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Abstract

In recent years, Minhyong Kim and his collaborators ([Ki], [CK-
KPY]) initiated to study an arithmetic analogue for number rings of
Dijkgraaf~Witten theory for 3-manifolds, based on the analogies be-
tween 3-manifolds and number rings, knots and primes in arithmetic
topology. In this thesis, we present basic constructions and properties
in the arithmetic Dijkgraaf-~Witten theory along the lines of topo-
logical quantum field theory. For a finite set S of finite primes of
a number field k, we construct arithmetic analogues of the Chern—
Simons 1-cocycle, the prequantization bundle for a surface and the
Chern—Simons functional for a 3-manifold. We then construct arith-
metic analogues for k& and S of the quantum Hilbert space (space
of conformal blocks) and the Dijkgraaf~Witten partition function in
(241)-dimensional Chern—Simons TQFT. We show some basic and
functorial properties of those arithmetic analogues, in paticular, we
establish the decomposition and gluing formulas for arithmetic Chern—
Simons invariants and arithmetic Dijkgraaf~Witten partition func-
tions. Furthermore, we give explicit formulas of mod 2 arithmetic
Dijkgraaf-Witten invariants for number rings Spec(Ok), where K =
Q(\/P1p2 - Pr), pi’s being distinct prime numbers congruent to 1 mod
4, in terms of the Legendre symbols of p;’s. We also show topological
analogues of our formulas for 3-manifolds.
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Notations and convention

7 : the ring of rational integers

Q : the field of rational numbers

R : the field of real numbers

C : the field of complex numbers

R* : the group of units in a commutative ring R
Ok : the ring of integers of a number field K

Ik : the group of fractional ideals of K

Na € Q : the norm of a € I

Clg : the ideal class group of K

Cl}. : the narrow ideal class group of K

For a G-equivariant fiber bundle w : £ — B
['(B, E) : the set of sections of w

I'c(B, E) : the set of G-equivariant sections of w
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1 Introduction

In this thesis, we study arithmetic Digkgraaf-Witten theory for number
ring, based on the analogies between knots and primes, number rings and
3-manifolds in arithmetic topology.

Dijkgraaf-Witten theory is a 3-dimensional Chern—Simons gauge theory
with finite gauge group. It can be interpreted as a toy model of (2+1)-
dimensional topological quantum field theory, TQFT for short, in the sense
of Atiyah ([Atl]). TQFT is a framework to produce topological invariants for
manifolds. So Dijkgraaf-Witten TQFT gives the Dijkgraaf-Witten invari-
ants (partition functions) for 3-manifolds. For the construction of Dijkgraaf—
Witten TQFT, we consult [DW], [FQ], [Gm], [Wa], and [Ye].

In recent years, Minhyong Kim initiated to study arithmetic Chern—
Sitmons theory for number rings, which is based on the ideas of Dijkgraaf—
Witten theory for 3-manifolds ([DW]) and the analogies between 3-manifolds
and number rings, knots and primes in arithmetic topology ([Mo2]). In
[Ki] he constructed an arithmetic analogue of the Chern—Simons functional,
which is defined on a space of Galois representations over a totally imaginary
number field. In the subsequent paper [CKKPY] Kim and his collaborators
showed a decomposition formula for arithmetic Chern—Simons invariants and
applied it to concrete computations for some examples. Computations of
arithmetic Chern—Simons invariants have also been carried out for some ex-
amples, by employing number-theoretic considerations in [AC], [BCGKPT],
[CKKPPY], and [LP]. In [Hi], we extended Kim’s construction over arbitrary
number fields, which may have real primes (see also [LP] for another construc-
tion), and we gave an explicit formula for the mod 2 arithmetic Dijkgraaf-
Witten invariants for certain real quadratic number fields. In [HKM], we
showed a TQFT structure of arithmetic Dijkgraaf-Witten theory for the
complements of finite number of finite primes in number rings, along the line
of topological Dijkgraaf—~Witten TQFT.

In this thesis, after reviewing the topological Dijkgraaf-Witten theory,
we present our results in arithmetic Dijkgraaf~Witten theory, based on [Hi]
and [HKM]. The more precise contents of this thesis are organized as follows.

In Chapter 2, we recall Dijkgraaf-Witten theory for closed 3-manifolds
([DW]). For a finite group A and a 3-cocycle ¢ € Z3(A,Z/nZ), we intro-
duce the Chern—Simons invariant and the Dijkgraaf-Witten invariant for a
3-manifold. We then show explicit formulas for mod 2 Dijkgraaf-Witten
invariants for double covers of the 3-sphere.

In Chapter 3, we recall the definition of topological quantum field theory,
due to Atiyah, and construct the TQFT structure for Dijkgraaf-Witten the-
ory following Gomi ([Gm]). To be precise, for a oriented closed surface ¥, we



construct the Chern—Simons 1-cocycle and the prequantization bundle. For a
oriented compact 3-manifold M, we introduce the Chern—Simons functional.
We then construct the quantum Hilbert space and the Dijkgraaf-Witten par-
tition function in (2+1)-dimensional Chern—Simons TQFT.

In Chapter 4, we study an arithmetic analogues for number rings of
Chern—Simons functional and Dijkgraaf-~Witten invariant for 3-manifolds in
Chapter 2. Namely we introduce the definition of the arithmetic Chern—
Simons invariant to any number rings, by using the modified étale cohomol-
ogy groups and fundamental groups which take real primes into account, and
introduce the arithmetic Dijkgraaf-Witten invariant. We then show explicit
formulas of mod 2 arithmetic Dijkgraaf-Witten invariants for real quadratic
fields Q(y/p1p2 -~ pr), where p;’s are distinct prime numbers congruent to 1
mod 4, in terms of the Legendre symbols of p;’s.

In Chapter 5, we present arithmetic Dijkgraaf-Witten theory for number
rings, which may be regarded as an arithmetic analogue of Dijkgraaf-Witten
theory in Chapter 3, along the line of topological quantum field theory. To
be precise, for a finite set S of finite primes of a number field k&, we construct
arithmetic analogues of the Chern—Simons 1-cocycle, the prequantization
bundle for a surface and the Chern—Simons functional for a 3-manifold. We
then construct arithmetic analogues for £ and S of the quantum Hilbert space
and the Dijkgraaf-Witten partition function in (2+41)-dimensional Chern—-
Simons TQFT. We show some basic and functorial properties of those arith-
metic analogues. Finally we show decomposition and gluing formulas for
arithmetic Chern—Simons invariants and arithmetic Dijkgraaf-Witten parti-
tion functions.



2 Chern—Simons functionals and Dijkgraaf—
Witten invariants for closed 3-manifolds

In this chapter, we recall Dijkgraaf-~Witten theory for closed 3-manifolds
([DW]). For a finite group A and a 3-cocycle ¢ € Z3(A,Z/nZ), we intro-
duce the Chern—Simons invariant and the Dijkgraaf-Witten invariant for a
3-manifold. We then show explicit formulas for mod 2 Dijkgraaf-Witten in-
variants for double covers of the 3-sphere. The contents of this chapter are
based on [Hi].

2.1 Dijkgraaf—-Witten invariants for 3-manifolds

In this section, we introduce the Dijkgraaf~Witten invariants in a manner
slightly different from the original one [DW] to clarify the analogy between
the Dijkgraaf—~Witten invariant for a 3-manifold and that for a number ring,
which will be discussed in Chapter 4. In order to define the invariant, we
show the following proposition.

Proposition 2.1.1. Let M be a connected compact 3-manifold. Then, for
n > 2, there is a cohomological spectral sequence

HP (my (M), H(M, Z,/nZ)) = H"*9(M, Z/nZ),
where M denotes the universal covering of M.

Proof. Although this may be well known, we give a proof for the sake of
readers. Since M is compact, the singular cohomology H(M,Z/nZ) can be
identified with the cohomology of the constant sheaf Z/nZ on M. So we
show the assertion for the cohomology of the constant sheaf. We denote
by Gal(M /M)-mod the category of Gal(M /M )-modules. We consider the
functors N N

Fy : Sh(M) — Gal(M /M)-mod, S +— S(M)

Fy : Gal(M/M)-mod — Ab, R —s RCa(M/M),

where the action of G = Gal(J/\\j/M) on S(]Tj) is defined by o.x = S(0)(x) for
z € S(M) and 0 € G. We can easily check (Fy o F1)(S) = S(M)¢ = S(M)
and that F) sends any injective object I to a Fy-acyclic object. Therefore we
have the expected spectral sequence by the Grothendieck spectral sequence

and m (M) = Gal(M /M). O

Now we define the Dijkgraaf~Witten invariant for a 3-manifold.



Definition 2.1.2. Let M be a connected oriented closed 3-manifold and
let ¢ € H*(A,Z/nZ) for a finite group A and n > 2. Let M(M,A) =
Hom(m (M), A)/A denote the set of conjugacy classes of all homomorphisms
m (M) — A. Note that the fundamental class [M] generates Hy(M,Z/nZ) =
Z/nZ. For each p € M(M,A), the Chern-Simons invariant C'S.(p) of p
associated to ¢ is defined by the image of ¢ under the composition of the
maps

< L [M]>
_—

H3(A, Z/nZ) 25 B3 (m (M), Z/nZ) 2 H3 (M, Z/nZ) Z./n7Z,

where j3 denotes the edge homomorphisms in the spectral sequence
HP (m, (M), HY(M, Z/nZ)) = H?*4(M, Z/nZ)

of Proposition 2.1.1. The Diyjkgraaf-Witten invariant of M associated to c is
then defined by

o= % o (Zesio).

pEM(M,A

When A = Z/mZ, we call CS.(p) and Z.(M) the mod m Chern—Simons

invariant and the mod m Duykgraaf-Witten invariant respectively.

Remark 2.1.3. The Dijkgraaf-Witten invariant was originally defined as
follows [DW]. Let M and A be as in Definition 2.1.2. Let BA denotes a
classifying space for A. Consider U(1) = {z € C | |z| = 1} and let ¢ €
H3(A,U(1)). Then the Dijkgraaf-Witten invariant DW,.(M), is defined by
1
DW,.(M) = iy > < fre, [M] >,
peHom(ms (M),A)

where f, : M — BA denotes the classifying map with respect to p and
<, >:H¥M,U(1)) x H3(M,Z) — U(1) denotes the natural pairing.

The relation between this definition and Definition 2.1.2 is given as fol-
lows. Suppose that A = Z/nZ, so that there is an isomorphism H3(A, U (1)) =
fn, C U(1) sending ¢ to an n-th root of unity (,. in U(1). Then, we may
verify that for any p € Hom(m, (M), A), the equality

Cgcsiduﬁ(id)(P) —< fp*Q [M] >

holds, where idU3(id) is a natural generator of H*(Z/nZ,Z/nZ) (see Lemma
5.5.2). In particular, when ¢, . = exp(#%), we have

n

DWo(M) = Ziquaiay(M).

10



2.2 A formula for Chern—Simons invariants using the
Hurewicz isomorphism

In this section, we show a formula for Chern—Simons invariants using the

Hurewicz isomorphism. Let us describe the setting in this section. Keeping

the same notations as in the section 2.1, we set A = Z/nZ and ¢ = idUp(id) €
H3(A,Z/nZ), where id € H' (A, Z/nZ) is the identity map and

B HY(A,Z/nZ) — U (A, Z/nZ) (i =0,1,2,---)

is the Bockstein map induced by the short exact sequence
(%) 0 — Z/nZ =3 7./n*Z — Z/nZ — 0.

In addition, for i = 1,2,---, let 8* : H/(M,Z/nZ) — H*Y(M,Z/nZ) and f3; :
H,(M,Z/nZ) — H;_1(M,Z/nZ) denote the Bockstein maps of the singular
homology and cohomology induced by (x), Furthermore, for i = 1,2,---, let
B : Hi(M,Z/nZ) — H;_1(M,Z) denotes the Bockstein map of the singular
homology induced by the short exact sequence

0—=Z=37 — Z/nZ — 0.

Let j; : H(m(M),Z/nZ) — H (M,Z/nZ) (i = 0,1,2,3,---) denote the
edge homomorphisms in the spectral sequence of Proposition 2.1.1. We will
abbreviate j; o p* to p3, for p € M(M, A) = Hom(m (M), A)/A. We denote
by ® : H{(M,Z/nZ) = Hz_(M,Z/nZ) (i = 0,1,2,3) the isomorphism of
the Poincaré duality defined by u — w N [M], where

N:H (M, Z/nZ) x H3(M,Z/nZ) — Hs_;(M,Z/nZ)

denotes the cap product. Note that, by the universal coefficient theorems,
we have

Together with the Hurewicz isomorphism, we obtain the isomorphisms

1%

Hom(m (M), Z/nZ) Hom(H;(M),Z/nZ) = Hom(H, (M, Z/nZ),Z/nZ)

~ HYM,Z/nZ).
We see that each p € Hom(m (M), Z/nZ) corresponds to p3,(id) € HY (M, Z/nZ)
via these isomorphisms. We denote by p € Hom(H,(M,Z/nZ),7Z/nZ) the

homomorphism corresponding to p and pj,(id).
We recall some calculations of the cohomology of groups.

11



Lemma 2.2.1. (1) We have an isomorphism H (Z/nZ,Z/nZ) = Z/nZ for
every i > 0.

(2) The cohomology class ¢ = id U B(id) € H*(A,Z/nZ) is represented by a
cochain o : (Z/nZ)? — Z/nZ defined by

1 -
(g1, 92, 93) = Eﬁ(@—i— 73 — (92 + g3)) mod n,

where g € {0,1,...,n— 1} is a representative element of g € Z/nZ.
(3) The 3rd cohomology group H3(Z/nZ,7/nZ) is generated by ¢ = idUB(id).

Proof. Consider the projective resolution of Z[Z/nZ]}-modules over Z
B zz/nz) 2 270z 2 7[2)/n7) 22 7|7 /n7) S 7,

where p = Z g, ¢ = —(0mod n)+(1 mod n), and ¢( Z agg) = Z ag,
gEZ/NZ gEZ/nZ gEZ/NZ
By taking the functor Homgz/,z)(—, Z/nZ), we obtain the first assertion

(2.2.1.1) HY(Z/nZ,Z/nZ) = Z/nZ (i > 0).
By applying the snake lemma to the diagram

0 —— CYZ/nZ,Z/nZ) —"— CYZ/nZ,L/n*L) —— CY(Z/nZ,Z/nL) —> 0

Js Js L
0 —— C*(Z/nZ,Z/nZ) —"— C*(Z/nZ,7/n*L) —— C*(Z/nZ,7/nL) —s 0,
we obtain the second assertion. For the third assertion, by (2.2.1.1), it suffices
to show that for each n’ =1,2,...,n—1, the cohomology class n’c is not zero
in H3(Z/nZ,Z/nZ). Assume that there is a cochain b € C*(Z/nZ,7Z/nZ)
such that db = n’a. Then, for each (g1, g2, g3) € (Z/nZ)?, we have

(n'a)(g1, 92, 93) = b(g2, g3) — b(g1 + g2, g3) + b(91, 92 + g3) — b(91, g2)-

So we obtain
n—1

(2.2.1.2) Z(n’a)(l mod 7,7 mod n,1 mod n) = 0.
i=0
By the definition of «, we also have

/

n — — E— —
(n'a)(g1, 92, 93) = ;91(92 + 35 — (92 + g3)) mod n.

So we obtain
n—1
(n'a)(1 mod n,7 mod n,1 mod n) = n'mod n.
0

1=

This contradicts the equation (2.2.1.2). O

12



Now we show the main assertion in this section.

Theorerm 2.2.2. Notations being as above, let uw € Zy(M,Z/nZ) be a 2-
cycle that represents ®'(p%,(id)) € Ho(M,Z/nZ). Then there is a 2-chain
D € Cy(M,Z) such that D mod n = u and there is a 1-cycle a € Z,(M,7Z)
satisfying 0D = na. Let [a] denote the homology class in Hy(M,Z/n7Z)
defined by a. Then we have

CSe(p) = p(la]).

Proof. We consider the following commutative diagram,

0 —— Co(M,Z) = Cy(M,Z) 222 Co(M,Z/nZ) — 0
K | K
0 —— Cy(M,2) = Cy\(M,Z) 222 (M, Z/nZ) — 0.

By the upper short exact sequence, there is a 2-chain D € Cy(M,Z) such
that D mod n = u. Hence, we have

(0D)mod n = d(Dmod n) = du = 0.

Therefore, by the lower short exact sequence, there is a 1-cycle a € Z; (M, 7Z)
such that 0D = na. For the latter assertion, by direct calculation, we can
check ®2 o 3! = 5 0 ®. Then, by Definition 2.1.2, we have,

CSclp) = < py(id) U B(p},(id)), [M] >
= < pi(id), @*(B' (py,(id))) >
= p(Ba(® (pi(id)))).

Next, we consider the following commutative diagram,

0 — 7Z % 7Z —— Z/nZ — 0
lpl lpz lid
0 — Z/nZ —"% Z/n*7 —— Z/nZ — 0,
where p; and po are natural projections, and id is the identity map. By
considering the connecting homomorphism with respect to the singular ho-

mologies for each row, we see that 3 = p1,05,. Then the required statement
immediately follows by the definition of (.. O

13



2.3 Explicit formulas of the mod 2 Dijkgraaf-Witten
invariants for double branched covers of the 3-
sphere

In this section, we prove explicit formulas of the mod 2 Dijkgraaf—~Witten
invariants for double branched covers of the 3-sphere. Keeping the notations
as in the sections 2.1 and 2.2, we consider the case A = Z/2Z and ¢ =
idU B(id) € H3(A,Z/2Z) in Definition 2.1.2. A tame knot K is the image of
a continuous embedding S! — S3 which extends to an embedding of a solid
torus. Let £ =K, UKy U---UK, be a tame link in the 3-sphere S3. Let h :
M — S3 denote the double covering ramified along £, that is, h is obtained
by the Fox completion [Fo| of the unramified covering ¥ — X := S3\L
corresponding to the kernel of the surjective homomorphism Hy(X) — Z/27Z
that maps any meridian of K; to 1 € Z/27Z. Recall that T denotes the
abelian group defined by

Ty = {(z1, 29, ,2,) € (Z)2Z)" Zx,_()}

and we put

~th j-th
6—-’_-:(07"'707 1 7Oa"'707 1 707.“?0)€T+

for each (i,7) with 1 < i < j < r. By the topological analogue of Gauss’s
genus theory [Mo3; Corollary], there is an isomorphism

(2.3.1) g:H (M)/2H (M) = T,

given by
[a] = (Ik(hy(a), ;) mod 2),

where lk( , ) denotes the linking number. Hence we obtain the isomorphisms

I

Hom(m (M), Z/27) Hom(H,(M),Z/27Z) = Hom(H,(M,Z/27),7/2Z)
Hom(T,,7Z/27)

HY(M,Z/27).

12

I

Now we prove the following formula.

Theorerm 2.3.2. Notations being as above, for p € Hom(Ty,Z/27), we
have
CSelp) = ple)k(K;, K;) mod 2.

i<j

14



Proof. Define elements by,by,--- ,b,_1 € T\, by
by = (1,0,0,- ,1),by = (0,1,0,0,--- 1), ,by_y = (0,0,---,0,1,1)
so that the tuple (by, by, -+ ,b,_1) is a basis of T'.. Let J = {j1,72 - ,jm} C
{1,2,-+- ,r — 1} with j; < ja-++ < j,, and suppose that p(b;) = 1 if and
only if ¢ € J For each i = 1,2,--- ,r, let §; be a Seifert surface of IC; in
53, and put K; == hY(K;) and S; := h™'(S;). Let u € Zy(M,Z/nZ) be
a 2-cycle that represents ®'(p%,(id)) € Hy(M,Z/nZ). There is a 2-chain
D e Cy(M,Z) such that D mod 2 = u and a l-cycle a, € Z1(M,Z) satisty-
ing 0D = 2a,. In order to apply Theorem 2.2.2, let us explicitly find such a
D. Let a = (ay,a9,--- ,a,) € Ty and let a € Z;(M,Z) whose image [a] cor-
responds to a via the isomorphism H; (M)/2H,(M) = T, of the topological
analogue of Gauss’s genus theory. We note that the mod 2 linking number
(Ik(hy(a), he(0D)) mod 2) is equal to the mod 2 intersection number of a
and D. Therefore, by the Poincaré duality, a 2-chain D € Cy(M, Z) satisfies
uw= D mod 2 € Zy(M,Z/nZ) for some u with [u] = ®!(p},(id)) if and only
if
k(hy(a), he(OD)) mod 2 = p(a).

Therefore, we may put
p-Ys- ¥ s
=1 i€{j1,d2, s im}
In this case, the 1-cycle
wYE- YK
i=1 ie{jl:ij"'vjm}
satisfies 0D = 2a,. By Theorem 2.2.2, we obtain
CSe(p) = pllap))

= p(g([a,]))
= p((Ik(hy(a,), ;) mod 2)

= Zlk(h*(ap),lel) mod 2
I=1

= i Z 1k(KC;, Kj,) mod 2

=1 i¢{j1,jo, jm}

= S plef)Ik(K, Kj) mod 2.

i<j

15



By Definition 2.1.2, the mod 2 Dijkgraaf-Witten invariant is given by
Z(M)=5 Y exp(mi CS(p)).
p€Hom(T4,Z/27)
Hence we obtain the following.

Corollary 2.3.3. Notations being as above, we have

ZC(M):% Z H lle i)

peHom(Ty,Z/27) 1<j

Example 2.3.4. Let L be a two-bridge link B(a,b) (0 < a < b, b: even,
(a,b) = 1). So we have r = 2 and Hom(T;,Z/27Z) = 7Z/2Z. Then, the
double branched cover M is the lens space L(a,b). By Theorem 2.3.2 and
[Tu; p.540 and p.543], for each 0 # p € Hom(T';,7Z/27), we have

b/2
CSe(p) = Y (=)Dl mod 2,

k=1

where | | denotes the floor function. Therefore, we also have

b/2
[(2k—1)a/b]
Z.(M) = 1, if Z is even,
0, if 0therw1se.

Now We introduce the mod 2 linking diagram D, of L as follows. The
diagram D, consists of r vertices and edges. Each vertex represents each
component knot K; and two vertices K; and K; are adjacent by an edge if
and only if the linking number 1k(/C;, IC;) =1 mod 2. The diagrram is called
a circuit (or closed trail) if it can be written in one-stroke. A graph consisting
of a single vertex is considered to be a circuit. The following formula can be
proved by using genus theory for M.

Theorerm 2.3.5 ([Hi], [DK]). Notations being as above, we have

2(M) = 272 if any ?onnected component of D is a circuit
0 otherwise.

Example 2.3.6. Let £ = K; UK, UK3UK, be the following link (left figure)

in S® so that the mod 2 linking diagram D/ is given by the right figure. Let

M be the double covering of S ramified along £. By Theorem 2.3.5, we
have Z(M) = 2% = 4.

16
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Remark 2.3.7. In the context of quantum topology, Murakami, Ohtsuki and
Okada calculated the mod n Dijkgraaf-Witten invariant for the 3-manifold
obtained by a Dehn surgery on S® along a framed link and expressed the
mod n Dijkgraaf—~Witten invariant in terms of Gaussian sums and the linking
matrix of the framed link [MOO; Proposition 9.1]. In Chapter 4, for number
fields, we will show a formula given in a form similar to Gaussian sums
(Theorem 4.5.2). So we may expect that the cases with non-abelian gauge
groups would be given by a non-abelian generalization of Gaussian sums.
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3 Dijkgraaf-Witten TQFT for 3-manifolds with
boundaries

In this chapter, we recall the definition of topological quantum field the-
ory, for the case of (2+1)-dimension, and construct the TQFT structure for
Dijkgraaf-Witten theory following Gomi ([Gm]). To be precise, for an ori-
ented closed surface X, we construct the Chern-Simons 1-cocycle and the
prequantization bundle. For a oriented compact 3-manifold M, we introduce
the Chern—Simons functional. We then construct the quantum Hilbert space
and the Dijkgraaf-Witten partition function in (2+41)-dimensional Chern—
Simons TQFT.

3.1 The definition of (241)-dimensional TQFT

We start to recall the definition of topological quantum field theory, due
to Atiyah, for the case of (2+1)-dimension.

Definition 3.1.1 ([Atl], [At2]). A (2+1)-dimensional topological quantum
field theory, called TQF'T for short, consists of the following correspondences
(a functor from the cobordism category of surfaces to the category of C-vector
spaces)

oriented closed surface X ~~  C-vector space Hs,
oriented compact 3-manifold M ~» vector Zy; € Hon,

where Hy is called the state space or the quantum Hilbert space and Z,; is
called the partition function. These correspondences must satisfy the follow-
ing axioms.

(A1) functoriality. An orientation preserving homeomorphism f : ¥ 5 %’
induces an isomorphism Hy, — Hs of Hilbert quantum spaces. Moreover,
if f extends to an orientation preserving homeomorphism M = M’, with
OM = X,0M' = %', then Z,; is sent to Zy; under the induced isomorphism
Hone — Honr

(A2) multiplicativity. For disjoint surfaces 31, 3y, we require and the surface
>* = 3 with the opposite orientation, we require

Hs,us, = Hy, @ Hy,.

This multiplicative property is indicative of the quantum feature of the the-
ory.

(A3) involutority. For a surface ¥*, which is ¥ with opposite orientation, we
require

HE* = (HE)*a
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where (Hyx)* is the dual vector space of Hsy.
(A3) Gluing formula. If OM; = 3 U X9,0My = X5 U 33 and M is the
3-manifold obtained by gluing M; and M, along X5, then we require

< ZM17ZM2 > = ZM,

where < -, - >: Hy s, X Hyyus, — Hs,us, s the natural gluing pairing of
state spaces obtained by (A2), (A3).

When X = ) (empty), we suppose Hy = C, and so we suppose Zy; = Z(M) €
C when M is closed. we also suppose Zy (o1 = idpy,.

3.2 The TQFT structure for Dijkgraaf-Witten Theory

In this section, we recall the construction of the TQFT structure for
Dijkgraaf-Witten theory, following [Gm]. We refer to [DW], [FQ], [Wa], [Ye]
for other constructions. We fix a finite group and a 3-cocycle ¢ € Z3(G, R /Z)
once and for all. Let X be an oriented compact manifold X with a fixed
finite triangulation 7. Let 7 denotes the set of n-simplices in 7. Each
Tigewin, € T™ for ig < i; < --- < i, has the orientation determined by the
numberings g - - - 4,, assigned to vertices and o (;)...r(;,,) for a permutation
of iy - i, is defined by sgn(m)oy,...;,. We then define the gauge group Gx on
X associated to G by

G={v:TY - &}

and define the space Fx of gauge fields on X associated to G' by
Fx:={0:TW = G | 0(0ii)0(041i2) = 0(04iz) for ig < iy < iz}
on which Gx acts from the right by
(07)(035) 7= v(05) " 0(03)7(075)-

Note that Fx and Gy are finite sets. We remark that the quotient space
Fx/Gx is identified with the set Mx of isomorphism classes principal G-
bundles (G-torsors) on X by the parallel transport along 1-simplices ¢;; and
that the holonomy gives the bijection between My and Hom(m(X), G)/G if
X is connected, where Hom(m(X),G)/G is the quotient of Hom(m (X), G)
by the conjugate action of G from the right:

Hom(7(X),G) x G — Hom(m(X),G); (0,9) — g 'og.

We construct the classical theory in the sense of physics. The key ingre-

dient is the transgression homomorphism for an oriented compact d-manifold
X and m>d

trans'y : C™(G,R/Z) — C™%(Gx, Map(Fx, R/Z)),
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where Map(Fx,R/Z)) is the additive group of maps Fx — R/Z, on which
Gx acts from the left by (7.1)(g) := ¥ (0.7) for v € Gx, ¥ € Map(Fx,R/Z),
and o € Fx. The explicit expressions of transy for the cases that d = m, m+1
are given as follows. For v € Gx,0 € Fx and o; € T(O),O-Z‘j e TW, we set
Vi = 7(04), 0ij := 0(03).

- Case that d = m. For a € C"™(G,R/Z), 0 € Fx, we have

trans?(a)(g) = Z 601-~-'m05(0017 <oy Om—1 m)7

001...m€T<m)

where €¢1...,, = 1 if the orientations of og;...,, and X coincides, and eg;....,, =
—1 otherwise.
- Case that d =m+ 1. For a € C"™(G,R/Z),~ € Gx, and p € Fx, we have

m—1
(ransF(@) (@)= D Coremor p_ (1)
001.-.m—1 €T (Mm=1) Jj=0
-1 -1
a(% Q01715 s Vj-1 0j—1 j7V55 05 j+15° " s Om—2 m—1)7

where the signature eg;...,,_1 is defined as above. It can be shown that the
following Stokes type formula holds:

trans’y ™' 0 § = (—1)%5 o trans'y + res*(transpy),

where § denotes the coboundary map of group cochains and res denotes the

map on the cochain induced by the restriction Fy — Fyx (resp. Gx — Gox).
Now, let m = 3 and consider the cases that X is an oriented closed surface

Y (d=2) or X is an oriented compact 3-manidold M (d = 3), and we set

(3.2.1) Ay = transi,(c) € C*(Gx, Map(Fx, R/7Z))

(3.2.2) CSyy := transy,(c) € Map(Far, R/Z),

which are explicitly given as follows:

(3.2.3) As(0) = Z Eoor{ (70, 001, 012) — (V0001715 1, 012)
0012672

+c(Yo00i o122 )} (v € Gsy0 € Fy),

(3.2.4) CSy(o) = Z Eo0125C(001, 012, 023) (0 € Fur),

00123€T3)
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where ¢, := 1 is the orientations of ¢ and X coincides, and ¢, := —1 other-
wise. We suppose that the triangulation Ty, on M is the restriction of the
triangulation 75, of M. Since ¢ is a 3 — cocycle, by (3.2.1), (3.2.2), (3.2.3),
and (3.2.4), we have

(325) 505]\/[ = I‘eS*)\aM, 5)\2 =0.

We call Ay, the Chern—Simons 1-cocycle associated to c for an oriented closed
surface X. The cohomology class of Ay is independent of the choice of a finite
triangulation 7. We call C'Sy; the Chern—Simons functional associated to ¢
for an oriented compact 3-manifold M.
Using Ay, we define a G-equivariant principal R/Z-bundle Ly, by the
product bundle
,CE = F » X R / Z,

on which Gy, acts by (o,m).y = (0.7, m + As(7)(0)) for o € Fx,m € R/Z
and v € Gx. It depends on the cohomology class of Ay up to isomorphism
of Gs-equivariant principal R/Z-bundles. We call Ly, the prequantization
principal R/Z-bundle over Fx. Let Ly, be the complex line bundle associated
to Ly, via the homomorphism R/Z — C*; m — e2™V=Im and we have the
complex line bundle Ly over Mx. The line bundle Ly (or Ly) is called
the prequantization complex line bundle for a surface ¥. By (3.2.5), we see
that C'Sy (vesp. €>™V~10%) is a Gp-equivariant section of res* Loy (resp.
res* Loy ) over Fyy.

We construct the quantum theory in the sense of physics, namely, the
correspondences in Definition 3.1.1 of (2+1)-dimensional TQFT. We define
the state space Hy, for an oriented closed surface > by the space of sections
of the prequantization bundle Ly, over My, equivalently, the space of Gs-
equivariant sections of the prequantization line bundle Ly, over Fx;:

(3.2.6)
Hg = F(ME, LE)
={0: Fy = C|0(py) = 2V-"Mg(p) for o € Fx,v € Gx}.

We call Hy, the Dijkgraaf-Witten state space and the above construction is
along the line similar to the geometric quantization. We define the Dijkgraaf-
Witten partition function by the following sum fixing the boundary condition

1 27/=1CS 1 (0)
(3.2.7) Zm(0om) = 47O > e
M oEF M

res(0)=0oM

for ognr € Fonr, where # TJ\(/[O ) is the number of 0-simplices in the interior
of M. By (3.2.5), we see Zy; € Hon. The value Zy(0on) is called the
Digkgraaf-Witten invariant of ogar € Fonr-
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Remark 3.2.8. The above constructions depends only on the cohomology
class of the fixed cocycle c. So we may take c to be nomalized. Furthermore,
the above constructions turn out to be independent of the choice of trian-
gulations of ¥ and M. Suppose that another choice of triangulation 75, of
Y yields ng' as above. Then it can be shown that there is an isomorphism
O: ’HTE = ’HTE/. So taking the colimit of ’HTE 's with respect to triangulations
Ts. of 3, we obtain the state space Hy, which is 1ndependent of 7'2 Suppose
that another choice of trlangulatlon Ta of M yields Z,} Tur ¢ Ha . Then we

can show ©(Z]M) = Z MM and so we have a topological invariant Zy; € Hanr

([Gm]).

Theorerm 3.2.9. The above correspondences

oriented closed surface 3 ~  C-vector space Hsx,
oriented compact 3-manifold M~ wvector Zy € Howr,

satisfy the axioms (A1) ~ (A4) in the Definition 3.1.1 of the (2+1)-dimensional
TOFT.

For the proof of Theorem 3.2.9, we consult the references [Gm], [DW],

[Wal, [FQJ, [Ye].

Remark 3.2.10. For Chern—Simons theory with a compact Lie gauge group,
it is known that the state space Hsy is isomorphic to the space of conformal
blocks ([Ko]) and its element is called an non-Abelian theta function ([BL]).
The dimension of Hy, is given by Verlinde’s formula([Ve]). Dijkgraaf-Witten
theory is a finite analogue and an element of Hy may be regarded as a sort
of non-Abelian finite theta function or non-Abelian Gaussian sum.

22



4 Arithmetic Chern—Simons functionals and
arithmetic Dijkgraaf~Witten invariants for
number fields

In this chapter, we study arithmetic analogues for number rings of Chern—

Simons functional and Dijkgraaf-Witten invariant for 3-manifolds in Chapter
2. We list herewith some analogies which will be used in this section.

’ 3-dimensional topology H number theory
connected, oriented, and closed compactified spectrum of a number ring
3-manifold M X = Spec Ok
knot maximal ideal
K:8"— M p : Spec (Ok/p) — Spec (Ok)
link finite set of maximal ideals
L=K,UKU---UK, S ={p1,p2, - ,pr}
fundamental group modified étale fundamental group
1 (M) ™ (X)
1-cycle group Z; (M) ideal group Ik
mod 2 linking number Legendre symbol
Ik(K1, K2) mod 2 (%)
2
1-boundary group B (M) principal ideal group Py
0:Co(M) — Zy(M); S — 0S 0: K* — Ig;a (a)
1st integral homology group ideal class group
Hy(M) = Z1(M)/By(M) Clg = I/ Pk
Hurewicz isomorphism Artin reciprocity
m (M)™ = Gal(M® /M) = Hy (M) m(X)® = Gal(K*/K) = Clg
Poincaré duality Artin—Verdier duality
H'(M, Z/nZ) = Hs_;(M,Z/nZ) | H'(X,Z/nZ) = Exts"(Z/nZ,¢.Gmx)"

Based on the analogies recalled above, we give the definition of the arith-
metic Chern—Simons invariant for any number rings, by using the modified
étale cohomology groups and fundamental groups which take real primes into
account, and introduce the arithmetic Dijkgraaf-Witten invariant. We then
show explicit formulas of mod 2 arithmetic Dijkgraaf-Witten invariants for
real quadratic fields Q(/pip2 -~ pr), where p;’s are distinct prime numbers
congruent to 1 mod 4, in terms of the Legendre symbols of p;’s. The contents
of this chapter are based on [Hi].
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4.1 The Artin—Verdier site and the modified étale fun-
damental group

Let K be a finite algebraic number field and let X = Spec Ok be the
prime spectrum of the ring Ok of integers of K. Let X, denote the set of
infinite primes, namely, real primes and pairs of conjugate complex primes of
K, and we set X = X U X.. Let Y be a scheme which is étale over X. A
real prime of Y is defined by a point y : Spec C — Y which factors through
Spec R. A complex prime of Y is defined to be a pair of complex conjugate
points 4,7 : Spec C — Y such that y # 7. An infinite prime of Y is a real
prime or a complex prime of Y. Let Y, denote the set of infinite primes of
Y. Note that an étale morphism f : Y — X induces f, : Yo — Xo. We
say that f, is unramified at Yo € Yoo if 9o is a real prime or if (Yoo, foo (Yoo))
is a complex prime. Regarding Grothendieck topologies, we refer to [Ar] and
[Tal.

Definition 4.1.1 ([AC; Definition 2.1], [Bi; Proposition 1.2]). The Artin-
Verdier site X¢ of X is the Grothendieck topology consisting of the category
Cat(X¢) and a set Cov(X) of coverings defined as follows.

e An object in Cat(X) is a pair (Y, M), where f : Y — X is a scheme
étale over X and M C Y, such that f,|: M — X is unramified. A
morphism ¢ : (Y1, My) — (Ya, My) in Cat(X¢,) is a morphism of shemes
¢ Y7 = Y5 over X such that the induced map ¢ : (Y1), — (Y2)

satisfies oo (M) C M.

e A covering in CoxiYét) is a family of morphisms {¢; : (Y;, M;) —
(Z, N)}ier in Cat(X4) which satisfies Up;(Y;) = Z and Uy, (M;) = N.

Remark 4.1.2. In Cat(X¢), the fiber product of morphisms ¢; : (Y;, M;) —
(Z,N) (i = 1,2) is defined by (Y7 x Y5, M3), where Y] X Y; is the fiber product
Z z
in the category of schemes and Mj is the set consisting of points of (Y7 X Y2) oo
Z
whose images are in M; under the projections (Y] X Y3)o, — Yy fori =1, 2.
Z
We can check easily that M3 is isomorphic to M; x M, in the category of
N
sets.
Next, we introduce a Galois category to define the modified étale funda-
mental group. o
We say that (Y, M) € Cat(X¢) is finite étale if Y — X is a finite étale
morphism of schemes over X and M = Y,. We denote by FEt% the full

subcategory of X whose objects are finite étale, and denote by FSets the
category of finite sets.
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In the following, we often abbreviate (Y,Y) to Y for a scheme Y étale
over X. Let K be an algebraic closure of K and let 77 : Spec K — X be a
geometric point. Then we have functors

Fﬁ : FEty — FSets, ? — HOmx(ﬁ, Y),

U:FEty — FEty; Y — Y.
We note that the forgetful functor U is fully faithful.

Definition 4.1.3 ([SGA I;V.4]). Let € be a category and let F' : € — FSets
be a covariant functor. € is called a Galois category with a fiber functor F
if ¢ and F satisfy the following axioms.

(G1) % has a final object and finite fiber products.

(G2) Finite direct sums exist in . The quotient of an object by a finite
group of automorphisms exist in % .

(G3) Let u : A; — Aj be a morphism in 4. Then u factors into a com-

position A, ENTER Ag, where f is a strict epimorphism and g is a
monomorphism which is an isomorphism on a direct summand of A,.

(G4) F is a left exact functor.

(G5) F commutes with finite direct sums and the quotient of an object by
a finite group of automorphisms. F' sends strict epimorphisms to epi-
morphisms.

(G6) Letu: A; — Ay be amorphism in ¢ such that F'(u) is an isomorphism.
Then w is an isomorphism.

Proposition 4.1.4. FEtx is a Galois category with a fiber functor Fj.

Proof. We check the six axioms (G1)~(G6) of Galois categories for FEt+ and
Fj. 1t is well-known that the category FEtx of schemes finite étale over X is
a Galois category with a fiber functor F} : FEtx — FSets Y+ Homx (7], Y")
[SGA T; V.7], so that FEtx and F} admit the axioms (G1)~(G6) and F}.
Let us verify (G1)~(G6) for FEt.

(G1) FEtx has a final object (id : X — X,X,). ForY; € - FEty (i =

1,2,---,m), we see that HYGFEtX So we have HY HYi by the

universal property of fiber products
(G2) FEtx has an initial object (Spec 0, (Spec 0)s) = (0,0). In a similar
way to (G1), we see that FEty admits finite direct sums. For Y € FEty
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and a finite subgroup G C Auts(Y'), we have Autw(Y) = Autx(Y') by the
definition of morphisms of Cat(X¢). So we have the quotient of Y — X €
FEty by G C Autx(Y) and then one can check Y /G = Y/G.

(G3) For any morphism Y; — Y3 in FEt, Y; — Y; factors as

Y, Loy gy | ]Y” 2 Y; in FEty, where f is a strict epimorphism and g is
a monomorphism. This sequence induces Y; ER N LY 2.

(G4) and (G5) are obvious since U is fully faithful and U o F}; = Fj; .

(G6) Let u : Yy — Y3 be a morphism in FEtw. If F5(u) : F5(Y1) — F5(Y2) is
an isomorphism, then U(u) : Y] — Y3 is an isomorphism. Since the forgetful
functor U is fully faithful, u is an isomorphism. O

Now we define the modified étale fundamental group.

Definition 4.1.5. The modified étale fundamental group m (X) = 71 (X, 7)
with geometric basepoint 7 is defined by the fundamental group of the Ga-
lois category FEt+ associated to the fiber functor Fj, namely, the group of
automorphisms of Fj.

The fundamental theorem of Galois categories is stated as follows.

Theorerm 4.1.6. There is an equivalence of categories between FEt+ and
the category of finite discrete sets equipped with continuous left actions of
1 (X)

Next, in order to describe 71 (X) more explicitly, we observe which object
is Galois in the Galois category FEty. By the definitions of a connected
object and a Galois object in a Galois category, one can see that Y € FEt
is connected in FEt+ if and only if ¥ — X is connected in FEty, and that a
connected object Y is Galois in FEt+ if and only if Aut+(Y) = Autx(Y) —

F(Y) = F;(Y) is bijective, i.e., Y is Galois in FEtx. Therefore, we have the
following Proposition.

Proposition 4.1.7. Let K (resp. K®) denote the mazimal Galois (resp.
abelian) extension of K which is unramified over all finite and infinite primes.
Then we have the following.

(1) There is a natural isomorphisms Gal(K /K) = m (X).

(2) The abelianization 7¢°(X) of m(X) admits natural isomorphisms

Ol 7 Gal (R /K) 2 x'(X) ; [a] = (KGZ/K>

given by the Artin reciprocity law.
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4.2 The Artin—Verdier topos and the modified étale
cohomology groups

Let Sh(X¢;) denote the Artin—Verdier étale topos, namely, the category of
abelian sheaves on the site X¢. Let us recall the decomposition lemma for
Sh(X ) following [AC] and [Bi]. We fix an algebraic closure K of K. For
cach # € X, we fix an extension T of  to K and denote by I the inertia
group of Z. If = is a real prime, then we have I = Z/27Z; if z is a complex
prime, then I is trivial. Let n : Spec K — X denote the generic point.
Then, for F € Sh(X), we can regard n*F = F,, as a Gal(K / K)-module and
I; C Gal(K/K) acts on n*F. We define a site T X, as follows. An object in
T X is a pair (M, m) where M is a finite set and m : M — X, is a map.
A morphism (M, my) — (Ma,ms) in T X is a map f : M; — M, such that
me = fomy. A covering in T' X, is a family of morphisms {; : (M;, m;) —
(M,m)}ier in TX such that m; is surjective and M = Lngo(M,) Hence,
each G on T' X, is identified with a family of abelian groups {G,}.ex.. . We
define maps of sites p : Xog — TXo and q : Xg — Xe by the forgetful
functors. Then we have functors

Sh(T'Xoe) &5 Sh(Xe) S5 Sh(Xe).
p* ar

Next, we define the category Sh(X) as follows. An object in Sh(Xg)'

is a triple ({Gz}xEXoo7F7 {Uz : G:v — (n*F)Ix}xeXoo)7 where {G:E}:EEXOO S

Sh(TX), F € Sh(Xg) and {0, : G, — (n*F)’*},ex., is a family of homo-

morphisms of abelian groups. A morphism ({G.}, F, {0.}) = ({G.}, F',{c.})
is a pair of morphisms {G,} — {G.}, and F' — F’ such that the induced

diagram

Oz Iz‘

G, —— (n*F)

| |
G~ (P

is commutative for each x € X .
Now we state the decomposition lemma, which was previously proved for
Sh(X¢) ([AC: Proposition 2.3] and [Bi; Proposition 1.2]).

Lemma 4.2.1. There is an equivalence of categories given by the functors

_ o _
Sh(Xét) = Sh(Xét)/
7
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defined by
DS (¢S, peS,p:S = peqq.S), V: ({Go}, Fo{o.}) = ¢ FXpegogrrD™ {Gz}.

Proof. We may check the following properties (1)—(4), so that [Ar; Proposi-
tion 2.4] yields the assertion.

(1) g«(resp. ps) is left adjoint to ¢* (resp. p*).

(2) ¢, p« are exact.

(3) p*, ¢* are fully faithful.

(4) For any S € Sh(X¢), ¢.S = 0 holds if and only if there exists G €
Sh(T'X ) such that S = p*G.

We refer to [Zi; Proposition 1.3.3] for (1), (3), and (4). The property (2)
follows from the fact that Xg, Xg and T X, have final objects and finite
fiber products preserved by p and q. Il

Remark 4.2.2. (1) Via the equivalence of categories in Lemma 4.2.1, we
identify p., p*, g, ¢" with the functors 1, ¥*, ¢*, ¢, defined by

¢*({Ga} Fo{ou}) = F, ¢.F = ({(" F)"=}, F {id}),
V*({Ge}, Fi{oa}) = {Ga}, ©u{Ga} = ({Ge},0,{0}).

respectively. o

(2) The constant sheaf AYét on X associated to an abelian group A satisfies
Az, = 0«(Ax,,). In the following, if there is no confusion, we will abbreviate
Ayét to A.

(3) For S = ({G,}, F,{0.}) € ObSh(X¢), the section of S at (Y, M) € X
is given by F(Y') Xy p Ggy Xy Gy Xppep -+ X p G, where {x1, 29, -+, 2, }
is the image of M by Y, — X.

Definition 4.2.3. For each S € Sh(Xg), the cohomology group Hi(X,S) is
called the i-th modified étale cohomology group of X with values in S.

The group H(X,S) of the constant sheaf Z/nZ is calculated in [Bi;
Proposition 2.13] and [AC; Corollary 2.15]. Let us recall the Artin—Verdier
duality.

Proposition 4.2.4 (The Artin—Verdier duality [Bi; Theorem 5.1]). Let F
be a constructible sheaf on X = Spec Ok. We fir an algebraic closure K of
K. For each x € Xo, we fix an extension T of v to K. Let n : Spec K — X
denote the generic point. Let G, x denote the étale sheaf of units on X.
Then we have the following.
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(a) HI(X, ¢ F) = Ext(¢.F, ¢.Gm,x) =0 fori > 3.
(b) The Yoneda pairing

H(X, 6.F) X EXt’ (6. F, 6.Grnx) = H'(X, 6.Gx) = Q/Z

15 a perfect duality of finite groups for i > 2.
(c) If for every x € Xy the inertia group Iz of T acts trivially on the
Gal(K /K )-module n*F = F,, then the pairing in (b) is perfect for any i > 0.

Applying Proposition 4.2.4 to the constant sheaf F' = Z/nZ on X, we
obtain the following proposition, where we denote by u,(K) the group of
n-th roots of unity in K and put Z; = {(a,a) € K* & I | (a)”" = a"},
B ={(", (b)Y e K*®Ix|be K*}.

Proposition 4.2.5 ([Bi; Proposition 2.13|, [AC; Corollary 2.15)). We have

fﬂn(]() (Z = O)

Zy/ By (i=1)

Exti(Z/nZ, $. G x) = { Cl/nClg (i = 2)
Z/nZ (i = 3)

0 (i > 3),

\

where G, x 1s the étale sheaf of units on X. Then we have, by the Artin—
Verdier duality,

(7./nZ. (i = 0)

(Clg /nClg)™~ (i =1)

H'(X,Z/nZ) = { (Z/By)~ (1=2)
(ki (K))™ (1=3)

L0 (i > 3),

where (=)~ denotes Hom(—, Q/Z).

Remark 4.2.6. Assume that K contains primitive n-th roots of unity. For
1
each v' € K*, we choose a primitive n-th root v'» of v'. By Theorem 4.1.6,

for a continuous and surjective homomorphism p : 7, (X) — Z/nZ, there is
a corresponding Galois object Y — X (Y = Spec Op) whose Galois group is
Z/nZ. Since L is a cyclic extension of degree n unramified at all finite and
infinite primes, there exists v € K> such that L = K (vr) and there exists

a € I which satisfies a” = (v)~!. By the definition of L and the Galois
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correspondence, there is an isomorphism y : Gal(L/K) = Z/nZ such that
the following diagram

7 (X) 2> Gal(L/K)

| A
Z/nZ

commutes, where res : m(X) — Gal(L/K) denotes the restriction map. By
Proposition 4.1.7, we also have the following commutative diagram

}"(ab/K
ClK Wlab(Y)
)|
Gal(L/K),

where (L/—K> : Clg — Gal(L/K) denotes the Artin map.

Now we state the extension of Hochschild—Serre spectral sequence.

Theorerm 4.2.7. Let Y — X be a Galois object in FEtw. Then for any
S € Sh(Xg), there is a cohomological spectral sequence

HP(Gal(Y/X), HU(Y, S|Y)) = HP*9(X, S).

Proof. Let Gal(Y /X)-mod denote the category of Gal(Y /X )-modules. We
consider the functors

Fy : Sh(Xg) = Gal(Y/X)-mod, S S(¥)
Fy : Gal(Y/X)-mod — Ab, M s MGY/X)

where the action of G = Gal(Y/X) on S(Y) is defined by o.o = S(o)(x) for
€ S(Y) and o € G. In the same manner as in [Mil; Remark5.4] and [Mil;
Proposition 1.4], we can easily check (Fyo F})(S) = S(Y)¢ = S(X). Let I be
an injective object in Sh(X¢). By replacing Y and X with Y and X in the
argument of [Mil; Example2.6], one can see that HY(G, I(Y)) = H/(Y /X, I)
for any i > 1. Since I is injective, we have H (Y /X, I) = 0 by the definition
of Cech cohomologies. Therefore, Fy(I) = I(Y) is a Fy-acyclic object. By
the Grothendieck spectral sequence, we obtain the assertion. Il

Let (Y; — X,Y; — Y;) denote the inverse system of finite Galois coverings
over X and put X =limV;, X = lim¥;. By H*(X, Z/nZ) = lim H*(Y;, Z/nZ)
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and the local cohomology sequence [Bi; Proposition 1.4, we have H? (X,Z/nZ) =
Jim HP (Y;,Z/nZ). So on passing to the inverse limit, we obtain the following.

Corollary 4.2.8. There is a cohomological spectral sequence

HP(my(X), HY(X, Z/nZ)) = HP*(X, Z/n).

4.3 Arithmetic Dijkgraaf-~Witten invariants for a num-
ber ring

Let X = Spec Ok denote the prime spectrum of the ring of integers
of a number field K containing primitive n-th roots of unity. We choose a
primitive n-th root of unity ¢, in K, which induces an isomorphism Z/nZ =
ftn. Let A be a finite group and let ¢ € H3(A,Z/nZ). Let M(X,A) =
Hom, (7 (X), A) /A denote the set of conjugacy classes of all continuous ho-
momorphisms m;(X) — A. Recall that by Proposition 4.2.5 we have the
fundamental class isomorphism H?(X,Z/nZ) = Z/nZ that depends on the

choice of (,.

Definition 4.1. For p € M(X, A), the arithmetic Chern-Simons invariant
CS.(p) associated to c¢ is defined by the image of ¢ under the composition of
maps

H3(A, Z/nZ) 2 B3 (m1(X), Z/nZ) 2 B3(X,Z/nZ) = Z/nZ,

where j3 is the edge homomorphisms in the modified Hochschild—Serre spec-
tral sequence HP (7, (X), HY(X,Z/nZ)) = HPT4(X,Z/nZ) of Corollary 4.2.8
We can easily see that C'S.(p) is independent of the choice of p in its conju-
gacy class. The map o

CS.: M(X,A) = Z/nZ

is called the arithmetc Chern—Simons functional associated to c. The arith-
metic Dijkgraaf-Witten invariant of X associated to c is then defined by

20 -5 ¥ ew(Zosi)

When A = Z/mZ, we call CS.(p) and Z.(X) the mod m arithmetic Chern—
Simons invariant and the mod n arithmetic Dijkgraaf-Witten invariant, re-
spectively.
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Remark 4.3.1. (1) If K is totally imaginary, so that K has no ramifica-
tion at infinite primes, then we have 7 (X) = 71(X) and H(X,Z/nZ) =
HY(X,Z/nZ). Therefore Definition 4.3.1 is indeed an extension of Kim’s def-
inition [Ki.

(2) When A is abelian, by Proposition 4.1.7, we have

M(X, A) = Hom.(m(X), A) = Hom(Clg, A).

4.4 A formula for arithmetic Chern—Simons invariants
using the Artin Symbols

Let us describe the setting in this section. We continue to work over any
number field K containing primitive n-th roots of unity. Keeping the same
notations as in the section 4.3 and 4.4, we set A = Z/nZ and ¢ = idUS(id) €
H3(A,Z/nZ). Here, id € H'(A,Z/nZ) denotes (the image of) the identity
map and

B:HY (A, Z/nZ) — H*(A,Z/nZ)

denotes the Bockstein map (connecting homomorphism) induced by the short
exact sequence

0 — Z/nZ =3 7./n*7 — Z/nZ — 0.

Let j; : H(m(X),Z/nZ) — HY(X,Z/nZ) (i = 0,1,2,3,---) denote the
edge homomorphisms in the modified Hochschild—Serre spectral sequence
(Corollary 4.2.8). For each p € M(X, A) = Hom.(m,(X), A), let p’ denote
/ p* also denote the composition

HY(A, Z/nZ) 2= H(m(X),Z/nZ) 2 HY(X,Z/nZ)
of the natural map j; and the induced map p*. Then we have
CSe(p) = pi(id) U B(py (1)) € B (X, Z/nZ),

where U : HL(Y, Z/nZ) x HZ_(X, 7Z./nZ) — H3(X,Z/nZ) is the cup product
and 3 : HY(X,Z/nZ) — H*(X,Z/nZ) is the Bockstein map.

Remark 4.4.1. For the definition of the cup product in the category of
sheaves on any site, we refer to [Sw; Corollary 3.7].

Now we show the main assertion of this section. We keep the same nota-
tions as in Remark 4.2.6.
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Theorerm 4.4.2. Let X = Spec Ok denote the prime spectrum of the ring
of integers of a number field K containing primitive n-th roots of unity. Let
p : m(X) = Z/nZ be a continuous and surjective homomorphism. Set
A =7Z/nZ and ¢ = id U B(id) € H3(A,Z/nZ). Let L = K(v+) denote the
Kummer extension corresponding to Ker p as in Remark 4.2.6, so that L] K
1s unramified at all finite and infinite primes and there exist some a € Ik
and v € K* with a® = (v)~. Let x : Gal(L/K) = Z/nZ denote the natural
1somorphism induced by p. Then we have

cs=+((42)

Proof. When K is totally imaginary, the assertion holds by [BCGKPT; The-
orem 1.3]. So we consider the case K has real primes and n = 2. By
direct calculation, we see that p*(id) € H'(m (X),Z/2Z) corresponds to
p € Hom.(m(X),Z/27) via the natural isomorphism
H' (7 (X),Z/2Z) = Hom,(m(X), Z/27).
Then, by Proposition 4.2.5 and Remark 4.2.6 , p%(id) = j; o p*(id) €
H'(X,7/27) corresponds to the composition y o (L/—K> € Hom,.(Clg,Z/27Z)
via the natural isomorphism
HY(X,7/27) = Hom,(Clg, Z/27).
We regard [(p% (id)) as an element in Exti(Z/2Z, .G x)~ = (Z1/B1)~
through Artin—Verdier duality. Then by [AC; Corollary 3.13], we have
P (id) U B(px (id)) = B(px (1) ([(v, 0)]) = px (id) (5 ([(v, a)])),

where (' : Ext(Z/2Z, .G x) — Ext:(Z/2Z, $.G,, x) is the connecting
homomorphism induced by the short exact sequence

0 Z/27. 3 7.)2*7 — 7./27. — 0.

By replacing X with X in the proof of [AC; Lemma 4.1], one can see
B'([(v,a)]) = [a]. Hence we see that CS.(p) = 0 holds if and only if
L/TK> € Gal(L/K) is trivial. Therefore, we obtain the assertion. O
4.5 Explicit formulas of the mod 2 arithmetic Dijkgraaf—

Witten invariants for real quadratic number fields

Q(\/P1p2 - pr) with p; =1 mod 4

In the following, we consider the case K = Q(/pipz - - - pr), where each p;
is a prime number such that p; = 1 mod 4. We keep the notation as in the
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previous section and suppose that n = 2, A = Z/27, and ¢ = id U f(id) €
H3(A,Z/27Z). Assume that the norm of the fundamental unit in OF is —1.
Then the narrow ideal class group Cl} is the same as Clg.

63 +v5-13-61
Remark 4.5.1. The fundamental unit of Q(v/5- 13- 61) ise = il

with Nr e = 1. We eliminate such cases to use Gauss’s genus theory.

By p; = 1 mod 4, the discriminant of K is pips---p,.. We define the
abelian multiplicative 2-group 7% by

Ty = {(z1,22,- -, a) € {£1}" [ [[ o = 13,
=1

~th j-th
and put ej; = (1,---,1, =1,1,---,1, =1,1,--- 1) € T for each (i, j) with

1 £i < j < r. In addition, we define an additive 2-group T’y by

T, = {(x1, 29, - ,2,) € (Z/27)" | Zx = 0}.

and put £ (0 0. 10 0.1 0.+ 0) € T, for each (i, ) with
pu ez‘j_(a )y Yy ) s ) Yy 7)6 +Oreac (L])Wlt

1 <4< j < r. Then we have a standard isomorphism Ty — T; (z;); —
((—=1)*),;. By Gauss’s genus theory [O; §4.7], there is an isomorphism

Cl) /2Cl; — T,

= ()G ()

where <;) denotes the Legendre symbol. Therefore, by Proposition 4.1.7,

we obtain the following isomorphisms

Hom,(m(X),Z/2Z) = Hom(Cl}/2Cl};, Z/27)
=~ Hom(7\,{+£1l}) = Hom(7},Z/27Z).

given by

We denote the corresponding elements in those groups by the same letters.
Now we prove the following formula.

Theorerm 4.5.2. Notations being as above, for each nontrivial p € Hom(Ty,{£1}),
the arithmetic Chern—Simons invariant satisfies

(—1)%@ = T (&),

i<j pi

ple;)=—1
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Proof. Define elements by,by, -+ ,b,_1 € T\ by

blz(_171717”' 7_1>7b2:(17_171717"' 7_1)7”' JbT*1:(1717"' 717_17_1)

so that the tuple (by, by, -+ ,b,_1) is a basis of T\. Let J = {j1,72-*+ ,jm} C
{1,2,--- ,r—1} with j; < ja -+ < jm, and suppose that p(b;) = —1 if and only
if i € J. Note that p(e;;) = —1 holds if and only if the intersection {7, j} N .J
consists of one element. Let L denote the abelian unramified extension of K
corresponding to 2Clg via the class field theory (Proposition 4.1.7), namely,

we put
L:@(\/Ev\/p_?f”\/p_T)'

Let L, denote the unramified Kummer extension of K corresponding to

Kerp C m(X), so that we have
(4.5.2.1) L,=K(\/v), al=(v)™"

for some v € K* and a, € Ix. In order to apply Theorem 4.4.2, let us
explicitly find such v. Let a = (aj,aq, -+ ,a,) € T and let a € Ix whose
image [a] corresponds to a via the isomorphism Cl}. /2Cl}; — T\, of Gauss’s

genus theory. Then the Artin symbol (L/TK) € Gal(L/K) is characterized

b L/K
e

)w@):aim (=1,2, 7).

Let u: K* — K*/(K*)? denote the natural projection. By Remark 4.2.6,
the class u(v) € K*/(K*)? is characterized by

a

L,/K
(55) iy = sta
Since <M> is the restriction of (L/—K> to L,, we may put

V= Dy Dy Pj /P1D2 Dy

Since the minimal polynomial of (14 \/pipz -~ p,)/2 over Q is congruent to

(2X —1)? mod p;, we have
2

where p; = (pi, \/P1P2 - - - Pr) is the prime ideal of Ok . Hence we have

Ay = P1P2- P /P Pjo - P
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We see that the composite map

X : Gal(L/K) 5 Clyx/2Clx 5 Ty 5 {1}

' N Y
sends (ﬁ{—f) € Gal(L/K) to H ( a ) € {£1}. By the quadratic residue
=1 \ Pi
and the assumption that p; = 1 mod 4 (I =1,...,r), we have (&) = <&>
pi b;
for any distinct 4,5 € {1,2,...,r}. So we obtain

1(5) - 1n )
(%) - I (7
i¢J
- ()
1<i<r1<j<r M
icd  j¢J

_—_— <&).
i<j pi
ples)=—1

The last equation follows from the fact that p(e;;) = —1 holds if and only if
the intersection {7, j}NJ consists of one element. On the other hand, since L,

is the unramified Kummer extension of K corresponding to Kerp C m(X),
the composite map x’ : Gal(L/K) = Cly /2Clx — T 5 {#£1} induces the
natural isomorphism x” : Gal(L,/K) = Gal(L/K)/(Kerp) = {+1}. Let
x : Gal(L,/K) = Z/2Z denote the natural isomorphism induced by p :

m(X) — Z/2Z. We see that x is equal to the composite map Gal(L,/K) X,
{£1} = Z/27Z. Therefore, by Theorem 4.4.2, we have

creee((2)- 1 6)

i<j
ple;)=—1
[l
Since the invariant C'S,(0) of the trivial representation 0 € Hom(T",., Z/27Z)

is zero, we have the following

Corollary 4.5.3. For p € Hom(T,Z/27), we have

CSelp) = pled)ka(pi, py),

i<j
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where ko (p;, p;) denotes the modulo 2 linking number of p; and p; defined by
(—1)le@ir;) — (& )
Pj

By Definition 4.3.1, the mod 2 arithmetic Dijkgraaf-Witten invariant is

given by
— 1
Z.(X) = = > (—1)@Sele),

peHom (T ,Z/27)

Hence we obtain the following.
Corollary 4.5.4. The mod 2 arithmetic Dijkgraaf-Witten invariant is given
by
+
o 1 D p(eij)
2X) =5 X (H (—) -
pEHom(Ty,2/27) \i<j P;

Example 4.5.5. Here are some numerical examples of C'S.(p) and Z.(X)
for the case r = 3. We define py, p1, p2 and ps in Hom(T'y, Z/27) by

po(la 17 0) = Oa 00(07 17 1) = 07 p0<17 07 1) = 07
pl(lalao) = 15 /)1(07171) :07 p1<17071) = 17
p2(17 170) = 07 p2(07 17 1) = 17 p2<1707 1) = 17
p3(17 170) = 17 P3(07 17 1) = 17 P3<1707 1) - 07

so that Hom(T', Z/27Z) = {po, p1, p2, P3}-
(1) K =Q(/5-29-37) :

Iky(5,29) = 0, 1ky(29,37) = 1, 1ky(37,5) = 1,

CSC(pO) =0, CSC(pl) =1, CSC(pQ) =0, OSC(p3) =1,
Z(X) =0.
(2) K = @(\/5 -13 - 73) :
1k2(5, 13) = 1k2<13, 73) = lk2<73, 5) =1,

CSe(po) = CSe(p1) = CSe(p2) = CSe(ps) = 0,

Z,(X) = 2.
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Let us consider the case N = 2, G = Z/27Z and take ¢ € Z3(G,Z/2Z) =
Z/27 the non-trivial cocycle. Let S := {(p1),---,(p.)} be a finite set of
primes of Q (r > 2) such that p, = 1 mod 4 and let k := Q(\/p1---p,) be
the quadratic extension of ) ramified over (p1), (p2),- - , (p;). In order to de-
scribe the arithmetic Dijkgraaf-Witten invariant Z(X), we describe the mod
2 arithmetic linking diagram Dg of S, following the mod 2 linking diagram
and the analogy between the linking number and the Legendre symbol. The
mod 2 arithmetic linking diagram Dg of S consists of r vertices and edges.
Each vertex represents each prime (p;) and two vertices (p;) and (p;) are

adjacent by an edge if and only if (%) = —1. since p;, = 1 mod 4, Dy is
well defined by the quadratic reciprocity law. The following formula can be
proved by using genus theory for X.

Theorerm 4.5.6 ([Hi], [DK]). Notations being as above, we have

Z(X) =

— 2"=2 if any connected component of Dg is a circuit
0 otherwise.

Example 4.5.7. Let S = {5,13,29,73} so that (3) = (&) = (£) = —1,

(%) = (32) = (£) = 1. Then the mod 2 linking diagram Dg is given

by the following figure. Let K := Q(+/5-13-29-73) = Q(+/137605) and
X := Spec(Z[1HI3T005]) By Theorem 4.5.6, we have Z(X) = 22 = 4.

) 13

29 73
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5 Arithmetic Dijkgraaf—~Witten TQFT for S-
integer number rings

In this chapter, we present arithmetic Dijkgraaf-~Witten theory for number
rings, which may be regarded as an arithmetic analogue of Dijkgraaf~Witten
theory in Chapter 3, along the line of topological quantum field theory. We

list herewith some analogies which will be used in this section.

oriented, connected, closed
3-manifold M

compactified spectrum of
number ring X, = Spec(Oy)

L=KU-- UKL,

knot prime
K:8t— M {p} = Spec(Oy/p) — X,
link finite set of maximal ideals

S:{pla"'7pr}

tubular n.b.d of a knot

p-adic integer ring

Vic Vi, = Spec(Oy)
boundary torus p-adic field
oV 0V, = Spec(ky)
peripheral group local absolute Galois group
™ (0Vi) I, = Gal(k,/ky)

tubular n.b.d of a link
Ve =V, U---U Vg,
boundary tori
OVy =0Vi, U--- UV,

union of p;-adic integer rings
Vg = Spec(O,,) U - - - U Spec(Oy, )
union of p;-adic fields

0Vs = Spec(ky, ) U - - - L Spec(ky,.)

link complement
X[: =M \ Int(VE)
link group

complement of a finite set of primes

X=X\ S
maximal Galois group with

I, =m(Xge) given ramification 11y = Gal(ks/k)

Based on the analogies recalled above, for a finite set .S of finite primes of
a number field k, we construct arithmetic analogues of the Chern-Simons 1-
cocycle, the prequantization bundle for a surface and the Chern—Simons func-
tional for a 3-manifold. We then construct arithmetic analogues for £ and S
of the quantum Hilbert space (space of conformal blocks) and the Dijkgraaf—
Witten partition function in (2+1)-dimensional Chern-Simons TQFT. We
show some basic and functorial properties of those arithmetic analogues.
Finally we show a decomposition formula for arithmetic Chern—Simons in-
variants and a gluing formula for arithmetic Dijkgraaf-Witten partition func-
tions. The contents of this chapter are based on [HKM].
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5.1 Torsors for an additive group

Let A be an additive group, where the identity element of A is denoted by
0. An A-torsor is defined by a non-empty set T' equipped with action of A
from the right

TxA—T; (ta)w— ta,

which is simply transitive. So, for any elements s,t € T, there exists uniquely
a € A such that s = t.a. We denote such an a by s — ¢

(5.1.1) a=s—t<L s=ta.

For A-torsors T and T”, a morphism f : T"— T’ is defined by a map of
sets, which satisfies

(5.1.2) f(t.a) = f(t)a

for all t € T and a € A. We easily see that any morphism of A-torsors is an
isomorphism.

Defining the action of A on A by (t,a) € Ax A—t+ae€ A, A itself
becomes an A-torsor. We call it a trivial A-torsor. A morphism f: A — A
of trivial A-torsors is given by f(a) = a + A for any a € A with A = f(0).
Choosing an element ¢t € T, any A-torsor T is isomorphic to the trivial
A-torsor by the morphism

(5.1.3) 0 T —5 A; s+ py(s) i =5—t.

We call ¢, the trivialization at t.
Here are some properties concerning A-torsors, which will be used in the
subsequent sections.

Theorem 5.1.4. (1) Let T be an A-torsor. For s,t,u € T and a € A, we
have the following equality in A:

s—s=0, s—u=(s—t)+(t—u), sa—t=(s—t)+a.

(2) T, T" be A-torsors and let f : T — T" be a morphism of A-torsors. Then,
for s,t € T, we have the following equality in A:

s—t=[(s) = [(1).

(3) Let T, T" be A-torsors and let f : T — T' be a morphism of A-torsors.
Fixt € T and t' € T, and let \(f;t,t') :== f(t) —t'. Then we have the
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following commutative diagram:

T L o
Pt 1 1 Yy
A Dy

For other choices s € T and s’ € T', we have
A(fis,8) = Afit. 1) + (s —t) = (s = 1)

(4) For an A-torsor T and a subgroup B of A, we note that the quotient set
T/B is an A/B-torsor by (t mod B).(a mod B) := (t.amodB) fort € T and
a€A.

Proof. (1) These equalities follow from the definition of group action and
(5.1.1).

(2) This follows from (5.1.1) and (5.1.2).

(3) The former assertion follows from (5.1.3). For the latter assertion, we
note the following commutative diagram.

id f i

T T — T’ — T
\L Ps \L Pt \L P! \lf Ps
A POy Ty

Since the composite map in the lower row is +A(f; s, s’) by the former asser-
tion, the latter assertion follows.
(4) This is easily seen. O

5.2 Conjugate action on group cochains

Let II be a profinite group and let M be an additive discrete group on which
IT acts continuously from the left. Let C™(II, M) (n > 0) be the group of
continuous n-cochains of IT with coefficients in M and let d"** : C™(II, M) —
C™Y(I1, M) be the coboundary homomorphisms defined by

(dn+lan)<717 <. 77n+1)
=70 (Y2, - - s Ynt1)

n

5.2.1 i n
( ) +Z(—1) A" (V1 s Yim s ViVit s Vit 2s - - -5 Y1)
i=1

+(_1)n+1an(,717 cee 7/771)

for ™ € C"(II, M) and 71,...,7n41 € II. Let Z"(II, M) := Ker(d"*') and
B"(II, M) := Im(d") be the subgroups of C™(II, M) consisting of n-cocycles
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and n-coboundaries, respectively, and let H™(II, M) := Z"(1I, M)/ B"(11, M),
the n-th cohomology group of II with coefficients in M. By convention, we
put C"(II, M) = 0 for n < 0. We sometimes write d for d" simply if no

misunderstanding is caused.
Note that IT acts on C™(II, M) from the left by

(5.2.2) (0.0 (Y1, -y V) = 0™ (0 0, .. 0 y0)

for o™ € C"(II, M) and 0,7, ...,7v, € II. By (5.2.1) and (5.2.2), we see that
this action commutes with the coboundary homomorphisms:

(5.2.3) d"(o.a') = o.d" (") (o' € C'(II, M)).

Now we shall describe the action of IT on C"(II, M) in a concrete manner.
For o, 01,00 €l,0<i<j<n(n>1),and 1 <k <n—1, we define
the maps s; = sj(0) : II" = "™, s;; = s7;(01,02) : " — " and
ty =t 1" — 1" by

Si(gl7g27"'7gn> = (g17"'7gi70-7 O-_lgl+1o-7"'7o-_1gn0-)7
Sij (91,92, 9n) == (91, -+, 9is 01,00 giy101, ... 01 g0,
(5.2.4) o L
0'2,(010'2) gj+10'102,...,(0'102) gn0'102),
tk(917927 s 7gn) = (g17 <oy Ok—1, 9k Gk+15 k425 - - - 7gn)

for (g1,92,...,9n) € II". We note that 5?111(02) ost(oy) = sﬁj(al,ag). We
define the homomorphisms

h L C"UITL, M) — C(IT, M),
L C"F2(I1, M) — C™(I1, M)

01 o2
by
hp(@ ) = > (=)™ o s(0)),
5.2.5 . L
( ) H;zl702(an+2) — Z (_1)z+j<an+2 S <0_1’0_2>>
0<i<j<n

for "t € C"Y(II, M) and o2 € C"*2(I1, M). For example, explicit forms

of hy(a"*h), H} ,,(a*?) for n = 1,2 are given as follows:

hy(a?)(g) = a*(0, 0~ 90) a*(g, o).

hz(a )(gl,gz) a’(0,07 gi0,071g20) — a*(g1,0,07 go0) + &’(g1, g2, 0).
H: . (0®)(g) = a®(01, 02, (0102) " go102) — & (01,07 'go1,02) + a*(g, 01, 02)
01102( )(91,92) 4(01,02,(0102)71910102,(0102)71920102)

1 4 .t -1
M
(‘71 o 9101702;(0102) 920102)—1-04 (01,01 g101,0q 9201,02)
+a*(g1, 01,09, (0102)~ 920102)—a4(91701701_19201702)+Oz4(g1792701,02)
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We call hy, Hy, ,, the transgression homomorphisms, which play roles similar
to the transgression homomorphisms in [Gm)].

The following Theorem 5.2.6 and Corollary 5.2.7 were shown in Appen-
dices A and B of [CKKPY]. Here we give an elementary direct proof. See

also Remark 5.2.8 below for the background of the proof.

Theorem 5.2.6. Notations being as above, we have the following equalities.
o.a" — o™ = A2 (d" T a™) + d"(h2Ha™)),

Ul.hZZ(an—H)—hn (a”“)—i—hgl(anﬂ) — " (dn+2(()én+1))—dn(Hn_l (Ozn+1)).

0102 01,02 01,02

for a™ € C"(I1, M) and o™t € C""(II, M) (n > 1).
Proof. By (5.2.4), we can see

triros (1< k),
(5261) tk O Sit1,j+1 (k < Z)
Sijoty =% tgr1 0801 (1 <k <j)
tiao O Si,j (] < ]{?)

SiOtkI{ tkosi—i—l (k)gl)

We note that ¢;11 0 s;41 = t;11 0s;. By (5.2.1) and (5.2.5), we have, for any
(917927 s >gn) S Hna

R(d™ ()91, gn) = (0.0")(g1,- -+, Gn)

Y (D0 o s (g )
+ > (=)ot o) (g1, n)

H(=1)" o (gr, . gn)
+ Z (_1)z+n+1<0én © Si)(gh s 7gn71)7
0<i<n—1 '
dn(hqgil(&n))(glﬂ s 7gn) = 0<; 1(_1)Zgl(an o 8i)(927 ce 7971)

+ X (FD)™Matosi0t)(gr - gn)
+ Y (1) 0 5) (g1 Gn)s
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and

H2, (20 )01, g2) N
- (Ul.h?2 (an+l))(gl’ e 7gn) + Z (_1)Z+]91<an+l o Si—l,j—l)(927 S 7gn)

0<i<j<n

_h21g2 (an+1)<g17 QR 7gn) + Z (_1)i+j+k(an+1 o tk o Si,j)(gla <. 7gn)

S0 Il v >

i#j or k#i+1

+hp (@) (g1, ga) 0 2 (FD)ER (@ o s ) (g1, G,
0<i<j<n—1

dn(Hgialz(anJrl))'(g'lv cee ’gn)
= > (=)"gi.(a™osi;)(92, 5 Gn)

0<i<j<n—1

+ > (—1)Hitk(antl o i o tk)(gus .-, gn)
0<i<j<n—1,1<k<n—1

+ Z (_1)i+j+n(an+1 © Si7j)(gla s 7gn—1)-

0<i<j<n—1

ha(d™ (@) (g1, - -, gn) + d"(hg (@) (91, - -, gn)
= )(glv"'vgn>_an(glu---7gn)

+ (=1)**(a™ oty 05:)(g1;- -, gn)
e

(_1)i+k(an ©35;0 tk)(gla S 7gn)a

and

Hy, 5, (d2( @™ ) (g1, .-, gn) — A" (HE 5, (")) (g1, -, n)
= orhg, (@) (g1, -5 gn) = B0, (") (1, oy gn) + g (") (g1, - - gn)
+ > (1) (@ oty 0 5i5) (91, -+ gn)

St I L v >

i#j or kFi+1 o
— > (—1)Htk(anHl o i o te) (g1, -, gn)-
0<i<j<n—1,1<k<n—1

By (5.2.6.1), we obtain the required equalities. O

By (5.2.3), II acts on Z"(II, M) from the left. This action is described by
Theorem 5.2.6 as follows.

Corollary 5.2.7. Suppose o € Z™(I1I, M) (n > 1). For o € 11, we let

Bo = hy ™ (a).

Then we have
oca=a+d"p,.
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For 0,0’ € 11, we have
Bser = By + 0.5 mod B" (1T, M),

namely, the map 11 3 o — B, mod B (I, M) € C" (11, M)/B"~ (11, M)
15 a 1-cocycle.

Proof. Proof. The both equalities are obtained immediately from Theorem
5.2.6, since d"" () =0 by a € Z™(II, M) (n > 1). O

Remark 5.2.8 (Algebro-topological proof of Theorem 5.2.6). For o € II,
let 0* denote the automorphism of the cochain complex (C*(II, M), d*) de-
fined by o"(«) := 0.« for « € C™(II, M). Then Theorem 5.2.6 asserts that
the family of homomorphisms {h? : C"*(II, M) — C™(II, M)} gives a ho-
motopy connecting o and idge(mr,a. Actually our explicit definition (5.2.5)
is obtained by making the following algebro-topological proof concrete: We
may assume I is finite by the limit argument. Let € be the one-object cat-
egory whose morphisms are the elements of II. We consider two functors
idg,0 : &€ — & defined by idg(g) := g,0(g) := o 'go for each morphism
g € II. Let N : Cat — Fct(A°P, Set) denote the nerve functor, where Cat is
the category of small categories and Fct(A°P, Set) is the category of simplicial
sets. Define the natural transformation 7 : ¢ — idg by (%) := o (* is the
unique object of £). Then 1 induces a corresponding funcor h, : € x 1 — €&,
where n denotes the category defined by the set {0,1,...,n} and its order.
Then Nh,, : NE x N1 — NE is a homotopy connecting the two simplicial
maps No,Nidg : NE — NE. Let C,(NE) = ZINE(n)] be the group of
n~chains of the simplicial set N'E. By [My; Proposition 5.3] and [My; Propo-
sition 6.2], N'h,, induces a homotopy {hZ : C,,(NE) — Cy11(NE)} connecting
two chain maps (NG)., (Nide)e : Co(NE) = Co(NE). For the groups of n-
cochains C"(NE, M) = Hom(C,,(NE), M), the homotopy {hZ} induces the
homotopy {hZ : C"T1(NE, M) — C™"(NE, M)} connecting the two cochain
maps (N7)*, (Nideg)® : C*(NE, M) — C*(NE, M). Since NE(n) is 11", we

have the isomorphisms for i > 0
C"(NE, M) ~ Map(IT", M) = C™(I1, M).

Under the above isomorphisms, (Na)® and (Nidg)® are identified with o°
and idce (i, ar, respectively, and hence {h]} gives a homotopy connecting o®
and idC"(H,M)-

45



5.3 Arithmetic prequantization bundles and arithmetic
Chern—Simons 1-cocycles
Throughout the rest of this section, we fix a natural number N > land let
iy be the group of N-th roots of unity in the field C of complex numbers.
We fix a primitive N-th root of unity (y and the isomorphism Z/NZ =~
pun; m — Cxr. The base number field & (in C) is supposed to contain py.
Let G be a finite group and let ¢ be a fixed 3-cocycle of G with coefficients
in Z/NZ, c € Z3(G,Z/NZ), where G acts on Z/NZ trivially.
We firstly develop a local theory at a finite prime. Let p be a finite prime
of k and let k, be the p-adic field. We let 0V} := Spec(k,), which play a
role analogous to the boundary of a tubular neighborhood of a knot (see
the dictionary of the analogies in Introduction). Let II, denote the étale
fundamental group of AV, with base point Spec(k,) (k, being an algebraic
closure of k), which is the absolute Galois group Gal(k,/k,).
Let F, be the set of continuous homomorphisms of II, to G:

Fp = Homeon (11, G).
It is a finite set on which G acts from the right by
(5.3.1) Fo X G = Foi (0p:9) = Pp-9 =g ppg.
Let M, denote the quotient space by this action:
M, =F,/G.

Let Map(F,, Z/NZ) denote the additive group consisting of maps from F,
to Z/NZ, on which G acts from the left by

(5.3.2) (9-9p)(pp) = %(Pp-g)

for ¢ € G,¢, € Map(F,,Z/NZ) and p, € F,. For p, € F, and o €
C"(G,Z/NZ), we denote by a o p, the n-cochain of II, with coefficients
in Z/NZ defined by

(@0 pp)(v1, -y vm) == alpp(11), -5 Pp(Tm))-
By (5.2.2) and (5.3.1), we have

(5.3.3) (g-a) o py = ao(py.g)
for g € G, € C"(G,Z/NZ) and p, € F,.
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Firstly, we shall construct an arithmetic analog for 0V, := Spec(k;) of the
prequantization bundle, using the given 3-cocycle ¢ € Z3(G,Z/NZ). The key
idea for this is due to Kim ([Ki]), who uses the conjugate G-action on ¢ and
the 2nd Galois cohomology group (Brauer group) of the local field k,.

Let p, € F, and so co p, € Z*(Il,,Z/NZ). Let d denote the coboundary
homomorphism C*(Il,,Z/NZ) — C*(11,,Z/NZ). We define L,(p,) by the
quotient set

(5.3.4) Ly(pp) = d~(c 0 py)/ BTy, Z/NZ).

Here we note that d~'(c o p,) is non-empty, because the cohomological di-
mension of Il is 2 ([NSW; Theorem 7.1.8], [S1; Chapitre II, 5.3, Proposition
15]) and so H?*(I,,Z/NZ) = 0. Thus d"*(cop,) is a Z*(Il,, Z/NZ)-torsor in
the obvious manner and so £,(py) is an H?*(Il,, Z/NZ)-torsor by (5.3.4) and
Lemma 5.1.4 (4). Since k, contains puy and so H*(Il,, Z/NZ) = H*(ky, pin ),
the theory of Brauer groups (cf. [S2; Chapitre XIIJ) tells us that there is the
canonical isomorphism

inv, : H*(1l,,Z/NZ) — Z/NZ

and hence L,(p,) is a Z/NZ-torsor via inv,.
Let £, be the disjoint union of £,(p,) over all p, € Fy:

L, = |_| Ly(pp)

ppEFp
and consider the projection

Since each fiber @, ' (p,) = L,(py) is a Z/NZ-torsor, we may regard L, as a
principal Z/NZ-bundle over F,.

Let ¢ € GG. Using the transgression map hz in (5.2.5), we define h, €
C2(G,Z/NZ)/B*(G,Z/NZ) by

hy := h2(c) mod B*(G,Z/NZ),
where h2(c) is the 2-cochain defined explicitly by
h2(c)(g1, 92) = c(g.9 " 919,97 929) — (91, 9,9 " 929) + (g1, 92, 9),
where ¢1, g2 € G. By Corollary 1.2.7, we have

(5.3.5) g.c=c+dh,
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and
(5.3.6) heg = hg + g.hy
for g, ¢’ € G. By (5.3.3), (5.3.4) and (5.3.5), we have

d(a+hgopy) =cop,+(g.c=c)opy=(g.c)opy =co(pyg)
for a, € L,(py) and so we have the isomorphism of Z/NZ-torsors
(5.3.7) Fo(9:P0) = Lo(pp) — Ly(pp-9); = g + Dy 0 py.
By (5.3.3) and (5.3.6), we have

ap + hgg 0 py =y + (hy + g.hy) 0 py
=ay+hgop,+ hyo(pp.g)

for g, ¢’ € G. It means that G acts on £, from the right by

By (5.3.7), (5.3.8) and the way of the Z/NZ-action on L,, we have the
following commutative diagram

L, % L, ~nZ/NZ

@p 4 + @y
Fo -5 F
namely,
(5.3.9) (ap.m).g = (p.g)-m, @p(.g) = @p(a).g

for o, € Fp, m € Z/NZ,g € G. So L, is a G-equivariant principal Z/NZ-
bundle over F,. Taking the quotient by the action of GG, we have the principal
Z/NZ-bundle %, : L, — M,. We call w, : L, — F, or =, : L, — M, the
arithmetic prequantization Z/NZ-bundle for 0V, := Spec(k).

Let us choose a section z, € I'(F,, £,), namely, the map

Ty 1 Fy —> L, such that w, oz, = idgz,.

This means that we fix a “coordinate” on L,. In fact, by the trivialization
at z,(py) in (5.1.3), we may identify each fiber £,(p,) over p, with Z/NZ:

Panipn) * Lp(Pp) — ZI/NZ; oy — ay — xp(pp)-
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For g € G and p, € F,, we let
(5.3.10)  X"(g,pp) = (g, o) (@ (03)) — 2(0p-9) = 2(Pp)-9 — Tp(pp-9)

so that we have the following commutative diagram by Lemma 5.1.4 (3):

f b )
['p(Pp) R ﬁp(ﬂp-g)

Prsio) ¥ P
72/Nz. % 7Nz,
namely, for oy, € L,(py), we have
(5.3.11) .9 — Tp(pp-9) = (ap — Tp(pp)) + X" (9, pp).
We define the map A" : G — Map(F,,Z/NZ) by
(53.12) NP (9)(6) = N (9 )

for g € G and p, € F,.

Theorem 5.3.13. For g,¢" € G, we have

X' (99') = X" (9) + (9:07)(9).-
Namely, the map \,* is a 1-cocycle:

N € ZY G, Map(F,, Z/NZ)).
Proof. For ¢g,¢" € G and p, € F,, we have

)\;:p (99" pp) = 199" pp)(@p(pp)) — 2p(pp(99')) by (5.3.10)
= (@p(pp) + hgg 0 py) — p(pp-(99")) by (5.3.7)
= (Tp(pp) + hg 0 pp + by 0 (pp-g)) — Tp(pp-(99')) by (5.3.3),(5.3.6).

By Lemma 5.1.4 (1), we have

(%(Pp) +hgop,+hyo (Pp-g)) - xp(Pp-(QQI))
= {(zp(pp) + hgopp) — 2p(pp-9)} + {(2(pp-g) + hgr 0 (pp-9)) — 24 (pp-(99')) }-

Here we see by (5.3.7), (5.3.10) that

(p(pyp) + hg 0 pp) — x4(py.g) = N (9, p);
(p(pp-g) + hy 0 (0p-9)) — Tp(py-(99") = X" (', Pp-9)-

Combining these, we have
N (99" pp) = N (9, ) + NP (G p-9)
for any p, € F,. By (5.3.2) and (5.3.12), we obtain the assertion. O
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We call \,* the Chern—Simons 1-cocycle for OV}, with respect to the section
xp.

For a section z, € I'(F,, L,), we define £, by the product (trivial) principal
Z/NZ-bundle over Fy:
Ly :=F, x Z/NZ,

on which G acts from the right by

(5.3.14) Ly x G = L5 ((pp,m), g) = (pp-g,m + N (9, pp)),

and so the projection
w," : Ly — Fp
is G-equivariant.

Proposition 5.3.15. We have the following isomorphism of G-equivariant
principal 7./ NZ-bundles

o L, — L o = (wploy), ap — zp(wy(ay))).

In particular, the isomorphism class of L," is independent of the choice of

a section x,. In other words, for another section x; € I'(Fp, Ly), we have

,C;fp ~ L% as G-equivariant principal Z/NZ-bundles.

Proof. (i) It is easy to see that w," o ®," = w@,.
(ii) For a, € L, and m € Z/NZ, we have

(I)gp (crp.m)

WplQp. T ) m_%(wp(

( p.mn)))
wp(ayp), @ — xp(wp(ay)))

@ (

b (

o~~~

I
e/—\

ap)) ( xp(wp(ap))) m) by Lemma 5.1.4 (1)

(iii) ®,* has the inverse defined by (®,?)~((pp, m)) := zp(pp).m for (p,, m) €
Fp x ZINZ.

By (i), (ii), (iii), ®," is an isomorphism of principal Z/NZ-bundles. So it
suffices to show that &** is G-equivariant. It follows from that

" (ap.9) = (@p(0p.9), 0.9 — Tp(wp(p-9)))
= (gp@‘p) 9: (ap — 2p(@p())) + A" (9, @ ()
=Dy ().,
where the 2nd equality holds by (5.3.9), (5.3.11) and the 3rd equality follows
from (5.1.14) O
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Taking the quotient of wff L, — F, by the action of G, we have the
principal Z/NZ-bundle %" : L,"f" — M,. We call @,” : L;? — F, or
ﬁi" : Z;Cp — M, the arithmetic prequantization principal Z/NZ bundle for
0V, with respect to the section z,.

For x,,x, € ['(F,, L,), we define the map d, % Fy = Z/NZ by

(5.3.16) 537 (pp) = p(py) — h(py)

for p, € Fy.

Lemma 5.3.17. For z,,z;, v, € I'(F,, L), we have

Tp, Ty Tp, Ty

5" = 05" = 0, 5”““*’”"+5”_5

Proof. These equalities follow from Lemma 5.1.4 (1). O

The following proposition tells us how A" is changed when we change the
section ;.

Proposition 5.3.18. For x,, v, € I'(F,, £,), we have

AP (g) — AP (g) = .03 — gan

for any g € G. So the cohomology class [N,"] € H*(G,Map(F,, Z/NZ)) is

independent of the choice of a section x,.

Proof. By (5.3.10) and Lemma 5.1.4 (1), (2), we have

(9, 00) — N7 (92 py)

= (folg, pp) (2 ( w)) — 25 (0p-9)) — (fo(g, pp) (p(pp)) — 24(pp-9))
= (7p(pp-g) — (Pp 9)) + (fu(g, Pp)(%(ﬂp)) — fo(g, pp) (24(pp)))
= (@p(pp-9) = 2 (pp-9)) + (23(pp) = 2p(pp))

= (9.6, x"m ") (pp) —5m (pp) by (5.1.2)

for any g € G and p, € F,, hence the assertion. O

By Proposition 5.3.18, we denote the cohomology class [A,"] by [p], which we
call the arithmetic Chern—Simons 1st cohomology class for OV,. As a corol-
lary of Proposition 5.3.18, we can make the latter statement of Proposition
5.3.15 more precise as follows.
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Corollary 5.3.19. (1) For xy, 1, € I'(F,, L), we have the following isomor-
phism of G-equivariant principal Z/NZ-bundles over F,:

/
Tp,Tp

D, L £§p§ (Pp, m) = (pp,m + 5?%(%))7

where 5;:”@;’ : Fp = Z/NZ is the map defined in (5.5.16).
(2) For xy, xy, xy € U'(Fy, Ly), we have

/

Tp, Ty Ty T
q)gc x ’ (I?P a CI)px; Tp Zp, T} xy Tp, T Tp, Ty
QP =idge, PP = (Rp"F) T BT 0 7T = 97
P

Proof. (1) We easily see that (ID;C”’% is isomorphism of principal Z/NZ-bundles

and so it suffices to show that @f”’z” is G-equivariant. This follows from

/
Tp, Ty

3 (ppm).g) = 9 (ppogem + X7(9.02) by (5.314)
= (0p-g9:m+ N (9, 05) + 6" (pp-9))
= (pp-g,m +6," " (py) + A" (g, pp)) by Proposition 5.3.18
=®,""(py,m).g.

(2) The first equality follows from the definitions of ®,”, @;p’x‘,". The latter
equalities follow from Lemma 5.3.17. O]

Let F' be a field containing py. Let L, be the F-line bundle over F, associ-
ated to the principal Z/NZ-bundle £, and the homomorphism Z/NZ — F*;
m — (', namely,

(5.3.20)
Lp = ,Cp X7Z/NZ F
= (Ly x F)/(ay, z) ~ (0pg.m,(§"2) (ap € Lyym € Z/NZ,z € F),

on which G acts from the right by
(5.3.21) Ly x G = Ly (a5, 2)],9) - [(a.9, 2)]

The projection
@pr Ly —> Fyi [(op, 2)] = @)

is a G-equivariant F-line bundle. We denote the fiber @, }?(pp) over p, by
Ly (py):

(5.3.22) Ly(pp) :=A{l(a, 2)] € Ly | my(0) = pp, 2 € F}
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We have a non-canonical bijection by fixing an a, € L,(py):
Ly(pp) — F [(ap, 2)] = 2.
Taking the quotient by the action of G, we obtain the F-line bundles @),  :
L, - M,. Wecal wyp : L, = F, or Wy : L, — M, the arithmetic
prequantization F'-line bundle for 0V;,.
Let L,” be the product F-line bundle over F,:
Ly = F, x F,
on which G acts from the right by

Tp
(5.3:23) Ly x G = L (9, 2).9) = (pp9, 28 @™,
and the projection
w;"fF : Lg" — Fp
is G-equivariant. Then we have the following Proposition similar to Propo-

sition 5.3.15 and Corollary 5.3.19.

Proposition 5.3.24. We have the following isomorphism of G-equivariant
F-line bundles over F,

By s Ly = L3 (0, 2)] = (@), 2G " ),

For another section x;,

F-line bundles over F,

we have the following isomorphism of G-equivariant

acp,a:;,

Ty, T, P ~ z, S (pp)
(I)p,pr c Ly — Ly (pp, 2) = (py, 2CN Pr )

)

where 5?’% : Fp = Z/NZ is the map in (5.5.16), and we have the equalities

xp,x;, T x;
{ Cpr’ o =Py ,

/ / " /
xp,mp o ) $p,$p _ I‘p,ﬂ?p —1 ﬂﬁp,fl'p :):p,mp _ l'p,l‘p
" =idpm " = (P ") B 0B " =P

for xy, 2y € U(Fy, Ly).

Proof. (i) It is easy to see that w,", 0 ®," = w; .
(ii) For p, € F,, we let

Ly (py) == (@) " (0p) = {(pp,2) | 2 € F} = F.
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So ®,% restricted to a fiber over p,

O Lton) © Lo(pp) — Ly (pp): [(ap, 2)] > (py, G307 0))

is F-linear.
(iv) For g € G, we have

@y (0, 2)].9)

@7 ([(ap.g, 2)]) by (5.3.21)

Tp
p7
(wp (Oép-g), > ]‘if[py*fp (wyp (ap-g)))

= (wp ()9, 2=z (o) TN (9:00)) By (5.3.11)
= (I),?F([%a z)]).g by (5.3.23).

Hence i)ng is the isomorphism of G-equivariant F-line bundles over F,.
The proofs of the latter parts are similar to those of Corollary 5.3.19 (1),
(2). O

Taking the quotient of @, : L,” — F, by the action of G, we have the F-line

bundle =% : L, — M,. We call @, : L,” — F, or @,% : L," — M, the

arithmetic prequantization F-line bundle for OV, with respect to the section
p

:,Up.

Let S = {p1,...,p,} be a finite set of finite primes of k and let OVy :=
OVy, U--- U9V, . Let Fg be the direct product of F,’s:

Fsi=Fp X X Fp.
It is a finite set on which G acts diagonally from the right, namely,

(5.3.25) Fs x G — Fs; (ps:9) — ps-9:= (Ppr-Gy-- - Ppr-9)

for ps = (ppys---,pp,) € Fs and let Mg denote the quotient space by this
action

MS e .FS/G

Let Map(Fgs,Z/NZ) be the additive group of maps from Fg to Z/NZ, on
which G acts from the left by

(5.3.26) (9-0s)(ps) == ¥s(ps.g)

for g € Map(Fs,Z/NZ),g € G and pg € Fg.
For ps = (pPpys---,pp.) € Fs, let Lg(ps) be the quotient space of the
product Ly, (pp,) X -+ X Ly, (pp,):

(5.3.27) Ls(ps) = (Lpi(pp) ¥ -+ X Ly, (pp,)] ~
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where the equivalence relation ~ is defined by
(5.3.28) (Qpys ooy p,) ~ (o0 ) = Z(api —a,,)=0.
i=1

We see easily that Lg(ps) is equipped with the simply transitive action of
Z/NZ defined by

Ls(ps) X LZINZ — Ls(ps);
([O‘SLm) = [a5]°m = [(apl'm7 s 70‘%)] == [(aplv s 7aPr‘m>]

for ag = (v, ..., p,) and hence Lg(pg) is a Z/NZ-torsor.
Let Lg be the disjoint union of L,(pg) for pg € Fs:

(5.3.29) Ls:= || Lslps).

pPSEFs

on which G acts diagonally from the right by
(5.3.30) LsxG— Ls; ([(apy,---5ap,)],9) — [(ap,.g,. .., ap,.9)]
Consider the projection

ws : Lg — Fs; |as] = [(a,)] = (@, (op,))

which is G-equivariant. Since each fiber w, " (ps) = Ls(ps) is a Z/NZ-torsor,
we may regard wg : Lg — Fs as a G-equivariant principal Z/NZ-bundle.
Taking the quotient by the action of GG, we have the principal Z/NZ-bundle
s Lg — Mg. We call wg : Lg — Fg or g : Lg — Mg the arithmetic
prequantization Z/NZ-bundle for 0Vg = Spec(ky, ) U - - - L Spec(k, ).

Let x5 be a section of wg, xg € I'(Fg, Ls). By (5.3.27) and (5.3.29), it
is written as xg = [(Tp,, ..., Ty, )], where z,, € ['(Fp,, Ly,) for 1 <i < r. For
g € G and ps = (py,) € Fg, we set

(5.3.31) N (9,p8) = X (9. pp) ++ + N (9, )
and define the map \¢° : G — Map(Fs, Z/NZ) by
(5.3.32) As*(9)(ps) = A§* (9, ps)

for g € G and pg € Fg.
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Lemma 5.3.33. (1) Let x;, € I'(F,,, Ly;) be another section for 1 < i <r
2, )] =

P
such that [(xy,, ...,z xg. Then we have

T

T

Aot (9, p) ZA (9. Pp.)

i=1

for g € G and py, € Fy,. So N (g, ps) is independent of the choic of xy,’s
such that xg = [(xy,, ..., %p,)].
(2) The map N&° is a 1-cocycle:

Ne¢ € ZY(G,Map(Fs,Z/NZ)).
PTOOf' (1) Since (':Cpl (Iapl)7 A 7xpr<pp7‘)) ~ (x;Jl (pp1)7 t 7‘%‘;Jr<ppr))7 by (5328>7

we have
I8

Z(xpi(pp) N ml/%(ppz)) = 0.

i=1
for any p,, € Fp,. Therefore we have

T

ZA (9:00) =D (o9 0p) (@, (Pp.) — 7o, (py.-9)) Dy (5.3.10)

i=1
T

= Z((fpz(ga Pm)(xm(/om)) - fm(ga ppz)(x;h(ppz)))
> (Fou(g: 00 (@5, (05,)) — T, (0p,-9))

=1
r

+ 2 (n9) = () by Lemma 514 ()

= Z Foi (9 o) (@, (0p)) = @5, (ppi-g)) by Lemma 5.1.4 (2)

—ZA (9. pp,)

for g € G and py, € Fy,.
(2) By Theorem 5.3.13, (5.3.26), (5.3.31) and (5.3.32), we have

XE (99, ps) ZA (99", py.)

ZZA g,OmeX:A (', op.-g

—X”S(g ps) + g (9 ps 9)
= (A7 (9) + (9:26°)(9) (ps)
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for g € G and ps = (pp,) € Fs. Thus we obtain the assertion. O

We call \¢® the arithmetic Chern-Simons 1-cocycle for OV with respect to
xTs.

Proposition 5.3.34. Let 2%y = [(7y,,..., 7, )] € I'(Fs,Ls) be another sec-

tion of wg. We define the map 5257:1:'5 : Fs = Z/NZ by

ws zs } :5% nz

for ps = (py,) € Fs, where 53“%1’ is the map defined in (5.3.16). Then we
have ,

N ()~ () = 055 - 58
for g € G. So the cohomology class [\°] € H'(G,Map(Fs,Z/NZ)) is inde-
pendent of the choice of xg.

Proof. First, note that 5?5@/5 is proved to be independent of the choices of
Tp,’s in the similar manner to the proof of Lemma 5.3.33 (1). By the definition
of 5;5 s the formula follows from Proposition 5.3.18 by taking the sum over
p;€S. O

We denote the cohomology class [A§®] by [As], which we call the arithmetic
Chern—Simons 1st cohomology class for OVs.
Let £&° be the product principal Z/NZ-bundle over Fg:

LE = Fs x L/NZ,
on which G acts from the right by

Ly x G = L5 ((ps,m),g) = (ps-g,m+ A (9, ps))-

Proposition 5.3.35. We have the following isomorphism of G-equivariant
principal Z./NZ-bundles over Fg:

r

O Ls = LE; [as] = [(py, - ap,)] = (@s(las]), Y (ap,—ap, (w0, (ap,))).

i=1

For another section 'y, we have the following isomorphism of G-equivariant
F-line bundles over Fg

~

DS LT LG (ps,m) — (ps,m+ 655 (ps)),
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where 5;3’% : Fs — Z/NZ is the map in Proposition 5.3.34. Forxg, 'y, 2% €
['(Fs, Ls) we have the equalities

T5,Ty zs _ mTs
(I)i x ° (I?S Bl q)sx'7 zg Tg,T'gN\ 1 x'qx’ g, xg,Ts
®557 [ 1d£§57 @SSa — (@S ’ S)— , @S,Sv S o ¢S DR ®S ’ S'

Proof. First, suppose [(ap,,..., )] = [(a4,,...,a; )]. Then wy,(oy,) =

p17° pr

@y, (ap,) and Y57 (a, —ap,) = 0 by (5.3.28 ) So we have

T T

> (g, = zp(@p,(ay,) = Z (o, = ) + (e, = wp, (@, (e,)))

i=1

= Z(api — Ly, (wm(am)))

The proofs of the assertions go well in the similar manner to those of Propo-
sition 5.3.15 and Corollary 5.3.19, by taking the sum over p; € S. m

Taking the quotlent by the action of G we obtain the prlnc1pal Z/NZ-
bundle &g LS — Mg. We call w® @ L7 — Fg or We LS — Mg
the amthmetzc prequantization pmnczpal Z/N Z-bundle for OVs with respect
to xg.

Let Lg be the F-line bundle associated to the principal Z/NZ-bundle Lg
over Fg and the homomorphism Z/NZ — F*;m — (3
(5.3.36)
LS = L:S XZ/NZ F
= (Ls x F)/([as], 2) ~ ([as].m, (3"2) (Jas] € Ls,m € Z/NZ, =z € F),

on which G acts from the right by
(5.3.37) Ls x G — Lg; ([([as], 2)], 9) — [([as].g, 2)]-
The projection

@sr: Ly — Fs; [(los], 2)] = ws([as))

is a G-equivariant F-line bundle. We denote the fiber w;}(ps) over pg by
Ls(ps), which is non-canonically bijective to F' by fixing [as] € Ls(ps):

(5.3.38) Ls(ps) :={[([as]. 2)] € Ls | ws([es]) = ps} = F; [([as], 2)] = =.

Taking the quotient by the action of G, we obtain the F-line bundle @g p :
Ls — Mg. We call wgp : Lg — Fs or Wgp : Lg — Mg the arithmetic
prequntization F-line bundle for OVs.
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Let L be the trivial F-line bundle over Fg:
L% = Fg x F,
on which G acts from the right by

X X AIS 9,
L x G — L ((ps,2),9) — (ps-g, 2C5° (gpS)).

Proposition 5.3.39. We have the following isomorphism of G-equivariant
F-line bundles over Fg:

5+ Ls = L' [([as], 2)] = (ws([os]), 2=

For another section x's, we the following isomorphism of G-equivariant F-line
bundles over Fg

!
Tg,T
575 (

O L L 5 LY (ps, 2)] = [(psy 2 7))

Y

where (525’90/5 : Fs = Z/NZ is the map in Proposition 5.3.34. Forxg, 'y, 2§ €
['(Fs, Ls), we have the equalities

/ /
5,y zs _ 1Tg
Q)S’F ° ®S’F - (1)S7F7 ’ ’opa ’ ”
TS,rs __ - TgTs Ts,Tlgy\ 1 T'g,T'g T5,Tg 1 TS,Tg
Qi = 1dz‘§57 (I)S,F = (CI)S,F ) (I)S,F odgT = q)S,F .

Proof. The assertions can be proved in the similar manner to those of the
assertions in Proposition 5.3.24, by taking the sum over p; € S. O]

—Tg

Taking the quotient by the action of GG, we obtain the line F-bundle @ :
Ls — Mg. We call wsp : Ly — Fs or TWe'p Ls’ — Mg the arithmetic
prequantization F-line bundle for 0Vg with respect to xg.

We may also give the description of Lg in terms of the tensor product of
F-line bundles. Let p; : Fs — Fy, be the i-th projection. Let pf(L,,) be the
F-line bundle over Fg induced from L,, by p;:

pi(Lp) = {(ps (i, 2:)]) € Fis X Ly,

yZi (pS) = Wy, (Oépz‘)}:

and let
p:<wpi) : p;'k(Lm) — 'FS; (p57 [(api7 Zl)]) = ps
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be the induced projection. The fiber over ps = (p,,) is given by

pf(wpi)prs) = {PS} X {[(api’ ZZ)] < LPi |IOPi = wpi(api)’ zi € F}

= LPi (ppi)

~ F|
where Ly, (pp,) is as in (5.3.22). Let L,, X--- X L, be the tensor product of
p; (Lpz‘)’S:

Ly, B W Ly, = pi(Ly,) @+ @ py(Ly,),

which is an F-line bundle over Fs. An element of L, X ---X L, is written
by

(PS, [(apwzl)] Q- [(apr7 ZT)])a
where ps = (py,) € Fs, [(ap,, 2i)] € Ly, (pp,). Let @ : Ly, ®--- K L, — Fg
be the projection. For fiber over pg, we have

(53.40) (@) (ps) = Filps, [(0p,, 2] @ - ® [(0,, 2)]) = H %

The right action of G on L, X ---X L, is given by
(5.3.41)
LPI&“.&LPT XG%LPlg‘..gLPT;

((ps, [(ap, 20)] @ - -~ @ (0, 20)]), 9) = (ps-g; [(apy g, 20)] @ -~ @ [(ap,..g, 2,)]).

The projection @Y is G-equivariant.

Proposition 5.3.42. We have the following isomorphism of G-equivariant
F-line bundles over Fg
QE’F:Lplg"'ngT%LS; ,
(ps; [(ap, 2)] @ -+ @ (e, 20)]) = [([as], [ Tiy 20)];
where ps = (py,) € Fs, [(ayp,,2i)] € Ly, (pp,), and ag = (0, .., 0, ).
Proof. 1f (ay,, z;) is changed to (ay,.m;, (™ 2:) for m; € Z/NZ, (as, [T}, 25)
is changed to ([as].mi, (™ [T52; 25) ~ ([as], [T}, 2). So, by (5.3.20) and
(5.3.36), ®F p is well-defined.
(i) It is easy to see that wgp o O, = wy.
(ii) By (5.3.40), ®F 5 restricted to a fiber over pg is F-linear.
(iii) By (5.3.30), (5.3.37) and (5.3.41), we see that ®% 5 is G-equivariant.
Therefore @%7 7 1s a morphism of G-equivariant F-line bundles over Fg. The
inverse is given by
(@%7}7)71 . LS L) Lpl & M & Lpr;
([as], 2) = (@s([as]), [(ap,, 2)] @ [(ap,, D] @ - @ (e, 1)]),

Hence ®% 1. is a G-equivariant isomorphism. O
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5.4 Arithmetic Chern—Simons functionals

Let Oy, be the ring of integers of k. Let X}, := Spec(Oy) and let X° denote
the set of infinite primes of k. We set Xy := X; LU X°. Let S = {p1,...,p.}
be a finite set of finite primes of k. Let Xg := X \ S. We denote by Ilg the
modified étale fundamental group of X g with geometric base point Spec(k)
(k being a fixed algebraic closure of k), which is the Galois group of the
maximal subextension kg of k over k, unramified outside S. We assume that
all maximal ideals of Oy dividing N are contained in S (in particular, S is
non-empty).

Let F5x, denote the set of continuous representations of II5 to G-

J—"YS = Homcom(HS, G),
on which G acts from the right by

(5.4.1) Fxe X G = Fxgi (pg9) = pg:=9 'pg,
and let Mx_ denote the quotient set by this action:
Mys = FYS/G-

Let Map(Fx,,Z/NZ) be the additive group of maps from Fx_ to Z/NZ, on
which G acts from the left by

(5.4.2) (9-4)(p) = ¥(p.g)
for g € G,¢ € Map(Fx,,Z/NZ) and p € Fx,.

We fix an embedding k < k,,, which induces the continuous homomor-
phism for each 1 <17 <r

Let res,, and resg denote the restriction maps (the pull-backs by ¢,,) defined
by
resy, : ]-"ys — Fpii P> PO Ly,
resg := (resy,) : Fx, — Fs; p— (pouy,),
which are G-equivariant by (5.3.1), (5.3.25) and (5.4.1). We denote by Res,,
and Resg the homomorphisms on cochains defined by
(5.4.4)
Res,, : C"(llg, Z/NZ) — C"(1,,,Z/NZ); o — a0y,
Ress := (Resy,) : C"(Ils, Z/NZ) — [[_, C"(IL,,,Z/NZ); o+ (aouy,).

Firstly, we note the following

(5.4.3)

Lemma 5.4.5. We have
H*(Ilg,Z/NZ) = 0.
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Proof. Tt suffices to show that the p-primary part H?(Ils, Z/NZ)(p) = 0 for
any prime number p. Since H3(Ilg,Z/NZ)(p) = 0 for p{ N, we may assume
that p | V.

Case that N > 2. Then k is totally imaginary and so Ilsg = Ilsuxee
(Isuxpe = ﬂlét(Spec(Ok \ 5) being the Galois group of the maximal exten-
sion of k& unramified outside S U X;°). By our assumption on S, all primes
over p are contained in S. So the cohomological p-dimension cd,(Ilg) < 2 by
[NSW; Proposition 8.3.18]. Hence H?(Ilg,Z/NZ)(p) = 0.

Case that N = 2 and so p = 2. Since S does not contain any real primes of
k., the cohomological 2-dimension cds(Ilg) < 2 by [NSW; Theorem 10.6.7].
Hence H3(Ilg,Z/27)(2) = 0. O

Let p € Fx, and so cop € Z%(Ils,Z/NZ). By Lemma 5.2.5, there is
B, € C*(Ilg,Z/NZ)/B*(1ls, Z/NZ) such that

(5.4.6) cop=dp,,

where d : C*(Ilg,Z/NZ) — C3(1lg,Z/NZ) is the coboundary homomor-
phism. By (5.4.3), (5.4.4) and (5.4.6), we see that

(5.4.7) coresy, (p) = dResy,(5,)
for 1 <i <r. By (5.3.4), (5.3.27) and (5.4.7), we have

(5.4.8) [Ress(B,)] € Lg(ress(p)).

Let resg(Ls) be the G-equivariant principal Z/NZ-bundle over Fx  in-
duced from Lg by resg:

(5.4.9) resg(Ls) = {(p, as) € Fx, X Lg|ress(p) = ws(as)}.

and let resg(ws) be the projection resg(Ls) — Fx,. The quotient by the
action of G is the principal Z/NZ-bundle res*(Ls) over Mz, induced from
Ls by resg. By (5.4.9), a section of res§(wg) is naturally identified with a
map ys : Fx, — Lg satisfying wg o ys = resg:

(5.4.10) [(Fx,,ress(Ls)) = {ys : Fx, = Ls|ws oys = resg},

on which G acts by (g.ys)(p) = ys(p.g) for p € Fx,, g € G. We denote by
Lg(Fx, ress(Ls)) the set of G-equivariant sections of resg(ws). We define
the (mod N) arithmetic Chern—Simons functional CSx, : Fx, — Ls by

(5.4.11) CSx,(p) == [Ress(8,)]
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for p € Fx,. The value C'Sx (p) € Ls is called the arithmetic Chern-Simons
wwvariant of p.

Lemma 5.4.12. (1) C'Sx_(p) is independent of the choice of B,.
(2) CS%, is a G-equivariant section of res§(ws):

CS%, € Fg(}"ys,res*s(ﬁs)) = F(./\/lys,resg(zs)).

Proof. (1) Let 8, € C*(Ils,Z/NZ)/B*(Ilg,Z/NZ) be another choice satis-
fying cop = df),. Then we have (8, = (3, + 2 for some z € H*(Ilg, Z/NZ) and
S1o)

Respi (ﬁ;) - R‘espi (ﬁp) = iIlei(ReSpi<Z)) (1 <1< 7”).

Noting that any primes dividing N is contained in S, Tate-Poitou exact
sequence ([NSW; 8.6.10]) implies that the composite of the following maps

< Res < inv
H*(Ilg,Z/NZ) Hes e [17°1,,z/Nz) Zpes e Z/NZ,
pesS

is the zero map, where S = S U X{°. For any infinite prime v € X{°,
the restriction map II, := Gal(k,/k,) — Ilg = Gal(kg/k) is the trivial
homomorphism, because any infinite prime is unramified in kg/k. So Res, :
H?*(Ilg,Z/NZ) — H?*(I1,,Z/NZ) is the zero map. Hence we have

T

Z invy, (Resy, (2)) = 0.

im1
By (5.3.28), we obtain
[Ress(83,)] = [Ress(8,)]-
(2) By (5.4.8), (5.4.10) and (5.4.11), we have
CSx, € I'(Fx, resg(Ls)).

So it suffices to show that C'Sx_ is G-equivariant. By (5.3.5) and (5.4.6), we
have

dBpg =co(p.g) = (g.c)op=(c+dhy)op=d(B,+ hyop).

for g € G and p € Fx,. Therefore there is z € H*(Ilg,Z/Z) such that
Bpg = Bp+ hgop+zand so

Resg(B,4) = Ress(B,) + hy o resg(p) + Resg(2)
= Resg(8,).9 + Resg(2).
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By the same argument as in (1) above, we obtain

CSx,(p-9) = [Ress(B,4)] = [Ress(By)].9 = CS%,(p)-g.
O

Let g = [(@p,,...,2p,.)] € ['(Fs,Ls) be a section and let £ be the
arithmetic prequantization principal Z/NZ-bundle over Fg with respect to
zs. Let resg(Lg”) be the G-equivariant principal Z/NZ-bundle over Fx
induced from L£§° by resg:

resg(Ls°) = {(p, (ps,m)) € Fx, x LG |ress(p) = ps}
= Fx, X L/NZ

by identifying (p, (ps,m)) with (p,m). So a section of res§ (L") over Fx_ is
identified with a map Fx, — Z/NZ:
[(Fx, resg(L)) = Map(Fx,, Z/NZ),
on which G acts by (5.4.2). Therefore, letting Mapg (Fx,, Z/NZ) denote the
set of G-equivariant maps Fx, — Z/NZ, we have the identification
La(Fx,, ress(Ls”)) = Mapg(Fx,,Z/NZ)
={¢: Fx, = Z/NZ|Y(p.9) = ¥(p) + Ns° (g, ress(p))
for p e Fx, .9 € G}.

The isomorphism ®¢° : L5 = L££° in Proposition 5.3.35 induces the isomor-
phism

s : Dg(Fx, ress(Ls) — Ta(Fx, resg(Le)) = Mapg(Fx,, Z/NZ)
ys — P oys.

We then define the arithmetic Chern-Simons functional C’S%SS S
Z/NZ with respect to xg by the image of C'Sg, under WU®s:

(5.4.13) OS5 = W' (CSx,).

Theorem 5.4.14. (1) For p € Fx_, we have

r

CS5E (p) = Y (Resy, (5,) — wp, (resy, (p))),

=1

which is independent of the choice of 3,.
(2) We have the following equality in C*(G, Map(Fx,,Z/NZ))

dCS%SS = res”(\§%).
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Proof. (1) This follows from the definition of ¢ in Proposition 5.3.35 and
(5.4.13).
(2) Since C’S%SS € Mapg(Fx,, Z/NZ), we have

CSE (p-g) = CSZ.(p) + A§° (g, ress(p))
for g € G and p € Fx, which means the assertion. O]

Proposition 5.4.15. Let 2’y € I'(Fs,Ls) be another section which yields
CS%5 | and let 6§S’m5 : Fs — Z/NZ be the map in Proposition 5.3.34. Then

X’
we have

OS5, (p) = CSE (p) = 057" (ress )
Proof. By Proposition 5.4.14 (1) and Lemma 5.1.4 (1), we have

OS (p) = OS5 () = Y (Resy,(5,) — i (vesy, (0))) — D (Resy, (By) — iy, (xesy, (4))
= (. (resy,(p)) =z}, (resy, ()
= 057" (ress(p)).

]

~

For zg,2'y € T'(Fs, Ls), the G-equivariant isomorphism (Pgs’xls  LE —

£§S induces the isomorphism
PrsTs Da(Fx, resg(Ly)) — Ta(Fx,, resg(L)); ¥ — @gs’xig o P*s.

By Proposition 5.3.35, we have

Prsis o Prs = P

PTsTs — ing(Fys,resg(ﬁgs)ﬁ \Ijzg,zs — (\ijlfsﬁﬂig)*l’ \I]xig,wg o \Ijxs,xig — \I/:BS’CE/S/"
So we can define the equivalence relation ~ on the disjoint union of I'/(Fx, resg (L))
over zg € I'(Fg, Lg) by

77Dzs ~ ¢1’% — \I/$s,;tg (wms> _ wzg
for 975 € To(Frress(L5)) and 975 € To(Fy,,ress(LE)).Since ol =
O 0 dY, CS%SS ~ CS%SS . Thus we have the following identification:
(5.4.16) Fe(Fxgoress(Ls)) = Unserirace Po(Fxs 185(L£5%))/ ~;
P = (s ()]

where C'Sx, and [C’S%SS | are identified.
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5.5 Arithmetic quantum spaces

Following the construction of the quantum Hilbert space, we define the
arithmetic quantum space Hg for Vs by the space of G-equivariant sections
of the arithmetic prequantization F-line bundle wgp : Ly — Fg:

Hg :=D¢(Fs, Ls) = T'(Msg, Lg).

It is a finite dimensional F-vector space.

Let g = [(p,, ..., Tp,.)] € ['(Fs,Ls) be a section and let L be the
arithmetic prequantization F-line bundle over Fg with respect to zg and let
(5.5.1)

'Hgs = Fg(fg, Lgs) = F(MS,ZES)
={0: Fs = F|6(ps.g) = (5 """ 6(ps) for ps € Fs.g € G},

which we call the arithmetic quantum space for OVs with respect to xg. The
isomorphism ®§%. : L = L in Proposition 5.3.39 induces the isomorphism

5.5.2 O Hg — H:; 0 L 00.
S S, F

We call an element of Hg or H¢® an arithmetic theta function (cf. Remark
5.6.4 below).

/ !
For zg, 2y € I'(Fg, Lg), the isomorphism &5 : L% 5 L7 induces the
S, Lg s, Ls), p S,F s s
isomorphism of F-vector spaces:

@fts,r’s . ngs AN 7‘[2/5; 6%S (I)zi’f% o 6%s
and, by Proposition 5.3.39, we have

@xs,:p’s 0 OTs = @x's
OrsTs — idygs 7 @xg,xs — (@xs,x’s)717 @x’s,x’é o @xs,x’s — @xs,mg'

So the equivalence relation ~ is defined on the disjoint union of all H¢*
running over xg € I'(Fg, Lg) by

075 ~ 075 <= O (07%) = 675
for 6*s € H¢® and 6%s € Hgls. Then we have the following identification:

(5.3.3) Hs= || HE/~.

vs€l'(Fg,Ls)
Remark 5.5.4. The arithmetic quantum space Hg is an arithmetic analog of
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the quantum Hilbert space Hy, for a surface ¥ in (2+1)-dimensional Chern—
Simons TQFT. We recall that Hsy, is known to coincides with the space of
conformal blocks ([BL]) and its dimension formula was shown by Verlinde
([Ve]). It would also be an interesting question in number theory to de-
scribe the dimension and a canonical basis of Hg in comparison of Verlinde’s
formulas.

5.6 Arithmetic Dijkgraaf-Witten partition functions
For pg € Fg, we define the subset Fx_(ps) of Fx, by
Fxs(ps) =A{p € Fx [ress(p) = ps}

We then define the arithmetic Dijkgraaf-Witten invariant Z%SS (ps) of ps with
respect to g by

i 1 523 (p)
(5.6.1) Zyss(pg) ::% Z Cy 5.

PEF% ;(ps)

Theorem 5.6.2. (1) Z%Ss(pg) is independent of the choice of 3,.

(2) We have
Z%SS e HS.

Proof. (1) This follows from Lemma 5.4.12 (1).
(2) This follows from Theorem 5.4.14 (2) and (5.6.1). O

We call Z%SS € HS® the arithmetic Dijkgraaf-Witten partition function for

X g with respect to xg.
The following proposition tells us how they are changed when we change xg.
Proposition 5.6.3. For sections xg,z's € I'(Fs, Lg), we have

v ( 7)) = 7%
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Proof. We have

6775 (255 )(ps) = (g ” © Zx,)(ps)

/
zg,Tg
§S

= Zx,(ps)Cy (ps) by Proposition 5.3.39

1 OSZS (0)+625°5 (pg)
= %G Z Cy 8 by (5.6.1)

PEFx ¢ (ps)

1 0S5 (p)
= Z Cy 8 ’ by Proposition 5.4.15

G
# pEF% . (ps)

S
= Z;SS (ps)

for ps € Fs. So we obtain the assertion. O

By the identification (5.5.3), Z%SS defines the element Zw%_ of Hg which is

independent of the choice of zg. We call it the arithmetic Dijkgraaf-Witten
partition function for Xg.

Remark 5.6.4. In (2+1)-dimensional Chern—Simons TQFT, an element of
Hs, for a surface X may be regarded as a (non-abelian) generalization of the
classical theta function on the Jacobian manifold of ¥ (cf. [BL]. It goes back
to Weli’s paper [We]. See [Mol] for an arithmetic analog.) In this respect, it
may be interesting to observe that the Dijkgraaf-~Witten partition function
in (5.4.1) may look like a variant of (non-abelian) Gaussian sums.

5.7 Change of the 3-cocycle c

The theory given in the section 5.3, 5.4, 5.5, and 5.6 depends on a chosen
3-cocycle c¢. 'We shall see in the following that when ¢ is changed in the
cohomology class [c], objects are changed to isomorphic ones, and hence the
theory depends essentially on the cohomology class [c]. Let ¢ € Z*(G,Z/NZ)
be another 3-cocycle representing [¢]. The objects constructed by using ¢
will be denoted by using ’, for example, by Ly, L, ... etc.

There is b € C*(G,Z/NZ) such that ¢ — ¢ = db. Then we have the
isomorphism of Z/NZ-torsors for p, € F:

Ly(pp) — Ly(py); ap =y +bopy,
which induces the following isomorphisms of arithmetic quantization bundles:

&Ly 5L, &pi Ly =5 L,

5.7.1 ~ ~
( ) fs : ,CS — ,Cig, 5571: : LS — LZS‘
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Let z, € I'(Fy, L) and x5 = [(7p,,...,7p,)] € I'(Fs, Ls), and let z, €
['(F,, L) and 7' € I'(Fp, L). Denote by A, and \g the arithmetic Chern—
Simons 1-cocycles for 9V, and dVs with respect to x, and z, respectively.
We define k, : F, = Z/NZ and kg : Fs — Z/NZ by

Kp(pp) = (& 0 p)(pp) — il?;(pp), Kks(ps) = Z’ipi(/)m)

for p, € F, and ps = (pp,, - .-, pp,) € Fs, respectively. Then we have

A;(Q) - )‘p(g) = g.Rp — Ky, /\/s(g) - )\S(g) = g.RKs — Kg.

We note that if we take x; =0z, and 2 1= goxg, Ky = 0 and so kg = 0.
As in Corollary 5.3.19, Propositions 5.3.24, 5.3.35 and 5.3.39, using x, and
kg, we have the isomorphisms

Ly oyt Ly s L
L3 2 L7 L% S [T,
which are compatible with the isomorphisms in (5.1.1) via the isomorphisms
L, ~ Ly Ly~ L, Lg~ L and Lg ~ L¢° in Propositions 5.3.15, 5.3.24,
5.3.35 and 5.3.39.
The isomorphism &g : Lg — L induces the isomorphism

La(Fx, ress(Ls)) — Da(Fx,,ress(Ls))

which sends C'Sx, to OS/YS’ and the isomorphism &g @ Lg — Ll induces
the isomorphisms
Hs — Hy, HE — H™,

which sends Zx to Z/YS'

Remark 5.7.2. A cochain a € C"(G, A) is called normalizedif o(g, . .., gn) =
0 whenever one of g;’s is 1. It is known that any cocyle is cohomologous to a
normalized one, namely, any cohomology class of H"(G, A) is represented by
a normalized cocycle ([NSW; Chapter I, §2, Exercise 4], [EM; Lemma 6.1]).

Therefore, by the above argument, we may assume that we can take the fixed
cocycle ¢ € Z3(G,Z/NZ) in our theory to be normalized.

5.8 Change of number fields

Let k' be an another number field contains a primitive N-th root of unity and
let 8" ={p},...,pl,} be a finite set of finite primes of &’ such that any finite
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prime dividing N is contained in S’. The objects constructed by using k&’ and
S" will be denoted by, for example, £/, Ly, Lg, Lg, ... etc, for simplicity of
notations . Assume that » = ' and there are isomorphisms &; : k,, — k;<

for 1 < ¢ < r. Then &’s induces the following isomorphisms of arithmetic
quantization bundles:

&p: Lo, — ﬁp;v &pi,F - Ly, — Lp;

fs:ﬁs%ﬁgl, fS,F3LS;>LS’-
Let zp, € T'(F,,, Ly,) and x5 = [(7p,,...,2p,)] € ['(Fs, Ls), and let z, €
D(Fy, Ly) and zg0 = [(2p), ..., 2y )] € ['(Fer, Ls). Then we have the iso-
morphisms of arithmetic prequantization bundles with respect to sections
Ty ™ v} Tpg ™~ v}
~ xT ar ~ T gt
L — Ly, LE — Ly
Suppose further that there is an isomorphism 7 : k& = k' of number fields
which sends p; to p; for 1 <i < r. so that we have the isomorphism

€:Xg:i =X\ 9 = Xp\S = Xg.

For example, let k := Q(v/2), k' := Q(v/2w), w := exp(%Tﬁ) and so N = 2.
Let ¢ be the isomorphism k — &’ defined by £(v/2) := +/2w. Noting 20; =
(V2)?, X3 =2 = (X —4)(X —7)(X —20) mod 31, let S := {p; := (V/2),ps :=
(31, /2 —4),p2 == (31, V2 = 7),ps := (31,2 — 20)}, 5" := £(S) = {p} :=
(V2w), ply = (31, V2w — 4),p5 := (31,¥2w — 7),p, == (31, V2w — 20)}, so
that we have ky, = kj, = Qp and ky, = k;, = Qs (2 < i < 4). So this
example satisfies the above conditions.

The isomorphism ¢ : X g = X ¢ induces the bijection £* : Fxy, — Fxye
By the constructions in the section 5.4, 5.5, and 5.6, we have the following

Proposition 5.8.1. The isomorphism &g : Lg — Lg induces the bijection
Lo(Fx, ress(Ls)) = Fg(]-"ys, ,rese (Lsr))
which sends C'Sx, to CSx_,. The isomorphism &s,p : Lg = Lg induces the

isomorphism
Hs — Mg,

which sends Zx; to Zx .
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Remark 5.8.2. Proposition 5.8.1 may be regarded as an arithmetic analogue
of the axiom in (2 + 1)-diemnsional TQFT, which asserts that an orientation
homeomorphism f : ¥ = ¥ between closed surfaces induces an isomorphism
Hy = Hs of quantum Hilbert spaces and if f extends to an orientation
preserving homeomorphism M = M’, with OM = X, 0M’' = X', Zy is sent
to Zy under the induced isomorphism Hanr — Honr -

5.9 Disjoint union of finite sets of primes and reversing
the orientation of dVjy

In the theory in the section 5.3, 5.4, 5.5, and 5.6, we can include the case
that S is the empty set () as follows.

We define Fy to be the space of a single point, Fy := {x}. We define
the arithmetic prequantization principal Z/NZ-bundle Ly to be Z/NZ, on
which G acts trivially, so that the map wy : Ly — Fp is G-equivariant. So the
arithmetic prequantization F-line bundle Ly is defined by Z/NZ xz/nz F =
F. The arithmetic Chern—Simons 1-cocycle Ay is defined to be 0.

Let II, be the modified étale fundamental group of X, defined by con-
sidering the Artin-Verdier topology on X, which takes the real primes into
account (cf. [AC], [Bi], [Zi]). It is the Galois group of the maximal extension
of k£ unramified at all finite and infinite primes. We set

‘T.'Yk = HOchont(ﬂka G)

Following the section 4.3, we define the mod N arithmetic Chern—Simons
invariant C'Sx, (p) of p € Fx, again by the image of ¢ under the composition

H3(G,Z/NZ) % H¥,, Z/NZ) — H3(X,,Z/NZ) ~ Z/NZ,

where the cohomology group of X}, is the modified étale cohomology defined
in the Artin-Verdier topology. Thus we have the arithmetic Chern—Simons
functional CS%, : F5, — Z/NZ and so we see that

CSx, € I'g(Fx,,resy(Ly)) = Map(Mx, ,Z/NZ),
where resy is the (unique) restriction map F%, — Fy. Then we have
dCS%, = 0 = resy(Ag).

The arithmetic quantum space Hy is defined by I'g(Fy, Ly) = F. Fol-
lowing the section 4.3, we define the arithmetic Dijkgraaf-Witten invariant
Z(Xy) of X again by

2(Xy) = # S

pE]:Yk
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and the arithmetic Dijkgraaf-Witten partition function by Z%, : Fy — F' by
Zx, (%) == Z(X},) for x € Fy. So we have

Zyk € 7‘[@.

We note that when [c] is trivial, Z(X},) coincides with the (averaged) number
of continuous homomorphism from I to G:

2(X,) = #Hom;;ngﬂk, G) |

which is the classical invariant for the number field k.

5.10 Disjoint union of finite sets of primes and revers-
ing the orientation of 0V

Let S1 = {p1,...,pn} and Sy = {pr,41,...,p,} be disjoint sets of finite
primes of k and let S = S; LU .S;. We include the case where S is empty,
but Sy is non-empty. (For the case where S; and S, are both empty, the
following arguments are trivial.) Then we have

.7:5 = J—"Sl X .FSQ.

For the arithmetic quantization principal Z/NZ-bundles, we define the
map
H: ,CSI X ﬁSQ — ﬁg,

as follows. For the case that S; = ) (and so Sy = S), we set
(5.10.1) m B [ag,] = [as,].m

for (m, [as]) € Ly X Lg,. For the case that Sy # 0, we set
(5.10.2) [as,] B [as,] = [(as,, as,)]

for ([a51]7 [0652]) S £51 X ESz'

For the arithmetic quantization F-line bundles, we let pf(Lg,) be the
G-equivariant F-line bundle over Fg induced from Lg, by the projection
pi+ Fs — Fg, fori=1,2:

pi(Ls;) = {(ps; [([os,]; zi)]) € Fs x Ls, | ps, = ws,([as,]) }

for ps = (ps,,ps,)- When S; = (), we think of pf(Lg) = F simply over
Fp = {*}. Let
pi(ws,) - pi(Ls;) — Fs
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be the projection. The fiber over ps = (ps,, ps,) is given by

pi(@s,) " (ps) = {pst x {l(las], )] € Ls, | ps, = ws,([as]), 2z € F}

= LSz‘ (pSz)
~ F.
where Lg, (ps,) is as in (5.3.38). We set

LS1 X LSz = pT(le) ®p;(L52),

which is the F-line bundle over Fg and whose element is written by

(s, [([as,]; 21)] @ [([evs,], 22)]),

where pPs = (p517p52) < -’T:Su [([aSi]7zi)] S Lsz(psz) The right action on
Lg, X Lg, is defined by

(ps; [(los, ], 21)] @ [([asy], 22))-9 2= (ps-9; [(las,].9, 21)] @ [([es,].9, 22)])

so that the projection Lg, X Lg, — Fg is G-equivariant. Then, as in Propo-
sition 5.3.42, we have the isomorphism of G-equivariant F-line bundles over

Fs:

LSl X L82 % LS; (/)S, [([a51]7 Zl)] ® [([0552], 2’2)]) = [([a5]7 2122)]7

where ag = (g, ag,). Choose xg, € I'(Fs,, Lg,) and let x5 := [(vg,,xs,)] €
['(Fs, Ls). Then we see that

Ao (g, psy) + N2 (9, psy) = A& (. ps)

for g € G, ps = (ps,, ps,) and, as in the case that Lg, we have the isomor-
phism
TSy TSy

LSRG = pi(Lgt) @p3(Lg?) — LT ((psyr psy), 21 @ 22) = (ps, 2122)

for ps = (ps,, ps,), which is compatible with Lg, X Lg, ~ Lg via Proposition
5.1.39.

Proposition 5.10.3. For 0; € Hzls (i =1,2), we define 0, - 03 € H® by

(01-62)(ps) := 01(ps, )02(ps,)

for ps = (ps,, ps,)- Then we have the following isomorphism of F-vector
spaces
He' @ He? — HE; 01 @ 0y > 01 - 0.
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For 0; € Hs, (i =1,2), we define 01 X0, € Hg by
(61 202)(ps) := pi(01(ps,)) ® p3(02(ps.))

for ps = (psy, ps,). Here pi(01(ps,)) @ p3(62(ps,)) denotes [([os], z122)] when
0:(ps;) = [([as,], zi)], s = (as,,as,). Then we have the following isomor-
phism of F-vector spaces

Hsl ® HSQ = HS, (61,92) — 91 X 92.

The above isomorphisms are compatible via the isomorphisms ©%Si : Hg, ~
He' (i=1,2) and ©%5 : Hg =~ H in (5.5.2).

Proof. We may assume by Remark 5.1.2 that the cocycle ¢ is normalized.
For 0 € H, set 01(ps,) = O(ps,, 1) and O(ps,) = 6(1, ps,). Since c is
normalized, by (5.3.7) and (5.3.10), we have \,(¢9,1) = 0 for ¢ € G and
p € S;. From this, we have 6, € HZS Then the map H5¥ — Hg' ® He’;
0 — 61 ® 0, gives the inverse of the former map. By the definitions, the
second map is compatible with the first one via @gsl cHs, ~ ’stl (i=1,2)
and ©% : Hg ~ H¢® and so we have the following commutative diagram

Hs, @ Hs, — Hs
Ors1 ® O%s2 0 \L \L 0 Ors
%Sfl ® HS;;Q — 2'57
from which the second isomorphism follows. m

Remark 5.10.4. Proposition 5.10.3 may be regarded as an arithmetic ana-
log of the multiplicative property that Hy, », = Hs, ® Hy, for disjoint sur-
faces ¥; and ¥ which is one of the axioms required in (2 + 1)-dimensional
TQFT (Definition 3.1.1).

For a finite prime p of k, the canonical isomorphism
invy, : Hg (0V, Z/NZ) — Z/NZ

indicates that 0V, is “orientable” and we choose (implicitly) the “orientation”
of dV, corresponding 1 € Z/NZ. We let OV} = 0V, with the “opposite
orientation”, namely, inv, ([0V,"]) = —1.

The arithmetic prequantization principal Z/NZ-bundle for 0V, denoted
by Ly« is defined (formally) by £, with the opposite action of the structure
group Z/NZ, (o, m) — op.(—m) for o, € Ly« and m € Z/NZ. So the
arithmetic prequantization F-line bundle Ly« for 9V;" is the dual bundle of
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Ly, Ly- = L;. Noting I'(Fy, £,+) = ['(F,, L), the arithmetic Chern—Simons
I-cocycle A for OV is given by —\;* for x, € I'(Fy, Ly+). The actions of G
on L, = F, x Z/NZ and L,? = F, x F are changed to those via Ay’
For a finite set of finite primes S = {py,...,p,}, we set Vg = IV, U
-V, Then the arithmetic prequantization bundles Lg-, Lg-, L5 and
L (zg € I'(Fg, Lg+) = I'(F,, Lg)) are defined in the similar manner. For
the arithmetic Chern—Simons 1-cocycle, we have

TS __ _ \Zs
)\S*— )\5.

Let H¢? be the arithmetic quantum space for 0V§ with respect to zg.
Then we see that

TS (97 Fg o F | 0 (ps.g) = Co5 @5 9% () for ps € Fe,g € G}
= {0" - Fs = F | 0*(ps.g) = 30" (ps) for ps € Fs,9 € G}
_HS ,

where ﬁﬁs is the complex conjugate of H¢®. Since the pairing

HgfoESHF Z 9 ps ps

psE€EFs

is a (Hermitian) perfect pairing, together with (5.3.2), we have the following

Proposition 5.10.5. H¢ and Hg- are the dual spaces of H® and Hg,
respectively:

Hel = (HS)", Hs- = (Hs)™

Remark 5.10.6. Proposition 5.10.5 may be regarded as an arithmetic ana-
log of the involutory property that Hy« = H3, where X* = 3 with the oppo-
site orientation, which is one of the axioms required in (2 + 1)-dimensional
TQFT (Definition 3.1.1).

In the section 5.4, 5.5, and 5.6, we have chosen implicitly the orientation
of X g so that the boundary X ¢ with induced orientation may be identified
with OVs. Let 7; denote X g with the opposite orientation. Then, the arith-
metic Chern—Simons functional and the Dijkgraaf-Witten partition function
for Xg are given as follows:

(5.10.7) OS5 = ~C0SE, 73 (ps) # S

pEF Xg
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5.11 Arithmetic Chern—Simons functionals and arith-
metic Dijkgraaf—~Witten partition functions for Vg
For a finite prime p of k, let O, denote the ring of p-adic integers and we let
V, = Spec(Oy). For a non-empty finite set of finite primes S = {py,--- ,p,}
of k, let Vg := V,, U---UYV,,, which plays a role analogous to a tubular
neighborhood of a link, and so dVs plays a role of the boundary of V.
In this section, we introduce the arithmetic Chern—Simons functional and
arithmetic Dijkgraaf-~Witten partition function for Vi, which will be used for
our gluing formula in the next section.
Let f[p be the étale fundamental group of V},, namely, the Galois group of
the maximal unramified extension of k, and we set

Fy, = Homcont(ﬁp,G), Fyg = Fyy, X o X Fy,

Since f[p ~7 (profinite infinite cyclic group), Fy, ~ G. G acts on Fy, from
the right by

Fus X G = Fugi ((p)ing) = p-9 = (97 B9
and let My, denote the quotient set by this action:
MVS = -FVS/G-

Let résy, : Fy, — F, and résg := (résy,) : Fyg — Fs denote the restriction
maps induced by the natural continuous homomorphisms v, : II,, — ﬂpi
(1 < i < 7), which are G-equivariant. We denote by Res,, and Resg the
homomorphisms on cochains given as the pull-back by vy,

Res,, : C"(11,,, Z/NZ) — C"(W,,, Z/NZ); o; = a; 0 v,
Resg := (Resy,) : HC’"(ﬁpi,Z/NZ) — HC’”(HW,Z/NZ); () — (a; 0 vp,).

i=1 =1

For p = (pp)i € Fy, co py, € Z3(1,,,Z/NZ). Since H3(Il,,,Z/NZ) = 0,
there is 3,, € C*(Il,,,Z/NZ) such that

CO Py, = dﬁNPi'

We see that ~ ~
corésy,(py,) = dResy, (Bp,)

for 1 < ¢ <7 and we have
[Ress((y,)i)] € Ls(r8ss(7))-
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Let résg(Ls) be the G-equivariant principal Z/NZ-bundle over Fy, induced
from Lg by résg:

1885 (Ls) = {(p, as) € Fy x Ls|1885(p) = ws(as)}

and let rés(wg) be the projection rés§(Lg) — Fyy. We define the arithmetic
Chern—Simons functional CSy, : Fy, — Lg by

C'Syy(p) == [Ress((By,)i)]

for p € Fy,. The value CSy,(p) is called the arithmetic Chern-Simons
invariant of p.

Lemma 5.11.1. (1) CSy,(p) is independent of the choice of By,
(2) CSy, is a G-equivariant section of résg(wg):

CSv, € I'g(Fyy,résg(Lg)) = F(MVS,rés*S(ZS)).

Proof. (1) This follows from the fact that the cohomological dimension of

I1,, is one.
(2) The proof of this lemma is almost same as Lemma 5.4.12. (2). O
For a section zg = [(@p,, ..., xp,)] € ['(Fs, Ls), the isomorphism & : Lg =

L3 induces the isomorphism

T2s : To(Frs, 1885(Ls)) —= To(Fye, 1855(L5°)) = Mapg(Fvy, Z/NTZ):;
Ys — (I)gs 0 Yg.

We define the arithmetic Chern-Simons functional CSYS : Fy, — Z/NZ
with respect to xg by the image of C'Sy, under Jrs

Proposition 5.11.2. (1) For p € Fy,, we have

r

OS5 (p) =D (Ress(By,) — 2, (185, (y,))-

i=1
(2) We have the following equality in C*(G,Map(Fy,,Z/NZ))
dC Sy, = rés"(A\g%).

Proof. (1) This follows from the definition of ¥#s.
(2) Since C'Sy, € Mapq(Fyy, Z/NZ), we have

CSy;(-9) = CSYZ(P) + As* (9, 18ss(p))

for g € G and p € Fy,, which means the assertion. ]
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Proposition 5.11.3. Let o'y € I['(Fs, Lg) be another section, which yields

C’S‘x/:f and let 5§S’xl's : Fs — Z/NZ be the map in Proposition 5.3.34. Then
we have

CSV2(5) = CSFE(p) = 057" (18ss(5).
Proof. This follows from Proposition 5.11.2. (1) and Lemma 5.1.4. O
For ps € Fg, we define the subset Fyy(ps) of Fiy by

Fvs(ps) == {p € Fvg [ réss(p) = ps}-

We then define the arithmetic Dijkgraaf-Witten invariant Zy,(ps) of pg with
respect to g by

x Csys (
Zyg (ps) : Z v

pEFVS (PS)

Theorem 5.11.4. (1) Zy%(ps) is independent of the choice of Bﬁpi'
(2) We have
Zvs € HS'.
Proof. (1) This follows from Proposition 5.11.1. (1).
(2) This follows from Proposition 5.11.2. (2). O

We call Z@g the arithmetic Dijkgraaf-Witten partition function for Vg with
respect to xg.

Proposition 5.11.5. For sections zg, 2y € I'(Fs, Lg) we see that
0" Ts(735) = 75,
Proof. This follows from Proposition 5.11.3. ]

By the identification (5.5.3), Zy7 defines the element Zy, of Hs which is
independent of the choice of zg. We call it the arithmetic Dijkgraaf-Witten
partition function for V.

In the above, the orientation of Vg is chosen so that it is compatible with
that of OV as explained in the section 5.4. Let Vg denote Vg with opposite
orientation. Then, following (5.4.7), the arithmetic Chern-Simons functional
and the arithmetic Dijkgraaf-Witten partition function are given by

. . S3E ()
(5.11.6) CSyE = =CSys, Zyi(ps) Z g‘N s,

PG-FVS (ps)
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5.12 Gluing formulas for arithmetic Chern—Simons in-
variants and gluing formulas for arithmetic Dijkgraaf—
Witten partition functions

Let S; and Sy be disjoint sets of finite primes of k, where S; may be empty
and S5 is non-empty. We assume that any prime dividing N is contained
in S if 57 is empty and that any prime dividing N is contained in S; if
S1 is non-empty. We let S := S; U S;. We may think of 751 as the space
obtained by gluing X ¢ and Vg, along OVs,. Let ng : Ilsg — Ilg,, ¢, : 1, — 1g,
vp o I, — ﬁp, and u, : pr — Ilg, be the natural homomorphisms, where
p € Sy, so that we have ng o, = u, o v, for p € Ss.

I1, ILs,
T i iy

Let B : Lg, X L5, — Ls be the map defined as in (5.10.1) and (5.10.2). Now
we have the following decomposition formula.

Theorem 5.12.1 (Decomposition formula). For p € Homeon (Ils,, G), we
have

CSxs, () B CSvg, ((p o uplpesy) = CSx4(pons).

Proof. Case that S; = (0. Although this may be well known, we give a
proof for the sake of readers. By the Artin—Verdier Duality for compact
support étale cohomologies ([Mi2; Chapter II. Theorem 3.1]) and modified
étale cohomologies ([Bi; Theorem 5.1]), we have the following isomorphisms
for a fixed (ny € un,

H3 (Xs,Z/NZ) = HOHIXS(Z/NZ, GTme)N = /LN(/{?>N = Z/NZ,

comp

H*(X),,Z/NZ) = Homy, (Z/NZ,G,, %)~ = un(k)~ = Z/NZ,

m,yk

where Gy, x, (resp. G,,x,) is the sheaf of units on Xg (resp. Xj) and
(=)~ is given by Hom(—,Q/Z). We denote the isomorphisms above by
inv' : H3_(Xs,Z/NZ) — Z/NZ and inv : H¥(Xy, Z/NZ) — Z/NZ. Now

comp

we recall the definition of H2 (Xg,Z/NZ) ([Mi2; p.165]). We define the

comp

complex Ceomp (s, Z/NZ) by

CpMs, Z/NZ) := C"(115,Z/NZ) x | [ C*' (10, Z/NZ),

comp
pes
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d(a, (by)) := (da, (Resy(a) — dby)),

where a € C"(llg, Z/NZ) and (b,) € HC"‘l(Hp,Z/NZ). HY o (Xs, Z/NZ)
pes
is defined by

H" (Xs,Z/NZ) := H"(C*, (g, Z/NZ)).

comp comp

Then we can describe inv' : H3  (Xg,Z/NZ) — Z/NZ as follows. Let

[(a, (by))] € HS,p(Xs, Z/NZ). Since da = 0 and H*(Ilg,Z/NZ) = 0, there
is a cochain b € C?(Ilg,Z/NZ) such that db = a. Then we have

inv'([(a, (B)]) = Y invy([Resy(b) — b))

pes

where inv, : H*(Il,, Z/NZ) — Z/NZ is the canonical isomorphism given by
the theory of Brauer groups. We note that the right side of the equation above
doesn’t depend on the choice of b. Recall that II, denotes the modified étale
fundamental group of X. Let js : H3(Ily, Z/NZ) — H*(X,Z/NZ) be the
natural homomorphism induced by the modified Hochschild-Serre spectral
sequence (Corollary 4.2.8). We describe the image of the cohomology class
[cop] € H3(II, Z/NZ) by the composed map

inv' ' oinv o jy : H*(Ily, Z/NZ) — H?_ (Xg,Z/NZ).

comp

Since co (pong) € Z*(llg,Z/NZ) and H?*(Ilg,Z/NZ) = 0, there exists a
cochain 8,0, € C*(Ils, Z/NZ) such that dB,e,s = co (pong). We note that
dResy (Bpons) = A(Bpons 0 1p) = copouyov,. Since co(pouy) € Z3(1,, Z/NZ)
and H3(I,,Z/NZ) = H*(Il,,Z/NZ) = 0, there exists a cochain Sye., €
C?(Tly, Z/NZ) such that dBje,, = co (pouy,). We set Boouon, := Bpou, © Up €
C?(Il,, Z/NZ). So we have dfjou,0n, = €0 (pou, o vy). Then we obtain

(inv'™ o inv o ja)([co p]) = [(¢ 0 (p o 1s), (Bpou,))].
We see that [Res,(Bpons )]s [Bpoupovs] € Lp(p 0 uy 0 vy). Thus we obtain
CSx,(p) = (imvojs)([cop])

= (inv'o inv' ' oinvo J3)([cop])
= inv'([(co (pons), Boouor,))])

= Z ian([RQSp (B,DOT]S> - Bpoupovp])

peS
= OSx,(pons) — CSvs((pouy),es)-
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Case that Sy # 0. Let 8, € C*(Ils,, Z/NZ) be a cochain such that d, = cop.
We have d(8, ong) = co (pong) and d(S, o u,) = co (pow,) for p € S;. So
we obtain

CSYSI (p) B CSV32 ((po Up)pESQ) By ons o tp)pes,| B[(By 0 up 0 vp)pes,]

[(
= [(B, o up 0 vp)pes]
[(

)
5/) © 1) © tp)pes]

]

Let zg, € I'(Fs;, Ls,) (i = 1,2)) be any sections. We define the section
Tg € F(.Fs,[,g) by

‘/L'S(p517 p52) = Ts, (psl) &8 ch (p52)'

By the proof of Theorem 5.12.1, we have the following

Corollary 5.12.2. Notations being as above, we have the following equality
in Z/NZ.

OS2 (p) + OS2 ((p 0 uphyes,) = OS2 (pons).

Xs,

We consider the situation that we obtain the space Xg, by gluing X g and
V¢, along OVs,. We define the pairing <, >: Hg® x 7—[253 — Hmsl by

(5.12.3) <0s,0s,» > (ps,) == #G Z 05(psys psy)0s,+ (ps,)

PS,EF s,

for 05 € HS®,0s; € ’H;;Q and pg, € Fg,. This induces the pairing < , >:
Hs X Hg,w — Hg, by (5.3.2). Now we prove the following gluing formula.

Theorem 5.12.4 (Gluing formula). Notations being as above, We have the
following equality
< Zys, ZV§2 > = Zysl

Proof. We show the equality
T TS TS
< Zg Z 2> = ZXS1

1
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for any sections zg, € I'(Fs,, Ls;) (1 = 1,2). Noting (5.11.6), we have

g TSy
< 2% ZVS*2 > (psy)

=#G Y, er, (# 3 CNCS%Z(P’>> (# 3 O (/3’))

P'eFx ¢ (Psypsy) PEFvg, (Psy)
1 CS™S (p)—C8.°2 (5
= ¥ <_G S A V52<p))
PsyE€F sy (p"P)EF % ¢ (Ps1:P53) X Fvg, (psy)

for ps, € Fg,. We define the map

W) Frg, (0s) = | (Fralpsips) x Fug, (o))

PS,EF s,

by
X(psi)(p1) = (prons, (p1 0 wp)pess)

for p; € }_Ysl (ps,). In order to obtain the required statement by Corol-
lary 5.2.2, it suffices to show that x(ps,) is bijective. (Though this may be
seen by noticing that Ilg, is the push-out of the maps ¢, and v, (ILg, is the
amalgamated product of Ilg and II; along II,) for S; = {p}, we give here a
straightforward proof.)
X(ps,) is injective: Suppose x(ps,)(p1) = x(ps,)(p1) for p1, 0y € Fx, (ps,)-
Then p; o ng = pj ong. Since ng is surjective, p; = pi.
X(ps,) is surjective: Let (p, (By)pes,) € Fxz(Psi,Ps,) X Fvs, (ps,). Then we
have

ress, (P) = PS;; I€8s, (p) = PSas résSz((ﬁP)PGSQ) = PS,-

Since résy(py) is unramified representation of II, for p € Sy, p is unramified
over Sy. Therefore there is p; € Fx_ such that p = p; ong. Since we see
1

that

P10 Uy OVp = P1O7)5 0Ly = POLy=pyOUlp
for p € Sy and Up is surjective, we haYe pLouy = pp for p € Sy. Hence
X(ps1)(p1) = (p, (Pp)pes,) and so x(ps, ) is surjective. O

Remark 5.12.5 (1) In [CKKPY] and [LP], the authors used the decomposi-
tion formula (Theorem 5.12.1) in order to compute arithmetic Chern—Simons
invariants C'Ss(p) for various examples. In [BCGKPT] and [AC]|, computa-
tions of C'S¢(p) have also been carried out by number theoretic methods.

(2) In [CKKPPY], arithmetic Dijkgraaf-Witten correlation functions for fi-
nite cyclic gauge groups were computed in terms of arithmetic linking num-
bers of primes. Their formula may be regarded as arithmetic finite analogue
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of the path integral for linking numbers in abelian Chern—Simons gauge the-
ory.

(3) In [Ki], Kim introduced arithmetic Chern—Simons functionals for the case
of p-adic Lie gauge group. In [CK], an arithmetic analogue of topological BF
theory was studied, and, in [CCKKPY], the authors showed an arithmetic
path integral formula for the Kubota-Leopoldt p-adic L-function.

(4) A deep aspect of the 3-dimensional Chern—-Simons TQFT with com-
pact connected gauge group is a connection with 2-dimensional conformal
field theory ([Ko]). For Dijkgraaf-Witten TQFT, Brylinski and McLaughlin
([BM2], [BM3]) studied the analogue for a finite gauge group of Segal-Witten
reciprocity law in conformal field theory ([Seg|, [BM1], [BM2]). We may find
an analogous feature between central extensions of loop groups in conformal
field theory and metaplectic coverings in number theory such as Segal-Witten
reciprocity law and Hilbert reciprocity law ([Kub], [We], [BD]). It would be
interesting to pursue this analogy in connection with (arithmetic) Chern—
Simons TQFT.
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