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Chapter 1

Introduction

Schrödinger operators have been studied so far in the spectral analysis of mathematics.
In 1932 John von Neumann [27] constructed the mathematical foundation of quantum
mechanics. In quantum mechanics, an observable is expressed by a self-adjoint operator
on a Hilbert space and the spectrum of the self-adjoint operator corresponds to the observed
value of the observable.

In this thesis, we consider a graph Laplacian Hd on a sparse tree and continuous
Schrödinger operators Hc on L2([0,∞)) of the form Hcf = −∆f + V f , where ∆ is the
one-dimensional Laplacian, V a multiplication operator. One of the important problems
concerning Schrödinger operators is to prove their self-adjointness. In 1951, Toshio Kato
[17] proved the self-adjointness of Schrödinger operators with Coulomb type potentials.
Since his work, the self-adjointness of several types of Schrödinger operators has been
proven. Once we prove the self-adjointness of a Schrödinger operator, we can consider its
spectral properties.

We study the singular continuous spectrum of Schrödinger operators. For a self-adjoint
operator T acting in a Hilbert space H, there exists the spectral resolution E associated
with T . Let φ ∈ H and φ ̸= 0. Then we have the probability measure µφ : B1 → [0, 1]
defined by

µφ(B) =
(φ,E(B)φ)

∥φ∥2
,

where B1 is the Borel σ-field of R and (·, ·) denotes the inner product on H. The closed
subspaces Hac,Hsc and Hpp of H are defined by

Hac = {φ ∈ H | µφ is absolutely continuous with respect to the Lebeasgue measure on R},
Hsc = {φ ∈ H | µφ is singular continuous with respect to the Lebeasgue measure on R},
Hpp = {φ ∈ H | µφ is a pure point measure}.
Then H can be decomposed as H = Hac ⊕ Hsc ⊕ Hpp and H is reduced by the closed
subspaces Hac,Hsc and Hpp. Thus we can define σac(T ), σsc(T ) and σpp(T ) by

σac(T ) = σ(T |Hac),
σsc(T ) = σ(T |Hsc),
σpp(T ) = σ(T |Hpp).
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It follows that σ(T ) = σac(T ) ∪ σsc(T ) ∪ σpp(T ). We call σac(T ) (resp. σsc(T ) and σpp(T ))
the absolutely continuous spectrum (resp. the singular continuous spectrum and the pure
point spectrum) of T . We consider which Schrödinger operators have singular continuous
spectrum and we investigate the spectral properties of such Schrödinger operators.

It is known that certain random Schrödinger operators have singular continuous spec-
trum; the critical almost Mathieu operator [14]. Simon and Stoltz [22] show that both
continuous and discrete Schrödinger operators with sparse potentials have singular con-
tinuous spectrum. In this thesis, we consider both continuous and discrete Schrödinger
operators with sparse potentials.

In Chapter 2, we consider a graph Laplacian Hd on a Γ-sparse tree, Γ ∈ (0, 1). Our aim
is to estimate the Hausdorff dimension of the spectral resolution for Hd. The Hausdorff
dimension is defined for both a set and a measure. Let A ⊂ R, and the diameter d(A) of
A is defined by

d(A) = sup{|x− y| | x, y ∈ A}.

Let δ > 0. A family {Ai}∞i=1 of subsets of R is called a δ-cover of A, if A ⊂
⋃∞
i=1Ai and

supi∈N d(Ai) ≤ δ. For α ∈ [0,∞), hαδ , h
α : 2R → [0,∞] are defined by

hαδ (A) = inf

{
∞∑
i=1

d(Ai)
α | {Ai}∞i=1is a δ-cover of A

}
,

hα(A) = lim
δ→0

hαδ (A).

We call hα the α-dimensional Hausdorff measure on R. Actually, the restriction of hα to
B1 is a measure on R. For A ⊂ R, dimA is defined by

dimA = sup {α | hα(A) ̸= 0} .

This is called the Hausdorff dimension of A. It follows that if 0 ≤ α < dimA, then
hα(A) = ∞, and that if dimA < α, then hα(A) = 0. Then Hausdorff dimension is also
defined for measures on R. Let µ : B1 → [0,∞] be a measure. We define the lower
Hausdorff dimension dim∗µ and the upper Hausdorff dimension dim∗µ of µ by

dim∗µ = inf {dimA | A ∈ B1 such that µ(A) ̸= 0} ,
dim∗µ = inf {dimA | A ∈ B1 such that µ(R \ A) = 0} .

If α = dim∗µ = dim∗µ, then µ is said to have the exact α-Hausdorff dimension.
The Hausdorff dimension of the spectral resolution for Hd can be estimated in terms

of the so-called intermittency functions. We see that Hd can be identified with the direct
sum

⊕∞
k=1H

(k) of Jacobi matrices H(k). Let H be a Jacobi matrix acting in l2(Z) and
ψ ∈ l2(Z) with ∥ψ∥ = 1. For t ∈ R and n ∈ Z, let

ψ(t) =e−itHψ,

ψ(t, n) =(δn, ψ(t)),
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where (·, ·) denotes the inner product on l2(Z) and δn : Z → C is defined by

δn(m) =

{
1, n = m,

0, n ≠ m.

We define the time-averaging probability measure aψ(n, T ) and the time-averaging mo-
mentum ⟨|X|p⟩ψ(T ) for ψ ∈ l2(Z), n ∈ Z, T > 0, and p > 0, by

aψ(n, T ) =
1

T

∫ ∞

0

e−
t
T |ψ(t, n)|2dt,

⟨|X|p⟩ψ(T ) =
∑
n∈Z

|n|paψ(n, T ).

Let

βψ(p) =
1

p
lim inf
T→∞

log⟨|X|p⟩ψ(T )
logT

.

We call βψ an intermittency function of ψ. Let α = dim∗ µψ. Barbaroux, Combes, and
Montcho [3, Theorem 3.1] show that for ϵ > 0, there exists C = Cϵ,ψ > 0 such that for any
T, p > 0 ,

⟨|X|p⟩ψ(T ) ≥ CT p(α−ϵ).

This inequality implies that the intermittency function gives an upper bound of α:

βψ(p) ≥ α.

Breuer [5] shows that

σac(Hd) = ∅,
σpp(Hd) ∩ (0, 4) = ∅,
σsc(Hd) ∩ (0, 4) = (0, 4).

Let E be the spectral resolution of Hd and Ẽ be the restriction of E to the interval (0, 4).
Let

dim∗Ẽ = inf
{
dimA | A ∈ B1 such that Ẽ(A) ̸= P{0}

}
,

dim∗Ẽ = inf
{
dimA | A ∈ B1 such that Ẽ(R \ A) = P{0}

}
,

where P{0} denotes the projection of the subspace {0}.
We show the exact Hasudorff dimension of Ẽ. Breuer [5] shows that

Γ ≤ dim∗Ẽ ≤ dim∗Ẽ ≤ 2Γ

1 + Γ
.

We can identify Hd with Jacobi matrices. Under this identification, we can consider an
intermittency function of a Jacobi matrix. In order to show the intermittency function
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exactly, we estimate the operator kernel by Hellfer-Sjöstrand formula. Then we can show
that

Γ ≤ dim∗Ẽ ≤ dim∗Ẽ ≤ Γ.

and we can conclude that Ẽ has the exact Γ-Hausdorff dimension.
In Chapter 3, we consider a one-dimensional continuous Schrödiner operator Hc with

a sparse potential. Since Hc is regular at zero and in the limit point case at infinity,
Hc has self-adjoint extensions Hθ which is parametrized by θ. We prove the absence
of embedded eigenvalues in the singular continuous spectrum for any θ. The singular
continuous spectrum for a Schrödinger operator with a sparse potential is an interval for
many cases [5] [15] [22]. There are, however, few assertions about the complement of the
singular continuous spectrum. We focus on the edge of the singular continuous spectrum
and give a sufficient condition that the edge of the singular continuous spectrum is not
an eigenvalue. Hence, we can conclude that Hθ has no embedded eigenvalues for any θ.
Moreover, Hθ has purely singular continuous spectrum for θ ∈ [0, π

2
].
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Chapter 2

Exact Hausdorff dimension of the
spectral resolution for the graph
Laplacian on a sparse tree

2.1 Introduction and results

2.1.1 Introduction

We study the graph Laplacian on a sparse tree and its Hausdorff dimension. The Hausdorff
dimension is defined for sets or measures. We estimate the Hausdorff dimension of the
spectral resolution for the graph Laplacian on a sparse tree. Note that the Hausdorff
dimension of a measure and that of the support of the measure are different from each
other in general. If the spectra are purely point spectra, then the Hausdorff dimension
of the spectral resolution is zero. If the spectrum is purely absolutely continuous, then
the Hausdorff dimension of the spectral resolution is one. In this chapter, we show the
Hausdorff dimension of a sparse tree exactly.

This chapter is organized as follows: In the rest of Section 2.1, we give the main
result. In Section 2.2, we give a decomposition of the graph Laplacian. From this, we can
identify the graph Laplacian with one-dimensional discrete Schrödinger operators with a
sparse potential. In the Section 2.3, we prove that the intermittency function gives the
upper bound of the upper Hausdorff dimension. In Section 2.4, we prepare to estimate
the intermittency function. Here, we estimate the operator kernel, by using a quadratic
form theory and Helffer-Sjöstrand formula. In Section 2.5, we estimate the intermittency
function and prove the main theorem.

We define a sparse tree. We say that G = (V,E) is a graph, if V is a countable set
and E ⊂ {e ∈ 2V | #e = 2}. An element of V (resp. E) is called the vertex (resp. the
edge). Vertices a, b ∈ V are said to be adjacent, if {a, b} ∈ E. We denote by a ∼ b,
if a, b ∈ V are adjacent. Note that this definition implies that there are no egdes which
are adjacent to itself. Vertices a, b ∈ V are said to be linked, if there exist ai ∈ V ,
i = 1, 2, ..., n− 1 such that ai /∈ {a, b}, a ∼ a1, ai ∼ ai+1, i = 1, 2, ..., n− 2, and an−1 ∼ b.
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Here {a, a1, ..., an−1, b} ∈ 2V is called a path from a to b. Let the degree deg(a) of the
vertex a be defined by deg(a) = #{b ∈ V | a ∼ b}. A graph is said to be locally finite,
if deg(a) < ∞ for any vertex a ∈ V . A graph G is said to be connected if any vertices
a, b ∈ V are linked. We say that a graph G = (V,E) is a tree, if G is connected and for
any vertices a, b ∈ V , there exists a unique path from a to b. We fix a vertex o of the tree
G, and o is called the root of G. A tree G with a fixed root o is called a rooted tree. Let
p(a, b) ∈ 2V be the unique path from the vertex a to the vertex b. The metric d(·, ·) on V
is defined by

d(a, b) =

{
0, a = b,

#p(a, b)− 1, a ̸= b.

Let G be a rooted tree with a root o, and let Sn = {a ∈ V | d(o, a) = n} for n = 0, 1, ....
We say that a rooted tree G = (V,E) is a spherically homogeneous tree if any vertices in
Sn have the same degree dn. A locally finite spherically homogeneous tree G is uniquely
determined by the sequence (gn)

∞
n=0,

gn =

{
d0, n = 0,

dn − 1, n ≥ 1.

Definition 2.1.1. Let Ln = 2n
n
, n = 1, 2, ..., and Γ ∈ (0, 1). We say that a locally finite

spherically homogeneous tree G = (V,E) is a Γ- sparse tree, if for any n ≥ 0,

gn =

{
[n

1−Γ
Γ ], n ∈ {Lm | m ∈ N},

1, n /∈ {Lm | m ∈ N}.

We define the graph Laplacian for the locally finite graph. Let G = (V,E) be a locally
finite graph. Let l2(V ) be the set of square summable functions on V , and this is the
Hilbert space with the inner product given by

(f, g) =
∑
u∈V

f(u)g(u).

Let D ⊂ l2(V ) be defined by D = {f : V → C | #supp(f) <∞}. Let L, A, and D be
operators with its domain D , and defined by

Lf(u) =
∑
v∼u

(f(u)− f(v)),

Af(u) =
∑
v∼u

f(v),

Df(u) =
∑
v∼u

f(u) = deg(u)f(u).

These are called graph Laplacian, adjacency matrix, and degree matrix, respectively. The
graph Laplacian L is essentially self-adjoint, if the graph is connected [16, Threom3.1].
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Let (X, dX) be a metric space, and B(X) be the Borel σ-field of (X, dX). Let A be a
subset of X and the diameter dX(A) of A be defined by dX(A) = sup{dX(x, y) | x, y ∈ A}.
Let δ > 0 and a family {Ai}∞i=1 of subsets of X is called a δ-cover of A, if A ⊂

⋃∞
i=1Ai and

sup1≤i<∞ dX(Ai) ≤ δ.

Definition 2.1.2. Let α ∈ [0,∞) and δ > 0. Let hαδ , h
α : 2X → [0,∞] be defined by

hαδ (A) = inf

{
∞∑
i=1

dX(Ai)
α | {Ai}∞i=1is a δ-cover of A

}
,

hα(A) = lim
δ→0

hαδ (A).

We call hα the α-dimensional Hausdorff measure of X. Let dimA be defined for A ⊂ X by

dimA = sup {α | hα(A) ̸= 0} .

This is called the Hausdorff dimension of A. Let µ : B(X) → [0,∞] be a measure, and let
the lower Hausdorff dimension dim∗µ and the upper Hausdorff dimension dim∗µ of µ be
defined by

dim∗µ = inf {dimA | A ∈ B(X) such that µ(A) ̸= 0} ,
dim∗µ = inf {dimA | A ∈ B(X) such that µ(R \ A) = 0} .

If α = dim∗µ = dim∗µ, then µ is said to have the exact α-Hausdorff dimension.
Let L be the graph Laplacian of the Γ-sparse tree. The following lemma is proved by

Breuer [5].

Lemma 2.1.3. Let Hd = L, and let E be the spectral resolution of Hd and Ẽ be the
restriction of E to the interval (0, 4), where L is the clousre of L. Then it follows that

(1) σac(Hd) = ∅, σpp(Hd) ∩ (0, 4) = ∅, σsc(Hd) ∩ (0, 4) = (0, 4),

(2) Γ ≤ dim∗Ẽ ≤ dim∗Ẽ ≤ 2Γ
1+Γ

.

We obtain the main theorem below.

Theorem 2.1.4. We suppose the same assumptions as Lemma 2.1.3. Then Γ = dim∗Ẽ =
dim∗Ẽ, and Ẽ has the exact Γ-Hausdorff dimension,

This theorem implies the corollary below.

Corollary 2.1.5. For any Γ ∈ (0, 1), the restriction of the spectral resolution for the graph
Laplacian on the Γ-sparse tree to the interval (0, 4) has the exact Γ-Hausdorff dimension.
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2.1.2 Preceding results

The spectral analysis of a sparse tree bears some similarities to the theory of one-dimensional
discrete Schrödinger operators with a sparse potential. In Simon-Stolz [22], Schrödinger
operators with a sparse potential have singular continuous spectrum. Gilbert-Pearson [13]
finds a relationship between the behavior of subordinate solutions and the spectrum of
one-dimensional Schrödinger operators. Jitomirskaya and Last [15] show a relationship
between the Hausdorff dimension of the spectral measure and the behavior of subordinate
and non-subordinate solutions. Moreover, they estimate the Hausdorff dimension of the
spectral measure by calculating the L-norm of non-subordinate solutions. This subordinate
solution method is also used in [5].

On the other hand, the relationship between the type of spectra and the time-averaged
behavior of Schrödinger operators is also studied. RAGE theorem implies that if the initial
state is singular continuous, then the time-averaged evolution goes to infinity. Barbaroux,
Combes and Montcho [3] give a lower bound of the time-averaged momentum of one-
dimensional discrete Schrödinger operators, by using the upper Hausdorff dimension. This
also shows an inequality between the upper Hausdorff dimension and an intermittency
function. It is, however, crucial to estimate the intermittency function exactly. Tcherem-
chantsev [25] gives the intermittency function explicitly in the case of sparse potentials.
We will apply [25] to the graph Laplacian on a sparse tree.

2.2 Preliminaries

Threre are some decomposition methods for Schrödinger operators on some trees. These
methods stem from Naimark and Solomyak [20]. Breuer [6], Kostenko, and Nicolussi
[2] developped this method recently. They study the case of the continuum Kirchhoff
Laplacian. Allard, Froese [1] and Breuer [5] study the case of the graph Laplacian. We
introduce their results as Lemma 2.2.1. Their results imply that the graph Laplacian on the
spherically homogeneous tree is identified with the direct sum of Jacobi matrices. Hence,
it is sufficient to study Jacobi matrices instead of the graph Laplacian.

Let G = (V,E) be a Γ-sparse tree determined by the sequence {gn}∞n=0 and Hd = L,
where L is the closure of the graph Laplacian L on G. Let αn = #Sn for n = 0, 1, ... and
α−1 = 0. Since {αn}∞n=0 is non-decreasing, there exists a unique N(k) ∈ N ∪ {0} such
that αN(k)−1 < k ≤ αN(k) for every k ∈ N. Let k, n ∈ N and let dk = (dk(n))

∞
n=1 and

ak = (ak(n))
∞
n=1 be defined by the following: in the case of k = 1,

d1(n) =

{
g0 (n = 1),

gn−1 + 1 (n ≥ 2),
,

a1(n) =
√
gn−1.

In the case of k ≥ 2,

dk(n) = gn+N(k)−1 + 1,

ak(n) =
√
gn+N(k)−1.
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By calculatig straightfowardly, we see that for any k, n ∈ N

dk(n) = ak(n)
2 + 1− δ1(k)δ1(n), (2.1)

where δj(k) =

{
1 (k = j),

0 (k ̸= j).
Let Jacobi matrices H(k), A(k), D(k) : l2(N) → l2(N) be defined

by

H(k) =



dk(1) −ak(1)

−ak(1) dk(2) −ak(2)

−ak(2) dk(3) −ak(3)

−ak(3)
. . . . . .

. . .


,

A(k) =



0 ak(1)

ak(1) 0 ak(2)

ak(2) 0 ak(3)

ak(3)
. . . . . .

. . .


, D(k) =



dk(1)

dk(2)

dk(3)

. . .


.

Note thatH(k) = D(k)−A(k). The next lemma shows the decomposition of graph Laplacian.

Lemma 2.2.1. Hd and
∞⊕
k=1

H(k) are unitarly equivalent.

Proof. See Appendix 4.1.

2.3 Intermittency function and Hausdorff dimension

In this section, we introduce an intermittency function and give an important inequality in
Lemma 2.3.2 which shows that the intermittency function is the upper bound of Hausdorff
dimension.

Let ψ ∈ l2(N) and E(k) be the spectral resolution of H(k). We consider the time-

averaged dynamics of exp(−itH(k))ψ. Let a finite measure µ
(k)
ψ : B1 → [0,∞] be defined

by

µ
(k)
ψ (A) = (ψ,E(k)(A)ψ).
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Definition 2.3.1. Let ψk(t) = e−itH
(k)
ψ and ψk(t, n) = (δn, ψk(t)) for t ∈ R and n ∈ N.

Let a
(k)
ψ (n, T ), ⟨|X|p⟩(k)ψ (T ), and β

(k)
ψ (p) be defined by, for T > 0 and p > 0,

a
(k)
ψ (n, T ) =

1

T

∫ ∞

0

e−
t
T |ψk(t, n)|2dt,

⟨|X|p⟩(k)ψ (T ) =
∞∑
n=1

npa
(k)
ψ (n, T ),

β
(k)
ψ (p) =

1

p
lim inf
T→∞

log⟨|X|p⟩(k)ψ (T )

logT
.

We call β
(k)
ψ the intermittency function. The closed subspace Hψ of l2(N) is defined by

Hψ = {p(H(k))ψ ∈ l2(N) | p is a polynomial},

and let Uψ : Hψ → L2(R, dµ(k)
ψ ) be defined by

Uψ(p(H
(k))ψ)(x) = p(x).

Lemma 2.3.2. Let α = dim∗(µ
(k)
ψ ) and ϵ > 0. Then there exists C1 = C1(ϵ, ψ) > 0 such

that for any T, p > 0,
⟨|X|p⟩(k)ψ (T ) ≥ C1T

p(α−ϵ).

In particular, for any p > 0,
dim∗(µ

(k)
ψ ) ≤ β

(k)
ψ (p).

Proof. We denote µ
(k)
ψ , a

(k)
ψ , ⟨|X|p⟩(k)ψ , and ψk(t, n) by µψ, aψ, ⟨|X|p⟩ψ, and ψ(t, n) for

simplicity of notation. Let ϵ > 0 and γ : R → R be the local Hausdorff dimension of µψ:

γ(x) = lim inf
δ→0

log(µψ([x− δ, x+ δ]))

logδ
.

By [11, Chapter 10, Proposition 10.1], we see that µ- ess sup
x

γ(x) = dim∗µψ = α. Thus

there exists Sϵ ∈ B1 such that µψ(Sϵ) > 0 and γ(x) > α − ϵ for x ∈ Sϵ. Let γδ(x) =

inf
δ′<δ

logµψ([x− δ′, x+ δ′])

logδ′
. By Egorov’s theorem, there exists S ′

ϵ ⊂ Sϵ such that µψ(S
′
ϵ) > 0

and γδ converges uniformly to γ on S ′
ϵ. Let ψ

′ = E(S ′
ϵ)ψ. We see that ∥ψ′∥2 = µψ(S

′
ϵ) > 0

and µψ′ is uniformly (α− ϵ)-Hölder continuous. Let χ = ψ − ψ′. Then we see that

N∑
n=1

aψ(n, T )

=
1

T

∫
R
e−

t
T

N∑
n=1

|ψ′(t, n) + χ(t, n)|2dt

≤
N∑
n=1

1

T

∫
R
e−

t
T |ψ′(t, n)|2dt+ 2

(
N∑
n=1

1

T

∫
R
e−

t
T |ψ′(t, n)|2dt

) 1
2

∥χ∥+ ∥χ∥2. (2.2)
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We assume that c > 0 and N ∈ N satisfy(
N−1∑
n=1

1

T

∫
R
e−

t
T |ψ′(t, n)|2dt

) 1
2

≤ c∥ψ′∥. (2.3)

By (2.2) and (2.3), we see that

N−1∑
n=1

aψ(n, T ) ≤ (c∥ψ′∥+ ∥χ∥)2 .

Taking c = − ∥χ∥
∥ψ′∥ +

√(
∥χ∥
∥ψ′∥

)2
+

1

2
, we have

N−1∑
n=1

aψ(n, T ) ≤
1

2
∥ψ′∥2 + ∥χ∥2. (2.4)

On the other hand, let C ′
1 = − ∥χ∥

∥ψ′∥ +

√(
∥χ∥
∥ψ′∥

)2
+

1

2
and

N(T ) = max

N ∈ N |

(
N−1∑
n=1

1

T

∫
R
e−

t
T |ψ′(t, n)|2dt

) 1
2

≤ C ′
1∥ψ′∥

 . (2.5)

Then (2.3) holds for c = C ′
1 and N = N(T ). By (2.4), we have

∞∑
n=N(T )

aψ(n, T ) ≥
1

2
∥ψ′∥2. (2.6)

Note that µψ′ is uniformly (α− ϵ)-Hölder continuous. Hence, by Lemma 4.2.6, there exists

C̃ = C̃(α− ϵ, µψ′) > 0 such that for any T > 0,

N∑
n=1

1

T

∫
R
e−

t
T |ψ′(t, n)|2dt =

N∑
n=1

1

T

∫ ∞

0

e−
t
T | ̂Uψ′δnµψ′|2dt ≤ C̃NT−(α−ϵ). (2.7)

By (2.5) and (2.7), we have

N(T ) ≥ (C ′
1∥ψ′∥)2

C̃
Tα−ϵ. (2.8)

(2.6) and (2.8) show that there exists C1 = C1(ϵ, ψ) > 0 such that for any T > 0,

⟨|X|p⟩ψ(T ) ≥
∞∑

n=N(T )

npaψ(n, T ) ≥
1

2
∥ψ′∥2N(T )p ≥ C1T

p(α−ϵ).

Moreover, we see that for ϵ > 0 and T ′ > 1,

1

p
inf
T>T ′

log⟨|X|p⟩ψ(T )
logT

≥ α− ϵ+
1

p
inf
T>T ′

logC1

logT
= α− ϵ.

This implies our assertion.
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2.4 Estimates of operator kernel

In this section we prepare some lemmas to estimate the intermittency function. We esti-
mate the operator kernel in Lemma 2.4.3 and 2.4.4 by using a quadratic form theory and
Hellfer-Sjöstrand formula.

We denote H(k), ak(n), and dk(n) by H, a(n), and d(n), respectively for simplicity
of notation. Let β > 0 and let D = {f : N → C | #supp(f) < ∞}. Let P , ∆, and
Mβ : l2(N) → l2(N) with its domain D be defined by

Pf(n) = a(n)f(n+ 1),

∆f = (P − I)f,

Mβf(n) = βnf(n),

and let Tβ =M−1
β TMβ for an operator T : l2(N) → l2(N).

Lemma 2.4.1. Let f ∈ D . It follows that

(1) P ∗f(n) =

{
0 (n = 1),

a(n− 1)f(n− 1) (n ≥ 2),

(2) H(k)f =

{
(∆∆∗ − δ1)f (k = 1),

∆∆∗f (k ≥ 2),

(3) ∆βf = (βP − I)f ,

(4) (∆∗)βf = (β−1P ∗ − I)f .

Proof. Let f, g ∈ D . Then we see that

(Pg, f) =
∞∑
n=1

a(n)g(n+ 1)f(n) =
∞∑
n=2

g(n)a(n− 1)f(n− 1).

This implies (1). We see that

∆∆∗f(n) = a(n)∆∗f(n+ 1)−∆∗f(n)

=

{
a(1)(a(1)f(1)− f(2)) + f(1) (n = 1)

a(n)(a(n)f(n)− f(n+ 1))− a(n− 1)f(n− 1) + f(n) (n ≥ 2)

=

{
−a(1)f(2) + {a(1)2 + 1}f(1) (n = 1)

−a(n)f(n+ 1) + {a(n)2 + 1}f(n)− a(n− 1)f(n− 1) (n ≥ 2).
(2.9)

(2) follows from (2.9) and (2.1). We can prove (3) and (4) straightforwardly.

Let β > 0 and the sesquilinear form hβ : l2(N) × l2(N) → C with its domain D be
defined by

hβ(f, g) = ((∆β)
∗f, (∆∗)βg) = (f,Hβ g).

14



Lemma 2.4.2. For any t > 0 and f ∈ D ,

|hβ[f ]− h1[f ]| ≤ C(β)
t

2
h1[f ] + C(β)(1 +

1

2t
)∥f∥2, (2.10)

where C(β) = |β − 1|+ |β−1 − 1| = |β − β−1|.

Proof. Let t > 0 and f ∈ D . Then we see that

|hβ[f ]− h1[f ]| = |((βP ∗ − I)f, (β−1P ∗ − I)f)− ((P − I)f, (P ∗ − I)f)|
≤ |β − 1||(f, Pf)|+ |β−1 − 1||(f, P ∗f)|
≤ |β − 1|{(∆∗f, f) + (f, f)}+ |β−1 − 1|{(f,∆∗f) + (f, f)}
≤ C(β)∥f∥∥∆∗f∥+ C(β)∥f∥2

≤ C(β)

(
t

2
∥∆∗f∥2 +

1

2t
∥f∥2 + ∥f∥2

)
.

Lemma 2.4.3. Let z ∈ C+ := {z ∈ C | Imz > 0}. Let 0 < γ < 1, and let ηz, mz, and αz
be

ηz = dist(z, σ(H)),

mz =
ηz√

ηz + |z|+ 1
,

αz(γ) =
1

4
(γmz +

√
(γmz)2 + 16).

Then for any i, j ∈ N,

|(δi, (H − z)−1δj)| ≤ αz(γ)
−|i−j| 1

ηz

(
1 + γ

1− γ

)2

.

Proof. It follows from ∥(H − z)−1∥ = η−1
z that for any t > 0

2

∥∥∥∥∥C(β)
(
t

2
H + 1 +

1

2t

)
(H − z)−1

∥∥∥∥∥ ≤ C(β)

{(
1 +

|z|
ηz

)
t+

(
2 +

1

t

)
1

ηz

}
. (2.11)

Let γ ∈ (0, 1) and

tz =
1√

ηz + |z|
,

βz =
1

4
(γmz +

√
(γmz)2 + 16) > 1.
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By the inequality of arithmetic and geometric means, we see that for any z ∈ C+,

C(βz)

{(
1 +

|z|
ηz

)
tz +

(
2 +

1

tz

)
1

ηz

}
= C(βz)

{(
1 +

|z|
ηz

)
tz +

1

ηz

1

tz
+

2

ηz

}

= 2

√
ηz + |z|+ 1

ηz
C(βz)

=
2

mz

(
βz −

1

βz

)
= γ. (2.12)

(2.11) and (2.12) imply that for any z ∈ C+,

2

∥∥∥∥∥C(βz)
(
tz

2
H + 1 +

1

2tz

)
(H − z)−1

∥∥∥∥∥ ≤ γ (2.13)

By (2.10), (2.13) and Lemma 4.3.2, there exists the m-sectorial operator Hβz associated
with hβz and for any z ∈ C+,

∥(Hβz − z)−1 − (H − z)−1∥ ≤
4γ

(1− γ)2
∥(H − z)−1∥.

Therefore we see that

∥(Hβz − z)−1∥ ≤
1

ηz

(
1 + γ

1− γ

)2

.

Let i, j ∈ N with i < j. Then we see that

|(δi, (H − z)−1δj)| = |(Mβzδi, (Hβz − z)−1M−1
βz
δj)|

≤ βz
i−j∥(Hβ − z)−1∥

≤ βz
−|i−j| 1

ηz

(
1 + γ

1− γ

)2

. (2.14)

This implies our assertion in the case of i < j. In the case of i ≥ j, let

βz =
1

4
(−γmz +

√
(γmz)2 + 16).

Then we can prove (2.14) similarly.

Let f ∈ Cn(R), and the norm |||·|||n on Cn(R) be defined by

|||f |||n =
n∑
r=0

∫
R
|f (r)(x)|⟨x⟩r−1dx.

The next lemma is used to estimate the intermittency function.
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Lemma 2.4.4. Suppose that f ∈ C2k+3(R) and |||f |||2k+3 < ∞. Then there exists C2 =
C2(k) > 0 such that for any i, j ∈ N,

|(δi, f(H)δj)| ≤ C2|||f |||2k+3⟨i− j⟩−k,

where ⟨x⟩ = (1 + |x|2) 1
2 .

Proof. Let n ≥ 0 and τ ∈ C∞
0 (R) such that τ(x) =

{
1 (|x| ≤ 1)

0 (|x| ≥ 2)
. By Helffer-Sjöstrand

formula [8, 2.2 The Helffer-Sjöstrand formula], we see that

f(H) =
1

π

∫
C

∂f̃

∂z
(z)(H − z)−1dxdy,

f̃(z) =

{
n∑
r=0

f (r)(x)
(iy)r

r!

}
τ

(
y

⟨x⟩

)
.

We see that ∣∣∣∣∣∂f̃∂z(z)
∣∣∣∣∣ ≤

1

2

∣∣∣∣∣f (n+1)(x)
(iy)n

n!
τ

(
y

⟨x⟩

)∣∣∣∣∣
+

1

2

∣∣∣∣∣
n∑
r=0

f (r)(x)
(iy)r

r!⟨x⟩

∣∣∣∣∣
∣∣∣∣∣(1 + xy⟨x⟩−1

)
τ ′

(
y

⟨x⟩

)∣∣∣∣∣ .
Let A, B ⊂ R2 be

A =

{
(x, y) ∈ R2 |

∣∣∣∣ y⟨x⟩
∣∣∣∣ ≤ 2

}
, B =

{
(x, y) ∈ R2 | 1 ≤

∣∣∣∣ y⟨x⟩
∣∣∣∣ ≤ 2

}
.

Then we see that there exists C ′
2 = C ′

2(τ) > 0 such that∣∣∣∣∣∂f̃∂z(z)
∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣f (n+1)(x)
(iy)n

n!

∣∣∣∣∣1A(x, y) + C ′
2

∣∣∣∣∣
n∑
r=0

f (r)(x)
(iy)r

r!⟨x⟩

∣∣∣∣∣1B(x, y).
Let i, j ∈ N. Then we have

|(δi, f(H)δj)| ≤
1

2π

∫
C

∣∣∣∣∣f (n+1)(x)
(iy)n

n!

∣∣∣∣∣ |(δi, (H − z)−1δj)|1A(x, y)dxdy

+
C ′

2

π

∫
C

∣∣∣∣∣
n∑
r=0

f (r)(x)
(iy)r

r!⟨x⟩

∣∣∣∣∣ |(δi, (H − z)−1δj)|1B(x, y)dxdy. (2.15)
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Let γz =
1√

ηz + |z|+ 1
< 1 and αz = αz(γz). By Lemma 2.4.3, we see that

∫
C

∣∣∣∣∣
n∑
r=0

f (r)(x)
(iy)r

r!⟨x⟩

∣∣∣∣∣ |(δi, (H − z)−1δj)|1B(x, y)dxdy

≤
n∑
r=0

∫
C

∣∣∣∣∣f (r)(x)
(iy)r

r!⟨x⟩

∣∣∣∣∣α−|i−j|
z

1

ηz

(
1 + γz

1− γz

)2

1B(x, y)dxdy. (2.16)

We estimate the lower bound of αz. Suppose that (x, y) ∈ B, then 1 ≤ |y| ≤ ηz and
|z| ≤

√
2|y|. Therefore

γzmz =
ηz

ηz + |z|+ 1 + 2
√
ηz + |z|

≥
1

2 +
√
2 + 2

√
1 +

√
2

(2.17)

Let b =
1

2 +
√
2 + 2

√
1 +

√
2
. By the definition of αz, (2.17) implies that

αz ≥
1

4

(
b+

√
b2 + 16

)
> 1. (2.18)

Let B =
1

4

(
b+

√
b2 + 16

)
. We see that

1 + γz

1− γz
= 1 +

2√
ηz + |z|

≤ 1 +
√
2. (2.19)

By (2.16), (2.18), and (2.19), we see that∫
C

∣∣∣∣∣
n∑
r=0

f (r)(x)
(iy)r

r!⟨x⟩

∣∣∣∣∣ |(δi, (H − z)−1δj)|1B(x, y)dxdy

≤
(
1 +

√
2
)2
B−|i−j|

n∑
r=0

1

r!

∫
C
|f (r)(x)|

∣∣∣∣∣yr−1

⟨x⟩

∣∣∣∣∣1B(x, y)dxdy
≤
(
1 +

√
2
)2
B−|i−j|

n∑
r=0

2r−1

r!

∫
C
|f (r)(x)|⟨x⟩r−2

1B(x, y)dxdy

≤
(
1 +

√
2
)2
B−|i−j|

n∑
r=0

∫
R
|f (r)(x)|⟨x⟩r−1dx. (2.20)

By Lemma 2.4.3, we see that∫
C

∣∣∣∣∣f (n+1)(x)
(iy)n

n!

∣∣∣∣∣ |(δi, (H − z)−1δj)|1A(x, y)dxdy

≤
∫
C

∣∣∣∣∣f (n+1)(x)
(iy)n

n!

∣∣∣∣∣α−|i−j|
z

1

ηz

(
1 + γz

1− γz

)2

1A(x, y)dxdy. (2.21)
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Note that for any k ∈ Z≥0 and t > 0,

e−t ≤
e−kkk

tk
.

This implies that, for i, j ∈ N with i ̸= j,

α−|i−j|
z ≤

(
1 +

(γzmz

4

)2)− |i−j|
2

≤
e−k(2k)k

|i− j|k
(
log
(
1 +

(
γzmz

4

)2))k. (2.22)

Suppose that (x, y) ∈ A, then |y| ≤ 2⟨x⟩ and |z| ≤
√
5⟨x⟩. We see that

γzmz ≥
1

2

ηz

ηz + |z|+ 1
≥

1

2

|y|
|y|+ |z|+ 1

≥
3−

√
5

8

|y|
⟨x⟩

. (2.23)

(2.22) and (2.23) imply

α−|i−j|
z ≤

e−k(2k)k

|i− j|k
(
log

(
1 +

(
3−

√
5

32
|y|
⟨x⟩

)2))k. (2.24)

We see that
1 + γz

1− γz
≤ 1 +

√
2

|y|
. (2.25)

By (2.21), (2.24), and (2.25), we see that∫
C

∣∣∣∣∣f (n+1)(x)
(iy)n

n!

∣∣∣∣∣ |(δi, (H − z)−1δj)|1A(x, y)dxdy

≤
2e−k(2k)k

n!|i− j|k

∫
C

|f (n+1)(x)||y|n−1(
log

(
1 +

(
3−

√
5

32
|y|
⟨x⟩

)2))k
(
1 +

2

|y|

)
1A(x, y)dxdy

≤
8e−k(2k)k

n!|i− j|k

∫
R
dx|f (n+1)(x)|

∫ 2⟨x⟩

0

dy
|y|n−1 + |y|n−2(

log

(
1 +

(
3−

√
5

32
|y|
⟨x⟩

)2))k
≤

8e−k(2k)k

n!|i− j|k

∫
R
dx|f (n+1)(x)|⟨x⟩n

∫ 2

0

dt
tn−1 + tn−2(

log

(
1 +

(
3−

√
5

32
t
)2))k. (2.26)

If n > 2k + 1,

C ′′
2 (n) :=

∫ 2

0

dt
tn−1 + tn−2(

log

(
1 +

(
3−

√
5

32
t
)2))k <∞. (2.27)
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Let n = 2k + 2. Then (2.15), (2.20), (2.26), and (2.27) imply that there exists C2 =
C2(k) > 0 such that for any i, j ∈ N,

|(δi, f(H)δj)|

≤
C ′

2

π

(
1 +

√
2
)2
B−|i−j||||f |||2k+2 +

1

2π
C ′′

2 (2k + 2)
8e−k(2k)k

(2k + 2)!|i− j|k
|||f |||2k+3

≤ C2|||f |||2k+3⟨i− j⟩−k.

This implies our assertion.

2.5 Intermittency function and proof of the main re-

sult

In this section, we consider the distribution of a
(k)
ψ (n, T ) and estimate the lower and upper

bounds the momentum ⟨|X|p⟩(k)ψ (T ). From this, we calculate the intermittency function
exactly. Finally, we prove Theorem 2.1.4 by using the intermittency function.

2.5.1 Lower bound of intermittency function

Let k ∈ N, ψ ∈ l2(N), and T > 0. We define for S ∈ 2N,

P
(k)
ψ (S, T ) =

∑
n∈S

a
(k)
ψ (n, T ).

For M ≥ N ≥ 1, let subsets {N ∼M} and {M ∼ ∞} of N be

{N ∼M} = {n ∈ N | N ≤ n ≤M},
{M ∼ ∞} = {n ∈ N | n ≥M}.

Lemma 2.5.1. Let T > 0 and ϵ > 0. Suppose that B ∈ B1 and A := µ
(k)
ψ (B) > 0. Let

MT =
A2

16J
(k)
ψ (T−1, B)

,

J
(k)
ψ (ϵ, B) =

∫
B

µ
(k)
ψ (dx)

∫
R
µ
(k)
ψ (dy)

ϵ2

(x− y)2 + ϵ2
.

Then for any T > 0

P
(k)
ψ ( {MT ∼ ∞}, T ) ≥

A

2
> 0.
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Proof. We denote P
(k)
ψ , µ

(k)
ψ , and J

(k)
ψ by Pψ, µψ, and Jψ, respectively for simplicity of

notation. Let ρ = E(k)(B)ψ and χ = ψ − ρ. Note that ρ ̸= 0. We see that

Pψ({1 ∼M}, T ) =
M∑
n=1

1

T

∫
R
dt e−

t
T |χ(n, t) + ρ(n, t)|2

= Pχ({1 ∼M}, T ) + Pρ({1 ∼M}, T ) + 2
M∑
n=1

1

T

∫
R
dt e−

t
T Re(χ(n, t)ρ(n, t))

= Pχ({1 ∼M}, T )− Pρ({1 ∼M}, T ) + 2
M∑
n=1

1

T

∫
R
dt e−

t
T Re(ψ(n, t)ρ(n, t))

≤ Pχ({1 ∼M}, T ) + 2
M∑
n=1

1

T

∫
R
dt e−

t
T Re(ψ(n, t)ρ(n, t)). (2.28)

Since Pψ({M ∼ ∞}, T ) = ∥ψ∥2−Pψ({1,M−1}, T ) and ∥ψ∥2 = ∥ρ∥2+∥χ∥2, (2.28) implies
that

Pψ({M ∼ ∞}, T ) ≥ ∥ρ∥2 − 2|D(M − 1, T )|, (2.29)

where

D(M,T ) =
M∑
n=1

1

T

∫
R
dt e−

t
T ψ(n, t)ρ(n, t) =

M∑
n=1

1

T

∫
R
dt e−

t
T (δn, ψ(t))(ρ(t), δn).

Since Uψ : Hψ → L2(R, dµ(k)
ψ ) is unitary, by Schwarz inequality we see that

|D(M,T )|

=

∣∣∣∣∣
M∑
n=1

1

T

∫
R
dt e−

t
T

∫
R
µψ(dx)

∫
B

µψ(dy)e
−it(x−y)Uψδn(x)Uψδn(y)

∣∣∣∣∣
=

∣∣∣∣∣
∫
R
µψ(dx)

∫
B

µψ(dy)
1− iT (x− y)

1 + T 2(x− y)2

M∑
n=1

Uψδn(x)Uψδn(y)

∣∣∣∣∣
≤
∫
R
µψ(dx)

∫
B

µψ(dy)
1√

1 + T 2(x− y)2

∣∣∣∣∣
M∑
n=1

Uψδn(x)Uψδn(y)

∣∣∣∣∣
≤
∫
B

µψ(dy)

(∫
R

µψ(dx)

1 + T 2(x− y)2

) 1
2

∫
R
µψ(dx)

∣∣∣∣∣
M∑
n=1

Uψδn(x)Uψδn(y)

∣∣∣∣∣
2
 1

2

.

≤

(∫
B

µψ(dy)

∫
R

µψ(dx)

1 + T 2(x− y)2

) 1
2

∫
B

µψ(dy)

∫
R
µψ(dx)

∣∣∣∣∣
M∑
n=1

Uψδn(x)Uψδn(y)

∣∣∣∣∣
2
 1

2

.(2.30)
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Since Uψ : Hψ → L2(R, dµ(k)
ψ ) is unitary, we have

∫
R
µψ(dx)

∣∣∣∣∣
M∑
n=1

Uψδn(x)Uψδn(y)

∣∣∣∣∣
2

=

∫
R
µψ(dx)

∣∣∣∣∣Uψ
(

M∑
n=1

Uψδn(y)δn

)
(x)

∣∣∣∣∣
2

=

∥∥∥∥∥
M∑
n=1

Uψδn(y)δn

∥∥∥∥∥
2

l2(N)

=
M∑
n=1

|Uψδn(y)|2 . (2.31)

By (2.30) and (2.31), we see that

|D(M − 1, T )|2 ≤

(∫
B

µψ(dy)

∫
R

µψ(dx)

1 + T 2(x− y)2

)(
M∑
n=1

∫
B

µψ(dy) |Uψδn(y)|2
)

≤ Jψ(T
−1, B)

M∑
n=1

∥Uψδn∥2l2

≤ MJψ(T
−1, B)

Let M =MT . Then

|D(MT − 1, T )| ≤
√
MTJψ(T−1, B) =

∥ρ∥2

4
. (2.32)

By (2.29) and (2.32), we obtain that

Pψ({MT ∼ ∞}, T ) ≥ ∥ρ∥2

2
=
A

2
.

This implies our assertion.

For ψ ∈ l2(N), let an analytic function m
(k)
ψ : C+ → C+ be defined by

m
(k)
ψ (z) =

∫
R

µ
(k)
ψ (dλ)

λ− z
= (ψ, (H(k) − z)−1ψ).

Let ϵ > 0 and B ∈ B1. We define

I
(k)
ψ (ϵ, B) = ϵ

∫
B

dE|Imm
(k)
ψ (E + iϵ)|2.

Lemma 2.5.2. Let B = [a, b] ⊂ R. Then there exists C3 = C3(a, b) > 0 such that for any
ϵ ∈ (0, 1)

J
(k)
ψ (ϵ, B) ≤ C3I

(k)
ψ (ϵ, B). (2.33)
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Proof. We denote J
(k)
ψ , I

(k)
ψ , and µ

(k)
ψ by Jψ, Iψ, and µψ, respectively for simplicity of

notation. We see that

Iψ(ϵ, B) = ϵ3
∫
B

dE

(∫
R

µψ(dx)

ϵ2 + (E − x)2

)2

= ϵ3
∫
B

dE

∫
R

µψ(dx)

ϵ2 + (E − x)2

∫
R

µψ(dy)

ϵ2 + (E − y)2

≥
∫
B

µψ(dx)

∫
R
µψ(dy) ϵ

3

∫
B

dE

(ϵ2 + (E − x)2)(ϵ2 + (E − y)2)
. (2.34)

Let s = x−y
ϵ
. Since x ∈ B = [a, b] and 0 < ϵ < 1, we have

ϵ3
∫
B

dE

(ϵ2 + (E − x)2)(ϵ2 + (E − y)2)
=

∫ b−x
ϵ

a−x
ϵ

dt

(1 + t2)(1 + (t+ s)2)

≥
∫ b−x

a−x

dt

(1 + t2)(1 + (|t|+ |s|)2)
.

If |s| ≤ 1, then∫ b−x

a−x

dt

(1 + t2)(1 + (|t|+ |s|)2)
≥

∫ b−x

a−x

dt

(1 + t2)(1 + (|t|+ 1)2)
. (2.35)

If |s| ≥ 1, then there exists C ′
3 = C ′

3(a, b) > 0 such that for any x ∈ B,∫ b−x

a−x

dt

(1 + t2)(1 + (|t|+ |s|)2)
=

∫ b−x

a−x
dt

(
1

1 + t2
−

1

1 + (|t|+ |s|)2

)
((|t|+ |s|)2 − t2)−1

≥
∫ b−x

a−x
dt

(
1

1 + t2
−

1

1 + (|t|+ 1)2

)
C ′

3

1 + s2
(2.36)

By (2.35) and (2.36), there exists C3 = C3(a, b) > 0 such that for any x ∈ B and any
y ∈ R,

ϵ3
∫
B

dE

(ϵ2 + (E − x)2)(ϵ2 + (E − y)2)
≥

C3

1 + s2
, s =

x− y

ϵ
. (2.37)

(2.34) and (2.37) imply our assertion.

Definition 2.5.3. Let f : Z≥0 → C and n ∈ N. Let
(
H̃(k)f

)
(n) be defined by(

H̃(k)f
)
(n) = −ak(n)f(n+ 1) + dk(n)f(n)− ak(n− 1)f(n− 1),

where ak(0) = 1.

23



Let z ∈ C+, and n,m ∈ N such that n ≥ m. We define

Tz(n) =



(
0 1

−
√

gn−1

gn

gn+1−z√
gn

)
(n ≥ 1),(

0 1

−1 1− z

)
(n = 0),

Sz(n,m) = Tz(n)Tz(n− 1) · · ·Tz(m),

Sz(n) = Sz(n, 0).

Let f : Z≥0 → C and z ∈ C+. Suppose that
(
H̃(k)f

)
(n) = zf(n) for each n ∈ N. Then(

f(n)
f(n+ 1)

)
= Tz(n+N(k)− 1)

(
f(n− 1)
f(n)

)
= Sz(n+N(k)− 1, N(k))

(
f(0)
f(1)

)
.

Lemma 2.5.4. Let K > 0 and z = E + iϵ with 0 < E < 4 and ϵ > 0. Then there exists
C4 = C4(E,K) > 0 such that

(1) if Lm + 1 ≤ n < Lm+1 and nϵ < K, then

∥Sz(n)−1∥ ≤ Cm+1
4

m∏
j=1

L
1−Γ
2Γ
j ,

(2) if n ≤ Lm and nϵ < K, then

∥Sz(n)−1∥ ≤ Cm
4

m−1∏
j=1

L
1−Γ
2Γ
j .

Proof. By Definition 2.1.1, we see that

Tz(n) =



 0 1

−[n
1−Γ
Γ ]−

1
2

[n
1−Γ
Γ ]+1−z

[n
1−Γ
Γ ]

1
2

 (n ∈ {Lm | m ∈ N}),(
0 1

−[n
1−Γ
Γ ]

1
2 2− z

)
(n ∈ {Lm + 1 | m ∈ N}),(

0 1

−1 2− z

)
(otherwise).
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If Lm + 1 ≤ n < Lm+1, then

Sz(n) = Rn−Lm−1S(Lm + 1)

= Rn−Lm−1S(Lm + 1, Lm)S(Lm − 1)

= Rn−Lm−1S(Lm + 1, Lm)R
Lm−Lm−1−2S(Lm−1 + 1)

= · · ·
= Rn−Lm−1S(Lm + 1, Lm)R

Lm−Lm−1−2 · · ·S(L1 + 1, L1)R
2

where R =

(
0 1
−1 2− z

)
. Let L0 = −2. Then we see that

∥Sz(n)−1∥ ≤ ∥R−n+Lm+1∥∥Tz(0)∥
m∏
j=1

∥S(Lj + 1, Lj)
−1∥∥R−Lj+Lj−1+2∥. (2.38)

Note that R−1 =

(
2− z −1
1 0

)
and ∥Rm∥ = ∥R−m∥ for any m ∈ N.

R =

(
0 1
−1 2− E

)
− i

(
0 0
0 ϵ

)
.

Since E ∈ (0, 4), there exist invertible matrix AE and λ± ∈ C with |λ±| = 1 such that

A−1
E

(
0 1
−1 2− E

)
AE =

(
λ+ 0
0 λ−

)
.

Therefore we see that

∥A−1
E RnAE∥ ≤

∥∥∥∥( λ+ 0
0 λ−

)
− iϵA−1

E

(
0 0
0 1

)
AE

∥∥∥∥n
≤

(
1 + ϵ∥A−1

E ∥∥AE∥
)n
.

If ϵ < K
n
, then

∥A−1
E RnAE∥ ≤ 2exp(K∥A−1

E ∥∥AE∥).
Therefore we obtain that for ϵ < K

n
,

∥Rn∥ = ∥AEA−1
E RnAEA

−1
E ∥ ≤ 2∥AE∥∥A−1

E ∥exp(K∥A−1
E ∥∥AE∥). (2.39)

If 0 < ϵ < 1, then there exists C ′
4 > 0 such that

∥Sz(Lj + 1, Lj)
−1∥ ≤ C ′

4[L
1−Γ
Γ

j ]
1
2 ≤ C ′

4L
1−Γ
2Γ
j . (2.40)

By (2.38), (2.39) and (2.40), we see that for Lm + 1 ≤ n < Lm+1,

∥Sz(n)−1∥ ≤ (2C ′
4∥AE∥∥A−1

E ∥)m+1exp((m+ 1)K∥A−1
E ∥∥AE∥)

m∏
j=1

L
1−Γ
2Γ
j .

This implies our first part of the assertion. The second part of the assertion can be proved
similarly.
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Lemma 2.5.5. Let ψ ∈ l2(N) and n ∈ N. Then for any T > 0,

1

T

∫ ∞

0

e−
t
T |ψk(t, n)|2 dt =

ϵ

π

∫
R
|(H(k) − (E + iϵ))−1ψ(n)|2 dE,

where ϵ = 1
2T
.

Proof. Abbreviate H(k) and ψk to H and ψ, respectively. We see that

1

T

∫ ∞

0

e−
t
T |ψ(t, n)|2 dt =

1

T

∫ ∞

0

dte−
t
T (δn, e

−itHψ)(e−itHψ, δn)

=

∫
R
(δn, E(dx)ψ)

∫
R
(E(dy)ψ, δn)

1

T

∫ ∞

0

dte−
t
T
−it(x−y)

=

∫
R
(δn, E(dx)ψ)

∫
R
(E(dy)ψ, δn)(1 + iT (x− y))−1,

and

ϵ

π

∫
R
|(H(k) − (E + iϵ))−1ψ(n)|2 dE

=

∫
R
(δn, E(dx)ψ)

∫
R
(E(dy)ψ, δn)

ϵ

π

∫
R
(E − x+ iϵ)−1(E − y − iϵ)−1

=

∫
R
(δn, E(dx)ψ)

∫
R
(E(dy)ψ, δn)(1 + iT (x− y))−1.

These imply our assertion.

Definition 2.5.6. Let f : R → C be measurable and Bν = [ν, 4 − ν] with 0 < ν < 1. We
say that f is the first kind, if there exist ν > 0 and x0 ∈ Bν such that f ∈ C∞

0 (Bν) and
f(x0) ̸= 0, and we say that f is the second kind, if f is bounded and there exist E0 ∈ (0, 4)
and ν > 0 with [E0−ν, E0+ν] ⊂ Bν such that f ∈ C∞([E0−ν, E0+ν]) and |f(x)| ≥ c > 0
for x ∈ [E0 − ν, E0 + ν].

Lemma 2.5.7. Let f : R → C be the second kind and ψ = f(H(k))δ1. Let N be sufficiently
large. Then there exists C5 = C5(ν) > 1 such that

(1) if LN ≤ T ≤
LN+1

4
, then

P
(k)
ψ ({T ∼ ∞}, T ) ≥ C

−(N+1)
5 T

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)
N∏
j=1

L
Γ−1
Γ

j , (2.41)

(2) if
LN

4
≤ T ≤ LN , then

P
(k)
ψ ({T ∼ ∞}, T ) ≥ C

−(N+1)
5 LN

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)
N∏
j=1

L
Γ−1
Γ

j , (2.42)
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(3) if
LN

4
≤ T , then

P
(k)
ψ ({LN

4
∼ LN

2
}, T ) ≥ C−N

5 LN

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)
N−1∏
j=1

L
1−Γ
Γ

j . (2.43)

Proof. Firstly, we prove the lemma in the case of ψ = δ1. Let z ∈ C+ and fk : Z≥0 → C
be

fk(n) =

{
(H(k) − z)−1δ1(n) (n ∈ N),
1 (n = 0).

Let g = (H(k) − z)−1δ1 ∈ l2(N). We see that g(n) = fk(n) for each n ∈ N and that

(H(k) − z)g(n) = δ1(n)

⇔

{
−ak(n)g(n+ 1) + dk(n)g(n)− ak(n− 1)g(n− 1)− zg(n) = 0 (n ≥ 2)

−ak(1)g(2) + dk(1)g(1)− zg(1) = 1 (n = 1)

⇔

{
−ak(n)fk(n+ 1) + dk(n)fk(n)− ak(n− 1)fk(n− 1) = zfk(n) (n ≥ 2)

−ak(1)fk(2) + dk(1)fk(1)− 1 = zfk(1) (n = 1)

⇔

{
−ak(n)fk(n+ 1) + dk(n)fk(n)− ak(n− 1)fk(n− 1) = zfk(n) (n ≥ 2)

−ak(1)fk(2) + dk(1)fk(1)− ak(0)fk(0) = zfk(1) (n = 1)
.

This implies that fk satisfies the equation
(
H̃(k)fk

)
(n) = zfk(n) for each n ∈ N. We see

that (
fk(n)

fk(n+ 1)

)
= Sz(n+N(k)− 1, N(k))

(
fk(0)
fk(1)

)
. (2.44)

Note that fk(1) = m
(k)
δ1
(z). Let z = E + iϵ. By (2.44), we obtain that

|fk(n)|2 + |fk(n+ 1)|2 ≥
1 + |m(k)

δ1
(E + iϵ)|2

∥Sz(n+N(k)− 1, N(k))−1∥2
.

Suppose that LN + 1 ≤ n+N(k) ≤ LN+1 and ϵ <
K

n
. By Lemma 2.5.4, we see that

|fk(n)|2 + |fk(n+ 1)|2 ≥ C
−(N+1)
4

N∏
j=1

L
Γ−1
Γ

j

(
1 + |Im m

(k)
δ1
(E + iϵ)|2

)
. (2.45)

By Lemma 2.5.5, we see that fk(n) = (H(k) − z)−1δ1(n) and that

ϵ

π

∫
R
|(H(k)− (E+ iϵ))−1δ1(n)|2 dE =

1

T

∫ ∞

0

e−
t
T |δ1k(t, n)|2 dt = a

(k)
δ1
(n, T ), ϵ = (2T )−1.
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Let (2T )−1 <
K

n
. By (2.45), we see that there exist C4 and C ′

4 > 0 such that

a
(k)
δ1
(n, T ) + a

(k)
δ1
(n+ 1, T ) ≥ C

−(N+1)
4

N∏
j=1

L
Γ−1
Γ

j

1

2T

∫
Bν

dE
(
1 + |Im m

(k)
δ1
(E + i(2T )−1)|2

)
≥ C

−(N+1)
4

N∏
j=1

L
Γ−1
Γ

j

(
1

2T
+ I

(k)
δ1

((2T )−1, Bν)

)

≥ C
′−(N+1)
4

N∏
j=1

L
Γ−1
Γ

j

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)
.

Let LN < T <
LN+1

4
, and K sufficiently large. Then we have

∑
T≤n≤2T

a
(k)
ψ (n, T ) + a

(k)
ψ (n+ 1, T ) ≥ C

′−(N+1)
4

N∏
j=1

L
Γ−1
Γ

j T

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)
,

and hence

P
(k)
ψ ({T ∼ 2T}, T ) ≥ C

′−(N+1)
4

N∏
j=1

L
Γ−1
Γ

j T

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)
. (2.46)

Let
LN

4
< T < LN . Then we see that

P
(k)
ψ ({2LN ∼ 3LN}, T ) ≥ C

′−(N+1)
4

N∏
j=1

L
Γ−1
Γ

j LN

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)
.

Let
LN

4
≤ T . Then we see that

P
(k)
ψ ({

LN

4
∼
LN

2
}, T ) ≥ C ′−N

4

N−1∏
j=1

L
Γ−1
Γ

j LN

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)
.

Therefore, we can prove the lemma in the case of ψ = δ1.
Next we take g ∈ C∞

0 ([0, 4]) such that g(x) = 1 on B ν
2
. We prove the lemma in the

case of ψ = g(H(k))δ1. Let χ = δ1 − ψ and z ∈ C+. Then

|(H(k) − z)−1ψ(n)|2 ≥
1

2
|(H(k) − z)−1δ1(n)|2 − |(H(k) − z)−1χ(n)|2.
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Let LN < T <
LN+1

4
. Then we see that, by (2.46),

P (k)
ψ

({T ∼ ∞}, T ) ≥
1

2
C

′−(N+1)
4

N∏
j=1

L
Γ−1
Γ

j T

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)

−
1

T

∫
Bν

dE
∑

T≤n≤2T

|(H(k) − (E + iϵ))−1χ(n)|2. (2.47)

Let fz(x) =
1− g(x)

x− z
. Then (H(k) − z)−1χ(n) = fz(H

(k))δ1(n) and Lemma 2.4.4 implies

that for l > 1,

|(H(k) − z)−1χ(n)| = |fz(H(k))δ1(n)| ≤ C2|||fz|||2l+3n
−l,

and that∑
T≤n≤2T

|(H(k) − z)−1χ(n)| =
∑

T≤n≤2T

|fz(H(k))δ1(n)| ≤ C2|||fz|||2l+3T
−(l−1). (2.48)

Let z = E + iϵ. Note that there exists C ′
5 = C ′

5(g, ν, l) > 0 such that sup
E∈Bν ,0<ϵ<1

|||fz|||2l+3 ≤

C ′
5. By (2.47) and (2.48), we obtain

P (k)
ψ

(n ≥ T, T ) ≥
1

2
C

′−(N+1)
4

N∏
j=1

L
Γ−1
Γ

j T

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)
−

4

T
C2C

′
5T

−(l−1)

≥

{
1

2
C

′−(N+1)
4 − 4C2C

′
5T

−l
N∏
j=1

L
1−Γ
Γ

j

}
N∏
j=1

L
Γ−1
Γ

j T

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)
.

Let l sufficiently large, then we can prove (2.41) in the case of ψ = g(H(k)). We can prove
(2.42) and (2.43) in the case of ψ = g(H(k)) similarly.

Finally, let f be the second kind, and we prove the lemma in the case of ψ = f(H(k)).
Let ν satisfy f ∈ C∞([E0 − ν, E0 + ν]) and |f(x)| ≥ c > 0 for x ∈ [E0 − ν, E0 + ν]. We
take g ∈ C∞

0 ([E0 − ν, E0 + ν]) such that g(x) = 1 on [E0 − 3ν
4
, E0 +

3ν
4
]. Then there exists

h ∈ C∞
0 ([E0 − ν, E0 + ν]) such that g(x) = h(x)f(x). Since supn

∑∞
m=1⟨n−m⟩−l <∞, by
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Lemma 2.4.4, we see that

|(H(k) − z)−1g(H(k))δ1(n)|2

= |(h(H(k))δn, (H
(k) − z)−1f(H(k))δ1)|2

=

∣∣∣∣∣
∞∑
m=1

(h(H(k))δn, δm)(δm, (H
(k) − z)−1f(H(k))δ1)

∣∣∣∣∣
2

≤ C2

∣∣∣∣∣
∞∑
m=1

⟨n−m⟩−l|(δm, (H(k) − z)−1f(H(k))δ1)|

∣∣∣∣∣
2

≤ C2

(
∞∑
m=1

⟨n−m⟩−l
)(

∞∑
m=1

⟨n−m⟩−l|(H(k) − z)−1f(H(k))δ1(m)|2
)

≤ C ′
2

∞∑
m=1

⟨n−m⟩−l|(H(k) − z)−1f(H(k))δ1(m)|2.

This implies the inequality

A(2L, T ) := ϵ
∑
n≥2L

∫
Bν

dE |(H(k) − z)−1g(H(k))δ1(n)|2

= C ′
2ϵ

∞∑
m=1

∑
n≥2L

⟨n−m⟩−l
∫
Bν

dE |(H(k) − z)−1f(H(k))δ1(m)|2

≤ ϵ
∞∑
m=1

hl(m,L)

∫
Bν

dE |(H(k) − z)−1f(H(k))δ1(m)|2, (2.49)

where z = E + iϵ, ϵ =
1

2T
and hl(m,L) =

∑
n≥2L

C ′
2

1 + |n−m|l
. It follows for ϕ ∈ l2(N) and

ϵ > 0 that

ϵ
∞∑
n=1

∫
R
dE|(H(k) − z)−1ϕ(n)|2 = π∥ϕ∥2, z = E + iϵ.

There exists C ′′
2 > max{C ′

2, supm≥T hl(m,T )}. By (2.49), we obtain that

A(2T, T ) ≤ ϵ
∑
m<T

hl(m,T )

∫
Bν

dE |(H(k) − z)−1f(H(k))δ1(m)|2

+ ϵ
∑
m≥T

hl(m,T )

∫
Bν

dE |(H(k) − z)−1f(H(k))δ1(m)|2

≤ π∥f(H(k))δ1∥2C ′′
2T

1−l + C ′′
2 ϵ
∑
m≥T

∫
Bν

dE |(H(k) − z)−1f(H(k))δ1(m)|2

= π∥f(H(k))δ1∥2C ′′
2T

1−l + C ′′
2P

(k)
ψ ({T ∼ ∞}, T ), (2.50)
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where z = E + iϵ and ϵ =
1

2T
. Let LN < T <

LN+1

4
. Then the previous argument shows

that

A(2T, T ) = πP
(k)

g(H(k))δ1
({2T ∼ ∞}, T ) ≥ C

−(N+1)
5

N∏
j=1

L
Γ−1
Γ

j T

(
1

T
+ I

(k)
δ1

(T−1, Bν)

)
. (2.51)

We take l sufficiently large. Then (2.50) and (2.51) imply (2.41) in the case of ψ = f(H(k)).
We can also prove (2.42) and (2.43) similarly.

Lemma 2.5.8. Let f be the first kind with supx |f(x)| ≤ 1 and ψ = f(H(k))δ1. If N is
sufficient large, then there exist C6 > 0 and qN ∈ R such that lim

N→∞
qN = 0 and it follows

for
LN

4
< T <

LN+1

4
that

⟨|X|p⟩(k)ψ (T ) ≥ C6I
(k)
δ1

(T−1, Bν)
−p

+ C6

(
Lp+1+qN
N + T p+1L

Γ−1
Γ

+qN
N

)
I
(k)
δ1

(T−1, Bν).

Proof. Let M ∈ N. Then it follows that ⟨|X|p⟩(k)ψ (T ) ≥ MpP
(k)
ψ ({M ∼ ∞}, T ). Lemma

2.5.1 implies that

⟨|X|p⟩(k)ψ (T ) ≥Mp
TP

(k)
ψ ({MT ∼ ∞}, T ) ≥ C ′

6J
(k)
ψ (T−1, Bν)

−p ≥ C ′
6J

(k)
δ1

(T−1, Bν)
−p.

By (2.33), we have

⟨|X|p⟩(k)ψ (T ) ≥ C ′′
6 I

(k)
δ1

(T−1, Bν)
−p. (2.52)

Note that f is the second kind. For LN
4

≤ T ≤ LN , by (2.42) we have

⟨|X|p⟩(k)ψ (T ) ≥ T pP
(k)
ψ ({T ∼ ∞}, T )

≥ 4C
−(N+1)
5 T p+1I

(k)
δ1

(T−1, Bν)
N∏
j=1

L
Γ−1
Γ

j .

Let qN > 0 satisfy

LqNN = C
−(N+1)
5

N−1∏
j=1

L
Γ−1
Γ

j .

Then limN→∞ qN = 0 and we see that for LN
4

≤ T ≤ LN ,

⟨|X|p⟩(k)ψ (T ) ≥ 4T p+1L
Γ−1
Γ

+qN
N I

(k)
δ1

(T−1, Bν). (2.53)
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For LN ≤ T ≤
LN+1

4
, by (2.41) we have

⟨|X|p⟩(k)ψ (T ) ≥ T pP
(k)
ψ ({T ∼ ∞}, T )

≥ C
−(N+1)
5 T p+1I

(k)
δ1

(T−1, Bν)
N∏
j=1

L
Γ−1
Γ

j

≥ T p+1L
Γ−1
Γ

+qN
N I

(k)
δ1

(T−1, Bν). (2.54)

By (2.53) and (2.54), we see that for
LN

4
≤ T ≤

LN+1

4
,

⟨|X|p⟩(k)ψ (T ) ≥ T p+1L
Γ−1
Γ

+qN
N I

(k)
δ1

(T−1, Bν). (2.55)

For
LN

4
≤ T , by (2.43) we see that

⟨|X|p⟩(k)ψ (T ) ≥ T pP
(k)
ψ ({T ∼ ∞}, T )

≥ C−N
5 Lp+1

N I
(k)
δ1

(T−1, Bν)
N−1∏
j=1

L
Γ−1
Γ

j

≥ Lp+1+qN
N I

(k)
δ1

(T−1, Bν). (2.56)

(2.52), (2.55), and (2.56) imply our assertion.

Lemma 2.5.9. Let f be the first kind with supx |f(x)| ≤ 1 and ψ = f(H(k))δ1. Then

β
(k)
ψ (p) ≥

p+ 1

p+ 1
Γ

. (2.57)

Proof. By Lemma 2.5.8, for x = I
(k)
δ1

(T−1, Bν), we obtain that

⟨|X|p⟩(k)ψ (T ) ≥ C6x
−p + C6

(
Lp+1−qN
N + T p+1L

Γ−1
Γ

−qN
N

)
x.

Let f(x) = x−p + Kx. Then inf
x>0

f(x) = c(p)K
p
p+1 , where c(p) = p−

p
p+1 + p

1
p+1 . Let

LN

4
≤ T ≤

LN+1

4
. Then there exists C ′

6 = C ′
6(p) > 0 such that

⟨|X|p⟩(k)ψ (T ) ≥ c(p)C6

(
Lp+1−qN
N + T p+1L

Γ−1
Γ

−qN
N

) p
p+1

≥ C ′
6L

− p
p+1

qN

N

(
Lp+1
N + T p+1L

Γ−1
Γ

N

) p
p+1

.
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For
LN

4
≤ T ≤ LAN with A =

p+ 1
Γ

p+ 1
, we have

⟨|X|p⟩(k)ψ (T ) ≥ C ′
6L

− p
p+1

qN

N LpN ≥ C ′
6L

− p
p+1

qN

N T
p
A . (2.58)

For LAN ≤ T ≤
LN+1

4
, we have

⟨|X|p⟩(k)ψ (T ) ≥ C ′
6L

− p
p+1

qN

N T pL
Γ−1
Γ

p
p+1

N ≥ C ′
6L

− p
p+1

qN

N T
p
A . (2.59)

(2.58) and (2.59) imply that for sufficiently large T > 0 and any ϵ > 0,

⟨|X|p⟩(k)ψ (T ) ≥ C ′
6T

p
A
−ϵ.

Therefore we obtain that

β
(k)
ψ (p) =

1

p
lim inf
T→∞

log⟨|X|p⟩(k)ψ (T )

logT
≥
p+ 1

p+ 1
Γ

−
ϵ

p
.

This implies our assertion.

2.5.2 Upper bound of intermittency function

Lemma 2.5.10. Let f be the first kind, ψ = f(H(k))δ1, and p > 0. Then there exists

C7 = C7(p) > 0 such that for LN ≤ T ≤ L
1
Γ
N with N sufficiently large,∑

n≥2LN

npa
(k)
ψ (n, T ) ≤ C7T

p+1L
− 1

Γ
N . (2.60)

Proof. We have∑
n≥2Lm

npa
(k)
ψ (n, T ) =

T 3∑
n=2Lm

npa
(k)
ψ (n, T ) +

∑
n>T 3

npa
(k)
ψ (n, T ).

Let Gt(x) = e−itx. Lemma 2.4.4 shows that for any l > 1, there exists C
(4)
7 = C

(4)
7 (l) > 0

such that ∑
n>T 3

npa
(k)
ψ =

∑
n>T 3

np
1

T

∫
R
dt e−

t
T |(δn, Gt(H

(k))f(H(k))δ1)|2

≤
∑
n>T 3

np
C2

T

∫
R
dt e−

t
T |||Gtf |||2l+3n

−l

≤
∑
n>T 3

np
C

(4)
7

T

∫
R
dt e−

t
T t2l+3n−l

≤ C
(4)
7 T 2l+3

∑
n>T 3

np−l

≤ C
(4)
7 T−l+3p+6.
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We take l large enough, so it is sufficient to prove
T 3∑

n=2LN

npa
(k)
ψ (n, T ) ≤ C7T

p+1L
− 1

Γ
N . Since

f is the first kind, f ∈ C∞
0 (Bν). By Lemma 2.5.5, we have

T 3∑
n=2LN

npa
(k)
ψ (n, T ) =

T 3∑
n=2LN

np
ϵ

π

∫
B ν

2

dE |(H(k) − E − iϵ)−1ψ(n)|2

+
T 3∑

n=2LN

np
ϵ

π

∫
R\B ν

2

dE |(H(k) − E − iϵ)−1ψ(n)|2, ϵ = (2T )−1.

Let χz(x) = (x − z)−1. Then Lemma 2.4.4 shows that for any l > 0, there exists C
(3)
7 =

C
(3)
7 (l) > 0 such that

ϵ

π

T 3∑
n=2LN

np
∫ ν

2

−∞
dE |(H(k) − E − iϵ)ψ(n)|2 ≤

ϵ

π

T 3∑
n=2LN

np
∫ ν

2

−∞
dE |(δn, χE+iϵ(H

(k))f(H(k))δ1)|2

≤ C2

ϵ

π

T 3∑
n=2LN

np
∫ ν

2

−∞
dE |||χE+iϵf |||22l+3n

−2l

≤ C2

ϵ

π

T 3∑
n=2LN

np−2l

∫ ν
2

−∞
dE

C
(3)
7

(E − ν)2 + ϵ2

≤ C2C
(3)
7 L−2l+p+1

N . (2.61)

Similarly, there exists D
(3)
7 = D

(3)
7 (l) > 0 such that

ϵ

π

T 3∑
n=2LN

np
∫ ∞

4− ν
2

dE |(H(k) − E − iϵ)−1ψ(n)|2 ≤ C2D
(3)
7 L−2l+p+1

N . (2.62)

(2.61) and (2.62) imply that

T 3∑
n=2LN

np
ϵ

π

∫
R\B ν

2

dE |(H(k) − E − iϵ)−1ψ(n)|2 ≤ max{C2C
(3)
7 , C2D

(3)
7 }L−2l+p+1

N .

We take l large enough, so it is sufficient to prove

ϵ

π

T 3∑
n=2LN

np
∫
B ν

2

dE |(H(k) − E − iϵ)−1ψ(n)|2 ≤ C7T
p+1L

− 1
Γ

N , ϵ = (2T )−1.

Lemma 2.4.4 implies that there exists C = C(l, f) > 0 such that

|(H(k) − E − iϵ)−1ψ(n)|2 ≤ C

∞∑
m=1

(1 + |n−m|2)−l|χE+iϵ(H
(k))δ1(m)|2.
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Therefore it is sufficient to prove

ϵ

π

T 3∑
n=2LN

np
∫
B ν

2

dE

∞∑
m=1

(1 + |n−m|2)−l|χE+iϵ(H
(k))δ1(m)|2 ≤ C7T

p+1L
− 1

Γ
N , ϵ = (2T )−1.

We see that for any l > 1, by Lemma 2.5.5, there exists C
(2)
7 = C

(2)
7 (l) > 0 such that

ϵ

π

T 3∑
n=2LN

np
∫
B ν

2

dE

LN∑
m=1

(1 + |n−m|2)−l|χE+iϵ(H
(k))δ1(m)|2

≤
T 3∑

n=2LN

npL−2l
N

LN∑
m=1

ϵ

π

∫
B ν

2

dE |χE+iϵ(H
(k))δ1(m)|2

≤
T 3∑

n=2LN

npL−2l
N

≤ C
(2)
7 T 3(p+1)L−2l

N , ϵ = (2T )−1. (2.63)

Similarly, we have

ϵ

π

T 3∑
n=2LN

np
∫
B ν

2

dE
∞∑

m=T 3+LN

(1 + |n−m|2)−l|χE+iϵ(H
(k))δ1(m)|2 ≤ D

(2)
7 T 3(p+1)L−2l

N .(2.64)

By (2.63) and (2.64), it is sufficient to prove

ϵ

π

T 3∑
n=2LN

np
∫
B ν

2

dE

T 3+LN∑
m=LN

(1 + |n−m|2)−l|χE+iϵ(H
(k))δ1(m)|2 ≤ C7T

p+1L
− 1

Γ
N , ϵ = (2T )−1.

Let A
(k)
N and D

(k)
N : l2(N) → l2(N) be

A
(k)
N =



0 ak(1)

ak(1) 0 ak(2)

ak(2)
. . . . . .

. . . 0 ak(LN)

ak(LN) 0 1

1 0 1

1 0 1

1
. . . . . .

. . .
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and

D
(k)
N =



dk(1)

dk(2)

. . .

dk(LN)

2

2

. . .



.

Let H
(k)
N = D

(k)
N − A

(k)
N . We see that for any l > 1 there exists C ′ = C ′(l) > 0 such that

ϵ

π

T 3∑
n=2LN

np
∫
B ν

2

dE

T 3+LN∑
m=LN

(1 + |n−m|2)−l|χE+iϵ(H
(k))δ1(m)|2

=
ϵ

π

T 3+LN∑
m=LN

(
T 3∑

n=2LN

np(1 + |n−m|2)−l
)∫

B ν
2

dE |χE+iϵ(H
(k))δ1(m)|2

≤ C ′ ϵ

π

T 3+LN∑
m=LN

mp

∫
B ν

2

dE |χE+iϵ(H
(k))δ1(m)|2

≤ 2C ′ ϵ

π

T 3+LN∑
m=LN

mp

∫
B ν

2

dE |χE+iϵ(H
(k))δ1(m)− χE+iϵ(H

(k)
N )δ1(m)|2

+2C ′ ϵ

π

T 3+LN∑
m=LN

mp

∫
B ν

2

dE |χE+iϵ(H
(k)
N )δ1(m)|2. (2.65)

By the resolvent equation, we have

∥(χE+iϵ(H
(k))− χE+iϵ(H

(k)
N ))δ1∥

≤
1

ϵ
∥(H(k) −H

(k)
N )χE+iϵ(H

(k)
N )δ1∥

≤
1

ϵ
∥(D(k) −D

(k)
N )χE+iϵ(H

(k)
N )δ1∥+

1

ϵ
∥(A(k) − A

(k)
N )χE+iϵ(H

(k)
N )δ1∥. (2.66)

Let z = E + iϵ and ϕ : Z≥0 → C be ϕ(0) = 1, ϕ(n) = χz(H
(k)
N )δ1(n) (n ≥ 1). Then it

follows for n > LN that

−ϕ(n+ 1) + 2ϕ(n)− ϕ(n− 1) = zϕ(n).
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This implies for n > LN ,(
ϕ(n)

ϕ(n+ 1)

)
=

(
0 1
−1 2− z

)(
ϕ(n− 1)
ϕ(n)

)
.

Let λ± =
2− z ±

√
(2− z)2 + 4

2
, then there exists C± such that

ϕ(n) = C+λ
n−LN
+ + C−λ

n−LN
− .

Since ϵ > 0, we get |λ−| < 1 and |λ+| > 1. Since ∥ϕ∥l2 < ∞, C+ = 0, C− = ϕ(LN) and
there exists c, c′ > 0 such that it follows for 0 < E < 4 and 0 < ϵ < 1 that

e−c
′ϵ ≤ |λ−| ≤ e−cϵ.

If β > 1, then it follows for sufficiently large N that

LN+1 − LβN >
1

2
LN+1.

Therefore, we see that there exist C ′′ > 0 such that

∥(D(k) −D
(k)
N )χE+iϵ(H

(k)
N )δ1∥2 =

∞∑
j=N+1

|dk(Lj)− 2|2|ϕ(Lj)|2

≤ 2|ϕ(LN)|2
∞∑

j=N+1

L
2(1−Γ)

Γ
j exp(−2cϵ(Lj − LN))

≤ 2ϵ−2

∞∑
j=N+1

L
2(1−Γ)

Γ
j exp(−2cϵ(Lj − LβN))exp(−2cϵ(LβN − LN))

≤ 4T 2

∞∑
j=N+1

L
2(1−Γ)

Γ
j exp(−cϵLj)exp(−cϵLβN)

≤ C ′′exp(−cϵLβN), (2.67)

and

∥(A(k) − A
(k)
N )χE+iϵ(H

(k)
N )δ1∥2 ≤

∞∑
j=N+1

|1− ak(Lj)|2{|ϕ(Lj)|2 + |ϕ(Lj + 1)|2}

≤ C ′′T 2

∞∑
j=N+1

exp(−2cϵ(Lj − LN))

≤ C ′′T 2exp(−cϵLβN). (2.68)
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By (2.66), (2.67), and (2.68), we see that there exists C
(1)
7 > 0 such that

ϵ

T 3+LN∑
m=LN

mp

∫
B ν

2

dE |χE+iϵ(H
(k))δ1(m)− χE+iϵ(H

(k)
N )δ1(m)|2

≤ ϵ

T 3+LN∑
m=LN

mp

∫
B ν

2

dE ∥χE+iϵ(H
(k))δ1 − χE+iϵ(H

(k)
N )δ1∥2

≤ C
(1)
7 T 3(p+1)exp(−cϵLβN), ϵ = (2T )−1. (2.69)

By (2.65) and (2.69), it is sufficient to prove

ϵ

T 3+LN∑
m=LN

mp

∫
B ν

2

dE |χE+iϵ(H
(k)
N )δ1(m)|2 ≤ C7T

p+1L
− 1

Γ
N .

Let FN(z) = (δ1, χz(H
(k)
N )δ1) = (δ1, (H

(k)
N − z)−1δ1). We see that there exists C ′′′ > 0 such

that

1

ϵ
ImFN(E + iϵ) = ∥χE+iϵ(H

(k)
N )δ1∥2 ≥

∑
m>LN

|ϕ(m)|2 ≥
∑
m>LN

e−c
′ϵ(m−LN )|ϕ(LN)|2 ≥

C ′′′

ϵ
|ϕ(LN)|2.

This implies that |ϕ(LN)| ≤ C ′′′ImFN(E + iϵ). Let LN−1 < n < LN+1. Then
−ϕ(n+ 1) + 2ϕ(n)− ϕ(n− 1) = zϕ(n) (n ̸= LN , LN + 1)

−
√

[L
1−Γ
Γ

N ]ϕ(LN + 1) + ([L
1−Γ
Γ

N ] + 2)ϕ(LN)− ϕ(LN − 1) = zϕ(LN) (n = LN)

−ϕ(LN + 2) + 2ϕ(LN + 1)−
√

[L
1−Γ
Γ

N ]ϕ(LN) = zϕ(LN + 1) (n = LN + 1).

Let R =

(
0 1
−1 2− z

)
. Then it follows for LN + 1 < n < LN+1 that

(
ϕ(n)

ϕ(n+ 1)

)
= Rn−LN

(
ϕ(LN)

ϕ(LN + 1)

)
.

Similary, for LN−1 < n < LN − 1, we have(
ϕ(n)

ϕ(n+ 1)

)
= Rn−LN+1

(
ϕ(LN − 1)
ϕ(LN)

)
.

There exists B = B(K) > 0 such that ∥Rn∥ < B for ϵ < K
|n| . It follows for LN < n < 2LN

that

|ϕ(n)|2 + |ϕ(n+ 1)|2 ≥ B−1(|ϕ(LN)|2 + |ϕ(LN + 1)|2).
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Therefore, we have

1

ϵ
ImFN(E + iϵ) = ∥ϕ∥2 ≥ B−1LN(|ϕ(LN)|2 + |ϕ(LN + 1)|2). (2.70)

Similarly, it follows that for
LN

2
< n < LN ,

|ϕ(n)|2 + |ϕ(n+ 1)|2 ≥ B−1(|ϕ(LN)|2 + |ϕ(LN + 1)|2),
and that

1

ϵ
ImFN(E + iϵ) = ∥ϕ∥2 ≥ B−1LN(|ϕ(LN − 1)|2 + |ϕ(LN)|2). (2.71)

(2.70) and (2.71) imply that

|ϕ(LN − 1)|2 + |ϕ(LN + 1)|2 ≤
2B

ϵLN
ImFN(E + iϵ). (2.72)

We see that

([L
1−Γ
Γ

N ] + 2− z)ϕ(LN) = ϕ(LN − 1) +

√
[L

1−Γ
Γ

N ]ϕ(LN + 1).

This shows that

|[L
1−Γ
Γ

N ] + 2− z|2|ϕ(LN)|2 ≤ 2[L
1−Γ
Γ

N ](|ϕ(LN − 1)|2 + |ϕ(LN + 1)|2).
Let |z| < 5. Then there exists B′ > 0 such that

|ϕ(LN)|2 ≤ B′L
Γ−1
Γ

N (|ϕ(LN − 1)|2 + |ϕ(LN + 1)|2). (2.73)

(2.72) and (2.73) imply that

|ϕ(LN)|2 ≤ 2BB′L
− 1

Γ
N

ϵ
ImFN(E + iϵ).

Therefore, there exists C7 = C7(p) such that

ϵ

T 3+LN∑
m=LN

mp

∫
B ν

2

dE |χE+iϵ(H
(k)
N )δ1(m)|2

≤ C7ϵ

T 3+LN∑
m=LN

mpexp(−2cϵ(m− LN))

∫
B ν

2

dE |χE+iϵ(H
(k)
N )δ1(LN)|2

≤ C7ϵ
−p
∫
B ν

2

dE |ϕ(LN)|2

≤ 2BB′C7ϵ
−p−1L

− 1
Γ

N

∫
B ν

2

dE ImFN(E + iϵ)

≤ 2BB′C7T
p+1L

− 1
Γ

N , ϵ = (2T )−1.
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Corollary 2.5.11. Let p > 0, f be the first kind, and ψ = f(H(k))δ1. Then there exists

C8 = C8(p) > 0 such that for LN ≤ T ≤ L
1
Γ
N with N sufficiently large,

⟨|X|p⟩(k)ψ (T ) ≤ C8L
p
N + C8T

p+1L
− 1

Γ
N .

Lemma 2.5.12. Let f be the first kind and ψ = f(H(k))δ1. Then

β
(k)
ψ (p) =

p+ 1

p+ 1
Γ

.

Proof. Let LN ≤ T = LAN ≤ L
1
Γ
N , where A =

p+ 1
Γ

p+ 1
. Then Corollary 2.5.11 shows that

⟨|X|p⟩(k)ψ (LAN) ≤ C8L
p
N .

Therefore we have

β
(k)
ψ (p) ≤

1

p
lim
N→∞

log⟨|X|p⟩(k)ψ (LAN)

logLAN
≤ A−1 =

p+ 1

p+ 1
Γ

.

Since f is the first kind, (2.57) holds.

2.5.3 Proof of the main result

Lemma 2.5.13. Let A ∈ B1. Then E(A) = 0 if and only if µ
(k)
δ1
(A) = 0 for any k ∈ N.

Proof. Assume that E(A) = 0. Then we see that E(k)(A) = 0 and

µ
(k)
δ1
(A) = (δ1, E

(k)(A)δ1) = 0.

Conversely, assume that µ
(k)
δ1
(A) = 0 for any k ∈ N. It is sufficient to prove that

E(k)(A) = 0 for any k ∈ N. Let p ba a polynomial, then we see that

µ
(k)

p(H(k))δ1
(A) = (p(H(k))δ1, E

(k)(A)p(H(k))δ1) =

∫
A

|p(λ)|2µ(k)
δ1
(dλ) = 0.

This implies that E(k)(A)p(H(k))δ1 = 0. Since δ1 is a cyclic vector for H(k) : l2(N) →
l2(N), {p(H(k))δ1 ∈ l2(N) | p is a polynomial} is dense in l2(N). Therefore E(k)(A) = 0
follows.

Lemma 2.5.14. Let A ∈ B1 and A ⊂ (0, 4). Then Ẽ(A) = 0 if and only if µ
(k)
ψ (A) = 0

for any k ∈ N and any ψ = f(H(k))δ1, with the first kind f . Moreover, dim∗Ẽ = dim∗µ
(k)
ψ

and dim∗Ẽ = dim∗µ
(k)
ψ follow for any k ∈ N and any ψ = f(H(k))δ1, with the first kind f .

40



Proof. Assume that Ẽ(A) = 0. Then we see that E(k)(A) = 0 and

µ
(k)
ψ (A) = (ψ,E(k)(A)ψ) = 0.

Assume that µ
(k)
ψ (A) = 0 for any k ∈ N and ψ = f(H(k))δ1, where f is the first kind.

Let fn ∈ C∞
0 ( 1

n
, 4 − 1

n
), |fn| ≤ 1, and fn = 1 on the interval ( 2

n
, 4 − 2

n
), n = 1, 2, .... Let

ψn = fn(H
(k))δ1. Since fn is the first kind, µ

(k)
ψn
(A) = 0 for any k ∈ N. It is sufficient to

prove that E(k)(A) = 0 for any k ∈ N. We see that

µ
(k)
ψn
(A) = (fn(H

(k))δ1, E
(k)(A)fn(H

(k))δ1) =

∫
A

|fn(λ)|2µ(k)
δ1
(dλ) = 0.

By the Lebeasgue’s dominated convergence theorem,

0 = lim
n→∞

µ
(k)
ψn
(A) = lim

n→∞

∫
A

|fn(λ)|2µ(k)
δ1
(dλ) = µ

(k)
δ1
(A).

By Lemma 2.5.13, we see that E(k)(A) = 0. Then we prove the first part of our assertion.
The second part is straightforward to prove by the first part and the definition of the lower
and upper Hausdorff dimensions.

Proof of Theorem 2.1.4. By Lemma 2.5.14, it is sufficient to prove that dim∗µ
(k)
ψ =

dim∗µ
(k)
ψ = Γ for any k ∈ N and any ψ = f(H(k))δ1, with the first kind f . By Lemma

2.1.3, we see that
Γ ≤ dim∗µ

(k)
ψ ≤ dim∗µ

(k)
ψ .

By Lemma 2.3.2 and Lemma 2.5.12, for any p > 0,

dim∗(µ
(k)
ψ ) ≤ β

(k)
ψ (p) =

p+ 1

p+ 1
Γ

.

This imlies that dim∗µ
(k)
ψ = dim∗µ

(k)
ψ = Γ.
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Chapter 3

No eigenvectors embedded in the
singular continuous spectrum of
Schrödinger operators

3.1 Introduction and a result

We investigate one-dimensional Schrödinger operators with sparse potentials. It is known
that the spectrum of Schrödinger operators with sparse potential consists of singular con-
tinuous spectrum. Simon and Spencer [23] show the absence of absolutely continuous
spectrum of Schrödinger operators with sparse potentials. Simon and Stoltz [22] also show
that − d2

dx2
f + V f = Ef has no L2-solutions for any E > 0. We have the question whether

the edge of the singular continuous spectrum is an eigenvalue or not. We give a sufficient
condition for the absence of embedded eigenvalues and give examples.

Definition 3.1.1. A function V : [0,∞) → R is called a sparse potential, if there exist
positive sequences {xn}∞n=1, {αn}∞n=1 and {hn}∞n=1 such that xn+1 > xn for n = 1, 2, 3, ...,

(i) lim
n→∞

xn+1 − xn
αn+1 + αn + 1

= ∞,

(ii) |V (x)| ≤ hn, if x ∈ [xn − αn, xn + αn] for n = 1, 2, 3, ...,

(iii) V (x) = 0, if x ∈

(
∞⋃
n=1

[xn − αn, xn + αn]

)c

We define Ln = xn+1 − xn − αn+1 − αn for n ≥ 1 and L0 = x1 − α1. By (i), Ln → ∞
as n → ∞. By Strum-Liouville theory [26,Theorem 9.1.], there exists a unique solution
f ∈ ACloc([0,∞)) of the equation − d2

dx2
f + V f = 0 with d

dx
f ∈ ACloc([0,∞)) and the

boundary condition f(0) = α, d
dx
f(0) = β, α, β ∈ C. We give a sufficient condition of the

existence of a non L2-integrable solution.
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Theorem 3.1.2. Let V be the sparse potential and f a weak solution of − d2

dx2
f + V f = 0.

If

Ln

4n

(
n∏

m=1

(L2
m−1 + 2)

)−1( n∏
m=1

(2α2
m + 1)

)−1

exp

(
−2

3

n∑
m=1

hm(4α
3
m + 3αm)

)
→ ∞, (3.1)

as n→ ∞, then f /∈ L2([0,∞)).

We give an example for one-dimensional Schrödinger operators with singular continuous
spectrum which has no embedded eigenvalues. Let xn = exp(nn) for n = 1, 2, 3, ..., and

V (x) =

{
en, if |x− xn| ≤ 1

2
for n = 1, 2, 3, ...,

0, otherwise.

Let Hc = − d2

dx2
+ V : L2([0,∞)) → L2([0,∞)) with the domain D(Hc) = C∞

0 ((0,∞)). We
see that Hc is regular at zero and in the limit point case at infinity. This implies that Hc

has self-adjoint extensions Hθ which can be parametrized by boundary conditions. Hence,
Hθ is the restriction of H∗ to Dθ = {f ∈ D(H∗) | f(0) sin θ − d

dx
f(0) cos θ = 0}. By [22],

we have σsc(Hθ) = [0,∞), σpp(Hθ) ∩ (0,∞) = ∅ and σac(Hθ) = ∅ for all θ ∈ (π
2
, π
2
]. See

section 4.4 for the proof. Theorem 3.1.2 implies the next corollary. This also implies that
Hθ has purely singular continuous spectrum for some θ.

Corollary 3.1.3. It follows that

(1) σsc(Hθ) = [0,∞), σpp(Hθ) ∩ [0,∞) = ∅ and σac(Hθ) = ∅ for all θ ∈ (−π
2
, π
2
],

(2) Hθ has purely singular continuous spectrum for θ ∈ [0, π
2
],

(3) Hθ has a single negative eigenvalue for θ ∈ (−π
2
, arctan(−1+

√
3

2
)].

3.2 Proof of Theorem 3.1.2.

We calculate a lower bound of Wronskian matrices. For a 2× 2-real matrix M , let

LowM = inf

{∣∣∣∣M (
cos θ
sin θ

)∣∣∣∣ ∣∣∣∣ θ ∈ [0, 2π)

}
.

We see that |Mu| ≥ LowM |u| for u ∈ R2 and LowM =
√

inf σ(tMM). Let V be a

sparse potential and f ∈ ACloc([0,∞)) be a weak solution of − d2

dx2
f + V f = 0 with d

dx
f ∈

ACloc([0,∞)) and the boundary condition f(0) = cos θ, d
dx
f(0) = sin θ. We can represent

the weak solution concretely as follows. Let J0 = [0, x1 − α1], In = [xn − αn, xn + αn]
and Jn = [xn + αn, xn+1 − αn+1] for n = 1, 2, .... Let pn, qn : Jn → R be defined by
pn(x) = 1, qn(x) = x − xn − αn, and p0, q0 : J0 → R by p0(x) = 1, q0(x) = x. Let
φn, ψn : In → R be the weak solution of − d2

dx2
f + V f = 0 on In with the boundary
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condition φn(xn − αn) = 1, d
dx
φn(xn − αn) = 0, ψn(xn − αn) = 0 and d

dx
ψn(xn − αn) = 1.

We define f̃ : [0,∞) → R by

f̃(x) = c(1)n pn(x) + c(2)n qn(x) if x ∈ Jn,

f̃(x) = d(1)n φn(x) + d(2)n ψn(x) if x ∈ In,

where c
(1)
n , c

(2)
n , d

(1)
n and d

(2)
n are inductively determined by for n = 1, 2, ...

lim
x↓0

(
p0(x) q0(x)
d
dx
p0(x)

d
dx
q0(x)

)(
c
(1)
0

c
(2)
0

)
=

(
cos θ
sin θ

)
,

lim
x↑xn−αn

(
pn−1(x) qn−1(x)
d
dx
pn−1(x)

d
dx
qn−1(x)

)(
c
(1)
n−1

c
(2)
n−1

)
= lim

x↓xn−αn

(
φn(x) ψn(x)
d
dx
φn(x)

d
dx
ψn(x)

)(
d
(1)
n

d
(2)
n

)
,(3.2)

lim
x↑xn+αn

(
φn(x) ψn(x)
d
dx
φn(x)

d
dx
ψn(x)

)(
d
(1)
n

d
(2)
n

)
= lim

x↓xn+αn

(
pn(x) qn(x)
d
dx
pn(x)

d
dx
qn(x)

)(
c
(1)
n

c
(2)
n

)
.(3.3)

By the definition, f̃ and d
dx
f̃ are continuous, and

(
f̃(0)
d
dx
f̃(0)

)
=

(
cos θ
sin θ

)
. The coefficients

c
(1)
n , c

(2)
n , d

(1)
n and d

(2)
n are uniquely determined by θ. We see that∫ ∞

0

f̃(x)
d2

dx2
g(x)dx =

∫ ∞

0

f̃(x)V (x)g(x)dx

for g ∈ C∞
0 ((0,∞)) straightforwardly. This implies that f̃ satisfies − d2

dx2
f + V f = 0 in the

sence of the weak derivative. Therefore f = f̃ by the uniqueness of the solution.

Lemma 3.2.1. Let cn =

(
c
(1)
n

c
(2)
n

)
. Then we see that

∫
Jn

|f(x)2|dx ≥ 1

4

L3
n

L2
n + 3

|cn|2. (3.4)

Proof. We obtain ∫
Jn

|f(x)|2dx =

∫
Jn

|c(1)n pn(x) + c(2)n qn(x)|2dx

=
(
c
(1)
n c

(2)
n

)( Ln
1
2
L2
n

1
2
L2
n

1
3
L3
n

)(
c
(1)
n

c
(2)
n

)
.

The matrix

(
Ln

1
2
L2
n

1
2
L2
n

1
3
L3
n

)
can be diagonalized and its eigenvalues λ± are

λ± =
1

2

(
Ln +

1

3
L3
n ±

√
(Ln +

1

3
L3
n)

2 − 1

3
L4
n

)
.
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Since 1−
√
1− t ≥ 1

2
t for 0 < t < 1, we have

λ− =
Ln +

1
3
L3
n

2

1−

√
1− L4

n

3

(
Ln +

1

3
L3
n

)−2
 ≥ 1

4

L3
n

L2
n + 3

.

This implies our assertion.

By (3.2) and (3.3), we obtain cn = RnWn−1cn−1 for n ≥ 1, where

Rm = lim
x↑xm+αm

(
φm(x) ψm(x)
d
dx
φm(x)

d
dx
ψm(x)

)
,

Wm = lim
x↑xm+1−αm+1

(
pm(x) qm(x)
d
dx
pm(x)

d
dx
qm(x)

)
=

(
1 Lm
0 1

)
.

We shall estimate LowRm and LowWm.

Lemma 3.2.2. It follows that

LowWm ≥ 1√
L2
m + 2

. (3.5)

Proof. The eigenvalues ξ± of tWmWm are

ξ± =
1

2

(
L2
m + 2±

√
(L2

m + 2)2 − 4
)
.

Since 1−
√
1− t ≥ 1

2
t for 0 < t < 1, we have

ξ− =
L2
m + 2

2

(
1−

√
1− 4(L2

m + 2)−2
)
≥ 1

L2
m + 2

.

Since LowM =
√

inf σ(tMM), we have our assertion.

Let φ̃m, ψ̃m : Im → R be defined by φ̃m(x) = 1, ψ̃m(x) = x − xm + αm. We see that

φ̃m, ψ̃m satisfy − d2

dx2
f = 0. There exist u

(j)
m , v

(j)
m ∈ AC(Im), j = 1, 2 such that(

φm(x)
d
dx
φm(x)

)
= u(1)m (x)

(
φ̃m(x)
d
dx
φ̃m(x)

)
+ u(2)m (x)

(
ψ̃m(x)
d
dx
ψ̃m(x)

)
,(

ψm(x)
d
dx
ψm(x)

)
= v(1)m (x)

(
φ̃m(x)
d
dx
φ̃m(x)

)
+ v(2)m (x)

(
ψ̃m(x)
d
dx
ψ̃m(x)

)
.

We see that u
(1)
m (xm − αm) = 1, u

(2)
m (xm − αm) = 0, v

(1)
m (xm − αm) = 0, v

(2)
m (xm − αm) = 1,

and (
φm ψm
d
dx
φm

d
dx
ψm

)
=

(
φ̃m ψ̃m
d
dx
φ̃m

d
dx
ψ̃m

)(
u
(1)
m v

(1)
m

u
(2)
m v

(2)
m

)
. (3.6)
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Note that φn and ψn satisfy the equation − d2

dx2
f + V f = 0 which is equivalent to(

d
dx
f

d2

dx2
f

)
=

(
0 1
V 0

)(
f
d
dx
f

)
.

Differentiating both sides of (3.6), we obtain(
0 0
V 0

)(
φ̃m ψ̃m
d
dx
φ̃m

d
dx
ψ̃m

)(
u
(1)
m v

(1)
m

u
(2)
m v

(2)
m

)
=

(
φ̃m ψ̃m
d
dx
φ̃m

d
dx
ψ̃m

)(
d
dx
u
(1)
m

d
dx
v
(1)
m

d
dx
u
(2)
m

d
dx
v
(2)
m

)
.

Thus we have(
d
dx
u
(1)
m

d
dx
v
(1)
m

d
dx
u
(2)
m

d
dx
v
(2)
m

)
= −V

(
φ̃mψ̃m ψ̃2

m

−φ̃2
m −φ̃mψ̃m

)(
u
(1)
m v

(1)
m

u
(2)
m v

(2)
m

)
. (3.7)

Let um =

(
u
(1)
m

u
(2)
m

)
and vm =

(
v
(1)
m

v
(2)
m

)
. By (3.7), we see that um and vm satisfy that

d

dx
um = −V

(
φ̃mψ̃m ψ̃2

m

−φ̃2
m −φ̃mψ̃m

)
um, (3.8)

d

dx
vm = −V

(
φ̃mψ̃m ψ̃2

m

−φ̃2
m −φ̃mψ̃m

)
vm. (3.9)

Lemma 3.2.3. For x ∈ Im, u
(1)
m (x)v

(2)
m (x)− v

(1)
m (x)u

(2)
m (x) = 1.

Proof. By (3.8) and (3.9), we obtain

d

dx
(u(1)m v(2)m − v(1)m u(2)m ) =

d

dx
u(1)m v(2)m + u(1)m

d

dx
v(2)m − d

dx
v(1)m u(2)m − v(1)m

d

dx
u(2)m

= −V (φ̃mψ̃mu
(1)
m + ψ̃2

mu
(2)
m )v(2)m + u(1)m V (φ̃2

mv
(1)
m + φ̃mψ̃mv

(2)
m )

+V (φ̃mψ̃mv
(1)
m + ψ̃2

mv
(2)
m )u(2)m − v(1)m V (φ̃2

mu
(1)
m + φ̃mψ̃mu

(2)
m )

= 0.

Since u
(1)
m (xm−αm)v(2)m (xm−αm)−v(1)m (xm−αm)u(2)m (xm−αm) = 1, we have our assertion.

Lemma 3.2.4. Assume uj, vj ∈ R, j = 1, 2 and u1v2 − v1u2 = 1. Then

Low

(
u1 v1
u2 v2

)
≥

1√
u21 + u22 + v21 + v22

.
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Proof. Let u =

(
u1
u2

)
and v =

(
v1
v2

)
, and u · v = u1v1 + u2v2. The eigenvalues ξ± of the

matrix

(
u1 u2
v1 v2

)(
u1 v1
u2 v2

)
are

ξ± =
1

2

(
|u|2 + |v|2 ±

√
(|u|2 + |v|2)2 − 4(|u|2|v|2 − u · v)2

)
.

Since 1−
√
1− t ≥ 1

2
t for 0 < t < 1 and |u|2|v|2 − u · v = (u1v2 − u2v1)

2 = 1, we obtain

ξ− ≥ 1

|u|2 + |v|2
.

This implies our assertion.

Lemma 3.2.5. It follows that

LowRm ≥
1

2
√

2α2
m + 1

exp

(
−1

3
hm(4α

3
m + 3αm)

)
. (3.10)

Proof. Note that

Rm = lim
x↑xm+αm

(
φm(x) ψm(x)
d
dx
φm(x)

d
dx
ψm(x)

)
= lim

x↑xm+αm

(
φ̃m(x) ψ̃m(x)
d
dx
φ̃m(x)

d
dx
ψ̃m(x)

)(
u
(1)
m (x) v

(1)
m (x)

u
(2)
m (x) v

(2)
m (x)

)
.

It is straightfoward to see

lim
x↑xm+αm

(
φ̃m(x) ψ̃m(x)
d
dx
φ̃m(x)

d
dx
ψ̃m(x)

)
=

(
1 2αm
0 1

)
,

Low

(
1 2αm
0 1

)
≥

1√
4α2

m + 2
. (3.11)

By Lemmas 3.2.3 and 3.2.4, we have

Low

(
u
(1)
m (x) v

(1)
m (x)

u
(2)
m (x) v

(2)
m (x)

)
≥ 1√

|um(x)|2 + |vm(x)|2
.

We see that for a, b ∈ R,

sup
θ∈[0,π)

∣∣∣∣((cos θsin θ

)
,

(
ab b2

−a2 −ab

)(
cos θ
sin θ

))∣∣∣∣ = a2 + b2

2
. (3.12)

By (3.8) and (3.12), we have

d

dx
(|um|2) = 2

(
um,

d

dx
um

)
≤ 2|V |

∣∣∣∣(um,(φ̃mψ̃m ψ̃2
m

−φ̃2
m −φ̃mψ̃m

)
um

)∣∣∣∣
≤ hm(φ̃

2
m + ψ̃2

m)|um|2.
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Thus, by Gronwall’s inequality, we obtain

|um(x)|2 ≤ exp

(
hm

∫ x

xm−αm

(
φ̃m(y)

2 + ψ̃m(y)
2
)
dy

)
.

In particular

|um(xm + αm)|2 ≤ exp

(
hm

∫ xm+αm

xm−αm

(
1 + (y − xm + αm)

2
)
dy

)
.

= exp

(
hm(2αm +

8

3
α3
m)

)
.

We can estimate |vm|2 in a similar way:

|vm(xm + αm)|2 ≤ exp

(
2

3
hm(4α

3
m + 3αm)

)
.

Therefore, we see that

Low

(
u
(1)
m (x) v

(1)
m (x)

u
(2)
m (x) v

(2)
m (x)

)∣∣∣∣∣
x=xm+αm

≥ 1√
|um(x)|2 + |vm(x)|2

∣∣∣∣∣
x=xm+αm

≥
1
√
2
exp

(
−1

3
hm(4α

3
m + 3αm)

)
. (3.13)

By (3.11) and (3.13), we have our assertion.

Proof of Theorem 3.1.2. By (3.5), (3.10), and cn = RnWn−1cn−1 for n ≥ 1, we obtain

|cn| ≥
1

2n

(
n∏

m=1

(L2
m−1 + 2)(2α2

m + 1)

)− 1
2

exp

(
−1

3

n∑
m=1

hm(4α
3
m + 3αm)

)
. (3.14)

If n is sufficiently large, then

L3
n

L2
n + 3

≥ Ln
4
.

Thus, by (3.4) and (3.14), if n is sufficiently large, then we have∫
Jn

|f(x)2|dx ≥ Ln
4n+2

(
n∏

m=1

(L2
m−1 + 2)(2α2

m + 1)

)−1

exp

(
−2

3

n∑
m=1

hm(4α
3
m + 3αm)

)
.

Suppose (3.1). Then we obtain ∫
Jn

|f(x)2|dx→ ∞.

This implies that any solutions f of − d2

dx2
f + V f = 0 do not belong to L2([0,∞)).
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3.3 Proof of Corollary 3.1.3.

Note that xn = exp(nn), αn = 1
2
, hn = en, L0 = x1 − 1

2
and Ln = xn+1 − xn − 1 for n ≥ 1.

Lemma 3.3.1. If there exists f ∈ D(Hθ) such that (f,Hθf) < 0, then Hθ has a single
negative eigenvalue.

Proof. R[A] denotes the range of a map A. We see that dimR[Eθ((−∞, 0))] ≤ 1. For
its proof, see Lemma 4.4.1. Let f ∈ D(Hθ) such that (f,Hθf) < 0. Then this implies
R[Eθ((−∞, 0))] ̸= {0} and dimR[Eθ((−∞, 0))] = 1. This implies our assertion.

Lemma 3.3.2. It follows that

(1) Hθ has no negative eigenvalues for θ ∈ [0, π
2
],

(2) Hθ has a single negative eigenvalue for θ ∈ (−π
2
, arctan(−1+

√
3

2
)].

Proof. Let f ∈ D(Hθ). Then f satisfies the boundary condition f(0) sin θ− d
dx
f(0) cos θ =

0. We obtain that

(f,Hθf) =

∫ ∞

0

f(x)(− d2

dx2
f(x) + V (x)f(x))dx

= f(0)
d

dx
f(0) +

∫ ∞

0

(∣∣∣∣ ddxf(x)
∣∣∣∣2 + V (x)|f(x)|2

)
dx.

If θ = 0 or π
2
, then we have f(0) d

dx
f(0) = 0 and (f,Hθf) ≥ 0. If 0 < θ < π

2
, then by the

boundary condition, we obtain

(f,Hθf) = |f(0)|2 tan θ +
∫ ∞

0

(∣∣∣∣ ddxf(x)
∣∣∣∣2 + V (x)|f(x)|2

)
dx ≥ 0.

Thus (f,Hθf) ≥ 0 for θ ∈ [0, π
2
]. This implies the first part of our assertion.

We shall prove that there exists f ∈ D(Hθ) such that (f,Hθf) < 0 for any θ ∈
(−π

2
, arctan(−1+

√
3

2
)]. It is sufficient to prove there exists f ∈ L2([0,∞)) such that (− d2

dx2
f+

V f, f) < 0 for any boundray conditions
d
dx
f(0)

f(0)
= −λ, λ ≥ 1+

√
3

2
. Let λ ≥ 1. Define

fλ : [0,∞) → R by

fλ(x) =

exp

(
λ

x− 1

)
, if 0 ≤ x < 1

0, otherwise.

We see that fλ ∈ L2([0,∞)) and that fλ(0) = exp(−λ), d
dx
fλ(0) = −λ exp(−λ). Then we

have ∫ ∞

0

| d
dx
fλ(x)|2dx =

∫ 1

0

∣∣∣∣∣ λ

(x− 1)2
exp

(
λ

x− 1

)∣∣∣∣∣
2

dx

=
1

4λ
(2λ2 + 2λ+ 1) exp(−2λ).
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Since V (x)fλ(x) = 0 for x ≥ 0, we obtain that, for λ ≥ 1+
√
3

2
,(

− d2

dx2
fλ + V fλ, fλ

)
=

1

4λ
(−2λ2 + 2λ+ 1) exp(−2λ) < 0.

By Lemma 3.3.1, we have our assertion.

Lemma 3.3.3. For any p > 0, it follows that

lim
n→∞

xn

(
n−1∏
m=1

xm

)−p

= ∞.

Proof. We obtain

xn+1

(
n∏

m=1

xm

)−p

= exp

(
(n+ 1)n+1 − pnn − p

n−1∑
m=1

mm

)
≥ exp

(
(n+ 1)n+1 − pnn − p(n− 1)n

)
= exp ((n+ 1− 2p)(n+ 1)n)

→ ∞, as n→ ∞.

Proof of Corollary 3.1.3. By Lemma 3.3.2 it is sufficient to prove that 0 /∈ σpp(Hθ) for
all θ. We see that for all n ≥ 1,

L2
n + 2

L2
n

< 2.

Thus we have for all n ≥ 1,(
n∏

m=1

(L2
m−1 + 2)

)−1

≥ 2n−1

L2
0 + 2

(
n−1∏
m=1

Lm

)−2

.

We see that Ln < xn+1 for all n ≥ 1 and Ln >
1
2
xn+1 for sufficiently large n ≥ 1. Therefore

we have

Ln

(
n−1∏
m=1

Lm

)−2

≥
1

2
xn+1

(
n∏

m=1

xm

)−2

.
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By Lemma 3.3.3, we obtain

Ln

4n

(
n∏

m=1

(L2
m−1 + 2)

)−1( n∏
m=1

(2α2
m + 1)

)−1

exp

(
−2

3

n∑
m=1

hm(4α
3
m + 3αm)

)

≥ 1

2(L2
0 + 2)3n

Ln

(
n−1∏
m=1

Lm

)−2

exp

(
−4

3

n∑
m=1

em

)

≥ 1

4(L2
0 + 2)3n

xn+1

(
n∏

m=1

xm

)−2

exp

(
−4

3
en+1

)

=
exp(1

3
(n+ 1)n+1)

4(L2
0 + 2)3n

xn+1

1
3

(
n∏

m=1

xm

)−2

exp

(
1

3

(
(n+ 1)n+1 − 4en+1

))
→ ∞, as n→ ∞.

By Theorem 3.1.2, we see that 0 /∈ σ(Hθ).
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Chapter 4

Appendix

4.1 Decomposition of the graph Laplacian

We discuss the decomposition of the graph Laplacian and represent the graph Laplacian
as a Jacobi matrix. See [1].

We assume that G = (V,E) is a spherically homogeneous tree. Let πn : l2(Sn) →
l2(Sn+1), n = 0, 1, ..., be defined by

πnf(u) =
∑

v∈Sn:v∼u

f(v), u ∈ Sn+1.

The adjoint π∗
n : l2(Sn+1) → l2(Sn) is given by

π∗
ng(u) =

∑
v∈Sn+1:v∼u

g(v), u ∈ Sn.

Lemma 4.1.1. Let f , g ∈ l2(Sn). Then (πnf, πng) = gn(f, g).

Proof. Let f , g ∈ l2(Sn). Since G is a spherically homogeneous,

⟨πnf, πng⟩ =
∑

u∈Sn+1

πnf(u)πng(u) = gn
∑
u∈Sn

f(u)g(u).

We see that V is a disjoint union V = ∪∞
n=0Sn, and that l2(V ) =

⊕∞
n=0 l

2(Sn). Let
Π : l2(V ) → l2(V ) be defined by Π =

⊕∞
n=0 πn.

Lemma 4.1.2. Let f ∈ D. Then Af = (Π + Π∗)f .

Proof. Let f ∈ D and u ∈ Sn. Since G is a spherically homogeneous tree, u is adjacent
with only vertices in Sn−1 and Sn+1. Therefore we see that

(Π + Π∗)f(u) =
∑

v∈Sn−1;v∼u

f(v) +
∑

v∈Sn+1;v∼u

f(v) =
∑

v∈V ;v∼u

f(v) = Af(u).
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Let αn = #Sn = dim(l2(Sn)), n = 0, 1, .... Suppose that {e(n)k }αnk=1 is a CONS of l2(Sn).

Then we can construct a CONS {e(n+1)
k }αn+1

k=1 of l2(Sn+1) by the following procedure. Let

e
(n+1)
k = ∥πne(n)k ∥−1πne

(n)
k , k = 1, 2, ..., αn. By Lemma 4.1.1, {e(n+1)

k }αnk=1 is an ONS of

l2(Sn+1). If αn = αn+1, then {e(n+1)
k }αnk=1 is a CONS of l2(Sn+1). If αn < αn+1, by the

Gram-Schmidt process, we can obtain e
(n+1)
k ∈ l2(Sn+1), k = αn + 1, ..., αn+1, such that

{e(n+1)
k }αnk=1 ∪ {e(n+1)

k }αn+1

k=αn+1 is a CONS of l2(Sn+1).

Suppose that a CONS of l2(S0) is given. Then we can costruct a CONS {e(n)k }αnk=1 of

l2(Sn), n = 0, 1, ..., inductively. Hence,
⋃∞
n=0{e

(n)
k }αnk=1 is a CONS of l2(V ).

Assume that supn=0,1,... αn = ∞, and let α−1 = 0. Since {αn}∞n=0 is non-decreasing,
there exists a unique N(k) ∈ N ∪ {0} such that αN(k)−1 < k ≤ αN(k) for every k ∈ N. We
see that

∞⋃
n=0

{e(n)k | k = 1, 2, ..., αn} =
∞⋃
k=1

{e(n)k | n = N(k), N(k) + 1, ...}.

Lemma 4.1.3. Let the closed subspace Mk of l2(V ), k = 1, 2, ..., be defined by

Mk = ⟨{e(n)k | n = N(k), N(k) + 1, ...}⟩.

Then Mk is invariant under A, D and L.

Proof. By the definition of e
(n)
k and Lemma 4.1.1, we see that

Πe
(n)
k = ∥πne(n)k ∥e(n+1)

k ,

Π∗e
(n)
k =


gn−1

∥πn−1e
(n−1)
k ∥

e
(n−1)
k (n ≥ N(k) + 1),

o (n = N(k)).

This implies thatMk is invariant under Π and Π∗, and hence, by Lemma 4.1.2, we see that
Mk is invariant under A. Since G is a spherically homogeneous tree, we have

Denk =

{
(gn + 1)e

(n)
k (n ≥ 1),

g0e
(0)
1 (n = 0).

Hence, Mk is also inavariant under D. Since L = D−A, we see that Mk is invariant under
L.

By Lemma 4.1.3, let H(k), A(k), D(k) : Mk → Mk, k = 1, 2, ..., be defined by the
restriction of Hd, A and D to Mk, respectively. We see that H(k) is self-adjoint and
H =

⊕∞
k=1H

(k).

We consider the matrix representation of H(k) with respect to the CONS {e(n)k | n =
N(k), N(k) + 1, ...} of Mk for k = 2, 3, .... Then it follows for n,m ≥ N(k) that

(e
(n)
k , H(k)e

(n)
k ) = (e

(n)
k , D(k)e

(n)
k ) = gn + 1,

(e
(n)
k , H(k)e

(n+1)
k ) = −(e

(n)
k , A(k)e

(n+1)
k ) = −√

gn,

(e
(n)
k , H(k)e

(m)
k ) = 0, if |n−m| ≥ 2 .
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We have the matrix representation of H(1). It follows for n,m ≥ N(1) = 0 that

(e
(n)
1 , H(1)e

(n)
1 ) = (e

(n)
1 , D(1)e

(n)
1 ) =

{
g0 (n = 0),

gn + 1 (n ≥ 1),

(e
(n)
1 , H(1)e

(n+1)
1 ) = −(e

(n)
1 , A(1)e

(n+1)
1 ) = −√

gn,

(e
(n)
1 , H(1)e

(m)
1 ) = 0, if |n−m| ≥ 2.

Let k, n ∈ N and let dk = (dk(n))
∞
n=1 and ak = (ak(n))

∞
n=1 be defined by

dk(n) = (e
(n+N(k)−1)
k , D(k)e

(n+N(k)−1)
k ),

ak(n) = (e
(n+N(k))
k , A(k)e

(n+N(k)−1)
k ).

We can identify H(k) : l2(N) → l2(N), k = 1, 2, ..., with the following Jacobi matrix :

H(k) =



dk(1) −ak(1)

−ak(1) dk(2) −ak(2)

−ak(2) dk(3) −ak(3)

−ak(3)
. . . . . .

. . .


.

This implies our assertion of Lemma 2.2.1. Similary, we can identify A(k), D(k) : l2(N) →
l2(N) with the following Jacobi matrices :

A(k) =



0 ak(1)

ak(1) 0 ak(2)

ak(2) 0 ak(3)

ak(3)
. . . . . .

. . .


, D(k) =



dk(1)

dk(2)

dk(3)

. . .


.

4.2 Fourier analysis and fractal measures

In this section, we introduce a result about the Fourier analysis of the fractal measure. Let
Br(x) = [x− r, x+ r] ⊂ R. Let L be the Lebeage measure on R, and µ : B1 → [0,∞] be a
locally finite measure. Let Mµf : R → R be defined by

Mµf(x) = sup
r>0

1

µ(Br(x))

∫
Br(x)

|f |dµ
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for f ∈ L1
loc(R, dµ), where we take 0

0
= 0 if µ(Br(x)) = 0. Mµf is measurable and called

the Maximal function.

Lemma 4.2.1. Mµ : Lp(R, dµ) → Lp(R, dµ) is bounded for any p ∈ (1,∞).

Proof. Let En
s = {x ∈ R | |x| ≤ n,Mµf(x) > s} and x ∈ En

s . There exists rx > 0 such
that ∫

Brx (x)

|f |dµ ≥ sµ(Brx(x)).

Note that {Brx(x) | x ∈ En
s } is a Besicovitch covering of En

s . By [9, II, 18 The Besicov-
itch covering theorem, Theorem18.1], we see that there exists a countable subcollections
{Bn

j }∞j=1 of {Brx(x) | x ∈ En
s } such that {Bn

j }∞j=1 is a closed covering of En
s and there exist

C > 0 which is independent of En
s such that for any x ∈ R,

1lEns (x) ≤
∞∑
j=1

1lBnj (x) ≤ C.

Hence we have

s µ(En
s ) ≤ s

∞∑
j=1

µ(Bn
j ) ≤

∞∑
j=1

∫
Bnj

|f |dµ ≤ C

∫
R
|f |dµ.

Let n→ ∞. Then we see that for any f ∈ L1(R, dµ) and s > 0,

µ({x ∈ R |Mµf(x) > s}) ≤ Cs−1∥f∥L1 .

This implies that Mµ : L1(R, dµ) → L1(R, dµ) is weak (1, 1) type. We also see that
Mµ : L∞(R, dµ) → L∞(R, dµ) is weak (∞,∞) type. Thus we have our assertion by [9,
VIII, 9 The Marcinkiewicz interpolation theorem, Theorem 9.1].

We consider the Fourier transformation of the fractal measure. Let f ∈ L1(R, dµ) and
let f̂µ(ξ), ξ ∈ R, be defined by

f̂µ(ξ) =

∫
R
f(x)e−iξxµ(dx).

Lemma 4.2.2. Suppose µ be a finite measure. Then∫
R
|f̂µ(ξ)|2e−tξ2dξ <∞.

for any f ∈ L2(R, dµ) and t > 0.

Proof. Let f ∈ L1(R, dµ). We see that∫
R
|f̂µ(ξ)|e−tξ2dξ ≤

∫
R

∫
R
|f(x)|µ(dx)e−tξ2dξ <∞.

This implies that L1(R, dµ) ∋ f → f̂µ ∈ L1(R, e−tξ2dξ) is bounded. Since µ is a finite

measure, L∞(R, dµ) ∋ f → f̂µ ∈ L∞(R, e−tξ2dξ) is bounded. We have our assertion by
the Riesz interpolation theorem.
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Definition 4.2.3. Let α ∈ (0, 1). We say that a measure µ is uniformly α-Hölder con-

tinuous, if there exists C̃1 > 0 such that µ(I) < C̃1L(I)α for any interval I ⊂ R with
L(I) < 1.

Lemma 4.2.4. Let µ be a uniformly α-Hölder continuous and finite measure. Then there
exists C̃2 = C̃2(α, µ) > 0 such that for any f ∈ L2(R, dµ),

sup
0<t≤1

t
1−α
2

∫
R
|f̂µ(ξ)|2e−tξ2dξ < C̃2∥f∥2L2 .

Proof. Let f ∈ L2(R, dµ). We see that

t
1−α
2

∫
R
|f̂µ(ξ)|2e−tξ2dξ = t

1−α
2

∫
R
µ(dx)

∫
R
µ(dy)f(x)f(y)

∫
R
e−tξ

2−iξ(x−y)dξ

= πt−
α
2

∫
R
µ(dx)

∫
R
µ(dy)f(x)f(y)e−

(x−y)2
4

= πt−
α
2

∫
R
µ(dx)

∫
R
µ(dy)f(x)f(y)

∫ ∞

|x−y|

r

2t
e−

r2

4t dr

≤ πt−
α
2

∫
R
µ(dx) |f(x)|

∫ ∞

0

dr
r

2t
e−

r2

4t

∫
Br(x)

µ(dy)|f(y)|

≤ πt−
α
2

∫
R
µ(dx) |f(x)|

∫ ∞

0

dr
r

2t
e−

r2

4t µ(Br(x))Mµf(x).

Since µ is uniformly α-Hölder continuous and finite, there exists C̃ ′
2 = C̃ ′

2(α, µ) > 0 such
that for any t ∈ (0, 1],

t−
α
2

∫ ∞

0

dr
r

t
e−

r2

4t µ(Br(x)) ≤ µ(R)t−
α
2

∫ ∞

1

dr
r

t
e−

r2

4t + C̃1t
−α

2

∫ 1

0

dr
r1+α

t
e−

r2

4t

≤ 2µ(R)t−
α
2 e−

1
4t + 22+αC̃1

∫ ∞

0

s1+αe−s
2

ds

≤ C̃ ′
2.

Let C̃2 = πC̃ ′
2 > 0. By Schwarz inequality, we see that for any t ∈ (0, 1),

t
1−α
2

∫
R
|f̂µ(ξ)|2e−tξ2dξ ≤ C̃2

∫
R
µ(dx) |f(x)|Mµf(x) ≤ D2∥f∥L2∥Mµf∥L2 .

By Lemma 4.2.1, we have our assertion.

Lemma 4.2.5. Let µ be a uniformly α-Hölder continuous and finite measure. Then there
exists C̃3 = C̃3(α, µ) > 0 such tha for any f ∈ L2(R, dµ),

sup
T≥1

Tα−1

∫ T

0

|f̂µ(ξ)|2dξ ≤ C̃3∥f∥2.
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Proof. Let t ∈ (0, 1) and T = t−
1
2 . By Lemma 4.2.4, we see that for any T > 1,

C̃2∥f∥2 ≥ Tα−1

∫
R
|f̂µ(ξ)|2e−( ξ

T
)2dξ ≥ e−1Tα−1

∫ T

0

|f̂µ(ξ)|2dξ.

This implies our assertion.

Lemma 4.2.6. Let µ be a uniformly α-Hölder continuous and finite measure. Then there
exists C̃4 = C̃4(α, µ) > 0 such that for any f ∈ L2(R, dµ),

sup
T≥1

Tα−1

∫ ∞

0

e−
t
T |f̂µ(t)|2dt ≤ C̃4∥f∥2.

Proof. Let f ∈ L2(R, dµ). Then, by Lemma 4.2.5, we see that for any T > 1,

Tα−1

∫ ∞

0

e−
t
T |f̂µ(t)|2dt = lim

N→∞
Tα−1

∫ T (N+1)

0

e−
t
T |f̂µ(t)|2dt

= lim
N→∞

Tα−1

N∑
n=0

∫ T (n+1)

Tn

e−
t
T |f̂µ(t)|2dt

=
∞∑
n=0

(n+ 1)1−αe−n{T (n+ 1)}α−1

∫ T (n+1)

Tn

|f̂µ(t)|2dt

≤ C̃3∥f∥2
∞∑
n=0

(n+ 1)1−αe−n.

This implies our assertion.

4.3 Quadratic forms

In this section we give some lemmas about quadratic form theory which is used in Seciotin
4. Let H ba a complex Hilbert space. Let s : H ×H → C be a closed sesquilinear form,
and T : H → H be a closed linear operator. We say that s is symmetric, if s(f, g) = s(g, f)
for f, g ∈ D(s), and that s is sectorial, if there exist r ∈ R and θ ∈ (−π

2
, π
2
) such that for

f ∈ D(s) with ∥f∥ = 1,
arg(s[f ]− r) ≤ θ,

where s[f ] = s(f, f). We say that T is sectorial, if there exist r ∈ R and θ ∈ (−π
2
, π
2
) such

that for f ∈ D(s) with ∥f∥ = 1,

arg((f, Tf)− r) ≤ θ,

and that T is m-accretive, if Re(f, Tf) ≥ 0 for f ∈ D(T ) and (T + λ)−1 is bounded and
∥(T + λ)−1∥ ≤ (Reλ)−1 for λ ∈ C with Reλ > 0. In particular, T is said to be quasi
m-accretive, if there exists γ ∈ R such that T + γ is m-accretive, and T is said to be
m-sectorial, if T s quasi m-accretive and sectorial.
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Lemma 4.3.1. Let s : H×H → C be a densely defined, closed, and sectorial sesquilinear
form. Then there exist a unique m-sectorial operator S : H → H such that for f ∈
D(s), g ∈ D(S),

s(f, g) = (f, Sg).

Proof. [18, VI, §2, Theorem 2.1]

Lemma 4.3.2. Let t : H × H → C be a densely defined, closed, and symmetric form
bounded from below, and let T be the self-adjoint operator associated with t. Suppose that
s : H×H → C is a relatively bounded sesquilinear form with respect to t such that for any
f ∈ D(t) ⊂ D(s),

|s[f ]| ≤ at[f ] + b∥f∥2, 0 < a < 1, b ≥ 0.

Then t′ = s+ t is sectorial and closed. Let T ′ be the m-sectorial operators associated with
t′. If 0 < γ < 1, z ∈ ρ(T ) and

2∥(aT + b)(T − z)−1∥ ≤ γ < 1,

then z ∈ ρ(T ′) and

∥(T ′ − z)−1 − (T − z)−1∥ ≤
4γ

(1− γ)2
∥(T − z)−1∥.

Proof. [18, VI, §3, Theorem 3.9]

4.4 Negative eigenvalue and singular continuous spec-

trum

By [22], we see that σac(Hθ) = ∅ and σpp(Hθ) ∩ (0,∞) = ∅. In this section, we prove that
Hθ has a single negative eigenvalue for some θ and that σsc(Hθ) = [0,∞) for all θ. Let V
ba a sparse potential with xn = exp(nn) for n = 1, 2, ..., and

V (x) =

{
en, if |x− xn| ≤ 1

2
for n = 1, 2, ...,

0, otherwise.

By [22] and [23], we see that σpp(Hθ) ∩ (0,∞) = ∅ and σac(Hθ) = ∅ for all θ.

Lemma 4.4.1. Let Eθ be the spectral resolution of Hθ. For all θ, dimR[Eθ((−∞, 0))] ≤ 1.

Proof. We prove this by a contradiction. Suppose that dimR[Eθ((−∞, 0))] > 1. Then
we can take φ, ψ ∈ Eθ((−∞, 0)) such that φ and ψ are orthogonal to each other. Let
φn = Eθ((−n,− 1

n
))φ and ψn = Eθ((−n,− 1

n
))ψ. We see that φn, ψn ∈ D(Hθ), φn → φ and

ψn → ψ. Let N ≥ 1 be sufficiently large such that φN and ψN are linearly independent.
Since αφN + βψN ∈ R[Eθ((−N,− 1

N
))] for α, β ∈ C, we have, for (α, β) ̸= (0, 0),

(αφN + βψN , Hθ(αφN + βψN)) < 0. (4.1)
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On the other hand, since the deficiency indices of H are equal to one, there exists an
ismometric operator Uθ : ker(H

∗ − i) → ker(H∗ + i) and w ∈ ker(H∗ − i) such that

D(Hθ) =
{
v + α(w + Uθw)

∣∣v ∈ D(H), α ∈ C
}
,

where H is the closure of H. Let uθ = w+Uθw. There exist v1, v2 ∈ D(H) and α1, α2 ∈ C
such that

φN = v1 + α1uθ,

ψN = v2 + α2uθ.

If α1 = 0, then (φN , HθφN) = (v1, Hv1) ≥ 0. (4.1) implies α1 ̸= 0. Similarly we have
α2 ̸= 0. We obtain

(α2φN + α1ψN , Hθ(α2φN + α1ψN)) = (α2v1 + α1v2, H(α2v1 + α1v2)) ≥ 0.

This contradicts with (4.1). Thus we have our assertion.

Let E < 0. We see that dimker(H∗−E) = 1. This implies that there exists a boundary
condition θ(E) such that Hθ(E) has a single negative eigenvalue E.

Lemma 4.4.2. For all θ ∈ (−π
2
, π
2
], it follows that σsc(Hθ) = [0,∞).

Proof. Since σpp(Hθ)∩ (0,∞) = ∅ and σac(Hθ) = ∅ for all θ, we see that σ(Hθ)∩ (0,∞) =
σsc(Hθ) ∩ (0,∞). We prove (0,∞) ⊂ σ(Hθ) for all θ by contradition. Suppose that there
exist θ ∈ [0, π), E > 0 such that E ∈ (0,∞) \ σ(Hθ). Since H is regular at zero and
limit-circle case at infinity, the deficiency indices dim ker(H∗ ± i) are equal to one. Thus
dimker(H∗ − E) = 1. This implies that there exists an L2-solution of − d2

dx2
f + V f = Ef .

By [22, Theorem 2.3.], however, − d2

dx2
f + V f = pf has no solutions with f ∈ L2([0,∞))

for any p > 0. This is a contradiction and we get (0,∞) ⊂ σsc(Hθ) for all θ. Since
σsc(Hθ) ∩ (−∞, 0) = ∅, we get our assertion.
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