for
many cases [5] [15] [22]. There are, however, few assertions about the complement of the
singular continuous spectrum. We focus on the edge of the singular continuous spectrum
and give a sufficient condition that the edge of the singular continuous spectrum is not
an eigenvalue. Hence, we can conclude that Hy has no embedded eigenvalues for any 6.
Moreover, Hy has purely singular continuous spectrum for 6 € [0, 7].



Chapter 2

Exact Hausdorftf dimension of the
spectral resolution for the graph
Laplacian on a sparse tree

2.1 Introduction and results

2.1.1 Introduction

We study the graph Laplacian on a sparse tree and its Hausdorff dimension. The Hausdorft
dimension is defined for sets or measures. We estimate the Hausdorff dimension of the
spectral resolution for the graph Laplacian on a sparse tree. Note that the Hausdorff
dimension of a measure and that of the support of the measure are different from each
other in general. If the spectra are purely point spectra, then the Hausdorff dimension
of the spectral resolution is zero. If the spectrum is purely absolutely continuous, then
the Hausdorff dimension of the spectral resolution is one. In this chapter, we show the
Hausdorff dimension of a sparse tree exactly.

This chapter is organized as follows: In the rest of Section 2.1, we give the main
result. In Section 2.2, we give a decomposition of the graph Laplacian. From this, we can
identify the graph Laplacian with one-dimensional discrete Schrodinger operators with a
sparse potential. In the Section 2.3, we prove that the intermittency function gives the
upper bound of the upper Hausdorff dimension. In Section 2.4, we prepare to estimate
the intermittency function. Here, we estimate the operator kernel, by using a quadratic
form theory and Helffer-Sjostrand formula. In Section 2.5, we estimate the intermittency
function and prove the main theorem.

We define a sparse tree. We say that G = (V| F) is a graph, if V is a countable set
and £ C {e € 2V | #e = 2}. An element of V (resp. E) is called the vertex (resp. the
edge). Vertices a,b € V are said to be adjacent, if {a,b} € E. We denote by a ~ b,
if a,b € V are adjacent. Note that this definition implies that there are no egdes which
are adjacent to itself. Vertices a,b € V are said to be linked, if there exist a; € V,
i=1,2,...,n — 1such that a; ¢ {a,b}, a ~ a1, a; ~ a;41,7=1,2,...,n— 2, and a,_1 ~ b.
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Here {a,a,...,a,_1,b} € 2V is called a path from a to b. Let the degree deg(a) of the
vertex a be defined by deg(a) = #{b € V | a ~ b}. A graph is said to be locally finite,
if deg(a) < oo for any vertex a € V. A graph G is said to be connected if any vertices
a,b € V are linked. We say that a graph G = (V, F) is a tree, if G is connected and for
any vertices a,b € V, there exists a unique path from a to b. We fix a vertex o of the tree
G, and o is called the root of G. A tree G with a fixed root o is called a rooted tree. Let
p(a,b) € 2V be the unique path from the vertex a to the vertex b. The metric d(-,-) on V

is defined by
=b
dia,b) = “=
#p(a7b)_]-a (l#b

Let G be a rooted tree with a root o, and let S,, = {a € V | d(o,a) = n} forn =0,1,....
We say that a rooted tree G = (V, E) is a spherically homogeneous tree if any vertices in
S, have the same degree d,. A locally finite spherically homogeneous tree G is uniquely
determined by the sequence (¢,)5,

Definition 2.1.1. Let L, = 2", n=1,2,..., and T € (0,1). We say that a locally finite
spherically homogeneous tree G = (V, E) is a I'- sparse tree, if for any n > 0,

T, nef{ln|meny,
=1, n ¢ {L,|meN)}.

We define the graph Laplacian for the locally finite graph. Let G = (V| E) be a locally
finite graph. Let [>(V) be the set of square summable functions on V', and this is the
Hilbert space with the inner product given by

(f,9) =Y Fwg(u).

ueV

Let D C I%(V) be defined by D = {f :V — C | #supp(f) < oo}. Let L, A, and D be
operators with its domain D ;| and defined by

Lf(u) = Y (f(u) = f(v)),
Af(w) = Y fv),

v~u

Df(u) = Y f(u)=deg(u)f(u).

v~u

These are called graph Laplacian, adjacency matrix, and degree matrix, respectively. The
graph Laplacian L is essentially self-adjoint, if the graph is connected [16, Threom3.1].

8



Let (X, dx) be a metric space, and B(X) be the Borel o-field of (X,dy). Let A be a
subset of X and the diameter dx(A) of A be defined by dx(A) = sup{dx(z,y) | z,y € A}.
Let 6 > 0 and a family {A;}3°, of subsets of X is called a d-cover of A, if A C |J;, A; and
SUP) <o Ax (Ai) < 6.

Definition 2.1.2. Let a € [0,00) and 6 > 0. Let h§, h* : 2% — [0, 00] be defined by

h§(A) = inf {Z dx(A;)* | {A;}2,is a d-cover of A} :
i=1
h*(A) = limhj(A).
0—0
We call h* the a-dimensional Hausdorff measure of X. Let dimA be defined for A C X by
dimA = sup {a | h*(A) # 0} .

This is called the Hausdorff dimension of A. Let p: B(X) — [0, 00| be a measure, and let
the lower Hausdorff dimension dim,u and the upper Hausdorff dimension dim*u of u be
defined by

dim,pu = inf{dimA | A € B(X) such that pu(A) # 0},

dim*py = inf{dimA | A € B(X) such that y(R\ A) =0} .
If o = dim,p = dim*p, then p is said to have the exact a-Hausdorff dimension.

Let L be the graph Laplacian of the I'-sparse tree. The following lemma is proved by
Breuer [5].

Lemma 2.1.3. Let Hy = L, and let E be the spectral resolution of Hy and E be the
restriction of E to the interval (0,4), where L is the clousre of L. Then it follows that

(1) UaC(Hd) = ®7 Upp(Hd> A <O7 4) = @, USC(Hd) n (07 4) = <O7 4)7
(2) I'< dim, E < dim*E < 12+—FF

We obtain the main theorem below.

Theorem 2.1.4. We suppose the same assumptions as Lemma 2.1.3. Then I' = dim, E =
dim*E, and E has the exact I'-Hausdorff dimension,

This theorem implies the corollary below.

Corollary 2.1.5. For any ' € (0, 1), the restriction of the spectral resolution for the graph
Laplacian on the I'-sparse tree to the interval (0,4) has the exact I'-Hausdorff dimension.



2.1.2 Preceding results

The spectral analysis of a sparse tree bears some similarities to the theory of one-dimensional
discrete Schrodinger operators with a sparse potential. In Simon-Stolz [22], Schrédinger
operators with a sparse potential have singular continuous spectrum. Gilbert-Pearson [13]
finds a relationship between the behavior of subordinate solutions and the spectrum of
one-dimensional Schrédinger operators. Jitomirskaya and Last [15] show a relationship
between the Hausdorff dimension of the spectral measure and the behavior of subordinate
and non-subordinate solutions. Moreover, they estimate the Hausdorff dimension of the
spectral measure by calculating the L-norm of non-subordinate solutions. This subordinate
solution method is also used in [5].

On the other hand, the relationship between the type of spectra and the time-averaged
behavior of Schrodinger operators is also studied. RAGE theorem implies that if the initial
state is singular continuous, then the time-averaged evolution goes to infinity. Barbaroux,
Combes and Montcho [3] give a lower bound of the time-averaged momentum of one-
dimensional discrete Schrodinger operators, by using the upper Hausdorff dimension. This
also shows an inequality between the upper Hausdorff dimension and an intermittency
function. It is, however, crucial to estimate the intermittency function exactly. Tcherem-
chantsev [25] gives the intermittency function explicitly in the case of sparse potentials.
We will apply [25] to the graph Laplacian on a sparse tree.

2.2 Preliminaries

Threre are some decomposition methods for Schrodinger operators on some trees. These
methods stem from Naimark and Solomyak [20]. Breuer [6], Kostenko, and Nicolussi
[2] developped this method recently. They study the case of the continuum Kirchhoff
Laplacian. Allard, Froese [1] and Breuer [5] study the case of the graph Laplacian. We
introduce their results as Lemma 2.2.1. Their results imply that the graph Laplacian on the
spherically homogeneous tree is identified with the direct sum of Jacobi matrices. Hence,
it is sufficient to study Jacobi matrices instead of the graph Laplacian.

Let G = (V,E) be a I'-sparse tree determined by the sequence {g,}>, and Hy = L,
where L is the closure of the graph Laplacian L on G. Let a,, = #5S,, for n = 0,1, ... and
a_1 = 0. Since {a,}22, is non-decreasing, there exists a unique N(k) € N U {0} such
that anwg-1 < k < anp) for every k € N. Let k,n € N and let d, = (di(n));2, and
ar = (ax(n))>2, be defined by the following: in the case of k =1,

hn) = {90 ol
g1 +1 (n>2),
ai(n) = /Gn-1.
In the case of k > 2,
dr(n) = Gneng)-1+1,

ax(n) v/ Gn+N(k)—1-

10



By calculatig straightfowardly, we see that for any k,n € N

di(n) = ap(n)® + 1 — 6,(k)5,(n), (2.1)
where &, (k) = { EZ - i g Let Jacobi matrices H®), A®_ D®) ; 2(N) — 12(N) be defined
by

de(1)  —ar(1)
—ap(1)  dp(2)  —an(2)
H® = —ar(2)  dp(3) —ar(3) :
—ay(3)
0 ax(1) dy(1)
ar(1) 0 an(2) di(2)
AW = a2 0 a3) , D" = dx(3)
ak(3)

Note that H®*®) = D® — A®)  The next lemma shows the decomposition of graph Laplacian.

Lemma 2.2.1. H; and EB H®™ are unitarly equivalent.
k=1

Proof. See Appendix 4.1. [

2.3 Intermittency function and Hausdorff dimension

In this section, we introduce an intermittency function and give an important inequality in
Lemma 2.3.2 which shows that the intermittency function is the upper bound of Hausdorff
dimension.

Let 1 € [?(N) and E® be the spectral resolution of H*). We consider the time-
averaged dynamics of exp(—itH® ). Let a finite measure uff) : B! — [0, 00] be defined
by

W (A) = (, BEW (A)y).

11



Definition 2.3.1. Let ¢4(t) = e "¢ and (t,n) = (6,, ¥i(t)) for t € R and n € N.
Let a!® (n,T), (\X!@gﬂ (T), and ﬁq(f) (p) be defined by, for T >0 and p > 0,

p
(k) Lo . 2
2 <n7T) = T € T|¢k(t7n)| dt?
0
k k
(X)) = > nralY(n, T
n=1
1 log(| X [7)(T)
(k) I T P
Puie) = Rt e

We call 51(;6) the intermittency function. The closed subspace H,, of I?(N) is defined by
Hy = {p(H®)y) € I2(N) | p is a polynomial},
and let Uy : Hy, — LR, dpl”) be defined by
Uy (p(H™®)9) () = p(a).

Lemma 2.3.2. Let o = dim*(uff)) and € > 0. Then there exists C1 = Ci(€,v) > 0 such
that for any T,p > 0,

(XPYAT) > CiTrie).

In particular, for any p > 0,
dim” (N¢ ) < 6 ( ).

Proof. We denote u, i, (IX|")'Y, and ¢y (t,n) by py, ay, (|X|P)y, and @(t,n) for
simplicity of notation. Let ¢ > 0 and v : R — R be the local Hausdorff dimension of

() = lim inf log(p1y([x — 0,2 + 4]))
8 6—0 10g5 .

By [11, Chapter 10, Proposition 10.1], we see that p-esssupy(z) = dim*pu, = «. Thus

there exists S, € B' such that py(S.) > 0 and v(z) > a — ¢ for € S.. Let ys(z) =
logpuy ([z — ',z + 8'])

<8 logd’

and 7, converges uniformly to v on S/. Let ¢/ = E(S!)y. We see that ||[¢'||* = uy(S2) > 0

and gy is uniformly (o — €)-Holder continuous. Let x = ¢ —¢’. Then we see that

Z ay(n,T)

1 e
—g e > It i

N
<Z /e T (t,n)| 2dt+2(z

12

. By Egorov’s theorem, there exists S, C S, such that ju,,(S) > 0

N

H |

/ ~T|y (¢, n)] dt) el + Il (2.2)



We assume that ¢ > 0 and N € N satisfy

vy o )
(Z T AGT|¢'<t,n>|2dt) < ]l (2.3)
n=1

By (2.2) and (2.3), we see that

N-1
> ap(n, T) < (el + [Ix])*.
n=1
Taking ¢ = — 1l 4 (M)z + ! we have
17| ll']] 27
N-1 1
> aun T) < S + I (2.4
n=1
;I a2, L
On the other hand, let C] = —1o T <|W”> + 5 and
N-1 4 t 3
N(T)=max{ N € N | < f/e_TW'(t,n)Pdt) < Y[ - (2.5)
n=1 R
Then (2.3) holds for ¢ = C{ and N = N(T'). By (2.4), we have
> 1
> ayn. )2 | (2.)
n=N(T)

Note that pu, is uniformly (o — €)-Holder continuous. Hence, by Lemma 4.2.6, there exists
C = C(a — €, py) > 0 such that for any 7" > 0,

N N

1 ¢ 1 />, _— -
) :T/6T|w’(t,n)|2dt: 5 :T/ U oyt < ONT-C=9 (2.7)
n=1 R n=1 0

By (2.5) and (2.7), we have
(Cille')?

N<T> > TTaie. (2.8)
(2.6) and (2.8) show that there exists C} = Cy(€,1) > 0 such that for any 7' > 0,
- 1
(I X[7)o(T) = Z nPay(n,T) > 5||@[/||2N(T)P > O, 7?9,

n=N(T)

Moreover, we see that for € > 0 and 7" > 1,

1 log(IXP)u(T) 1 logCy
— ——————>a—¢€+ — inf =a—¢€
pT>T logT pT>1" logT

This implies our assertion. [

13



2.4 Estimates of operator kernel

In this section we prepare some lemmas to estimate the intermittency function. We esti-
mate the operator kernel in Lemma 2.4.3 and 2.4.4 by using a quadratic form theory and
Hellfer-Sjostrand formula.

We denote H®) | a,(n), and dp(n) by H, a(n), and d(n), respectively for simplicity
of notation. Let f > 0 and let 2 = {f : N — C | #supp(f) < oo}. Let P, A, and
My : 1*(N) — [*(N) with its domain 2 be defined by

Pf(n) = a(n)f(n+1),
Af = (P-Df,
Msf(n) = B"f(n),

and let Ty = Mz 'TMj for an operator T': I*(N) — I*(N).
Lemma 2.4.1. Let f € 9. It follows that

0 (n=1),

(1) P*f(n) = {a(n —1f(n—=1) (n>2),

(AA*=61)f (k=1),
(k) £ —

(2) HEF {AA*f (k >2),
3) Agf =(BP—1)f,

(4) (A%)gf =(B7'P" = I)f.

Proof. Let f,g € . Then we see that

(Pg, f) Z a(n
n=1
This implies (1). We see that
AN f(n) = a(m)A*fn+1)— A (n)

_ {au)( a()f(1) = £(2)) + F(1) (n=1)
a(n)(a(n)f(n) = f(n+1)) —a(n =1 f(n = 1) + f(n) (n=2)

_ { a(1)£(2) + {a(1)® + 1}£(1) (=1 54
a(n)f(n+1) +{a(n)® +1}f(n) —a(n =1 f(n—1) (n=2).

(2) follows from (2.9) and (2.1). We can prove (3) and (4) straightforwardly. O

Let 8 > 0 and the sesquilinear form hg : [*(N) x [*(N) — C with its domain Z be
defined by

bs(f,9) = (Ap)"f, (A%)sg) = (f, Hp g).

14



Lemma 2.4.2. For anyt >0 and f € 9,

5111~ 07 < CE) Sl + CO)+ I (2.10)

where C(8) = |8 — 1]+ |8~ = 1| =[8—p7'].
Proof. Let t > 0 and f € &. Then we see that

051/ = bul/]] ((BP* = D)f, (B3P = D)f) = (P = I)f,(P* = I)[)]
B =1I(f, PHI+ 87 = L|(f. P* )]

B = 1A )+ (£ O+ 187 = IH(£ A ) + (£, )}
CBILNA I +CBIfIP

t 1
c(v) <§HA*fH2 + 1P + HfH2> :

VAN VAN VAR

]

Lemma 2.4.3. Let z € Ct = {2 € C|Imz > 0}. Let 0 <~y < 1, and let n,, m., and o,
be

n., = dist(z,0(H)),
s

Ve + 2]+ 1

a.(y) = i(vmfr (ym.)? + 16).

m, =

Then for any i,7 € N,
1 {1+ ?
_ —li—j v
0;, (H — z s < a,(y =gl Z L .
(6, ( )65l () P

Proof. It follows from |[(H — z)7!|| = n;! that for any ¢ > 0

cif(i-2)oe ()2}
1

772,—|—|Z|’

2

C(B) (%H +1+ —) (H—2)"

Let v € (0,1) and

1
B, = Z(fymz + v/ (ym,)? 4+ 16) > 1.

15



By the inequality of arithmetic and geometric means, we see that for any z € C*,

C(8:) 1+M PN R L C(Bz) 1+M L S
: n. ) t.)n.| ? n:) " mets M.

Ve + 2 +1
= 2—10(52)
Uz
2 1
()
_— (2.12)
(2.11) and (2.12) imply that for any z € C*,
t, 1 )
2(|1C(8.) EH—i—l—l—? (H—2)"|| <~ (2.13)

By (2.10), (2.13) and Lemma 4.3.2, there exists the m-sectorial operator Hgz, associated
with bs, and for any z € C*,

b
(1—7)?

I(Hs — 27 < — (”—”) |

n. \1—7

I(Hs. —2)" = (H—2)7"|| < I(H = =) "l.

Therefore we see that

Let 7,7 € N with ¢ < j. Then we see that
(0, (H —2)7'9;)] = [(Mg.0;, (Hp, — 2)" Mg '6;)]
< BS(Hg —2)7 |
2
11+
@—%ﬂ—<——l>. (2.14)

UP 1_7

IA

This implies our assertion in the case of ¢ < j. In the case of 1 > 7, let

Bz = %(_W/mz + ('sz)Q + 16)'

Then we can prove (2.14) similarly. O
Let f € C"(R), and the norm |||-|||, on C"(R) be defined by

1511, =3 [ £ @l

The next lemma is used to estimate the intermittency function.
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Lemma 2.4.4. Suppose that f € C*T3(R) and ||| f|lly5 < 0o. Then there exists Co =
Cy(k) > 0 such that for any i,j € N,

|82, F(H)O;)] < Coll s i — 5) 7,

where (z) = (14 |z|?)=.

0 (Jz = 2)
formula [8, 2.2 The Helffer-Sjostrand formula], we see that

1 <1
Proof. Let n > 0 and 7 € C{°(R) such that 7(z) = { (o] < ) By Helffer-Sjostrand

s =+ [ L - o) asay
o) = {Z @) “ffr} (%)
We see that
of TN
%(2) < 3 /! )(37)77 <@>'
+ lifm(l’)(iy)r (1 +ayfz)™") ' e
2|~ ri{x) (x) ||

Let A, B C R? be

4= Aewer||[ L <2bp-{wneriis

.

Y
()

Then we see that there exists C4 = C%(7) > 0 such that

> 1w

r=0

of

(iy)"
g(z)

f(nH)(x)T La(z,y) + Cy

1
< 5 ILB(:Cay>

Let 7,5 € N. Then we have

1
_ (n+1) (17

v S w

T Je |z ri(z)

(03, f(H);)] (0, (H — 2)70;)|La(z, y)dzdy

IN

|(0;, (H — z)_15j)|]lB(x,y)da:dy. (2.15)




Let ~, = < 1and o, = a,(7.). By Lemma 2.4.3, we see that

|
V. + 12| +1

~ iy ()"
/sz“(x) Y

— ri{z)

We estimate the lower bound of «,. Suppose that (z,y) € B, then 1 < |y| < 7, and
2| < V/2|y|. Therefore

(65, (H — 2)7'6;)|15(x, y)dxdy

2
a1l 1+
—li=al — | 1 dxdy. 2.16
% 77z<1_72> 5(7,y)dzdy (2.16)

o <x>%

N 1
M+ 2l 1+ 2+ 1207 24 V242142
1
Let b = . By the definition of «,, (2.17) implies that
24+V2+2V1+ V2
1
o> <b+ VBT 16) > 1. (2.18)
1
Let B = 1 (b + Vb2 + 16) . We see that
14+, 2
<14 V2 (2.19)
1 - Ve VN + |Z|

By (2.16), (2.18), and (2.19), we see that
130 0@ S 6 8 = 275ty
< (1+v2) 5y 1wl

)
< (1+v3) B > - / O (@) (@)L (e, y)dady

1p(x,y)dxdy

< (1+\/§)23—i—jli /R £ ()| 2) (2.20)

By Lemma 2.4.3, we see that

[0 6 6 = 2715 ey
\n 2
S/c f<n+1>(x)% a——ﬂﬂi(ii) 1a(e, y)dady. (2.21)

18



Note that for any k € Z> and ¢t > 0,

This implies that, for i, 7 € N with ¢ # 7,

[i—4l

y - “k(2k)k
—li—=jl « D= ’ < t
@ = (1+( 1 ) ) T

i— 7" <log (1 + (7%”2)2>>k

Suppose that (z,y) € A, then |y| < 2(z) and |z| < v/5(z). We see that

l_n 1 W _3-Vhyl

B R B e A e R S )
(2.22) and (2.23) imply

Yz

ek (2k)k |
i — j| (log (1 + ( V5 %>2))k

147, 2
LS
1_7,2 |y|

By (2.21), (2.24), and (2.25), we see that

/ ()"
C

n!
Sy ( AR

— nlli — 4k 2
1g(1+( f%) ))
)

—li—l
o <

We see that

Fr (@) (0, (H = 2)7'0;)[La(z, y)dzdy

2
<1 + ]y\) T a(x,y)dzdy

_ 8 M2kt i
B n'|@—1|’“/d EA ‘/

nlli — jI*

<X sy [Can
R 0 (

Ifn>2k+1,

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)



Let n = 2k + 2. Then (2.15), (2.20), (2.26), and (2.27) imply that there exists Cy =
Cy(k) > 0 such that for any i,j € N,

(i, f(H)3;)|

/

cy 2 1
< 2 (14 V2) BN fllgeys + 5-Co 2k +2)

< Colllfll s (i = 5) 7

This implies our assertion. O

8e~k(2k)*
(2k 4+ 2)!|i — j|k|”f|\|2k+3

2.5 Intermittency function and proof of the main re-
sult

In this section, we consider the distribution of aff) (n,T) and estimate the lower and upper

bounds the momentum (| X |p>$) (T'). From this, we calculate the intermittency function
exactly. Finally, we prove Theorem 2.1.4 by using the intermittency function.

2.5.1 Lower bound of intermittency function
Let k € N, ¢ € I2(N), and T > 0. We define for S € 2,

PS8, T) ="l (n,T).

nes

For M > N > 1, let subsets {N ~ M} and {M ~ oo} of N be

{N~M} = {neN|N<n<M},
{M~x} = {neN|n>M}.

Lemma 2.5.1. Let T > 0 and ¢ > 0. Suppose that B € B' and A = Mfz}k)(B) > 0. Let
A2

16J57(T1, B)

2
I By — / ®) (g / ) ()
(] (67 ) BM'L/; ( ‘T) RM¢ ( y)($—y)2—|—62

My =

Then for any T > 0

2|

PP ({Myp ~ 0}, T) > = > 0.

20



Proof. We denote P ), , and J by Py, gy, and Jy, respectively for simplicity of
v % ¥y My Y

notation. Let p = E®(B)y and y = w p. Note that p # 0. We see that

Rt~ )7y = o et + oo

= P({1~M},T)+ P({1~ M}, T) +2 (x(n. H)p(n, D)

T

el

1
R
1

dt e_%Re
dt e"TRe

Sl

= P({l~M},T) - P({1~ M}, T) +2 ($(n,t)p(m, D)

)+2)
)+2)

=l
—

R

< P.({1~M},T) +22%/Rdt e~ TRe(¥(n, t)p(n, t)). (2.28)

Since Py({M ~ oo}, T) = [ = Pp({1, M =1}, T) and ||| = [|p||* + || x[1?, (2.28) implies
that
Py({M ~ 00}, T) > ||pl|* = 2|D(M — 1,T)], (2.29)

where

DOLT) =3 1 [ dretuon ) = 3 1 [ dteF G w0,

Since Uy : Hy — L*(R, dul(f) ) is unitary, by Schwarz inequality we see that

ID(M 7)]

- Z F et [ ) [ potdpe T @0

= [ ot [ ustan) f;}f“ ZUw U6 (0)
< [ tae) [ oty e ZUw 0

< [ wotan) (/RH’}ZE?W); (/uw (da) ;Uw DUsb(y)
< (/Buw(dy)/RH%Eixj y)2>% (/Buw(dy)/uw (dz)

N |=

)

ZUw 2)Uyon(y)

(2>30-)
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Since Uy, : Hy — L*(R, d,ul(f)) is unitary, we have

/uwdl' Z/#wd$

2

ZUzp )Uy0n(y)

Uy (Z Uydn(y ) )

n
2

12(N)
M

= YU (). (2.31)
n=1

By (2.30) and (2.31), we see that

DM -1, T < (/

. f_ ) (Z | o) \an(y)F)

/ n=1
M

B)> Uyl

n=1

< MJy,(T™,B)

Let M = Mp. Then

D(My —1,T)| < /My (T}, B) = Hp4H2. (2.32)
By (2.29) and (2.32), we obtain that
Py ~ oo}y > 1D 2
This implies our assertion. O

For ¢ € [?(N), let an analytic function mw : Ct — C* be defined by

*) (A
my () = /R = ! Z) = (@, (HY = 2)7').

Let € > 0 and B € B'. We define
k k ,
I7(e, B) = e/BdE\Im mi (B + ie) .
Lemma 2.5.2. Let B = [a,b] C R. Then there ezists C3 = Cs(a,b) > 0 such that for any
€ (0,1)
k
I (e, B) < G311 (e, B). (2.33)

22



Proof. We denote J I , and pw by Jy, Iy, and p, respectively for simplicity of
notation. We see that

I(eB) = e /dE(/R%Y
- @ e [ [

dFE
> / () / i (dy) € /B e yommaiiremn e s SCED

Let s = =¥, Since z € B = [a,b] and 0 < € < 1, we have

63/ dE _ / dt
5 (€ + (B —x)?)(¢ + (E—y)?) e (L 2)(1+ (1 +5)?)

. /b—a: dt
T o (L+2)A A+ (] + [s])?)
If |s| <1, then

ame (L)X + (|t + 1))~ Jomo A+)A+ ([t +1)%) '

If |s| > 1, then there exists C%}, = C4(a,b) > 0 such that for any = € B,

" dt " 1 1 2 2\—1
[ crearammm - L <1+t2‘1+<|t|+rs\>2) (el sl =)

> /Hdt ! ! < (2.36)
= )i ) 1 |

By (2.35) and (2.36), there exists C3 = Cs(a,b) > 0 such that for any z € B and any
y R,

63/ aE > G s=2—_Y (2.37)
p(E@+(E—2)?)(e+ (E—y)?) ~ 1+s¥ €
(2.34) and (2.37) imply our assertion. O

Definition 2.5.3. Let f : Zso — C and n € N. Let <ﬁ<k> f> (n) be defined by
(A9F) (n) = —ax(n) f(n+ 1) + de(n) [ (n) = ax(n = 1) f(n = 1),
where a(0) = 1.
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Let z € C*, and n,m € N such that n > m. We define

0 1
o gn—1 gntl—2 (n Z 1)7
Tz(n) _ 9n Van

- 0 1
-1 1-=2
S.(n,m) = T,(n)T,(n—1)---T,(m),
S.(n) = S.(n,0).

Let f:Zso — C and z € C*. Suppose that (Fﬂ’”f) (n) = zf(n) for each n € N. Then

( f({z(i)n ) = T.(n+ N(k)—1) ( f(}%(;;) )

— S.(n+ N(k) — 1, N(k)) ( ;g?; > |

Lemma 2.5.4. Let K >0 and 2z = FE +ie with 0 < E <4 and € > 0. Then there exists
Cy = Cy(E,K) > 0 such that

(1) if Ly +1 <n < Ly and ne < K, then

moir
IS ()Ml <y [ 2

j=1

(2) if n < L, and ne < K, then
m—1 1r
ISt <o [T
j=1

Proof. By Definition 2.1.1, we see that

(

0 1
i) b | (€ (LI me N,
[n%r]z
_ 0 1
T.(n) = IRET (n€{Ln,+1|meN}),

_Int1E 92— &

0 1

> (otherwise).
(\ -1 2-=2
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If L,+1<n< Ly, then

S.(n) = R 1S(Ly, +1)
= R YS(L, 4+ 1,L,)S(Ly, — 1)
= R TNS(Lyy + 1, Ly ) R 1725 (L + 1)

= R S(Ly + 1, Ly )R P72 S(Ly 41, L) R?

0 1

WhereR:(_1 9_ .

) . Let Ly = —2. Then we see that

1S=(n) Ml < [[R= AT (0 HHHS o+ L Ly) | R (2.38)

Note that R™' = ( 2 I : _01 ) and ||[R™[| = [|[R™™| for any m € N.

(5 0te) (00,

Since E € (0,4), there exist invertible matrix Ag and Ay € C with [Ay| = 1 such that

1 0 1 (A 0
AE(—1 2—E>AE_(O )
Therefore we see that

. .1 (00

< +6HA 1IHIAEH)

n

If e < %, then
IAE" R"Ap|| < 2exp(K [ AL || A&])-

Therefore we obtain that for € < %,
IR = [ApAG' R"Ap AR || < 2] Al AG" lexp(K| Az || Ax])- (2.39)
If 0 < e < 1, then there exists C} > 0 such that
IS.(L; + 1, L) < CL,T 1 < L (2.40)
By (2.38), (2.39) and (2.40), we see that for L,, + 1 <n < L1,
18:(n) M < QCLIAe|AG )™ exp((m + D E | AZ | Agl]) HL};FF
j=1

This implies our first part of the assertion. The second part of the assertion can be proved
similarly. [
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Lemma 2.5.5. Let ¢ € I*(N) and n € N. Then for any T > 0,

—/wwktnﬁdt = [ 1H® = B+ i) wn) dE.

1

where € = 57

Proof. Abbreviate H*) and 1, to H and 1, respectively. We see that

1 o0 t 1 * L i i
! / P = ~ / dte™F (6,7 Hy) ey, 6,)
T/ T Jo

= [Gutan) [ (B sg [ e
_ /R (60, E(dx))) / (E(dy),8,)(1 +iT(x — y)) ",

and
= [ - B+ i) ) dE
- / (6, E(d2)0) / (B(dy)b.5.) / (B =2 +ie) (B —y —ie) !
- / (6, E(d2)0) / (B(dy), 6,)(1 +iT(x — )
These imply our assertion. ]

Definition 2.5.6. Let f : R — C be measurable and B, = [v,4 —v] with 0 < v < 1. We
say that f is the first kind, if there exist v > 0 and xo € B, such that f € C§°(B,) and
f(xg) # 0, and we say that f is the second kind, if f is bounded and there exist Ey € (0,4)
and v > 0 with [Ey—v, Ey+v] C B, such that f € C®([Ey—v, Ey+v]) and |f(x)] > ¢ >0
for x € [Ey — v, By + V).

Lemma 2.5.7. Let f : R — C be the second kind and 1) = f(H®)§,. Let N be sufficiently
large. Then there exists Cs = Cs(v) > 1 such that

LN+1

(1) if Ly <T < , then

1 Al )
k —(N+1 k
PPUT ~ 00}, T) > ¢3¢ +)T(T+I5)T ,B,) )H i (2.41)
1

Ly
(2) szSTSLN, then

1 A

Jj=1
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L
(3) if TN < T, then

N-1
r

({—N—} T)>C:VLy (;JFI”(T . B,) ) LT (2.43)

7=1
Proof. Firstly, we prove the lemma in the case of ¢ = §;. Let z € C* and fy : Z>g — C

be
(H® —2)751(n) (neN),
filn) = {1 (n=0).

Let g = (H® — 2)716, € I>(N). We see that g(n) = fx(n) for each n € N and that

(H® — 2)g(n) = 61(n)

N —ag(n)g(n + 1) +dp(n)g(n) — ax(n —1)g(n —1) — 29(n) =0 (n > 2)
—ax(1)g(2) + di(1)g(1) — 29(1) =1 (n=1)

o —ag(n) fu(n +1) + dp(n) fu(n) —ar(n = 1) fr(n — 1) = 2 fi(n) (n >2)
—ag(1) fr(2) + di(1) fr(1) = 1 = 2fi(1) (n=1)

o —ag(n) fu(n +1) + dp(n) fu(n) —ar(n = 1) fr(n — 1) = 2 fi(n) (n>2)
—ai(1) fx(2) + di(1) fx(1) — ar(0) fx(0) = 2 fr(1) (n=1)

This implies that fy satisfies the equation (ﬁ (k) fk> (n) = zfr(n) for each n € N. We see
that

fi(n) - _ Jx(0)
( fe(n+1) ) = S:(n+ N(k) —1,N(k)) < ) ) : (2.44)
Note that fp(1) = mg’f)<z). Let z = E + ie. By (2.44), we obtain that

14 |m(S (E+ ze)|2

K
Suppose that Ly +1 <n+ N(k) < Ly,; and € < —. By Lemma 2.5.4, we see that
n

::12

e+ 1+ )P 2 GO (L mom B +i0R). (245)

i1
By Lemma 2.5.5, we see that fi.(n) = (H® — 2)71§,(n) and that

€

1 [
—/R](H(k)—(EH’e))1(51(n)]2dE: ?/O e Tt n)2dt = o (n,T), €= (2T)7".

™
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K
Let (27)~! < —. By (2.45), we see that there exist Cy and C'}; > 0 such that
n

—=
=

1
b
S

a(g’f)(n T)+ag><n—|—1,T) > C4*(N+1) ’ dE( —i—’IHlm((;)(E—l—Z(QT) ),)

7=1
oo T (L4 9y B
> }
> I (g e By
Ty (1w

> T LT 4, (T B)

j=1
Ly .
Let Ly <T < , and K sufficiently large. Then we have

N, 1
> a1+ (n+1,7) > VLT T (T+I§’“)(T B ))

T<n<2T j=1

and hence

At 1
PPHT ~ 21}y, 7) >y VUL, T (T + I, By)) . (2.46)

Jj=1

L
Let TN < T < Ly. Then we see that

N 1
PP ({2Ly ~ 3Ly}, T) > Oy YT ;™ Ly <T+ o B,,)) .

J=1

Ly
Let e < T'. Then we see that

pwby Ly o >C’*NN_1LTL L B
S {—~ =) >V [ LT Ly 7L, (T8 .

Therefore, we can prove the lemma in the case of ¥ = 6.
Next we take g € C§°([0,4]) such that g(z) = 1 on Bx. We prove the lemma in the

case of ¥ = g(H®)6,. Let x = 0, — ¢ and z € C*. Then

—_

(HY —2) ()P > S[(HY = 2)7 o ()| — [(HY = 2)'x ()]

N}
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L
Let Ly < T < =2

. Then we see that, by (2.46),

1 N, 1
PO(T ~ 00}, T) > —C'*(N“’HL T (fﬂé?(Tl,Bﬂ)

— / dE H® — (E +ie)) x(n)]? (2.47)

T<n<2T
1 —g(z) (k) 1 . (k) . .
Let f,(x) = ——— Then (H"™ — 2)"'x(n) = f,(H")d;1(n) and Lemma 2.4.4 implies
r—z
that for [ > 1,

(H® — 2)7 ()] = [f.(HO)5 ()| < Calllfellagan™

and that

Yo IHY =) x(m) = Y LHEILM)] < Callfllyy, T Y. (2.48)

T<n<2T T<n<2T

Let z = F +ie. Note that there exists C5 = C5(g, v, 1) > 0 such that — sup ||| f2[l[5,5 <
EeB, 0<e<1

Ci. By (2.47) and (2.48), we obtain

N
4
PR (n>TT) > —(V+1) H < + I B )) — ?020/ —=D

1 /— / F T k
> {504(“”—4020 ZHL }HL T< + 1 B))

Let [ sufficiently large, then we can prove (2.41) in the case of ¢ = g(H®). We can prove
(2.42) and (2.43) in the case of ¢ = g(H™*)) similarly.

Finally, let f be the second kind, and we prove the lemma in the case of 1 = f(H®).
Let v satisfy f € C*([Ey — v, Ey + v]) and |f(z)| > ¢ > 0 for = € [Ey — v, Ey + v]. We
take g € C5°([Ey — v, Ey + v]) such that g(z) =1 on [Ey — 2, Ey + 22]. Then there exists
h € C3°([Ey — v, Eg + v]) such that g(z) = h(z)f(z). Since sup, > > (n —m)~" < oo, by
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Lemma 2.4.4, we see that

(HY — 2)"tg(H®)b1 ()
= [(h(H"™), (HY = 2)" f(H™)a)

i(h(ﬂ(k))an, ) Gy (H® — 2)1 ()3

2

f: m) ! (O, (HY — 2)7" f(H®)5y)]
< Cy (Z(n - m>‘l> <Z<n —m) "' |(HY — Z)‘lf(H““’)él(m)F)
<Cy Y (n—m) ' |(H® = 2)7' f(H®)61 (m) .
This implies the inequality
AGLT) = < [ B 2 ()5 )
Y Y - my! / AE |(H® — 27 ()5, (m)|?
< e i hy(m, L)/ dE |(H® — 2)7L f(H®)s,(m)?, (2.49)

!/

1 C
where z = E + ie, € = o and hy(m, L) = Z ———2 Tt follows for ¢ € I2(N) and

—
n22L1+|n m

€ > 0 that

> [dB|HO 2 o = ol == B
n=1

There exists Cy > max{C5, sup,,>r hi(m,T)}. By (2.49), we obtain that

AQT,T) < €Y him,T) / 4B [(H® — 2)~1 f(HO)S, (m)?

m<T
+ ZhlmT/ dE |(H® — 2) f(H®)5, (m)P
m>T
< Al FHED)SPCT + O S / 4E [(H® — 27 f(H®)8, (m)?
m>T
= 7|l f(H®)s |PCyT ™ + CY P, ({TNOO} T), (2.50)

30



Ly

1
where z = E 4 i€ and € = T Let Ly < T < . Then the previous argument shows

that

AQT,T) = 7P\ s, (12T ~ 00}, T) > G5 HL T <; + 18, B )) .(2.51)

We take [ sufficiently large. Then (2.50) and (2.51) imply (2.41) in the case of 1) = f(H®*)).
We can also prove (2.42) and (2.43) similarly. O

Lemma 2.5.8. Let f be the first kind with sup, |f(z)| < 1 and ¢ = f(H®)6,. If N is
sufficient large, then there exist Cg > 0 and qny € R such that J&im gy = 0 and it follows
—00

L L
for N7 < 2 hat

4

(IXIYE(T) > CerP(T B,
I—1
+ (Lg)VJrlJqu 4 TP+ILJVT+QN> I(gf)(Tfl,By)-

Proof. Let M € N. Then it follows that <\X\p>$)( ) > MpP "M ~ o},T). Lemma
2.5.1 implies that

(X [)(T) > MEPS ({My ~ 00}, T) > CoJS(T7Y, B,) ™" > CyJ(T 7, B,) ™

By (2.33), we have
(X")P(1) > cyr (1, B,) . (2.52)

Note that f is the second kind. For LTN < T < Ly, by (2.42) we have

(XPY(T) = TPPPUT ~ 00}, T)

—1

N
> 40, Vet ) H *.

Let gy > 0 satisfy
N-1
r—1
Ly =y ML L7

Then limy_, gv = 0 and we see that for %V <T < Ly,

-1
(X[7)P(T) > arPH L, I B,). (2.53)
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L
For Ly < T < =X

, by (2.41) we have

(X (T) > TPPPHT ~ o0}, T)

N
> oy 0 g T LT
= 1 g J
j=1
r—1
> TP TN (e B,). (2.54)
L L
By (2.53) and (2.54), we see that for TN <1<
r—1
(XM (T) > TP Ly TN LY (T B,). (2.55)
Ly
For T < T, by (2.43) we see that
k k
(IXP)(T) = TPPP{T ~ 00}, T)
N-1 _
> oV B) T LT
j=1
> L (T B,), (2.56)
(2.52), (2.55), and (2.56) imply our assertion. O

Lemma 2.5.9. Let f be the first kind with sup, |f(z)| <1 and ¢ = f(H®)6,. Then

p+1
89 (p) > .
P p+ %

(2.57)

Proof. By Lemma 2.5.8, for z = [(gf) (T, B,), we obtain that
r—1_
IXPYP(T) > Coa? + Co (IR + TPHLT ™) o

Let f(x) = 277 + Kz. Then in%f(x) = c(p)Kﬁ, where ¢(p) = p P +pﬁ. Let
>

Ly

. Then there exists Cf = C{(p) > 0 such that

Bt T
<|X|p>5pk)(T) > ¢(p)Cs (L’J?V+1_qN+Tp+1LNr qzv) +1

__p_ T_1\ 2=
> Ly (R Tty )
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1

L +
For—NngLﬁ withA:p L we have
4 p+1

quyunzcggﬁwmazcugﬁ”T% (2.58)
A LN+1
For Lj, <T < , we have
__p_ r'-1 p_ __D_ »
QXW§$RT)2(%LNWMMYWLQT”“'ZC%LN”“WTT. (2.59)

(2.58) and (2.59) imply that for sufficiently large 7' > 0 and any € > 0,
(XPYE(T) > Cpri=.
Therefore we obtain that

37 (p) = ~liminf g<||>w(>2p L e
p T—oo logT p+i p

This implies our assertion. [

2.5.2 Upper bound of intermittency function

Lemma 2.5.10. Let f be the first kind, ¢ = f(H®)d, and p > 0. Then there exists
1
C7 = Cq7(p) > 0 such that for Ly <T < L& with N sufficiently large,

> wral) (n,T) < CTPHLLT (2.60)

TLZQLN

Proof. We have
TS
Z npaq(f)(n,T): Z n”aw n,T) + anaw n,T).
n>2L., n=2L, n>T3

Let Gy(z) = e "*. Lemma 2.4.4 shows that for any [ > 1, there exists C§4) = C’@(l) >0
such that

>_wra)) = Yt / dt e 7| (8,, Go(HM) F(H®)5,)P

n>T3 n>T3

S [ e Gy

n>T3

IN

AN
3
=
ﬂ\«
—
Q.
~
®
Sl
~
S
+
w
:|

IN

C§4)T2H3 Z nP

n>T3

C§4)Tfl+3p+6.

IN
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T3
_1
We take [ large enough, so it is sufficient to prove Z n”afpk) (n,T) < C;TP L". Since

TL=2LN

f is the first kind, f € C5°(B,). By Lemma 2.5.5, we have

T3 ’T3
> a1y = 3 ws [ dB((HY - B o n)
n=2Ly n=2Ly T B%
TS
€
bYW [ apE - B R, o= )
n=aLy | JR\By

Let x.(x) = (x — 2)7'. Then Lemma 2.4.4 shows that for any [ > 0, there exists C’s’) =
C'S’)(l) > 0 such that

T3 v T3 v
S w [T apEY - EoigemP < &3 [ B e () )5
s —00 ™ —00

’I’LZQLN n:2LN

e & z
Co= Y n”/ dE (X yicf 5 5n "
m —o0

<
n=2Ly
T3 v (3)
€ 2 C
< O - p—2l/ dE — 7
= r ; " oo (B —v)?+ e
n=2LNn
< GOV LA (2.61)
Similarly, there exists DI¥ = D (1) > 0 such that
T3 00
€
=D DN / AE|(HY — E —ie) (n)* < CDP LY (2.62)
n=2Ly -2

(2.61) and (2.62) imply that

T3
€
> n— / dE |(H® — E —ie) p(n)* < max{C,C¥, C, Dy L2+
R

n=2Lyx \B%

We take [ large enough, so it is sufficient to prove

T3
_1
Y np/B dE |(H® — B —ie) ()2 < Gy L, e = (7).

Lemma 2.4.4 implies that there exists C' = C(, f) > 0 such that

(H® — B —ie)Mp(n)|* < C Z(l + [n = m|*) X i (H*)51 (m)]2.

m=1
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Therefore it is sufficient to prove

T3 e’}
€ 1
= E np/ dF E (14 |n— m\2)’l\XE+ie(H(k))51(m)|2 < C}TpHLNF, €= (2T)’1.
5 m=1

n=2Ly

We see that for any [ > 1, by Lemma 2.5.5, there exists C’§2) = C’§2)(l) > 0 such that

T3 Ly
€
EE:7W/VMBZ¥PHH—WW4RmMHWﬁde

TLZQLN =

T3 Ly
_ €
< D WLy - / dE [Xp+ic(H®)d, (m)[?
1 b

n=2Ly m=

T3
< D WLy

TZ:2LN
< CPTIeL 2 e = (2T) 7 (2.63)

Similarly, we have

T3 o0
; Z ”p/ dE Z (1+ |n —m?) " xpac HE)S) (m)]* < DP TV L2 (2.64)
%

n:2LN m:T3+LN
By (2.63) and (2.64), it is sufficient to prove

T3+ Ly

T3
€ 1
= E np/ dE E (14 [0 —m)?) Yxpre H)6(m)|* < C;TPHLLT, e=(2T) 1.
b2

n=2Ly m=Lpn

Let Ag{;) and Dgl;) : ?(N) — [*(N) be
0 ak(l)

ak(l) 0 ak(2)

ai(2)
0 ax(Ly
AV = ar(Ly) 0 1
1 0 1
1 0 1
1
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and

k
D](V) = dk(LN

Let H](f) = D](\’f) - Ag\’f). We see that for any [ > 1 there exists C" = C’(l) > 0 such that

€ T3 T3+LN
S w [ ar Y () e O
7Tn:2LN B% m=Ly

€ T3+LN T3
B

m:LN RZQLN %
€T3+LN
<O St [ B ) )
m=L B

14
2

T3+Ly
€
<20 s S / AE |Xp+ic(H®)51 (m) = Xsic(HP)S1(m)
m=Ln b
6T3+LN
+2C7~ ZL mP / dE X ie(HE S, (m) 2. (2.65)
m=LN z

By the resolvent equation, we have

1 O¢Eic (HP) = xppic (HW) |

1 k k
Y — HE ()]

1 k k 1 k k
< N@® = D)xpvie(H )01l + (AW = A )xie(HY )] (2.66)

Let z = E+ie and ¢ : Z>og — C be ¢(0) = 1, ¢(n) = XZ(H](\f))él(n) (n > 1). Then it
follows for n > Ly that

—¢(n+1) +2¢(n) — ¢(n — 1) = z¢(n).
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This implies for n > Ly,

(o )= (5220 (50" )

2—z2++/(2—2)2+4 .
Let Ay = 5 , then there exists Ct such that

d(n) = C NN 4 O\,

Since € > 0, we get |[A_| < 1 and |A\;| > 1. Since ||¢[|;2z < 00, C4 =0, C_ = ¢(Ly) and
there exists ¢, ¢ > 0 such that it follows for 0 < F < 4 and 0 < € < 1 that

efc’e < ‘)\7’ < e

If B > 1, then it follows for sufficiently large N that

1
Ly — L5 > Sl

Therefore, we see that there exist C” > 0 such that

[(D® = Dxwac ORI = D 1delLy) = 2P0 (Ly)
j=N+1
) 2(1 )
< 2|¢(Ly)] Z L; © exp(—2ce(L; — Ly))
j=N+1
i 2(1-T)
< 27 Z L; " exp(—2ce(L; — — L2))exp(—2ce(L5 — Ly))
j:N+1
2(1 )
< 4T? Z L; ™ exp( (—ceL;)exp(—ceL?))
j=N+1
< C"exp(—ceL?), (2.67)
and

1(A® — A X HE YO < Z 11— ar(Ly) P {lo (L)1 + |¢(L; + 1)}
j=N+1

< C'T* ) exp(—2ce(L; — Lw))

J=N+1

< C"T?exp(—ceL’). (2.68)
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By (2.66), (2.67), and (2.68), we see that there exists C’él) > ( such that

T3+Lyn

Y [ AR ) (m) = X ()
m=Ly %
T3+Ln
<€ Z mp/ dF ”XE+26 ) XE+16(H](\I/€))51H2
m=Lp
< crs p“)exp(—ceL?v), e= (27" (2.69)

By (2.65) and (2.69), it is sufficient to prove

T3+Ly

€ mp/ dE |Xpsic(HY )01 (m)? < CoTPH LT
%

mLN

Let Fn(z) = (01, XZ(H](\I;))(Sl) = (61, (H](\’f) — 2)714;). We see that there exists C”” > 0 such
that

"

1 . —c'e(m— C
MFy (B 4 16) = [xes HDO = Y o)z Y e (L > (L)

m>Lpn m>L

This implies that |¢(Ly)| < C"ImFy(E + i€). Let Ly—1 <n < Lyy41. Then

—¢n+1+2¢() ¢(n—1)—2¢() (n# Ly, Ly +1)
—VILy J6(Ly +1) ] +2)¢(Ln) — ¢(Ly —1) = 2¢(Ln) (n= L)
—¢(LN +92) +26(Ly + 1) AL 6(Ly) = 26(Ly + 1) (n=Ly+1).
Let R = ( _01 9 i p ) Then it follows for Ly +1 < n < Lyy; that

( AR > R ( At ) |
Similary, for Ly_; <n < Ly — 1, we have
(o )= (500" )

There exists B = B(K) > 0 such that |R"|| < B for € < fg—‘ It follows for Ly < n < 2Ly
that

[6(n)]* + |¢(n + 1)* = B~ (|¢(Ln)[* + [d(Ly + 1)).
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Therefore, we have

Iy (8 + i) = 6] > B~ La((o(Lw)l? +10(Lx + 1P

L
Similarly, it follows that for TN <n < Ly,

6(n)]” + [p(n + 1)* > B (|o(Ln)[* + [6(Ln + 1)),
and that

1
ImFy(E +ie) = [[6]* > B~ Ly(|é(Ly — DI* + [6(Ln) ).

(2.70) and (2.71) imply that

2B
|0(Ly — D))* + [¢(Ly + 1) < eTImFN(E + i€).
N

We see that

1-r

(L 142 = 2)d(Ln) = S(Ly — 1)+ VLT 16(Lx +1).
This shows that

1_

LN T 42 = 2P < 2L 1(16(Lx — D + 6Ly + 1)P).

Let |z] < 5. Then there exists B’ > 0 such that

(L) < BLyY (|6(Ly — DI? + [6(Ly + D).
(2.72) and (2.73) imply that

L
6(Ly)|* < 2BB' %

(E + ie).
Therefore, there exists C7 = C7(p) such that
T3+Ln
ey / 4B | s )5 (m)]
m=Lp
T3+Ln

< Cre > mPexp(—2ce(m — Ly)) / dE |x5+ic(HW)S (Ly)

v
m=Ly 2

<Crer [ dpjolLy)P
5
< ZBB’C7e*p*1L&% / dE ImFy(E + ie)
5

_1
<2BB'C;T"*'L,", e=(27)*
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Corollary 2.5.11. Let p > 0, f be the first kind, and 1 = f(H®)5,. Then there exists
Cs = Cs(p) > 0 such that for Ly <T < LY with N sufficiently large,

(XPYP(T) < CsLB + CsTP LT

Lemma 2.5.12. Let f be the first kind and 1 = f(H®)§,. Then

8P (p) =

1 + 1
Proof. Let Ly <T = Lﬁ < L), where A = b n E Then Corollary 2.5.11 shows that
p

(X)L < CSIA..

Therefore we have

1 log (| X |y (L4 41
0y < Ly PBEPEOERD L pet
D N—oo log Ly P+
Since f is the first kind, (2.57) holds. O

2.5.3 Proof of the main result

Lemma 2.5.13. Let A € B'. Then E(A) =0 if and only if ,u((;lf)(A) =0 for any k € N.
Proof. Assume that F(A) = 0. Then we see that E*)(A) = 0 and
g, (A) = (61, EP(4)d1) = 0.

Conversely, assume that uglf)(A) = 0 for any k£ € N. It is sufficient to prove that

E®(A) =0 for any k € N. Let p ba a polynomial, then we see that
1005, (A) = (p(H®)d1, E®(A)p(H™M)d1) = /,4 [PV s, (dX) = 0.

This implies that E® (A)p(H®)§; = 0. Since §; is a cyclic vector for H® : [*(N) —
2(N), {p(H®)§, € I>(N) | pis a polynomial} is dense in [?(N). Therefore E®)(A) = 0
follows. [
Lemma 2.5.14. Let A € B and A C (0,4). Then E(A) = 0 if and only if uq(f)(A) =0
for any k € N and any o = f(H®)§,, with the first kind f. Moreover, dim, F = dim*uff)
and dim*E = dim*uff) follow for any k € N and any ¢ = f(H®)6,, with the first kind f.
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Proof. Assume that F(A) = 0. Then we see that E*)(A) = 0 and
) (A) = (&, BV (A)w) =0.

Assume that ufbk) (A) =0 for any k € N and ¢ = f(H®)d;, where f is the first kind.
Let f, € 030(%,4 — %), |fn] <1, and f, = 1 on the interval (%,4 — %), n=12,.. Let
Uy = fo(H®)5,. Since f, is the first kind, ;LEQ(A) = 0 for any k£ € N. It is sufficient to
prove that E®(A) = 0 for any k € N. We see that

Bl (A) = (fu(HD)51, B (A) f,(HP)sy) = /A F NP (dx) = 0.

By the Lebeasgue’s dominated convergence theorem,

= Jim pi)(4) = tim | )P (03) = ) (A),

n—oo i n—00

By Lemma 2.5.13, we see that E*)(A) = 0. Then we prove the first part of our assertion.
The second part is straightforward to prove by the first part and the definition of the lower
and upper Hausdorff dimensions. ]

Proof of Theorem 2.1.4. By Lemma 2.5.14, it is sufficient to prove that dim*uff) =

diHl*MEpk) =T for any k € N and any ¢ = f(H®)§;, with the first kind f. By Lemma
2.1.3, we see that
< dim*uff) < dim*ufﬁk).

By Lemma 2.3.2 and Lemma 2.5.12, for any p > 0,

p+1
PEE

dim () < B (p) =

This imlies that dim.p; = dim*ul’ = T. O
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Chapter 3

No eigenvectors embedded in the
singular continuous spectrum of
Schrodinger operators

3.1 Introduction and a result

We investigate one-dimensional Schrodinger operators with sparse potentials. It is known
that the spectrum of Schrodinger operators with sparse potential consists of singular con-
tinuous spectrum. Simon and Spencer [23] show the absence of absolutely continuous
spectrum of Schrédinger operators with sparse potentials. Simon and Stoltz [22] also show
that —% f+V f = Ef has no L*solutions for any £ > 0. We have the question whether
the edge of the singular continuous spectrum is an eigenvalue or not. We give a sufficient
condition for the absence of embedded eigenvalues and give examples.

Definition 3.1.1. A function V' : [0,00) — R is called a sparse potential, if there exist
positive sequences {x,}o 1, {an}>2, and {h,}22, such that x,41 > x, forn=1,2,3, ...,
Tpy1 — Tp

(i) lim = 00,
n—00 p41 + [67% + 1

(i) |V(z)| < hn, if x € [xy — Ty + ] forn=1,2,3, ...,

(e 9]

(i) V(z) =0, ifz € (U[mn — O, Ty an]>

n=1

We define L,, = z41 — p — @py1 — oy for n > 1 and Ly = 1 — ay. By (i), L, — o0
as n — o0o. By Strum-Liouville theory [26, Theorem 9.1.], there exists a unique solution
f € ACe([0,00)) of the equation —j—;f + Vf = 0 with %f € ACe([0,00)) and the
boundary condition f(0) = a, % (0) = B,a, 5 € C. We give a sufficient condition of the
existence of a non L?integrable solution.
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Theorem 3.1.2. Let V' be the sparse potential and f a weak solution of —j—;f +Vf=0.
If

% (lﬁ[(L?n_l + 2)> (12[(20% + 1)) exp (—% Zn: han (405, + 3am)) — o0, (3.1)

m=1 m=1
as n — oo, then f ¢ L*([0,00)).

We give an example for one-dimensional Schrodinger operators with singular continuous
spectrum which has no embedded eigenvalues. Let z, = exp(n") for n = 1,2,3, ..., and

Vi) = {e”, if |[x — :L‘n| < % forn=1,2,3,...,
0, otherwise.

Let H, = —% +V : L*([0,00)) — L*([0, 00)) with the domain D(H,.) = C5°((0,00)). We
see that H, is regular at zero and in the limit point case at infinity. This implies that H.
has self-adjoint extensions Hy which can be parametrized by boundary conditions. Hence,
Hy is the restriction of H* to Dy = {f € D(H*) | f(0)sinf — - f(0) cosf = 0}. By [22],
we have 0,.(Hp) = [0,00), 0p,(Hp) N (0,00) = 0 and o4.(Hg) = 0 for all § € (5, %]. See
section 4.4 for the proof. Theorem 3.1.2 implies the next corollary. This also implies that
Hy has purely singular continuous spectrum for some 6.

Corollary 3.1.3. It follows that
(1) 04(Hg) = [0,00), 0pp(Hg) N [0,00) = 0 and oac(Hy) = O for all 6 € (=7, 7],

(2) Hy has purely singular continuous spectrum for 6 € [0, 5],

(3) Hy has a single negative eigenvalue for 6 € (—g,arctan(—%g)].

3.2 Proof of Theorem 3.1.2.

We calculate a lower bound of Wronskian matrices. For a 2 x 2-real matrix M, let

Low M = mf{‘M (COSQ)‘ ‘9 elo QW)}

We see that |[Mu| > Low M|u| for u € R* and Low M = \/infc(*MM). Let V be a
sparse potential and f € AC)..([0,00)) be a weak solution of —%f +Vf=0with Lf¢€
AC1.(]0,00)) and the boundary condition f(0) = cos6, - f(0) = sinf. We can represent
the weak solution concretely as follows. Let Jy = 0,27 — 1], I, = [x, — q, Ty + @)
and J, = [, + an, Tpy1 — apy] for n = 1,2,.... Let p,,q, : J, — R be defined by
pn(z) = 1gn(z) = 2 — 2, — oy, and po, qo JO — R by po(x) = 1,q0(x) = z. Let
On,sp I, — R be the weak solution of ——f + Vf = 0 on [, with the boundary
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condition ¢, (1, —an) = 1, L, (2, — an) = 0,9, (2, — ay) = 0 and %wn(m‘n —ay) = 1.

T ? dx
We define f: [0,00) — R by
f(2) = cPpala) + Pau(a) it ey,
f(z) = ng Son(x) + dg)zﬁn(x) if @ € I,
where ¢\ ), cn ), d and d) are inductively determined by for n =1, 2, ...

lim< po(x)  qolx ) iV B (cos 9)
200 \ £po(r)  hao(x) c((f) sind )’
lim (pnmm %1@>) 1) _ (¢4> waw) @\ 32
#ten—an \ gPo-1(2)  grdn-1(2)) \ ) rln—an \E¢n () Ea(@)) \dP 7

(@ @) Y () <paw %@>) et
xT}C{Lr—I:a" (dmgpn() %wn(:ﬁ)) (dﬁf) N xiilnr—ri-lan %pn(gp) %Qn(x) C;Z) (33)

cos
sin

By the deﬁnition, 7~ and difare contir S, ( 4 (f(z)) ) (
dx
1) (2

cn’,Cn ,d and d,(f) are uniquely determined by 6. We see that

/ Fo dx—/ @)V (@)g(x)da

for g € C°((0, 00)) straightforwardly. This implies that f satisfies —% f+Vf=0in the
sence of the weak derivative. Therefore f = f by the uniqueness of the solution.

(1)
Lemma 3.2.1. Let ¢, = (C’é)> . Then we see that

n

) . The coefficients

2 1 Li 2
Ve 2 Gl (3.4)
Proof. We obtain
|f(z)Pdz = | pu(@) + ¢ g (@) Pda
Jn Jn

= (0511) 67(12)) (1an %Lz‘) C%: :
ELn §Ln Cn

172
The matrix ( llzg iég) can be diagonalized and its eigenvalues AL are
27N 37 n




Since 1 — 1—t2%tf0r0<t<1,wehave

L,+ L3 L4 1 —2 1 L3
A= 3y 1= (L, + -~ L3 >__n
2 \/ 3( ntg ”) ~ 41243

This implies our assertion. [

By (3.2) and (3.3), we obtain ¢, = R,W,,_1¢,—1 for n > 1, where

R, = lim (ﬁom() U () >

: pm(@)  gm(x) ) (1 Lm)
Wpn = 1 = )
Z’TCCerllIElOéanl (%pm(x) %qm(x) O 1

We shall estimate Low R,, and Low W,,.

Lemma 3.2.2. It follows that

m

Proof. The eigenvalues &4 of ‘W, W,, are

& =3 (1 +2x VT2 9).

2
Sincel—\/l—tz%tfor0<t<1,wehave

¢ L +2<1—\/1— 1z +2)7) 2

Since Low M = y/inf o (*M M), we have our assertion. O

L2, +2

Let @m,@/;m : I, — R be defined by gém( ) 1 @Em( ) = — Ty, + . We see that
Pm, Um satisty —dc%f — 0. There exist u$), v{) € AC(I,), j = 1,2 such that

(o) = (L)~ (20)
(i) =0 (Laith) + v (L20))

We see that ufﬁ)(mm — ) =1 u(Q)( Ty — Q) = 0, vﬁ,?(xm — ) = 0,00 (T — Q) = 1,
and



Note that ¢, and v, satisfy the equation —% f + V f =0 which is equivalent to

(E)-( o) (L)
< f Vo) \iLf

Differentiating both sides of (3.6), we obtain

Thus we have

[ES=IES
3v3Iz

1)
dz ¥ '
xU

<9

PRI E i) L
ey o
Let u,, = g) and v,, = 7(7;) . By (3.7), we see that u,, and v,, satisfy that

Um Um
d ~ 7 7.2
L, = —v (wmﬁm Y > U, (3.8)
dx —Pm —PmUm
d ~ 7 72
_%L:—vc%ﬂl %%>wp (3.9)
dx —Pm _¢m¢m

Lemma 3.2.3. For z € I,,,, ul) (x)vﬁs) (x) — vq(ﬁ)(x)u%)(x) =1.

Proof. By (3.8) and (3.9), we obtain

d d d d d
L) =) = Al - L L
HV (@uthmvly) + p o uly) — oDV (Gruly) + Grthmuy)
= 0.
Since uly (T — ozm)vg) (T — Q) — ol (T — am)ug) (Tm — i) = 1, we have our assertion.

]

Lemma 3.2.4. Assume uj,v; €R, j = 1,2 and uyvy — viug = 1. Then

1
Low (u1 vl) >
(RN Vui+ul +vi + vl
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Proof. Let u = (Zl and v = (Zl), and u - v = uv1 + ugve. The eigenvalues &4 of the
2 2

matrix (ul u2> <u1 Ul) are
V1 Vg Uo Vg
1
s = 5 (Iuf? + lof? & /(PP + o2 = APl — - 0)?)

Since 1 —/1—1t > 3t for 0 <t <1 and |u*|v]* — u-v = (u1vs — upvy)? = 1, we obtain

1
“E
This implies our assertion. O
Lemma 3.2.5. It follows that
1 1
LowR,, > ————exp | —=hn, 404% + 3ay, > ) 3.10
srgew (gt ) (3.10)

Proof. Note that

o (@ a@ N (Bm(@) (@) [un (@) v (@)
ro= i (St i) =, (Lo f0) (usz><m> ()

It is straightfoward to see

(3.11)

We see that for a,b € R,

cosf ab  b? cos 6 a’® + b?
((Sin@) ’ (—a2 —ab) (sin&))' - 2 (3.12)

By (3.8) and (3.12), we have
d . d
_— g 2 — U,
dx(‘um‘ ) (um, dz" )

- ~ 72
< o] (P B )

S (A L | [

sup
0€0,m)
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Thus, by Gronwall’s inequality, we obtain

|t (2)* < exp (hm L ) (sém(y)2 + @Em(y)2> dy) :

m—CQm

In particular

Tm+0m
U (T + )P < exp (hm/ (1 +(y—xm+ ozm)2) dy) .

m—Qm

= exp (hm(2am + 2@%)) :

We can estimate |v,,|? in a similar way:

2
U (T + Q)| < exp <§hm(40421 + 3am)> :

Therefore, we see that

(1) (1)
U’ () vm’ (2) 1
LOW 2 2 Z
< w(z) ol ) VNt (@) 2 + [0 ()
> %exp (—%hm(mfn + 3am)) . (3.13)

By (3.11) and (3.13), we have our assertion. O

T=Tm+om T=Tm+am

Proof of Theorem 3.1.2. By (3.5), (3.10), and ¢, = R,W,,_1¢,,_1 for n > 1, we obtain

I

el > o (ﬁ (L2, +2)(202 + 1)) exp <_% mi_l . 3am)> B

m=1

If n is sufficiently large, then

L2 _ L,
> —
[2+3~ 4
Thus, by (3.4) and (3.14), if n is sufficiently large, then we have

n

Ln 2 2 - -
[ e ([Tt o) (25 o)

m=1

Suppose (3.1). Then we obtain
|f(z)?|dz — oo.
JIn
This implies that any solutions f of —% f+ V=0 do not belong to L*([0, c0)). O
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3.3 Proof of Corollary 3.1.3.

Note that z,, = exp(n"), a,, = &, h,, = €", Ly = 11 — % and L, = x,41 —x, — 1 for n > 1.

Lemma 3.3.1. If there exists f € D(Hy) such that (f, Hof) < 0, then Hy has a single
negative eigenvalue.

Proof. R[A] denotes the range of a map A. We see that dim R[Ey((—00,0))] < 1. For
its proof, see Lemma 4.4.1. Let f € D(Hy) such that (f, Hypf) < 0. Then this implies
R[Ey((—00,0))] # {0} and dim R[Ey((—o0,0))] = 1. This implies our assertion. O

Lemma 3.3.2. It follows that
(1) Hyg has no negative eigenvalues for 6 € [0, 5],

(2) Hg has a single negative eigenvalue for 6 € (—g,arctan(—%ﬁ)].

Proof. Let f € D(Hy). Then f satisfies the boundary condition f(0)sin6 — - f(0) cos§ =
0. We obtain that
()] f ()] )

() = [ F@ gz @)+ V) @)
d
— T (\— )
If § = 0 or Z, then we have f(0) )LF(0) =0 and (f, Hof) > 0. If 0 < § < Z, then by the
boundary condltlon we obtain

(f, Hof) = | f(0)]* tan 6 + (‘— (z) (2)|f (= )|>dx20.

Thus (f, Hpf) > 0 for 6 € [0, 5]. This implies the first part of our assertion.
We shall prove that there exists f € D(Hy) such that (f, Hyf) < 0 for any 6 €

(—5,arctan(— 1*‘[)] It is sufficient to prove there exists f € L*([0, c0)) such that (—%f—#

Vf,f) < 0 for any boundray conditions dI{O()) = -\, A > %ﬁ Let A > 1. Define
fr:]0,00) = R by
A
exp| — |, if0<z<1
fialz) = (x — 1)
0, otherwise.

We see that fy € L*([0,00)) and that f)(0) = exp(—X), < f,(0) = —Aexp(—X). Then we

have
[ pwpe = [ |2 )|
0 dz M= 0 (m—l)QeXp r—1

7Y —(2M% + 2) + 1) exp(—2)).

dx
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Since V (z) fa(xz) = 0 for z > 0, we obtain that, for A > 1+2‘/§,

d? 1
(—@A + Vi, fx> = 5(—%2 42X + 1) exp(—2)) < 0.

By Lemma 3.3.1, we have our assertion. O

Lemma 3.3.3. For any p > 0, it follows that

n—1 -p
lim z, | | Tom = 00.
n—oo

m=1

Proof. We obtain

n -p n—1
oo (TL) = o (100 o)
m=1

m=1
exp ((n+1)"" —pn" —p(n —1)")
= exp((n+1—2p)(n+1)")
— 00, as n — 0o.

]

Proof of Corollary 3.1.3. By Lemma 3.3.2 it is sufficient to prove that 0 ¢ o,,(Hy) for
all 8. We see that for all n > 1,

L§+2<2
L2 '

n

Thus we have for all n > 1,

n -1 n—1 —2
2n71

L? 2 > Ln| .

(sien) =5 (1)

We see that L,, < x,4; foralln > 1and L, > %an for sufficiently large n > 1. Therefore
we have

2

n—1 -2 n -
Ln (;[I lﬁn) ;2 %xn+1 (;[I xn{) .
m=1 m=1

20



By Lemma 3.3.3, we obtain

4(L2 +2)3"

m=1

= eXp(%<n + 1)n+1)$n+1% (ﬁ l’m> 7 exXp (é ((n + 1)n+1 - 4€n+1))

— 00, as n — oo.

By Theorem 3.1.2, we see that 0 ¢ o(Hjy).
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Chapter 4

Appendix

4.1 Decomposition of the graph Laplacian

We discuss the decomposition of the graph Laplacian and represent the graph Laplacian
as a Jacobi matrix. See [1].

We assume that G = (V, E) is a spherically homogeneous tree. Let m, : [*(S,) —
12(Spy1), n = 0,1, ..., be defined by

an(u) = Z f(U), U € Spy1.

VESh v~

The adjoint 7% : [*(S,41) — [*(S,) is given by
mgw) = Y g(v), ueS,

VESp4+1:0~U

Lemma 4.1.1. Let f, g € 1*(S,). Then (mnf,mng) = gu(f,9).
Proof. Let f, g € [?(S,). Since G is a spherically homogeneous,

(Tnf, Tng) = Z T f (U)Tng(w) = gn Z mg(u)

u65n+1 u€eSy

]

We see that V is a disjoint union V' = U2 S, and that *(V) = @77, 1*(S,). Let
IT: (V) — I*(V) be defined by II = .7, .

Lemma 4.1.2. Let f € D. Then Af = (Il +1I") f.

Proof. Let f € D and u € S,,. Since G is a spherically homogeneous tree, u is adjacent
with only vertices in S,,_; and S,,1. Therefore we see that

M+I)fw) = Y f)+ > floy= > fv)=Af(u).

VESp_1;v~U VESH41;U~U veViv~u
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Let o, = #8S,, = dim(1*(S,)), n = 0,1, .... Suppose that {e,(f)}g;l is a CONS of 1%(S,,).

Then we can construct a CONS {el" ™} of 12(S,,,) by the following procedure. Let
e,(cnﬂ) = ||7Tne,(€n)||*17rne§€n), k=12,..,0a, By Lemma 4.1.1, {e,in+1)}z;1 is an ONS of

12(Sp41). If oy = iy, then {e,(j“)}g;l is a CONS of 12(S,41). If @, < apy1, by the
Gram-Schmidt process, we can obtain e,(:ﬂ) € 1*(Sp41), k = ay + 1,...,apq1, such that
ey Ty U el e | is a CONS of 2(Sp41).

Suppose that a CONS of 2(S) is given. Then we can costruct a CONS {e!™}o"  of
I2(S,), n = 0,1, ..., inductively. Hence, U,O;O{eggn) @ is a CONS of (V).

Assume that sup,_q; a, = oo, and let a_; = 0. Since {a,};2, is non-decreasing,
there exists a unique N (k) € NU {0} such that ayg-1 < k < ang for every k € N. We
see that

et 1 k=12, a0} = [ J{el” | n=N(k),N(k) + 1,..}.
n=0 k=1

Lemma 4.1.3. Let the closed subspace My of I*(V), k = 1,2,..., be defined by

My = ({el"” | n = N(k), N(k) +1,..}).
Then My, 1is invariant under A, D and L.
Proof. By the definition of eé") and Lemma 4.1.1, we see that

el = ||mael™|lel™ ™)
In—1 (n—1)
. () ——e, (n> N(k)+1),
ey = S [m el
0 (n = N(k)).

This implies that M} is invariant under IT and II*, and hence, by Lemma 4.1.2, we see that
M, is invariant under A. Since G is a spherically homogeneous tree, we have

W ot D (1),
Dek = (0)
go€q (n=0).
Hence, M;, is also inavariant under D. Since L = D — A, we see that M, is invariant under
L. ]

By Lemma 4.1.3, let H®) A® D® . A — M, k = 1,2,..., be defined by the
restriction of Hy, A and D to My, respectively. We see that H® is self-adjoint and
H=@; H".

We consider the matrix representation of H*) with respect to the CONS {e
N(k),N(k)+1,...} of My for k = 2,3,.... Then it follows for n,m > N(k) that

(e, HYeM) = (g, DPe”) = gn + 1,
(e, HOe™Y) = —(e”, AVe"™) = — vy,
(e H® ™y = 0, if |n—m|>2.

¢l =
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We have the matrix representation of H™®. It follows for n,m > N(1) = 0 that

=0
€, HOeM) = (&M DDy = 90 (n=0),

(e, HOe™) = (e, V™) = — /g,
(™, HOe™Yy = 0, if |n—m| > 2.
Let k,n € N and let dy = (dg(n)), and ax = (ax(n))2; be defined by

dk(ﬂ) _ <€§€n+N(k)—1)’ D(k;)egl-‘rN(k)—l))’

ar(n) = (ePHNOD 4B NGy
We can identify H®) : [>(N) — [2(N), k = 1,2, ..., with the following Jacobi matrix :
di(1)  —ax(1)
—ap(l)  di(2)  —ak(2)
H = —ax(2) di(3)  —a(3)
—ag(3)

This implies our assertion of Lemma 2.2.1. Similary, we can identify A® D® . 2(N) —
[(N) with the following Jacobi matrices :

0 (1) di (1)
a(l) 0 an?) di(2)
AW = ar(2) 0 ax(3) , D" = di(3)
ax(3)

4.2 Fourier analysis and fractal measures

In this section, we introduce a result about the Fourier analysis of the fractal measure. Let
B,(z) =[x —r,z +r] C R. Let £ be the Lebeage measure on R, and u : B! — [0, 00] be a
locally finite measure. Let M, f : R — R be defined by

1
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for f € L (R,du), where we take 3 = 0 if u(B,(x)) = 0. M, [ is measurable and called
the Maximal function.

Lemma 4.2.1. M, : LP(R,dp) — LP(R,dp) is bounded for any p € (1,00).

Proof. Let £ = {x € R | |z| < n,M,f(z) > s} and x € E?. There exists 7, > 0 such
that

/ Fldu > su(B.. (@),
By, (x)

Note that {B,, (x) | z € E"} is a Besicovitch covering of E”. By [9, II, 18 The Besicov-
itch covering theorem, Theorem18.1], we see that there exists a countable subcollections
{B?}52, of {B,,(z) | * € E}} such that {B}}32, is a closed covering of £ and there exist
C > 0 which is independent of E? such that for any r € R,

g (x Z o (0

Hence we have

sulE) <Y uB) <3 [ A< [ Iflan

Let n — oo. Then we see that for any f € L'(R,du) and s > 0,
p{z e R| M, f(x) > s}) < Cs™H fll 1.

This implies that M, : L*(R,du) — L*(R,dp) is weak (1,1) type. We also see that
M, : L®(R,dp) — L>®(R,dp) is weak (0o, 00) type. Thus we have our assertion by [9,
VIII, 9 The Marcinkiewicz interpolation theorem, Theorem 9.1]. ]

We consider the Fourier transformation of the fractal measure. Let f € L'(R, du) and
let fu(€), £ € R, be defined by
§ = [ f@e ).

Lemma 4.2.2. Suppose u be a finite measure. Then

/R Fa(e) e de < oo,

for any f € L*(R,du) and t > 0.
Proof. Let f € L*(R,du). We see that

[iim@ieae < [ [1r@intne i < o

This implies that L'(R, du) > f = fu e LY(R, et d¢) is bounded. Since p is a finite

measure, L*°(R,du) > f — Fue L®(R,e % d¢) is bounded. We have our assertion by
the Riesz interpolation theorem. O
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Definition 4.2.3. Let o € (0,1). We say that a measure p is uniformly a-Hélder con-
tinuous, if there exists Cy > 0 such that p(I) < CLL(I)* for any interval I C R with
L(I) < 1.

Lemma 4.2.4. Let u be a uniformly a-Holder continuous and finite measure. Then there
exists Cy = 02(a @) > 0 such that for any f € L*(R,du),

sup 2 /\fﬂ )|? et d¢ < Cs| fI[2..

0<t<1

Proof. Let f € L*(R,du). We see that

05 [P as = ¢ [ ) [ tin @) [ e
= w8 [ plae) [ ptan) @

= wt % [ o) [ ) )7 /| mw Ll

< w3 [ ol [Tag et [ o)

< /d:clf |/ dra % (B, () My f ().

Since p is uniformly a-Holder continuous and finite, there exists 5§ = 5%(04, w) > 0 such
that for any ¢ € (0, 1],

e} & r 7‘2 [e% o0 r 'r2 =~ [e% 1 7,,1-‘1—04 r2
t‘?/ drz e wu(B.(r)) < wpwR)E 2 / drz e +Cit 2 / dr ; e
0 1 0

QLL(IR)iE_%e_i +22+a6'1/ st ds
0

IN

< C.

Let Cy = Wéé > (0. By Schwarz inequality, we see that for any ¢ € (0, 1),

tlza/ Fr(&)Pede < 52/M(dw) |[F@)|Myuf () < Dol fll 2l My f1| 2
R R

By Lemma 4.2.1, we have our assertion. ]

Lemma 4.2.5. Let pi be a uniformly a-Holder continuous and finite measure. Then there
exists Cy = Cs(cv, 1) > 0 such tha for any f € L2(R, dp),

T e~ ~
sup T / Fae)2de < G £

T>1

26



Proof. Let t € (0,1) and T' = ¢t~2. By Lemma 4.2.4, we see that for any 7 > 1,

~ —~ 2 T —~
Co f|* > T / Fu()Pe g > et / Fr(6)|de.

This implies our assertion. O
Lemma 4.2.6. Let i be a uniformly a-Hoélder continuous and finite measure. Then there

exists Cy = 6’4(oz, @) > 0 such that for any f € L*(R,dpu),

sup Ta—l/ e~ T\ fu(t)2dt < Cul f|I>.
0

T>1

Proof. Let f € L?*(R,du). Then, by Lemma 4.2.5, we see that for any 7' > 1,

00 . - T(N+1) .~
Ta_I/ e T|fut)’dt = lim TO‘_1/ e~ T | fu(t)|?dt
0 N—o0 0
N T(n+1) L
_ : a—1 —-£ 2
= lim T ;/Tn e | fult)dt
oo T(n+1)
= Sy Ty [ FaoPar
n=0 Tn
< GllfIPY (n+ 1) e
n=0
This implies our assertion. [

4.3 Quadratic forms

In this section we give some lemmas about quadratic form theory which is used in Seciotin
4. Let ‘H ba a complex Hilbert space. Let s : H x H — C be a closed sesquilinear form,
and T : H — H be a closed linear operator. We say that s is symmetric, if s(f, g) = s(g, f)
for f,g € D(s), and that s is sectorial, if there exist r € R and 6 € (-7, §) such that for
f € D(s) with [|f[| = 1,

arg(s[f] —r) <0,
where s[f] = s(f, f). We say that T is sectorial, if there exist »r € R and 6 € (=73, §) such
that for f € D(s) with || f]| =1,
arg((fv Tf) - T) < 9,

and that T is m-accretive, if Re(f,Tf) > 0 for f € D(T) and (T + A)~! is bounded and
(T + N7 < (ReX)™! for A € C with ReA > 0. In particular, T is said to be quasi
m-accretive, if there exists v € R such that T' + v is m-accretive, and T is said to be
m-sectorial, if T' s quasi m-accretive and sectorial.
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Lemma 4.3.1. Let s : H x H — C be a densely defined, closed, and sectorial sesquilinear
form. Then there exist a unique m-sectorial operator S : H — H such that for f €
D(s),g € D(5),

s(f,9) = (f,59).

Proof. [18, VI, §2, Theorem 2.1]

Lemma 4.3.2. Let t : H x H — C be a densely defined, closed, and symmetric form
bounded from below, and let T be the self-adjoint operator associated with t. Suppose that
s:H xXH — C is a relatively bounded sesquilinear form with respect to t such that for any
f €D(t) C D(s),

s[f]] < at[f] +0|f]?, O<a<l, b>0.

Then t = s + t is sectorial and closed. Let T' be the m-sectorial operators associated with
t. If0<y<1,z€p(T) and

2l|(aT + (T — )} <4 < 1,
then z € p(T") and

4y
(1—7)?
Proof. [18, VI, §3, Theorem 3.9] O

(T =27 = (T =27 < (T = 2)7"].

4.4 Negative eigenvalue and singular continuous spec-
trum

By [22], we see that 0,.(Hy) = 0 and 0,,(Hp) N (0,00) = (. In this section, we prove that
Hy has a single negative eigenvalue for some 6 and that o,.(Hy) = [0,00) for all . Let V'
ba a sparse potential with z,, = exp(n") for n = 1,2, ..., and

V() e, iflz—a,| <gforn=1,2 .,
€T) =
0, otherwise.

By [22] and [23], we see that 0,,(Hy) N (0,00) = 0 and o4.(Hy) = 0 for all 6.
Lemma 4.4.1. Let Ey be the spectral resolution of Hy. For all §, dim R[E((—00,0))] < 1.

Proof. We prove this by a contradiction. Suppose that dim R[Es((—00,0))] > 1. Then
we can take p,1 € FEy((—00,0)) such that ¢ and 1 are orthogonal to each other. Let
¢n = Ep((—n, —2))¢ and ¢, = Ey((—n, —1))p. We see that ¢, 1, € D(Hy), p, — ¢ and
U, — . Let N > 1 be sufficiently large such that ¢y and ¢y are linearly independent.
Since agpy + By € R[Ey((—N, —=))] for o, B € C, we have, for («, 8) # (0,0),

(apw + Biow, Ho(cspiw + Bipw)) < 0. (4.1)
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On the other hand, since the deficiency indices of H are equal to one, there exists an
ismometric operator Uy : ker(H* — i) — ker(H* 4 i) and w € ker(H* — i) such that

D(Hg) = {v+ a(w + Upw)|v € D(H),a € C},

where H is the closure of H. Let ug = w + Upw. There exist v1,v, € D(H) and aq,ay € C
such that

PN = U1+ aqug,

YN = U2+ aouy.

If ay = 0, then (¢n, Hyon) = (vi, Hvy) > 0. (4.1) implies a; # 0. Similarly we have
as # 0. We obtain

(a2pn + a1y, Ho(ozpn + arhn)) = (a2v1 + aqvs, H(aour + aqvz)) 2 0.
This contradicts with (4.1). Thus we have our assertion. O

Let £ < 0. We see that dimker(H*— F) = 1. This implies that there exists a boundary
condition §(F) such that Hyg) has a single negative eigenvalue F.

Lemma 4.4.2. For all 0 € (=5, %], it follows that o,.(Hg) = [0,00).

Proof. Since 0,,(Hp) N (0,00) = 0 and o,.(Hy) = 0 for all 0, we see that o(Hy) N (0,00) =
ose(Hp) N (0,00). We prove (0,00) C o(Hy) for all # by contradition. Suppose that there
exist § € [0,7), E > 0 such that £ € (0,00) \ 0(Hp). Since H is regular at zero and
limit-circle case at infinity, the deficiency indices dimker(H* + i) are equal to one. Thus
dimker(H* — E) = 1. This implies that there exists an L*-solution of —;;—ZQf +Vf=Ef.
By [22, Theorem 2.3.], however, —j—;f + V f = pf has no solutions with f € L?([0,00))
for any p > 0. This is a contradiction and we get (0,00) C o4.(Hy) for all §. Since
0se(Hp) N (—00,0) = 0, we get our assertion. O
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