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Abstract

In recent years, Minhyong Kim and his collaborators ([Ki], [CK-
KPY]) initiated to study an arithmetic analogue for number rings of
Dijkgraaf–Witten theory for 3-manifolds, based on the analogies be-
tween 3-manifolds and number rings, knots and primes in arithmetic
topology. In this thesis, we present basic constructions and properties
in the arithmetic Dijkgraaf–Witten theory along the lines of topo-
logical quantum field theory. For a finite set S of finite primes of
a number field k, we construct arithmetic analogues of the Chern–
Simons 1-cocycle, the prequantization bundle for a surface and the
Chern–Simons functional for a 3-manifold. We then construct arith-
metic analogues for k and S of the quantum Hilbert space (space
of conformal blocks) and the Dijkgraaf–Witten partition function in
(2+1)-dimensional Chern–Simons TQFT. We show some basic and
functorial properties of those arithmetic analogues, in paticular, we
establish the decomposition and gluing formulas for arithmetic Chern–
Simons invariants and arithmetic Dijkgraaf–Witten partition func-
tions. Furthermore, we give explicit formulas of mod 2 arithmetic
Dijkgraaf–Witten invariants for number rings Spec(OK), where K =
Q(
√
p1p2 · · · pr), pi’s being distinct prime numbers congruent to 1 mod

4, in terms of the Legendre symbols of pi’s. We also show topological
analogues of our formulas for 3-manifolds.
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Notations and convention

Z : the ring of rational integers
Q : the field of rational numbers
R : the field of real numbers
C : the field of complex numbers
R× : the group of units in a commutative ring R
OK : the ring of integers of a number field K
IK : the group of fractional ideals of K
Na ∈ Q : the norm of a ∈ IK
ClK : the ideal class group of K
Cl+K : the narrow ideal class group of K
For a G-equivariant fiber bundle ϖ : E → B
Γ(B,E) : the set of sections of ϖ
ΓG(B,E) : the set of G-equivariant sections of ϖ
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1 Introduction

In this thesis, we study arithmetic Dijkgraaf–Witten theory for number
ring, based on the analogies between knots and primes, number rings and
3-manifolds in arithmetic topology.

Dijkgraaf–Witten theory is a 3-dimensional Chern–Simons gauge theory
with finite gauge group. It can be interpreted as a toy model of (2+1)-
dimensional topological quantum field theory, TQFT for short, in the sense
of Atiyah ([At1]). TQFT is a framework to produce topological invariants for
manifolds. So Dijkgraaf–Witten TQFT gives the Dijkgraaf–Witten invari-
ants (partition functions) for 3-manifolds. For the construction of Dijkgraaf–
Witten TQFT, we consult [DW], [FQ], [Gm], [Wa], and [Ye].

In recent years, Minhyong Kim initiated to study arithmetic Chern–
Simons theory for number rings, which is based on the ideas of Dijkgraaf–
Witten theory for 3-manifolds ([DW]) and the analogies between 3-manifolds
and number rings, knots and primes in arithmetic topology ([Mo2]). In
[Ki] he constructed an arithmetic analogue of the Chern–Simons functional,
which is defined on a space of Galois representations over a totally imaginary
number field. In the subsequent paper [CKKPY] Kim and his collaborators
showed a decomposition formula for arithmetic Chern–Simons invariants and
applied it to concrete computations for some examples. Computations of
arithmetic Chern–Simons invariants have also been carried out for some ex-
amples, by employing number-theoretic considerations in [AC], [BCGKPT],
[CKKPPY], and [LP]. In [Hi], we extended Kim’s construction over arbitrary
number fields, which may have real primes (see also [LP] for another construc-
tion), and we gave an explicit formula for the mod 2 arithmetic Dijkgraaf–
Witten invariants for certain real quadratic number fields. In [HKM], we
showed a TQFT structure of arithmetic Dijkgraaf–Witten theory for the
complements of finite number of finite primes in number rings, along the line
of topological Dijkgraaf–Witten TQFT.

In this thesis, after reviewing the topological Dijkgraaf–Witten theory,
we present our results in arithmetic Dijkgraaf–Witten theory, based on [Hi]
and [HKM]. The more precise contents of this thesis are organized as follows.

In Chapter 2, we recall Dijkgraaf–Witten theory for closed 3-manifolds
([DW]). For a finite group A and a 3-cocycle c ∈ Z3(A,Z/nZ), we intro-
duce the Chern–Simons invariant and the Dijkgraaf–Witten invariant for a
3-manifold. We then show explicit formulas for mod 2 Dijkgraaf–Witten
invariants for double covers of the 3-sphere.

In Chapter 3, we recall the definition of topological quantum field theory,
due to Atiyah, and construct the TQFT structure for Dijkgraaf–Witten the-
ory following Gomi ([Gm]). To be precise, for a oriented closed surface Σ, we
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construct the Chern–Simons 1-cocycle and the prequantization bundle. For a
oriented compact 3-manifold M , we introduce the Chern–Simons functional.
We then construct the quantum Hilbert space and the Dijkgraaf–Witten par-
tition function in (2+1)-dimensional Chern–Simons TQFT.

In Chapter 4, we study an arithmetic analogues for number rings of
Chern–Simons functional and Dijkgraaf–Witten invariant for 3-manifolds in
Chapter 2. Namely we introduce the definition of the arithmetic Chern–
Simons invariant to any number rings, by using the modified étale cohomol-
ogy groups and fundamental groups which take real primes into account, and
introduce the arithmetic Dijkgraaf–Witten invariant. We then show explicit
formulas of mod 2 arithmetic Dijkgraaf–Witten invariants for real quadratic
fields Q(

√
p1p2 · · · pr), where pi’s are distinct prime numbers congruent to 1

mod 4, in terms of the Legendre symbols of pi’s.
In Chapter 5, we present arithmetic Dijkgraaf–Witten theory for number

rings, which may be regarded as an arithmetic analogue of Dijkgraaf–Witten
theory in Chapter 3, along the line of topological quantum field theory. To
be precise, for a finite set S of finite primes of a number field k, we construct
arithmetic analogues of the Chern–Simons 1-cocycle, the prequantization
bundle for a surface and the Chern–Simons functional for a 3-manifold. We
then construct arithmetic analogues for k and S of the quantum Hilbert space
and the Dijkgraaf–Witten partition function in (2+1)-dimensional Chern–
Simons TQFT. We show some basic and functorial properties of those arith-
metic analogues. Finally we show decomposition and gluing formulas for
arithmetic Chern–Simons invariants and arithmetic Dijkgraaf–Witten parti-
tion functions.
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2 Chern–Simons functionals and Dijkgraaf–

Witten invariants for closed 3-manifolds

In this chapter, we recall Dijkgraaf–Witten theory for closed 3-manifolds
([DW]). For a finite group A and a 3-cocycle c ∈ Z3(A,Z/nZ), we intro-
duce the Chern–Simons invariant and the Dijkgraaf–Witten invariant for a
3-manifold. We then show explicit formulas for mod 2 Dijkgraaf–Witten in-
variants for double covers of the 3-sphere. The contents of this chapter are
based on [Hi].

2.1 Dijkgraaf–Witten invariants for 3-manifolds

In this section, we introduce the Dijkgraaf–Witten invariants in a manner
slightly different from the original one [DW] to clarify the analogy between
the Dijkgraaf–Witten invariant for a 3-manifold and that for a number ring,
which will be discussed in Chapter 4. In order to define the invariant, we
show the following proposition.

Proposition 2.1.1. Let M be a connected compact 3-manifold. Then, for
n ≥ 2, there is a cohomological spectral sequence

Hp(π1(M),Hq(M̃,Z/nZ))⇒ Hp+q(M,Z/nZ),

where M̃ denotes the universal covering of M .

Proof. Although this may be well known, we give a proof for the sake of
readers. Since M is compact, the singular cohomology Hi(M,Z/nZ) can be
identified with the cohomology of the constant sheaf Z/nZ on M . So we
show the assertion for the cohomology of the constant sheaf. We denote
by Gal(M̃/M)-mod the category of Gal(M̃/M)-modules. We consider the
functors

F1 : Sh(M)→ Gal(M̃/M)-mod, S 7→ S(M̃)

F2 : Gal(M̃/M)-mod→ Ab, R 7→ RGal(M̃/M),

where the action of G = Gal(M̃/M) on S(M̃) is defined by σ.x = S(σ)(x) for

x ∈ S(M̃) and σ ∈ G. We can easily check (F2 ◦ F1)(S) = S(M̃)G = S(M)
and that F1 sends any injective object I to a F2-acyclic object. Therefore we
have the expected spectral sequence by the Grothendieck spectral sequence
and π1(M) ∼= Gal(M̃/M).

Now we define the Dijkgraaf–Witten invariant for a 3-manifold.
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Definition 2.1.2. Let M be a connected oriented closed 3-manifold and
let c ∈ H3(A,Z/nZ) for a finite group A and n ≥ 2. Let M(M,A) =
Hom(π1(M), A)/A denote the set of conjugacy classes of all homomorphisms
π1(M)→ A. Note that the fundamental class [M ] generates H3(M,Z/nZ) ∼=
Z/nZ. For each ρ ∈ M(M,A), the Chern–Simons invariant CSc(ρ) of ρ
associated to c is defined by the image of c under the composition of the
maps

H3(A,Z/nZ) ρ∗−→ H3(π1(M),Z/nZ) j3−→ H3(M,Z/nZ) < ,[M ]>−−−−−→ Z/nZ,

where j3 denotes the edge homomorphisms in the spectral sequence

Hp(π1(M),Hq(M̃,Z/nZ))⇒ Hp+q(M,Z/nZ)

of Proposition 2.1.1. The Dijkgraaf–Witten invariant of M associated to c is
then defined by

Zc(M) =
1

#A

∑
ρ∈M(M,A)

exp

(
2πi

n
CSc(ρ)

)
.

When A = Z/mZ, we call CSc(ρ) and Zc(M) the mod m Chern–Simons
invariant and the mod m Dijkgraaf–Witten invariant respectively.

Remark 2.1.3. The Dijkgraaf–Witten invariant was originally defined as
follows [DW]. Let M and A be as in Definition 2.1.2. Let BA denotes a
classifying space for A. Consider U(1) = {z ∈ C | |z| = 1} and let c ∈
H3(A,U(1)). Then the Dijkgraaf–Witten invariant DWc(M), is defined by

DWc(M) =
1

#A

∑
ρ∈Hom(π1(M),A)

< fρ
∗c, [M ] >,

where fρ : M → BA denotes the classifying map with respect to ρ and
< , > : H3(M,U(1))× H3(M,Z)→ U(1) denotes the natural pairing.

The relation between this definition and Definition 2.1.2 is given as fol-
lows. Suppose thatA = Z/nZ, so that there is an isomorphism H3(A,U(1)) ∼=
µn ⊂ U(1) sending c to an n-th root of unity ζn,c in U(1). Then, we may
verify that for any ρ ∈ Hom(π1(M), A), the equality

ζ
CSid∪β(id)(ρ)
n,c =< fρ

∗c, [M ] >

holds, where id∪β(id) is a natural generator of H3(Z/nZ,Z/nZ) (see Lemma
5.5.2). In particular, when ζn,c = exp(2πi

n
), we have

DWc(M) = Zid∪β(id)(M).
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2.2 A formula for Chern–Simons invariants using the
Hurewicz isomorphism

In this section, we show a formula for Chern–Simons invariants using the
Hurewicz isomorphism. Let us describe the setting in this section. Keeping
the same notations as in the section 2.1, we set A = Z/nZ and c = id∪β(id) ∈
H3(A,Z/nZ), where id ∈ H1(A,Z/nZ) is the identity map and

βi : Hi(A,Z/nZ)→ Hi+1(A,Z/nZ) (i = 0, 1, 2, · · · )

is the Bockstein map induced by the short exact sequence

(∗) 0→ Z/nZ ×n→ Z/n2Z→ Z/nZ→ 0.

In addition, for i = 1, 2, · · · , let βi : Hi(M,Z/nZ)→ Hi+1(M,Z/nZ) and βi :
Hi(M,Z/nZ) → Hi−1(M,Z/nZ) denote the Bockstein maps of the singular
homology and cohomology induced by (∗), Furthermore, for i = 1, 2, · · · , let
β̃i : Hi(M,Z/nZ) → Hi−1(M,Z) denotes the Bockstein map of the singular
homology induced by the short exact sequence

0→ Z ×n→ Z→ Z/nZ→ 0.

Let ji : Hi(π1(M),Z/nZ) → Hi(M,Z/nZ) (i = 0, 1, 2, 3, · · · ) denote the
edge homomorphisms in the spectral sequence of Proposition 2.1.1. We will
abbreviate ji ◦ ρ∗ to ρ∗M for ρ ∈ M(M,A) = Hom(π1(M), A)/A. We denote
by Φi : Hi(M,Z/nZ) ∼→ H3−i(M,Z/nZ) (i = 0, 1, 2, 3) the isomorphism of
the Poincaré duality defined by u 7→ u ∩ [M ], where

∩ : Hi(M,Z/nZ)× H3(M,Z/nZ)→ H3−i(M,Z/nZ)

denotes the cap product. Note that, by the universal coefficient theorems,
we have

H1(M,Z/nZ) ∼= H1(M)⊗ Z/nZ ∼= H1(M)/nH1(M).

Together with the Hurewicz isomorphism, we obtain the isomorphisms

Hom(π1(M),Z/nZ) ∼= Hom(H1(M),Z/nZ) ∼= Hom(H1(M,Z/nZ),Z/nZ)
∼= H1(M,Z/nZ).

We see that each ρ ∈ Hom(π1(M),Z/nZ) corresponds to ρ∗M(id) ∈ H1(M,Z/nZ)
via these isomorphisms. We denote by ρ̃ ∈ Hom(H1(M,Z/nZ),Z/nZ) the
homomorphism corresponding to ρ and ρ∗M(id).

We recall some calculations of the cohomology of groups.
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Lemma 2.2.1. (1) We have an isomorphism Hi(Z/nZ,Z/nZ) ∼= Z/nZ for
every i ≥ 0.
(2) The cohomology class c = id ∪ β(id) ∈ H3(A,Z/nZ) is represented by a
cochain α : (Z/nZ)3 → Z/nZ defined by

α(g1, g2, g3) =
1

n
g1(g2 + g3 − (g2 + g3)) mod n,

where g ∈ {0, 1, . . . , n− 1} is a representative element of g ∈ Z/nZ.
(3) The 3rd cohomology group H3(Z/nZ,Z/nZ) is generated by c = id∪β(id).

Proof. Consider the projective resolution of Z[Z/nZ]-modules over Z

· · · ×p→ Z[Z/nZ] ×q→ Z[Z/nZ] ×p→ Z[Z/nZ] ×q→ Z[Z/nZ] ϵ→ Z,

where p =
∑

g∈Z/nZ

g, q = −(0 mod n)+(1 mod n), and ϵ(
∑

g∈Z/nZ

agg) =
∑

g∈Z/nZ

ag,

By taking the functor HomZ[Z/nZ](−,Z/nZ), we obtain the first assertion

(2.2.1.1) Hi(Z/nZ,Z/nZ) ∼= Z/nZ (i ≥ 0).

By applying the snake lemma to the diagram

0 −−−−−→ C1(Z/nZ,Z/nZ) ×n−−−−−→ C1(Z/nZ,Z/n2Z) −−−−−→ C1(Z/nZ,Z/nZ) −−−−−→ 0yd

yd

yd

0 −−−−−→ C2(Z/nZ,Z/nZ) ×n−−−−−→ C2(Z/nZ,Z/n2Z) −−−−−→ C2(Z/nZ,Z/nZ) −−−−−→ 0,

we obtain the second assertion. For the third assertion, by (2.2.1.1), it suffices
to show that for each n′ = 1, 2, . . . , n−1, the cohomology class n′c is not zero
in H3(Z/nZ,Z/nZ). Assume that there is a cochain b ∈ C2(Z/nZ,Z/nZ)
such that db = n′α. Then, for each (g1, g2, g3) ∈ (Z/nZ)3, we have

(n′α)(g1, g2, g3) = b(g2, g3)− b(g1 + g2, g3) + b(g1, g2 + g3)− b(g1, g2).
So we obtain

(2.2.1.2)
n−1∑
i=0

(n′α)(1 mod n, i mod n, 1 mod n) = 0.

By the definition of α, we also have

(n′α)(g1, g2, g3) =
n′

n
g1(g2 + g3 − (g2 + g3)) mod n.

So we obtain
n−1∑
i=0

(n′α)(1 mod n, i mod n, 1 mod n) = n′mod n.

This contradicts the equation (2.2.1.2).
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Now we show the main assertion in this section.

Theorerm 2.2.2. Notations being as above, let u ∈ Z2(M,Z/nZ) be a 2-
cycle that represents Φ1(ρ∗M(id)) ∈ H2(M,Z/nZ). Then there is a 2-chain
D ∈ C2(M,Z) such that D mod n = u and there is a 1-cycle a ∈ Z1(M,Z)
satisfying ∂D = na. Let [a] denote the homology class in H1(M,Z/nZ)
defined by a. Then we have

CSc(ρ) = ρ̃([a]).

Proof. We consider the following commutative diagram,

0 −−−→ C2(M,Z) ×n−−−→ C2(M,Z) mod n−−−−→ C2(M,Z/nZ) −−−→ 0y∂

y∂

y∂

0 −−−→ C1(M,Z) ×n−−−→ C1(M,Z) mod n−−−−→ C1(M,Z/nZ) −−−→ 0.

By the upper short exact sequence, there is a 2-chain D ∈ C2(M,Z) such
that D mod n = u. Hence, we have

(∂D)mod n = ∂(Dmod n) = ∂u = 0.

Therefore, by the lower short exact sequence, there is a 1-cycle a ∈ Z1(M,Z)
such that ∂D = na. For the latter assertion, by direct calculation, we can
check Φ2 ◦ β1 = β2 ◦ Φ1. Then, by Definition 2.1.2, we have,

CSc(ρ) = < ρ∗M(id) ∪ β1(ρ∗M(id)), [M ] >

= < ρ∗M(id),Φ2(β1(ρ∗M(id))) >

= ρ̃(β2(Φ
1(ρ∗M(id)))).

Next, we consider the following commutative diagram,

0 −−−→ Z ×n−−−→ Z −−−→ Z/nZ −−−→ 0yp1

yp2

yid

0 −−−→ Z/nZ ×n−−−→ Z/n2Z −−−→ Z/nZ −−−→ 0,

where p1 and p2 are natural projections, and id is the identity map. By
considering the connecting homomorphism with respect to the singular ho-
mologies for each row, we see that β2 = p1∗ ◦ β̃2. Then the required statement
immediately follows by the definition of β̃2.
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2.3 Explicit formulas of the mod 2 Dijkgraaf–Witten
invariants for double branched covers of the 3-
sphere

In this section, we prove explicit formulas of the mod 2 Dijkgraaf–Witten
invariants for double branched covers of the 3-sphere. Keeping the notations
as in the sections 2.1 and 2.2, we consider the case A = Z/2Z and c =
id ∪ β(id) ∈ H3(A,Z/2Z) in Definition 2.1.2. A tame knot K is the image of
a continuous embedding S1 → S3 which extends to an embedding of a solid
torus. Let L = K1 ∪K2 ∪ · · · ∪ Kr be a tame link in the 3-sphere S3. Let h :
M → S3 denote the double covering ramified along L, that is, h is obtained
by the Fox completion [Fo] of the unramified covering Y → X := S3\L
corresponding to the kernel of the surjective homomorphism H1(X)→ Z/2Z
that maps any meridian of Ki to 1 ∈ Z/2Z. Recall that T+ denotes the
abelian group defined by

T+ = {(x1, x2, · · · , xr) ∈ (Z/2Z)r |
r∑

i=1

xi = 0}

and we put

e+ij = (0, · · · , 0,
i-th
1 , 0, · · · , 0,

j-th
1 , 0, · · · , 0) ∈ T+

for each (i, j) with 1 ≦ i < j ≦ r. By the topological analogue of Gauss’s
genus theory [Mo3; Corollary], there is an isomorphism

(2.3.1) g : H1(M)/2H1(M)
∼→ T+

given by
[a] 7→ (lk(h∗(a),Ki) mod 2),

where lk( , ) denotes the linking number. Hence we obtain the isomorphisms

Hom(π1(M),Z/2Z) ∼= Hom(H1(M),Z/2Z) ∼= Hom(H1(M,Z/2Z),Z/2Z)
∼= Hom(T+,Z/2Z)
∼= H1(M,Z/2Z).

Now we prove the following formula.

Theorerm 2.3.2. Notations being as above, for ρ ∈ Hom(T+,Z/2Z), we
have

CSc(ρ) =
∑
i<j

ρ(e+ij)lk(Ki,Kj) mod 2.

14



Proof. Define elements b1, b2, · · · , br−1 ∈ T+ by

b1 = (1, 0, 0, · · · , 1), b2 = (0, 1, 0, 0, · · · , 1), · · · , br−1 = (0, 0, · · · , 0, 1, 1)

so that the tuple (b1, b2, · · · , br−1) is a basis of T+. Let J = {j1, j2 · · · , jm} ⊂
{1, 2, · · · , r − 1} with j1 < j2 · · · < jm and suppose that ρ(bi) = 1 if and
only if i ∈ J For each i = 1, 2, · · · , r, let Si be a Seifert surface of Ki in
S3, and put K̃i := h−1(Ki) and S̃i := h−1(Si). Let u ∈ Z2(M,Z/nZ) be
a 2-cycle that represents Φ1(ρ∗M(id)) ∈ H2(M,Z/nZ). There is a 2-chain
D ∈ C2(M,Z) such that D mod 2 = u and a 1-cycle aρ ∈ Z1(M,Z) satisfy-
ing ∂D = 2aρ. In order to apply Theorem 2.2.2, let us explicitly find such a
D. Let a = (a1, a2, · · · , ar) ∈ T+ and let a ∈ Z1(M,Z) whose image [a] cor-
responds to a via the isomorphism H1(M)/2H1(M)

∼→ T+ of the topological
analogue of Gauss’s genus theory. We note that the mod 2 linking number
(lk(h∗(a), h∗(∂D)) mod 2) is equal to the mod 2 intersection number of a
and D. Therefore, by the Poincaré duality, a 2-chain D ∈ C2(M,Z) satisfies
u = D mod 2 ∈ Z2(M,Z/nZ) for some u with [u] = Φ1(ρ∗M(id)) if and only
if

lk(h∗(a), h∗(∂D)) mod 2 = ρ(a).

Therefore, we may put

D =
r∑

i=1

S̃i −
∑

i∈{j1,j2,··· ,jm}

S̃i.

In this case, the 1-cycle

aρ =
r∑

i=1

K̃i −
∑

i∈{j1,j2,··· ,jm}

K̃i

satisfies ∂D = 2aρ. By Theorem 2.2.2, we obtain

CSc(ρ) = ρ̃([aρ])

= ρ(g([aρ]))

= ρ((lk(h∗(aρ),Ki) mod 2)

=
m∑
l=1

lk(h∗(aρ),Kjl) mod 2

=
m∑
l=1

∑
i/∈{j1,j2,··· ,jm}

lk(Ki,Kjl) mod 2

=
∑
i<j

ρ(e+ij)lk(Ki,Kj) mod 2.
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By Definition 2.1.2, the mod 2 Dijkgraaf–Witten invariant is given by

Zc(M) =
1

2

∑
ρ∈Hom(T+,Z/2Z)

exp (πi CSc(ρ)) .

Hence we obtain the following.

Corollary 2.3.3. Notations being as above, we have

Zc(M) =
1

2

∑
ρ∈Hom(T+,Z/2Z)

∏
i<j

(−1)ρ(e
+
ij)lk(Ki,Kj)

Example 2.3.4. Let L be a two-bridge link B(a, b) (0 < a < b, b: even,
(a, b) = 1). So we have r = 2 and Hom(T+,Z/2Z) = Z/2Z. Then, the
double branched cover M is the lens space L(a, b). By Theorem 2.3.2 and
[Tu; p.540 and p.543], for each 0 ̸= ρ ∈ Hom(T+,Z/2Z), we have

CSc(ρ) =

b/2∑
k=1

(−1)⌊(2k−1)a/b⌋ mod 2,

where ⌊ ⌋ denotes the floor function. Therefore, we also have

Zc(M) =


1, if

b/2∑
k=1

(−1)⌊(2k−1)a/b⌋ is even,

0, if otherwise.

Now We introduce the mod 2 linking diagram DL of L as follows. The
diagram DL consists of r vertices and edges. Each vertex represents each
component knot Ki and two vertices Ki and Kj are adjacent by an edge if
and only if the linking number lk(Ki,Kj) ≡ 1 mod 2. The diagrram is called
a circuit (or closed trail) if it can be written in one-stroke. A graph consisting
of a single vertex is considered to be a circuit. The following formula can be
proved by using genus theory for M .

Theorerm 2.3.5 ([Hi], [DK]). Notations being as above, we have

Z(M) =

{
2r−2 if any connected component of DL is a circuit

0 otherwise.

Example 2.3.6. Let L = K1∪K2∪K3∪K4 be the following link (left figure)
in S3 so that the mod 2 linking diagram DL is given by the right figure. Let
M be the double covering of S3 ramified along L. By Theorem 2.3.5, we
have Z(M) = 22 = 4.
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K1

K2 K3K4

K1 K2

K3K4

Remark 2.3.7. In the context of quantum topology, Murakami, Ohtsuki and
Okada calculated the mod n Dijkgraaf–Witten invariant for the 3-manifold
obtained by a Dehn surgery on S3 along a framed link and expressed the
mod n Dijkgraaf–Witten invariant in terms of Gaussian sums and the linking
matrix of the framed link [MOO; Proposition 9.1]. In Chapter 4, for number
fields, we will show a formula given in a form similar to Gaussian sums
(Theorem 4.5.2). So we may expect that the cases with non-abelian gauge
groups would be given by a non-abelian generalization of Gaussian sums.
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3 Dijkgraaf–Witten TQFT for 3-manifolds with

boundaries

In this chapter, we recall the definition of topological quantum field the-
ory, for the case of (2+1)-dimension, and construct the TQFT structure for
Dijkgraaf–Witten theory following Gomi ([Gm]). To be precise, for an ori-
ented closed surface Σ, we construct the Chern–Simons 1-cocycle and the
prequantization bundle. For a oriented compact 3-manifoldM , we introduce
the Chern–Simons functional. We then construct the quantum Hilbert space
and the Dijkgraaf–Witten partition function in (2+1)-dimensional Chern–
Simons TQFT.

3.1 The definition of (2+1)-dimensional TQFT

We start to recall the definition of topological quantum field theory, due
to Atiyah, for the case of (2+1)-dimension.

Definition 3.1.1 ([At1], [At2]). A (2+1)-dimensional topological quantum
field theory, called TQFT for short, consists of the following correspondences
(a functor from the cobordism category of surfaces to the category of C-vector
spaces)

oriented closed surface Σ ⇝ C-vector space HΣ,
oriented compact 3-manifoldM ⇝ vector ZM ∈ H∂M ,

where HΣ is called the state space or the quantum Hilbert space and ZM is
called the partition function. These correspondences must satisfy the follow-
ing axioms.
(A1) functoriality. An orientation preserving homeomorphism f : Σ

≈→ Σ′

induces an isomorphism HΣ
∼→ HΣ′ of Hilbert quantum spaces. Moreover,

if f extends to an orientation preserving homeomorphism M
≈→ M ′, with

∂M = Σ, ∂M ′ = Σ′, then ZM is sent to ZM ′ under the induced isomorphism
H∂M

∼→ H∂M ′ .
(A2) multiplicativity. For disjoint surfaces Σ1,Σ2, we require and the surface
Σ∗ = Σ with the opposite orientation, we require

HΣ1⊔Σ2 = HΣ1 ⊗HΣ2 .

This multiplicative property is indicative of the quantum feature of the the-
ory.
(A3) involutority. For a surface Σ∗, which is Σ with opposite orientation, we
require

HΣ∗ = (HΣ)
∗,
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where (HΣ)
∗ is the dual vector space of HΣ.

(A3) Gluing formula. If ∂M1 = Σ1 ⊔ Σ2, ∂M2 = Σ∗
2 ⊔ Σ3 and M is the

3-manifold obtained by gluing M1 and M2 along Σ2, then we require

< ZM1 , ZM2 >= ZM ,

where < ·, · >: HΣ1⊔Σ2 × HΣ∗
2⊔Σ3 → HΣ1⊔Σ3 is the natural gluing pairing of

state spaces obtained by (A2), (A3).
When Σ = ∅ (empty), we suppose H∅ = C, and so we suppose ZM = Z(M) ∈
C when M is closed. we also suppose ZΣ×[0,1] = idHΣ

.

3.2 The TQFT structure for Dijkgraaf–Witten Theory

In this section, we recall the construction of the TQFT structure for
Dijkgraaf–Witten theory, following [Gm]. We refer to [DW], [FQ], [Wa], [Ye]
for other constructions. We fix a finite group and a 3-cocycle c ∈ Z3(G,R/Z)
once and for all. Let X be an oriented compact manifold X with a fixed
finite triangulation T . Let T (n) denotes the set of n-simplices in T . Each
σi0···in ∈ T (n) for i0 < i1 < · · · < in has the orientation determined by the
numberings i0 · · · in assigned to vertices and σπ(i0)···π(in) for a permutation π
of i0 · · · in is defined by sgn(π)σi0···in . We then define the gauge group GX on
X associated to G by

G := {γ : T (0) → G}
and define the space FX of gauge fields on X associated to G by

FX := {ϱ : T (1) → G | ϱ(σi0i1)ϱ(σi1i2) = ϱ(σi0i2) for i0 < i1 < i2}

on which GX acts from the right by

(ϱ.γ)(σij) := γ(σi)
−1ϱ(σij)γ(σj).

Note that FX and GX are finite sets. We remark that the quotient space
FX/GX is identified with the set MX of isomorphism classes principal G-
bundles (G-torsors) on X by the parallel transport along 1-simplices σij and
that the holonomy gives the bijection betweenMX and Hom(π1(X), G)/G if
X is connected, where Hom(π1(X), G)/G is the quotient of Hom(π1(X), G)
by the conjugate action of G from the right:

Hom(π1(X), G)×G→ Hom(π1(X), G); (ϱ, g) 7→ g−1ϱg.

We construct the classical theory in the sense of physics. The key ingre-
dient is the transgression homomorphism for an oriented compact d-manifold
X and m ≥ d

transmX : Cm(G,R/Z) −→ Cm−d(GX ,Map(FX ,R/Z)),
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where Map(FX ,R/Z)) is the additive group of maps FX → R/Z, on which
GX acts from the left by (γ.ψ)(ϱ) := ψ(ϱ.γ) for γ ∈ GX , ψ ∈ Map(FX ,R/Z),
and ϱ ∈ FX . The explicit expressions of transX for the cases that d = m,m+1
are given as follows. For γ ∈ GX , ϱ ∈ FX and σi ∈ T (0), σij ∈ T (1), we set
γi := γ(σi), ϱij := ϱ(σij).
・ Case that d = m. For α ∈ Cm(G,R/Z), ϱ ∈ FX , we have

transmX(α)(ϱ) =
∑

σ01···m∈T (m)

ε01···mα(ϱ01, . . . , ϱm−1 m),

where ε01···m = 1 if the orientations of σ01···m and X coincides, and ε01···m =
−1 otherwise.
・ Case that d = m+1. For α ∈ Cm(G,R/Z), γ ∈ GX , and ϱ ∈ FX , we have

(transmX(α))(γ)(ϱ) =
∑

σ01···m−1∈T (m−1)

ε01···m−1

m−1∑
j=0

(−1)j

α(γ0
−1ϱ01γ1, · · · , γj−1

−1ϱj−1 jγj, ϱj j+1, · · · , ϱm−2 m−1),

where the signature ε01···m−1 is defined as above. It can be shown that the
following Stokes type formula holds:

transm+1
X ◦ δ = (−1)dδ ◦ transmX + res∗(transm∂X),

where δ denotes the coboundary map of group cochains and res denotes the
map on the cochain induced by the restriction FX → F∂X (resp. GX → G∂X).

Now, letm = 3 and consider the cases that X is an oriented closed surface
Σ (d = 2) or X is an oriented compact 3-manidold M (d = 3), and we set

(3.2.1) λΣ := trans3Σ(c) ∈ C1(GΣ,Map(FΣ,R/Z))

(3.2.2) CSM := trans3M(c) ∈ Map(FM ,R/Z),

which are explicitly given as follows:

λΣ(ϱ) =
∑

σ012∈T (2)

εσ012{c(γ0, ϱ01, ϱ12)− c(γ0ϱ01γ1−1, γ1, ϱ12)(3.2.3)

+c(γ0ϱ01γ1
−1, γ1ϱ12γ2

−1, γ2)} (γ ∈ GΣ, ϱ ∈ FΣ),

CSM(ϱ) =
∑

σ0123∈T (3)

εσ0123c(ϱ01, ϱ12, ϱ23) (ϱ ∈ FM),(3.2.4)
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where εσ := 1 is the orientations of σ and X coincides, and εσ := −1 other-
wise. We suppose that the triangulation T∂M on ∂M is the restriction of the
triangulation TM of M . Since c is a 3 − cocycle, by (3.2.1), (3.2.2), (3.2.3),
and (3.2.4), we have

(3.2.5) δCSM = res∗λ∂M , δλΣ = 0.

We call λΣ the Chern–Simons 1-cocycle associated to c for an oriented closed
surface Σ. The cohomology class of λΣ is independent of the choice of a finite
triangulation T . We call CSM the Chern–Simons functional associated to c
for an oriented compact 3-manifold M .

Using λΣ, we define a G-equivariant principal R/Z-bundle LΣ by the
product bundle

LΣ := FΣ × R/Z,
on which GΣ acts by (ϱ,m).γ = (ϱ.γ,m + λΣ(γ)(ϱ)) for ϱ ∈ FΣ,m ∈ R/Z
and γ ∈ GΣ. It depends on the cohomology class of λΣ up to isomorphism
of GΣ-equivariant principal R/Z-bundles. We call LΣ the prequantization
principal R/Z-bundle over FΣ. Let LΣ be the complex line bundle associated
to LΣ via the homomorphism R/Z → C×; m 7→ e2π

√
−1m, and we have the

complex line bundle LΣ over MX . The line bundle LΣ (or LΣ) is called
the prequantization complex line bundle for a surface Σ. By (3.2.5), we see
that CSM (resp. e2π

√
−1CSM ) is a GM -equivariant section of res∗L∂M (resp.

res∗L∂M) over FM .
We construct the quantum theory in the sense of physics, namely, the

correspondences in Definition 3.1.1 of (2+1)-dimensional TQFT. We define
the state space HΣ for an oriented closed surface Σ by the space of sections
of the prequantization bundle LΣ over MΣ, equivalently, the space of GΣ-
equivariant sections of the prequantization line bundle LΣ over FΣ:
(3.2.6)
HΣ := Γ(MΣ, LΣ)

= {θ : FΣ → C | θ(ϱ.γ) = e2π
√
−1λΣ(γ)(ϱ)θ(ϱ) for ϱ ∈ FΣ, γ ∈ GΣ}.

We call HΣ the Dijkgraaf–Witten state space and the above construction is
along the line similar to the geometric quantization. We define the Dijkgraaf–
Witten partition function by the following sum fixing the boundary condition

(3.2.7) ZM(ϱ∂M) =
1

#′T (0)
M

∑
ϱ∈FM

res(ϱ)=ϱ∂M

e2π
√
−1CSM (ϱ)

for ϱ∂M ∈ F∂M , where #′T (0)
M is the number of 0-simplices in the interior

of M . By (3.2.5), we see ZM ∈ H∂M . The value ZM(ϱ∂M) is called the
Dijkgraaf–Witten invariant of ϱ∂M ∈ F∂M .
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Remark 3.2.8. The above constructions depends only on the cohomology
class of the fixed cocycle c. So we may take c to be nomalized. Furthermore,
the above constructions turn out to be independent of the choice of trian-
gulations of Σ and M . Suppose that another choice of triangulation T ′

Σ of

Σ yields HT ′
Σ

Σ as above. Then it can be shown that there is an isomorphism

Θ : HTΣ
Σ

∼→ HT ′
Σ

Σ . So taking the colimit ofHTΣ
Σ ’s with respect to triangulations

TΣ of Σ, we obtain the state space HΣ which is independent of TΣ. Suppose
that another choice of triangulation T ′

M of M yields Z
T ′
M

M ∈ HT ′
∂M

∂M . Then we

can show Θ(ZTM
M ) = Z

T ′
M

M and so we have a topological invariant ZM ∈ H∂M

([Gm]).

Theorerm 3.2.9. The above correspondences

oriented closed surface Σ ⇝ C-vector space HΣ,
oriented compact 3-manifoldM ⇝ vector ZM ∈ H∂M ,

satisfy the axioms (A1)～(A4) in the Definition 3.1.1 of the (2+1)-dimensional
TQFT.

For the proof of Theorem 3.2.9, we consult the references [Gm], [DW],
[Wa], [FQ], [Ye].

Remark 3.2.10. For Chern–Simons theory with a compact Lie gauge group,
it is known that the state space HΣ is isomorphic to the space of conformal
blocks ([Ko]) and its element is called an non-Abelian theta function ([BL]).
The dimension of HΣ is given by Verlinde’s formula([Ve]). Dijkgraaf–Witten
theory is a finite analogue and an element of HΣ may be regarded as a sort
of non-Abelian finite theta function or non-Abelian Gaussian sum.
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4 Arithmetic Chern–Simons functionals and

arithmetic Dijkgraaf–Witten invariants for

number fields

In this chapter, we study arithmetic analogues for number rings of Chern–
Simons functional and Dijkgraaf–Witten invariant for 3-manifolds in Chapter
2. We list herewith some analogies which will be used in this section.

3-dimensional topology number theory

connected, oriented, and closed compactified spectrum of a number ring
3-manifold M X = Spec OK

knot maximal ideal
K : S1 →M p : Spec (OK/p)→ Spec (OK)

link finite set of maximal ideals
L = K1 ∪ K2 ∪ · · · ∪ Kr S = {p1, p2, · · · , pr}
fundamental group modified étale fundamental group

π1(M) π1(X)
1-cycle group Z1(M) ideal group IK
mod 2 linking number Legendre symbol

lk(K1,K2) mod 2

(
p1
p2

)
1-boundary group B1(M) principal ideal group PK

∂ : C2(M)→ Z1(M);S 7→ ∂S ∂ : K× → IK ; a 7→ (a)
1st integral homology group ideal class group
H1(M) = Z1(M)/B1(M) ClK = IK/PK

Hurewicz isomorphism Artin reciprocity

π1(M)ab ∼= Gal(Mab/M) ∼= H1(M) π1(X)ab ∼= Gal(K̃ab/K) ∼= ClK
Poincaré duality Artin–Verdier duality

Hi(M,Z/nZ) ∼= H3−i(M,Z/nZ) Hi(X,Z/nZ) ∼= Ext3−i

X
(Z/nZ, ϕ∗Gm,X)

∼

Based on the analogies recalled above, we give the definition of the arith-
metic Chern–Simons invariant for any number rings, by using the modified
étale cohomology groups and fundamental groups which take real primes into
account, and introduce the arithmetic Dijkgraaf–Witten invariant. We then
show explicit formulas of mod 2 arithmetic Dijkgraaf–Witten invariants for
real quadratic fields Q(

√
p1p2 · · · pr), where pi’s are distinct prime numbers

congruent to 1 mod 4, in terms of the Legendre symbols of pi’s. The contents
of this chapter are based on [Hi].
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4.1 The Artin–Verdier site and the modified étale fun-
damental group

Let K be a finite algebraic number field and let X = Spec OK be the
prime spectrum of the ring OK of integers of K. Let X∞ denote the set of
infinite primes, namely, real primes and pairs of conjugate complex primes of
K, and we set X = X ⊔X∞. Let Y be a scheme which is étale over X. A
real prime of Y is defined by a point y : Spec C→ Y which factors through
Spec R. A complex prime of Y is defined to be a pair of complex conjugate
points y, y : Spec C → Y such that y ̸= y. An infinite prime of Y is a real
prime or a complex prime of Y . Let Y∞ denote the set of infinite primes of
Y . Note that an étale morphism f : Y → X induces f∞ : Y∞ → X∞. We
say that f∞ is unramified at y∞ ∈ Y∞ if y∞ is a real prime or if (y∞,f∞(y∞))
is a complex prime. Regarding Grothendieck topologies, we refer to [Ar] and
[Ta].

Definition 4.1.1 ([AC; Definition 2.1], [Bi; Proposition 1.2]). The Artin–
Verdier site X ét of X is the Grothendieck topology consisting of the category
Cat(X ét) and a set Cov(X ét) of coverings defined as follows.

• An object in Cat(X ét) is a pair (Y,M), where f : Y → X is a scheme
étale over X and M ⊂ Y∞ such that f∞| : M → X∞ is unramified. A
morphism φ : (Y1,M1)→ (Y2,M2) in Cat(X ét) is a morphism of shemes
φ : Y1 → Y2 over X such that the induced map φ∞ : (Y1)∞ → (Y2)∞
satisfies φ∞(M1) ⊂M2.

• A covering in Cov(X ét) is a family of morphisms {φi : (Yi,Mi) →
(Z,N)}i∈I in Cat(X ét) which satisfies ∪

i
φi(Yi) = Z and ∪

i
φi(Mi) = N.

Remark 4.1.2. In Cat(X ét), the fiber product of morphisms φi : (Yi,Mi)→
(Z,N) (i = 1, 2) is defined by (Y1×

Z
Y2,M3), where Y1×

Z
Y2 is the fiber product

in the category of schemes andM3 is the set consisting of points of (Y1×
Z
Y2)∞

whose images are in Mi under the projections (Y1×
Z
Y2)∞ → Yi∞ for i = 1, 2.

We can check easily that M3 is isomorphic to M1 ×
N
M2 in the category of

sets.

Next, we introduce a Galois category to define the modified étale funda-
mental group.

We say that (Y,M) ∈ Cat(X ét) is finite étale if Y → X is a finite étale
morphism of schemes over X and M = Y∞. We denote by FEtX the full
subcategory of X ét whose objects are finite étale, and denote by FSets the
category of finite sets.
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In the following, we often abbreviate (Y, Y∞) to Y for a scheme Y étale
over X. Let K be an algebraic closure of K and let η̃ : Spec K → X be a
geometric point. Then we have functors

Fη̃ : FEtX → FSets; Y 7→ HomX(η̃, Y ),

U : FEtX → FEtX ; Y 7→ Y.

We note that the forgetful functor U is fully faithful.

Definition 4.1.3 ([SGA I ; V.4]). Let C be a category and let F : C → FSets
be a covariant functor. C is called a Galois category with a fiber functor F
if C and F satisfy the following axioms.

(G1) C has a final object and finite fiber products.

(G2) Finite direct sums exist in C . The quotient of an object by a finite
group of automorphisms exist in C .

(G3) Let u : A1 → A2 be a morphism in C . Then u factors into a com-

position A1
f−→ A′ g−→ A2, where f is a strict epimorphism and g is a

monomorphism which is an isomorphism on a direct summand of A2.

(G4) F is a left exact functor.

(G5) F commutes with finite direct sums and the quotient of an object by
a finite group of automorphisms. F sends strict epimorphisms to epi-
morphisms.

(G6) Let u : A1 → A2 be a morphism in C such that F (u) is an isomorphism.
Then u is an isomorphism.

Proposition 4.1.4. FEtX is a Galois category with a fiber functor Fη̃.

Proof. We check the six axioms (G1)～(G6) of Galois categories for FEtX and
Fη̃. It is well-known that the category FEtX of schemes finite étale over X is
a Galois category with a fiber functor F ′

η̃ : FEtX → FSets Y 7→ HomX(η̃, Y )
[SGA I ; V.7], so that FEtX and F ′

η̃ admit the axioms (G1)～(G6) and F ′
η̃.

Let us verify (G1)～(G6) for FEtX .
(G1) FEtX has a final object (id : X → X,X∞). For Yi ∈ FEtX (i =

1, 2, · · · ,m), we see that
∏
i

Yi ∈ FEtX . So we have
∏
i

Yi =
∏
i

Yi by the

universal property of fiber products.
(G2) FEtX has an initial object (Spec 0, (Spec 0)∞) = (∅, ∅). In a similar
way to (G1), we see that FEtX admits finite direct sums. For Y ∈ FEtX
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and a finite subgroup G ⊂ AutX(Y ), we have AutX(Y ) = AutX(Y ) by the
definition of morphisms of Cat(X ét). So we have the quotient of Y → X ∈
FEtX by G ⊂ AutX(Y ) and then one can check Y /G = Y/G.
(G3) For any morphism Y1 → Y2 in FEtX , Y1 → Y2 factors as

Y1
f−→ Y ′ g−→ Y ′⊔Y ′′ ∼= Y2 in FEtX , where f is a strict epimorphism and g is

a monomorphism. This sequence induces Y1
f−→ Y ′ g−→ Y ′

⊔
Y ′′ ∼= Y2.

(G4) and (G5) are obvious since U is fully faithful and U ◦ F ′
η̃ = Fη̃ .

(G6) Let u : Y1 → Y2 be a morphism in FEtX . If Fη̃(u) : Fη̃(Y1)→ Fη̃(Y2) is
an isomorphism, then U(u) : Y1 → Y2 is an isomorphism. Since the forgetful
functor U is fully faithful, u is an isomorphism.

Now we define the modified étale fundamental group.

Definition 4.1.5. The modified étale fundamental group π1(X) = π1(X, η̃)
with geometric basepoint η̃ is defined by the fundamental group of the Ga-
lois category FEtX associated to the fiber functor Fη̃, namely, the group of
automorphisms of Fη̃.

The fundamental theorem of Galois categories is stated as follows.

Theorerm 4.1.6. There is an equivalence of categories between FEtX and
the category of finite discrete sets equipped with continuous left actions of
π1(X).

Next, in order to describe π1(X) more explicitly, we observe which object
is Galois in the Galois category FEtX . By the definitions of a connected
object and a Galois object in a Galois category, one can see that Y ∈ FEtX
is connected in FEtX if and only if Y → X is connected in FEtX , and that a
connected object Y is Galois in FEtX if and only if AutX(Y ) = AutX(Y )→
F ′
η̃(Y ) = Fη̃(Y ) is bijective, i.e., Y is Galois in FEtX . Therefore, we have the

following Proposition.

Proposition 4.1.7. Let K̃ (resp. K̃ab) denote the maximal Galois (resp.
abelian) extension of K which is unramified over all finite and infinite primes.
Then we have the following.
(1) There is a natural isomorphisms Gal(K̃/K) ∼= π1(X).
(2) The abelianization πab

1 (X) of π1(X) admits natural isomorphisms

ClK
∼→ Gal(K̃ab/K) ∼= πab

1 (X) ; [a] 7→

(
K̃ab/K

a

)

given by the Artin reciprocity law.
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4.2 The Artin–Verdier topos and the modified étale
cohomology groups

Let Sh(X ét) denote the Artin–Verdier étale topos, namely, the category of
abelian sheaves on the site X ét. Let us recall the decomposition lemma for
Sh(X ét) following [AC] and [Bi]. We fix an algebraic closure K of K. For
each x ∈ X∞, we fix an extension x of x to K and denote by Ix the inertia
group of x. If x is a real prime, then we have Ix ∼= Z/2Z; if x is a complex
prime, then Ix is trivial. Let η : Spec K → X denote the generic point.
Then, for F ∈ Sh(X ét), we can regard η∗F = Fη as a Gal(K/K)-module and
Ix ⊂ Gal(K̃/K) acts on η∗F . We define a site TX∞ as follows. An object in
TX∞ is a pair (M,m) where M is a finite set and m : M → X∞ is a map.
A morphism (M1,m1)→ (M2,m2) in TX∞ is a map f :M1 →M2 such that
m2 = f ◦m1. A covering in TX∞ is a family of morphisms {φi : (Mi,mi)→
(M,m)}i∈I in TX∞ such that mi is surjective and M = ∪

i
φ(Mi). Hence,

each G on TX∞ is identified with a family of abelian groups {Gx}x∈X∞ . We
define maps of sites p : X ét → TX∞ and q : X ét → Xét by the forgetful
functors. Then we have functors

Sh(TX∞)
p∗
⇆
p∗

Sh(X ét)
q∗
⇆
q∗

Sh(Xét).

Next, we define the category Sh(X ét)
′ as follows. An object in Sh(X ét)

′

is a triple ({Gx}x∈X∞ , F, {σx : Gx → (η∗F )Ix}x∈X∞), where {Gx}x∈X∞ ∈
Sh(TX∞), F ∈ Sh(Xét) and {σx : Gx → (η∗F )Ix}x∈X∞ is a family of homo-
morphisms of abelian groups. A morphism ({Gx}, F, {σx})→ ({G′

x}, F ′, {σ′
x})

is a pair of morphisms {Gx} → {G′
x}, and F → F ′ such that the induced

diagram

Gx
σx−−−→ (η∗F )Ixy y

G′
x

σ′
x−−−→ (η∗F ′)Ix

is commutative for each x ∈ X∞.
Now we state the decomposition lemma, which was previously proved for

Sh(X ét) ([AC: Proposition 2.3] and [Bi; Proposition 1.2]).

Lemma 4.2.1. There is an equivalence of categories given by the functors

Sh(X ét)
Φ

⇆
Ψ

Sh(X ét)
′
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defined by

Φ : S 7→ (q∗S, p∗S, p∗S → p∗q
∗q∗S), Ψ : ({Gx}, F, {σx}) 7→ q∗F×p∗q∗q∗Fp

∗{Gx}.

Proof. We may check the following properties (1)–(4), so that [Ar; Proposi-
tion 2.4] yields the assertion.
(1) q∗(resp. p∗) is left adjoint to q

∗ (resp. p∗).
(2) q∗, p∗ are exact.
(3) p∗, q∗ are fully faithful.
(4) For any S ∈ Sh(X ét), q∗S = 0 holds if and only if there exists G ∈
Sh(TX∞) such that S = p∗G.
We refer to [Zi; Proposition 1.3.3] for (1), (3), and (4). The property (2)
follows from the fact that X ét, Xét and TX∞ have final objects and finite
fiber products preserved by p and q.

Remark 4.2.2. (1) Via the equivalence of categories in Lemma 4.2.1, we
identify p∗, p

∗, q∗, q
∗ with the functors ψ∗, ψ

∗, ϕ∗, ϕ∗ defined by

ϕ∗({Gx}, F, {σx}) = F , ϕ∗F = ({(η∗F )Ix}, F, {id}),
ψ∗({Gx}, F, {σx}) = {Gx}, ψ∗{Gx} = ({Gx}, 0, {0}).

respectively.
(2) The constant sheaf AX ét

on X ét associated to an abelian group A satisfies
AX ét

= ϕ∗(AXét
). In the following, if there is no confusion, we will abbreviate

AX ét
to A.

(3) For S = ({Gx}, F, {σx}) ∈ ObSh(X ét), the section of S at (Y,M) ∈ X ét

is given by F (Y )×η∗F Gx1×η∗F Gx2×η∗F · · ·×η∗F Gxr , where {x1, x2, · · · , xr}
is the image of M by Y∞ → X∞.

Definition 4.2.3. For each S ∈ Sh(X ét), the cohomology group Hi(X,S) is
called the i-th modified étale cohomology group of X with values in S.

The group Hi(X,S) of the constant sheaf Z/nZ is calculated in [Bi;
Proposition 2.13] and [AC; Corollary 2.15]. Let us recall the Artin–Verdier
duality.

Proposition 4.2.4 (The Artin–Verdier duality [Bi; Theorem 5.1]). Let F
be a constructible sheaf on X = Spec OK. We fix an algebraic closure K of
K. For each x ∈ X∞, we fix an extension x of x to K. Let η : Spec K → X
denote the generic point. Let Gm,X denote the étale sheaf of units on X.
Then we have the following.
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(a) Hi(X,ϕ∗F ) = Exti
X
(ϕ∗F, ϕ∗Gm,X) = 0 for i > 3.

(b) The Yoneda pairing

Hi(X,ϕ∗F )× Ext3−i

X
(ϕ∗F, ϕ∗Gm,X)→ H3(X,ϕ∗Gm,X) ∼= Q/Z

is a perfect duality of finite groups for i ≥ 2.
(c) If for every x ∈ X∞ the inertia group Ix of x acts trivially on the
Gal(K/K)-module η∗F = Fη, then the pairing in (b) is perfect for any i ≥ 0.

Applying Proposition 4.2.4 to the constant sheaf F = Z/nZ on X, we
obtain the following proposition, where we denote by µn(K) the group of
n-th roots of unity in K and put Z1 = {(a, a) ∈ K× ⊕ IK | (a)−1 = an},
B1 = {(bn, (b)−1) ∈ K× ⊕ IK | b ∈ K×}.

Proposition 4.2.5 ([Bi; Proposition 2.13], [AC; Corollary 2.15]). We have

Exti
X
(Z/nZ, ϕ∗Gm,X) ∼=



µn(K) (i = 0)

Z1/B1 (i = 1)

ClK/nClK (i = 2)

Z/nZ (i = 3)

0 (i > 3),

where Gm,X is the étale sheaf of units on X. Then we have, by the Artin–
Verdier duality,

Hi(X,Z/nZ) ∼=



Z/nZ (i = 0)

(ClK/nClK)
∼ (i = 1)

(Z1/B1)
∼ (i = 2)

(µn(K))∼ (i = 3)

0 (i > 3),

where (−)∼ denotes Hom(−,Q/Z).

Remark 4.2.6. Assume that K contains primitive n-th roots of unity. For

each v′ ∈ K×, we choose a primitive n-th root v′
1
n of v′. By Theorem 4.1.6,

for a continuous and surjective homomorphism ρ : π1(X) → Z/nZ, there is
a corresponding Galois object Y → X (Y = Spec OL) whose Galois group is
Z/nZ. Since L is a cyclic extension of degree n unramified at all finite and

infinite primes, there exists v ∈ K× such that L = K(v
1
n ) and there exists

a ∈ IK which satisfies an = (v)−1. By the definition of L and the Galois
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correspondence, there is an isomorphism χ : Gal(L/K)
∼→ Z/nZ such that

the following diagram

π1(X) res //

ρ

��

Gal(L/K)

χ
yy

Z/nZ

commutes, where res : π1(X)→ Gal(L/K) denotes the restriction map. By
Proposition 4.1.7, we also have the following commutative diagram

ClK

(
K̃ab/K

)
//

(L/K )
��

π1
ab(X)

res
xx

Gal(L/K),

where
(

L/K
)
: ClK → Gal(L/K) denotes the Artin map.

Now we state the extension of Hochschild–Serre spectral sequence.

Theorerm 4.2.7. Let Y → X be a Galois object in FEtX . Then for any
S ∈ Sh(X ét), there is a cohomological spectral sequence

Hp(Gal(Y /X),Hq(Y , S|Y ))⇒ Hp+q(X,S).

Proof. Let Gal(Y /X)-mod denote the category of Gal(Y /X)-modules. We
consider the functors

F1 : Sh(X ét)→ Gal(Y /X)-mod, S 7→ S(Y )

F2 : Gal(Y /X)-mod→ Ab,M 7→MGal(Y /X),

where the action of G = Gal(Y /X) on S(Y ) is defined by σ.x = S(σ)(x) for
x ∈ S(Y ) and σ ∈ G. In the same manner as in [Mi1; Remark5.4] and [Mi1;
Proposition 1.4], we can easily check (F2◦F1)(S) = S(Y )G = S(X). Let I be
an injective object in Sh(X ét). By replacing Y and X with Y and X in the
argument of [Mi1; Example2.6], one can see that Hi(G, I(Y )) ∼= Ȟi(Y /X, I)
for any i ≥ 1. Since I is injective, we have Ȟi(Y /X, I) = 0 by the definition
of C̆ech cohomologies. Therefore, F1(I) = I(Y ) is a F2-acyclic object. By
the Grothendieck spectral sequence, we obtain the assertion.

Let (Yi → X, Yi → Yj) denote the inverse system of finite Galois coverings

overX and put X̃ = lim←−
i

Yi, X̃ = lim←−
i

Yi. By H
p(X̃,Z/nZ) = lim←−

i

Hp(Yi,Z/nZ)
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and the local cohomology sequence [Bi; Proposition 1.4], we have Hp(X̃,Z/nZ) =
lim←−
i

Hp(Yi,Z/nZ). So on passing to the inverse limit, we obtain the following.

Corollary 4.2.8. There is a cohomological spectral sequence

Hp(π1(X),Hq(X̃,Z/nZ))⇒ Hp+q(X,Z/nZ).

4.3 Arithmetic Dijkgraaf–Witten invariants for a num-
ber ring

Let X = Spec OK denote the prime spectrum of the ring of integers
of a number field K containing primitive n-th roots of unity. We choose a
primitive n-th root of unity ζn in K, which induces an isomorphism Z/nZ ∼=
µn. Let A be a finite group and let c ∈ H3(A,Z/nZ). Let M(X,A) =
Homc(π1(X), A)/A denote the set of conjugacy classes of all continuous ho-
momorphisms π1(X) → A. Recall that by Proposition 4.2.5 we have the
fundamental class isomorphism H3(X,Z/nZ) ∼= Z/nZ that depends on the
choice of ζn.

Definition 4.1. For ρ ∈ M(X,A), the arithmetic Chern–Simons invariant
CSc(ρ) associated to c is defined by the image of c under the composition of
maps

H3(A,Z/nZ) ρ∗−→ H3(π1(X),Z/nZ) j3−→ H3(X,Z/nZ) ∼= Z/nZ,

where j3 is the edge homomorphisms in the modified Hochschild–Serre spec-

tral sequence Hp(π1(X),Hq(X̃,Z/nZ)) ⇒ Hp+q(X,Z/nZ) of Corollary 4.2.8
We can easily see that CSc(ρ) is independent of the choice of ρ in its conju-
gacy class. The map

CSc :M(X,A)→ Z/nZ

is called the arithmetc Chern–Simons functional associated to c. The arith-
metic Dijkgraaf–Witten invariant of X associated to c is then defined by

Zc(X) =
1

#A

∑
ρ∈M(X,A)

exp

(
2πi

n
CSc(ρ)

)
.

When A = Z/mZ, we call CSc(ρ) and Zc(X) the mod m arithmetic Chern–
Simons invariant and the mod n arithmetic Dijkgraaf–Witten invariant, re-
spectively.
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Remark 4.3.1. (1) If K is totally imaginary, so that K has no ramifica-
tion at infinite primes, then we have π1(X) = π1(X) and Hi(X,Z/nZ) =
Hi(X,Z/nZ). Therefore Definition 4.3.1 is indeed an extension of Kim’s def-
inition [Ki].
(2) When A is abelian, by Proposition 4.1.7, we have

M(X,A) = Homc(π1(X), A) ∼= Hom(ClK , A).

4.4 A formula for arithmetic Chern–Simons invariants
using the Artin Symbols

Let us describe the setting in this section. We continue to work over any
number field K containing primitive n-th roots of unity. Keeping the same
notations as in the section 4.3 and 4.4, we set A = Z/nZ and c = id∪β(id) ∈
H3(A,Z/nZ). Here, id ∈ H1(A,Z/nZ) denotes (the image of) the identity
map and

β : H1(A,Z/nZ)→ H2(A,Z/nZ)

denotes the Bockstein map (connecting homomorphism) induced by the short
exact sequence

0→ Z/nZ ×n→ Z/n2Z→ Z/nZ→ 0.

Let ji : Hi(π1(X),Z/nZ) → Hi(X,Z/nZ) (i = 0, 1, 2, 3, · · · ) denote the
edge homomorphisms in the modified Hochschild–Serre spectral sequence
(Corollary 4.2.8). For each ρ ∈ M(X,A) = Homc(π1(X), A), let ρ∗X denote
/ ρ∗ also denote the composition

H1(A,Z/nZ) ρ∗−→ H1(π1(X),Z/nZ) j1−→ H1(X,Z/nZ)

of the natural map j1 and the induced map ρ∗. Then we have

CSc(ρ) = ρ∗X(id) ∪ β̃(ρ∗X(id)) ∈ H3(X,Z/nZ),

where ∪ : H1(X,Z/nZ) × H2(X,Z/nZ) → H3(X,Z/nZ) is the cup product
and β̃ : H1(X,Z/nZ)→ H2(X,Z/nZ) is the Bockstein map.

Remark 4.4.1. For the definition of the cup product in the category of
sheaves on any site, we refer to [Sw; Corollary 3.7].

Now we show the main assertion of this section. We keep the same nota-
tions as in Remark 4.2.6.
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Theorerm 4.4.2. Let X = Spec OK denote the prime spectrum of the ring
of integers of a number field K containing primitive n-th roots of unity. Let
ρ : π1(X) → Z/nZ be a continuous and surjective homomorphism. Set

A = Z/nZ and c = id ∪ β(id) ∈ H3(A,Z/nZ). Let L = K(v
1
n ) denote the

Kummer extension corresponding to Ker ρ as in Remark 4.2.6, so that L/K
is unramified at all finite and infinite primes and there exist some a ∈ IK
and v ∈ K× with an = (v)−1. Let χ : Gal(L/K)

∼→ Z/nZ denote the natural
isomorphism induced by ρ. Then we have

CSc(ρ) = χ

((
L/K

a

))
.

Proof. When K is totally imaginary, the assertion holds by [BCGKPT; The-
orem 1.3]. So we consider the case K has real primes and n = 2. By
direct calculation, we see that ρ∗(id) ∈ H1(π1(X),Z/2Z) corresponds to
ρ ∈ Homc(π1(X),Z/2Z) via the natural isomorphism

H1(π1(X),Z/2Z) ∼= Homc(π1(X),Z/2Z).

Then, by Proposition 4.2.5 and Remark 4.2.6 , ρ∗X(id) = j1 ◦ ρ∗(id) ∈
H1(X,Z/2Z) corresponds to the composition χ ◦

(
L/K
)
∈ Homc(ClK ,Z/2Z)

via the natural isomorphism

H1(X,Z/2Z) ∼= Homc(ClK ,Z/2Z).

We regard β̃(ρ∗X(id)) as an element in Ext1
X
(Z/2Z, ϕ∗Gm,X)

∼ = (Z1/B1)
∼

through Artin–Verdier duality. Then by [AC; Corollary 3.13], we have

ρ∗X(id) ∪ β̃(ρ∗X(id)) = β̃(ρ∗X(id))([(v, a)]) = ρ∗X(id)(β̃
′([(v, a)])),

where β̃′ : Ext1
X
(Z/2Z, ϕ∗Gm,X) → Ext2

X
(Z/2Z, ϕ∗Gm,X) is the connecting

homomorphism induced by the short exact sequence

0→ Z/2Z ×2→ Z/22Z→ Z/2Z→ 0.

By replacing X with X in the proof of [AC; Lemma 4.1], one can see
β̃′([(v, a)]) = [a]. Hence we see that CSc(ρ) = 0 holds if and only if(

L/K
a

)
∈ Gal(L/K) is trivial. Therefore, we obtain the assertion.

4.5 Explicit formulas of the mod 2 arithmetic Dijkgraaf–
Witten invariants for real quadratic number fields
Q(
√
p1p2 · · · pr) with pi ≡ 1 mod 4

In the following, we consider the case K = Q(
√
p1p2 · · · pr), where each pi

is a prime number such that pi ≡ 1 mod 4. We keep the notation as in the
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previous section and suppose that n = 2, A = Z/2Z, and c = id ∪ β(id) ∈
H3(A,Z/2Z). Assume that the norm of the fundamental unit in O×

K is −1.
Then the narrow ideal class group Cl+K is the same as ClK .

Remark 4.5.1. The fundamental unit ofQ(
√
5 · 13 · 61) is ϵ = 63 +

√
5 · 13 · 61
2

with Nr ϵ = 1. We eliminate such cases to use Gauss’s genus theory.

By pi ≡ 1 mod 4, the discriminant of K is p1p2 · · · pr. We define the
abelian multiplicative 2-group T× by

T× = {(x1, x2, · · · , xr) ∈ {±1}r |
r∏

i=1

xi = 1},

and put e×ij = (1, · · · , 1,
i-th
−1 , 1, · · · , 1,

j-th
−1 , 1, · · · , 1) ∈ T× for each (i, j) with

1 ≦ i < j ≦ r. In addition, we define an additive 2-group T+ by

T+ = {(x1, x2, · · · , xr) ∈ (Z/2Z)r |
r∑

i=1

xi = 0}.

and put e+ij
def
= (0, · · · , 0,

i-th
1 , 0, · · · , 0,

j-th
1 , 0, · · · , 0) ∈ T+ for each (i, j) with

1 ≦ i < j ≦ r. Then we have a standard isomorphism T+ → T×; (xi)i 7→
((−1)xi)i. By Gauss’s genus theory [O; §4.7], there is an isomorphism

Cl+K/2Cl
+
K

∼−→ T×,

given by

[a] 7→
((

Na

p1

)
,

(
Na

p2

)
, · · · ,

(
Na

pr

))
,

where
(

pi

)
denotes the Legendre symbol. Therefore, by Proposition 4.1.7,

we obtain the following isomorphisms

Homc(π1(X),Z/2Z) ∼= Hom(Cl+K/2Cl
+
K ,Z/2Z)

∼= Hom(T×, {±1}) ∼= Hom(T+,Z/2Z).

We denote the corresponding elements in those groups by the same letters.
Now we prove the following formula.

Theorerm 4.5.2. Notations being as above, for each nontrivial ρ ∈ Hom(T×, {±1}),
the arithmetic Chern–Simons invariant satisfies

(−1)CSc(ρ) =
∏
i<j

ρ(e×ij)=−1

(
pj
pi

)
.
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Proof. Define elements b1, b2, · · · , br−1 ∈ T× by

b1 = (−1, 1, 1, · · · ,−1), b2 = (1,−1, 1, 1, · · · ,−1), · · · , br−1 = (1, 1, · · · , 1,−1,−1)

so that the tuple (b1, b2, · · · , br−1) is a basis of T×. Let J = {j1, j2 · · · , jm} ⊂
{1, 2, · · · , r−1} with j1 < j2 · · · < jm and suppose that ρ(bi) = −1 if and only
if i ∈ J . Note that ρ(e×ij) = −1 holds if and only if the intersection {i, j}∩ J
consists of one element. Let L denote the abelian unramified extension of K
corresponding to 2ClK via the class field theory (Proposition 4.1.7), namely,
we put

L = Q(
√
p1,
√
p2, · · ·

√
pr).

Let Lρ denote the unramified Kummer extension of K corresponding to
Kerρ ⊂ π1(X), so that we have

(4.5.2.1) Lρ = K(
√
v), a2v = (v)−1

for some v ∈ K× and av ∈ IK . In order to apply Theorem 4.4.2, let us
explicitly find such v. Let a = (a1, a2, · · · , ar) ∈ T× and let a ∈ IK whose
image [a] corresponds to a via the isomorphism Cl+K/2Cl

+
K

∼−→ T× of Gauss’s

genus theory. Then the Artin symbol
(

L/K
a

)
∈ Gal(L/K) is characterized

by (
L/K

a

)
(
√
pi) = ai

√
pi (i = 1, 2, · · · , r).

Let u : K× → K×/(K×)
2
denote the natural projection. By Remark 4.2.6,

the class u(v) ∈ K×/(K×)
2
is characterized by(

Lρ/K

a

)
(
√
v)/
√
v = ρ(a).

Since
(

Lρ/K
)
is the restriction of

(
L/K
)
to Lρ, we may put

v = pj1pj2 · · · pjm/p1p2 · · · pr.

Since the minimal polynomial of (1 +
√
p1p2 · · · pr)/2 over Q is congruent to

(2X − 1)2 mod pi, we have
(pi) = pi

2,

where pi = (pi,
√
p1p2 · · · pr) is the prime ideal of OK . Hence we have

av = p1p2 · · · pr/pj1pj2 · · · pjm .

35



We see that the composite map

χ′ : Gal(L/K)
∼→ ClK/2ClK

∼→ T×
ρ
↠ {±1}

sends
(

L/K
av

)
∈ Gal(L/K) to

r∏
i=1

(
Nav
pi

)
∈ {±1}. By the quadratic residue

and the assumption that pl ≡ 1 mod 4 (l = 1, . . . , r), we have

(
pj
pi

)
=

(
pi
pj

)
for any distinct i, j ∈ {1, 2, . . . , r}. So we obtain

r∏
i=1

(
Nav
pi

)
=

r∏
i=1

∏
1≤j≤r

j /∈J

(
pj
pi

)

=
∏

1≤i≤r

i∈J

∏
1≤j≤r

j /∈J

(
pi
pj

)

=
∏
i<j

ρ(e×ij)=−1

(
pj
pi

)
.

The last equation follows from the fact that ρ(e×ij) = −1 holds if and only if
the intersection {i, j}∩J consists of one element. On the other hand, since Lρ

is the unramified Kummer extension of K corresponding to Kerρ ⊂ π1(X),

the composite map χ′ : Gal(L/K)
∼→ ClK/2ClK

∼→ T×
ρ
↠ {±1} induces the

natural isomorphism χ′′ : Gal(Lρ/K) = Gal(L/K)/(Kerρ)
∼→ {±1}. Let

χ : Gal(Lρ/K)
∼→ Z/2Z denote the natural isomorphism induced by ρ :

π1(X)→ Z/2Z. We see that χ is equal to the composite map Gal(Lρ/K)
χ′′
→

{±1} ∼→ Z/2Z. Therefore, by Theorem 4.4.2, we have

(−1)CSc(ρ) = χ′′
((

Lρ/K

av

))
=

∏
i<j

ρ(e×ij)=−1

(
pj
pi

)
.

Since the invariant CSc(0) of the trivial representation 0 ∈ Hom(T+,Z/2Z)
is zero, we have the following

Corollary 4.5.3. For ρ ∈ Hom(T+,Z/2Z), we have

CSc(ρ) =
∑
i<j

ρ(e+ij)lk2(pi, pj),
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where lk2(pi, pj) denotes the modulo 2 linking number of pi and pj defined by

(−1)lk2(pi,pj) =
(

pi
pj

)
.

By Definition 4.3.1, the mod 2 arithmetic Dijkgraaf–Witten invariant is
given by

Zc(X) =
1

2

∑
ρ∈Hom(T+,Z/2Z)

(−1)CSc(ρ).

Hence we obtain the following.

Corollary 4.5.4. The mod 2 arithmetic Dijkgraaf–Witten invariant is given
by

Zc(X) =
1

2

∑
ρ∈Hom(T+,Z/2Z)

(∏
i<j

(
pi
pj

)ρ(e+ij)
)
.

Example 4.5.5. Here are some numerical examples of CSc(ρ) and Zc(X)
for the case r = 3. We define ρ0, ρ1, ρ2 and ρ3 in Hom(T+,Z/2Z) by

ρ0(1, 1, 0) = 0, ρ0(0, 1, 1) = 0, ρ0(1, 0, 1) = 0,

ρ1(1, 1, 0) = 1, ρ1(0, 1, 1) = 0, ρ1(1, 0, 1) = 1,

ρ2(1, 1, 0) = 0, ρ2(0, 1, 1) = 1, ρ2(1, 0, 1) = 1,

ρ3(1, 1, 0) = 1, ρ3(0, 1, 1) = 1, ρ3(1, 0, 1) = 0,

so that Hom(T+,Z/2Z) = {ρ0, ρ1, ρ2, ρ3}.
(1) K = Q(

√
5 · 29 · 37) :

lk2(5, 29) = 0, lk2(29, 37) = 1, lk2(37, 5) = 1,

CSc(ρ0) = 0, CSc(ρ1) = 1, CSc(ρ2) = 0, CSc(ρ3) = 1,

Zc(X) = 0.

(2) K = Q(
√
5 · 13 · 73) :

lk2(5, 13) = lk2(13, 73) = lk2(73, 5) = 1,

CSc(ρ0) = CSc(ρ1) = CSc(ρ2) = CSc(ρ3) = 0,

Zc(X) = 2.
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Let us consider the case N = 2, G ∼= Z/2Z and take c ∈ Z3(G,Z/2Z) ∼=
Z/2Z the non-trivial cocycle. Let S := {(p1), · · · , (pr)} be a finite set of
primes of Q (r ≥ 2) such that pi ≡ 1 mod 4 and let k := Q(

√
p1 · · · pr) be

the quadratic extension of Q ramified over (p1), (p2), · · · , (pr). In order to de-
scribe the arithmetic Dijkgraaf–Witten invariant Z(X), we describe the mod
2 arithmetic linking diagram DS of S, following the mod 2 linking diagram
and the analogy between the linking number and the Legendre symbol. The
mod 2 arithmetic linking diagram DS of S consists of r vertices and edges.
Each vertex represents each prime (pi) and two vertices (pi) and (pj) are

adjacent by an edge if and only if
(

pj
pi

)
= −1. since pi ≡ 1 mod 4, DS is

well defined by the quadratic reciprocity law. The following formula can be
proved by using genus theory for X.

Theorerm 4.5.6 ([Hi], [DK]). Notations being as above, we have

Z(X) =

{
2r−2 if any connected component of DS is a circuit

0 otherwise.

Example 4.5.7. Let S = {5, 13, 29, 73} so that ( 5
13
) = ( 5

73
) = (13

73
) = −1,

( 5
29
) = (13

29
) = (73

29
) = 1. Then the mod 2 linking diagram DS is given

by the following figure. Let K := Q(
√
5 · 13 · 29 · 73) = Q(

√
137605) and

X := Spec(Z[1+
√
137605
2

]). By Theorem 4.5.6, we have Z(X) = 22 = 4.

5 13

7329
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5 Arithmetic Dijkgraaf–Witten TQFT for S-

integer number rings

In this chapter, we present arithmetic Dijkgraaf–Witten theory for number
rings, which may be regarded as an arithmetic analogue of Dijkgraaf–Witten
theory in Chapter 3, along the line of topological quantum field theory. We
list herewith some analogies which will be used in this section.

oriented, connected, closed compactified spectrum of

3-manifold M number ring Xk = Spec(Ok)
knot prime

K : S1 ↪→M {p} = Spec(Ok/p) ↪→ Xk

link finite set of maximal ideals
L = K1 ⊔ · · · ⊔ Kr S = {p1, . . . , pr}

tubular n.b.d of a knot p-adic integer ring
VK Vp = Spec(Op)

boundary torus p-adic field
∂VK ∂Vp = Spec(kp)

peripheral group local absolute Galois group

π1(∂VK) Πp = Gal(kp/kp)
tubular n.b.d of a link union of pi-adic integer rings
VL = VK1 ⊔ · · · ⊔ VKr VS = Spec(Op1) ⊔ · · · ⊔ Spec(Opr)

boundary tori union of pi-adic fields
∂VL = ∂VK1 ⊔ · · · ⊔ ∂VKr ∂VS = Spec(kp1) ⊔ · · · ⊔ Spec(kpr)

link complement complement of a finite set of primes
XL =M \ Int(VL) XS = Xk \ S

link group maximal Galois group with
ΠL = π1(XL) given ramification ΠS = Gal(kS/k)

Based on the analogies recalled above, for a finite set S of finite primes of
a number field k, we construct arithmetic analogues of the Chern–Simons 1-
cocycle, the prequantization bundle for a surface and the Chern–Simons func-
tional for a 3-manifold. We then construct arithmetic analogues for k and S
of the quantum Hilbert space (space of conformal blocks) and the Dijkgraaf–
Witten partition function in (2+1)-dimensional Chern–Simons TQFT. We
show some basic and functorial properties of those arithmetic analogues.
Finally we show a decomposition formula for arithmetic Chern–Simons in-
variants and a gluing formula for arithmetic Dijkgraaf–Witten partition func-
tions. The contents of this chapter are based on [HKM].
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5.1 Torsors for an additive group

Let A be an additive group, where the identity element of A is denoted by
0. An A-torsor is defined by a non-empty set T equipped with action of A
from the right

T × A −→ T ; (t, a) 7→ t.a,

which is simply transitive. So, for any elements s, t ∈ T , there exists uniquely
a ∈ A such that s = t.a. We denote such an a by s− t:

(5.1.1) a = s− t def⇐⇒ s = t.a.

For A-torsors T and T ′, a morphism f : T → T ′ is defined by a map of
sets, which satisfies

(5.1.2) f(t.a) = f(t).a

for all t ∈ T and a ∈ A. We easily see that any morphism of A-torsors is an
isomorphism.

Defining the action of A on A by (t, a) ∈ A × A 7→ t + a ∈ A, A itself
becomes an A-torsor. We call it a trivial A-torsor. A morphism f : A → A
of trivial A-torsors is given by f(a) = a + λ for any a ∈ A with λ = f(0).
Choosing an element t ∈ T , any A-torsor T is isomorphic to the trivial
A-torsor by the morphism

(5.1.3) φt : T
∼−→ A; s 7→ φt(s) := s− t.

We call φt the trivialization at t.
Here are some properties concerning A-torsors, which will be used in the

subsequent sections.

Theorem 5.1.4. (1) Let T be an A-torsor. For s, t, u ∈ T and a ∈ A, we
have the following equality in A:

s− s = 0, s− u = (s− t) + (t− u), s.a− t = (s− t) + a.

(2) T, T ′ be A-torsors and let f : T → T ′ be a morphism of A-torsors. Then,
for s, t ∈ T , we have the following equality in A:

s− t = f(s)− f(t).

(3) Let T, T ′ be A-torsors and let f : T → T ′ be a morphism of A-torsors.
Fix t ∈ T and t′ ∈ T ′, and let λ(f ; t, t′) := f(t) − t′. Then we have the
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following commutative diagram:

T
f−→ T ′

φt ↓ ↓ φt′

A
+λ(f ;t,t′)−→ A.

For other choices s ∈ T and s′ ∈ T ′, we have

λ(f ; s, s′) = λ(f ; t, t′) + (s− t)− (s′ − t′).

(4) For an A-torsor T and a subgroup B of A, we note that the quotient set
T/B is an A/B-torsor by (tmodB).(amodB) := (t.amodB) for t ∈ T and
a ∈ A.

Proof. (1) These equalities follow from the definition of group action and
(5.1.1).
(2) This follows from (5.1.1) and (5.1.2).
(3) The former assertion follows from (5.1.3). For the latter assertion, we
note the following commutative diagram.

T
id−→ T

f−→ T ′ id−→ T ′

↓ φs ↓ φt ↓ φt′ ↓ φs′

A
+(s−t)−→ A

+λ(f ;t,t′)−→ A
−(s′−t′)−→ A.

Since the composite map in the lower row is +λ(f ; s, s′) by the former asser-
tion, the latter assertion follows.
(4) This is easily seen.

5.2 Conjugate action on group cochains

Let Π be a profinite group and let M be an additive discrete group on which
Π acts continuously from the left. Let Cn(Π,M) (n ≥ 0) be the group of
continuous n-cochains of Π with coefficients inM and let dn+1 : Cn(Π,M)→
Cn+1(Π,M) be the coboundary homomorphisms defined by

(5.2.1)

(dn+1αn)(γ1, . . . , γn+1)
:= γ1α

n(γ2, . . . , γn+1)

+
n∑

i=1

(−1)iαn(γ1, . . . , γi−1, γiγi+1, γi+2, . . . , γn+1)

+(−1)n+1αn(γ1, . . . , γn)

for αn ∈ Cn(Π,M) and γ1, . . . , γn+1 ∈ Π. Let Zn(Π,M) := Ker(dn+1) and
Bn(Π,M) := Im(dn) be the subgroups of Cn(Π,M) consisting of n-cocycles
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and n-coboundaries, respectively, and letHn(Π,M) := Zn(Π,M)/Bn(Π,M),
the n-th cohomology group of Π with coefficients in M . By convention, we
put Cn(Π,M) = 0 for n < 0. We sometimes write d for dn simply if no
misunderstanding is caused.

Note that Π acts on Cn(Π,M) from the left by

(5.2.2) (σ.αn)(γ1, . . . , γn) := σαn(σ−1γ1σ, . . . , σ
−1γnσ)

for αn ∈ Cn(Π,M) and σ, γ1, . . . , γn ∈ Π. By (5.2.1) and (5.2.2), we see that
this action commutes with the coboundary homomorphisms:

(5.2.3) dn+1(σ.αi) = σ.dn+1(αi) (αi ∈ Ci(Π,M)).

Now we shall describe the action of Π on Cn(Π,M) in a concrete manner.
For σ, σ1, σ2 ∈ Π, 0 ≤ i ≤ j ≤ n (n ≥ 1), and 1 ≤ k ≤ n − 1, we define
the maps si = sni (σ) : Πn → Πn+1, si,j = sni,j(σ1, σ2) : Πn → Πn+2 and
tk = tnk : Πn → Πn−1 by

(5.2.4)

si(g1, g2, . . . , gn) := (g1, . . . , gi, σ, σ
−1gi+1σ, . . . , σ

−1gnσ),
si,j(g1, g2, . . . , gn) := (g1, . . . , gi, σ1, σ1

−1gi+1σ1, . . . , σ1
−1gjσ1,

σ2, (σ1σ2)
−1gj+1σ1σ2, . . . , (σ1σ2)

−1gnσ1σ2),
tk(g1, g2, . . . , gn) := (g1, . . . , gk−1, gkgk+1, gk+2, . . . , gn)

for (g1, g2, . . . , gn) ∈ Πn. We note that sn+1
j+1 (σ2) ◦ sni (σ1) = sni,j(σ1, σ2). We

define the homomorphisms

hnσ : Cn+1(Π,M) −→ Cn(Π,M),
Hn

σ1,σ2
: Cn+2(Π,M) −→ Cn(Π,M)

by

(5.2.5)

hnσ(α
n+1) :=

∑
0≤i≤n

(−1)i(αn+1 ◦ sni (σ)),

Hn
σ1,σ2

(αn+2) :=
∑

0≤i≤j≤n

(−1)i+j(αn+2 ◦ sni,j(σ1, σ2))

for αn+1 ∈ Cn+1(Π,M) and αn+2 ∈ Cn+2(Π,M). For example, explicit forms
of hnσ(α

n+1), Hn
σ1,σ2

(αn+2) for n = 1, 2 are given as follows:

h1σ(α
2)(g) = α2(σ, σ−1gσ)− α2(g, σ).

h2σ(α
3)(g1, g2) = α3(σ, σ−1g1σ, σ

−1g2σ)− α3(g1, σ, σ
−1g2σ) + α3(g1, g2, σ).

H1
σ1,σ2

(α3)(g) = α3(σ1, σ2, (σ1σ2)
−1gσ1σ2)− α3(σ1, σ

−1
1 gσ1, σ2) + α3(g, σ1, σ2)

H2
σ1,σ2

(α4)(g1, g2) = α4(σ1, σ2, (σ1σ2)
−1g1σ1σ2, (σ1σ2)

−1g2σ1σ2)
−α4(σ1, σ

−1
1 g1σ1, σ2, (σ1σ2)

−1g2σ1σ2) + α4(σ1, σ
−1
1 g1σ1, σ

−1
1 g2σ1, σ2)

+α4(g1, σ1, σ2, (σ1σ2)
−1g2σ1σ2)− α4(g1, σ1, σ

−1
1 g2σ1, σ2) + α4(g1, g2, σ1, σ2)
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We call hnσ, H
n
σ1,σ2

the transgression homomorphisms, which play roles similar
to the transgression homomorphisms in [Gm].

The following Theorem 5.2.6 and Corollary 5.2.7 were shown in Appen-
dices A and B of [CKKPY]. Here we give an elementary direct proof. See
also Remark 5.2.8 below for the background of the proof.

Theorem 5.2.6. Notations being as above, we have the following equalities.

σ.αn − αn = hnσ(d
n+1(αn)) + dn(hn−1

σ (αn)),

σ1.h
n
σ2
(αn+1)−hnσ1σ2

(αn+1)+hnσ1
(αn+1) = Hn

σ1,σ2
(dn+2(αn+1))−dn(Hn−1

σ1,σ2
(αn+1)).

for αn ∈ Cn(Π,M) and αn+1 ∈ Cn+1(Π,M) (n ≥ 1).

Proof. By (5.2.4), we can see

(5.2.6.1)

si ◦ tk =
{
tk ◦ si+1 (k ≤ i)
tk+1 ◦ si (i < k),

si,j ◦ tk =


tk ◦ si+1,j+1 (k ≤ i)
tk+1 ◦ si,j+1 (i < k ≤ j)
tk+2 ◦ si,j (j < k).

We note that ti+1 ◦ si+1 = ti+1 ◦ si. By (5.2.1) and (5.2.5), we have, for any
(g1, g2, . . . , gn) ∈ Πn,

hnσ(d
n+1(αn))(g1, . . . , gn) = (σ.αn)(g1, . . . , gn)

+
∑

1≤i≤n

(−1)ig1(αn ◦ si−1)(g2, . . . , gn)

+
∑

0≤i≤n,1≤k≤n

(−1)i+k(αn ◦ tk ◦ si)(g1, . . . , gn)

+(−1)n+n+1αn(g1, . . . , gn)
+

∑
0≤i≤n−1

(−1)i+n+1(αn ◦ si)(g1, . . . , gn−1),

dn(hn−1
σ (αn))(g1, . . . , gn) =

∑
0≤i≤n−1

(−1)ig1(αn ◦ si)(g2, . . . , gn)

+
∑

0≤i≤n−1,1≤k≤n−1

(−1)i+k(αn ◦ si ◦ tk)(g1, . . . , gn)

+
∑

0≤i≤n−1

(−1)i+n(αn ◦ si)(g1, . . . , gn−1),
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and

Hn
σ1,σ2

(dn+2(αn+1))(g1, . . . , gn)
= (σ1.h

n
σ2
(αn+1))(g1, . . . , gn) +

∑
0<i≤j≤n

(−1)i+jg1(α
n+1 ◦ si−1,j−1)(g2, . . . , gn)

−hnσ1σ2
(αn+1)(g1, . . . , gn) +

∑
0≤i≤j≤n,1≤k≤n+1

i̸=j or k ̸=i+1

(−1)i+j+k(αn+1 ◦ tk ◦ si,j)(g1, . . . , gn)

+hnσ1
(αn+1)(g1, . . . , gn) +

∑
0≤i≤j≤n−1

(−1)i+j+n+2(αn+1 ◦ si,j)(g1, . . . , gn−1),

dn(Hn−1
σ1,σ2

(αn+1))(g1, . . . , gn)
=

∑
0≤i≤j≤n−1

(−1)i+jg1.(α
n+1 ◦ si,j)(g2, . . . , gn)

+
∑

0≤i≤j≤n−1,1≤k≤n−1

(−1)i+j+k(αn+1 ◦ si,j ◦ tk)(g1, . . . , gn)

+
∑

0≤i≤j≤n−1

(−1)i+j+n(αn+1 ◦ si,j)(g1, . . . , gn−1).

Hence we have

hnσ(d
n+1(αn))(g1, . . . , gn) + dn(hn−1

σ (αn))(g1, . . . , gn)
= (σ.αn)(g1, . . . , gn)− αn(g1, . . . , gn)
+

∑
0≤i≤n,1≤k≤n

(−1)i+k(αn ◦ tk ◦ si)(g1, . . . , gn)

+
∑

0≤i≤n−1,1≤k≤n−1

(−1)i+k(αn ◦ si ◦ tk)(g1, . . . , gn),

and

Hn
σ1,σ2

(dn+2(αn+1))(g1, . . . , gn)− dn(Hn−1
σ1,σ2

(αn+1))(g1, . . . , gn)
= σ1.h

n
σ2
(αn+1)(g1, . . . , gn)− hnσ1σ2

(αn+1)(g1, . . . , gn) + hnσ1
(αn+1)(g1, . . . , gn)

+
∑

0≤i≤j≤n,1≤k≤n+1
i ̸=j or k ̸=i+1

(−1)i+j+k(αn+1 ◦ tk ◦ si,j)(g1, . . . , gn)

−
∑

0≤i≤j≤n−1,1≤k≤n−1

(−1)i+j+k(αn+1 ◦ si,j ◦ tk)(g1, . . . , gn).

By (5.2.6.1), we obtain the required equalities.

By (5.2.3), Π acts on Zn(Π,M) from the left. This action is described by
Theorem 5.2.6 as follows.

Corollary 5.2.7. Suppose α ∈ Zn(Π,M) (n ≥ 1). For σ ∈ Π, we let

βσ := hn−1
σ (α).

Then we have
σ.α = α + dnβσ.
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For σ, σ′ ∈ Π, we have

βσσ′ = βσ + σ.βσ′ mod Bn−1(Π,M),

namely, the map Π ∋ σ 7→ βσ mod Bn−1(Π,M) ∈ Cn−1(Π,M)/Bn−1(Π,M)
is a 1-cocycle.

Proof. Proof. The both equalities are obtained immediately from Theorem
5.2.6, since dn+1(α) = 0 by α ∈ Zn(Π,M) (n ≥ 1).

Remark 5.2.8 (Algebro-topological proof of Theorem 5.2.6). For σ ∈ Π,
let σ• denote the automorphism of the cochain complex (C•(Π,M), d•) de-
fined by σn(α) := σ.α for α ∈ Cn(Π,M). Then Theorem 5.2.6 asserts that
the family of homomorphisms {hnσ : Cn+1(Π,M) → Cn(Π,M)} gives a ho-
motopy connecting σ• and idC•(Π,M). Actually our explicit definition (5.2.5)
is obtained by making the following algebro-topological proof concrete: We
may assume Π is finite by the limit argument. Let E be the one-object cat-
egory whose morphisms are the elements of Π. We consider two functors
idE , σ̂ : E → E defined by idE(g) := g, σ̂(g) := σ−1gσ for each morphism
g ∈ Π. Let N : Cat→ Fct(∆op, Set) denote the nerve functor, where Cat is
the category of small categories and Fct(∆op, Set) is the category of simplicial
sets. Define the natural transformation η : σ̂ → idE by η(∗) := σ (∗ is the
unique object of E). Then η induces a corresponding funcor hη : E × 1→ E ,
where n denotes the category defined by the set {0, 1, . . . , n} and its order.
Then Nhη : NE × N 1 → NE is a homotopy connecting the two simplicial
maps N σ̂,N idE : NE → NE . Let Cn(NE) = Z[NE(n)] be the group of
n-chains of the simplicial set NE . By [My; Proposition 5.3] and [My; Propo-
sition 6.2],Nhη induces a homotopy {hσn : Cn(NE)→ Cn+1(NE)} connecting
two chain maps (N σ̂)•, (N idE)• : C•(NE) → C•(NE). For the groups of n-
cochains Cn(NE ,M) = Hom(Cn(NE),M), the homotopy {hσn} induces the
homotopy {hnσ : Cn+1(NE ,M) → Cn(NE ,M)} connecting the two cochain
maps (N σ̂)•, (N idE)

• : C•(NE ,M) → C•(NE ,M). Since NE(n) is Πn, we
have the isomorphisms for i ≥ 0

Cn(NE ,M) ≃ Map(Πn,M) = Cn(Π,M).

Under the above isomorphisms, (N σ̂)• and (N idE)
• are identified with σ•

and idC•(Π,M), respectively, and hence {hnσ} gives a homotopy connecting σ•

and idC•(Π,M).
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5.3 Arithmetic prequantization bundles and arithmetic
Chern–Simons 1-cocycles

Throughout the rest of this section, we fix a natural number N > 1and let
µN be the group of N -th roots of unity in the field C of complex numbers.
We fix a primitive N -th root of unity ζN and the isomorphism Z/NZ ≃
µN ; m 7→ ζmN . The base number field k (in C) is supposed to contain µN .
Let G be a finite group and let c be a fixed 3-cocycle of G with coefficients
in Z/NZ, c ∈ Z3(G,Z/NZ), where G acts on Z/NZ trivially.

We firstly develop a local theory at a finite prime. Let p be a finite prime
of k and let kp be the p-adic field. We let ∂Vp := Spec(kp), which play a
role analogous to the boundary of a tubular neighborhood of a knot (see
the dictionary of the analogies in Introduction). Let Πp denote the étale
fundamental group of ∂Vp with base point Spec(kp) (kp being an algebraic
closure of kp), which is the absolute Galois group Gal(kp/kp).

Let Fp be the set of continuous homomorphisms of Πp to G:

Fp := Homcont(Πp, G).

It is a finite set on which G acts from the right by

(5.3.1) Fp ×G→ Fp; (ρp, g) 7→ ρp.g := g−1ρpg.

LetMp denote the quotient space by this action:

Mp := Fp/G.

Let Map(Fp,Z/NZ) denote the additive group consisting of maps from Fp

to Z/NZ, on which G acts from the left by

(5.3.2) (g.ψp)(ρp) := ψp(ρp.g)

for g ∈ G,ψp ∈ Map(Fp,Z/NZ) and ρp ∈ Fp. For ρp ∈ Fp and α ∈
Cn(G,Z/NZ), we denote by α ◦ ρp the n-cochain of Πp with coefficients
in Z/NZ defined by

(α ◦ ρp)(γ1, . . . , γn) := α(ρp(γ1), . . . , ρp(γn)).

By (5.2.2) and (5.3.1), we have

(5.3.3) (g.α) ◦ ρp = α ◦ (ρp.g)

for g ∈ G,α ∈ Cn(G,Z/NZ) and ρp ∈ Fp.
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Firstly, we shall construct an arithmetic analog for ∂Vp := Spec(kp) of the
prequantization bundle, using the given 3-cocycle c ∈ Z3(G,Z/NZ). The key
idea for this is due to Kim ([Ki]), who uses the conjugate G-action on c and
the 2nd Galois cohomology group (Brauer group) of the local field kp.

Let ρp ∈ Fp and so c ◦ ρp ∈ Z3(Πp,Z/NZ). Let d denote the coboundary
homomorphism C2(Πp,Z/NZ) → C3(Πp,Z/NZ). We define Lp(ρp) by the
quotient set

(5.3.4) Lp(ρp) := d−1(c ◦ ρp)/B2(Πp,Z/NZ).

Here we note that d−1(c ◦ ρp) is non-empty, because the cohomological di-
mension of Πp is 2 ([NSW; Theorem 7.1.8], [S1; Chapitre II, 5.3, Proposition
15]) and so H3(Πp,Z/NZ) = 0. Thus d−1(c◦ρp) is a Z2(Πp,Z/NZ)-torsor in
the obvious manner and so Lp(ρp) is an H

2(Πp,Z/NZ)-torsor by (5.3.4) and
Lemma 5.1.4 (4). Since kp contains µN and so H2(Πp,Z/NZ) = H2(kp, µN),
the theory of Brauer groups (cf. [S2; Chapitre XII]) tells us that there is the
canonical isomorphism

invp : H
2(Πp,Z/NZ) ∼−→ Z/NZ

and hence Lp(ρp) is a Z/NZ-torsor via invp.
Let Lp be the disjoint union of Lp(ρp) over all ρp ∈ Fp:

Lp :=
⊔

ρp∈Fp

Lp(ρp)

and consider the projection

ϖp : Lp −→ Fp; αp 7→ ρp if αp ∈ Lp(ρp).

Since each fiber ϖ−1
p (ρp) = Lp(ρp) is a Z/NZ-torsor, we may regard Lp as a

principal Z/NZ-bundle over Fp.
Let g ∈ G. Using the transgression map h2g in (5.2.5), we define hg ∈

C2(G,Z/NZ)/B2(G,Z/NZ) by

hg := h2g(c) mod B2(G,Z/NZ),

where h2g(c) is the 2-cochain defined explicitly by

h2g(c)(g1, g2) := c(g, g−1g1g, g
−1g2g)− c(g1, g, g−1g2g) + c(g1, g2, g),

where g1, g2 ∈ G. By Corollary 1.2.7, we have

(5.3.5) g.c = c+ dhg
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and

(5.3.6) hgg′ = hg + g.hg′

for g, g′ ∈ G. By (5.3.3), (5.3.4) and (5.3.5), we have

d(α + hg ◦ ρp) = c ◦ ρp + (g.c− c) ◦ ρp = (g.c) ◦ ρp = c ◦ (ρp.g)

for αp ∈ Lp(ρp) and so we have the isomorphism of Z/NZ-torsors

(5.3.7) fp(g, ρp) : Lp(ρp)
∼−→ Lp(ρp.g); αp 7→ αp + hg ◦ ρp.

By (5.3.3) and (5.3.6), we have

αp + hgg′ ◦ ρp = αp + (hg + g.hg′) ◦ ρp
= αp + hg ◦ ρp + hg′ ◦ (ρp.g)

for g, g′ ∈ G. It means that G acts on Lp from the right by

(5.3.8) Lp ×G→ Lp; αp 7→ αp.g := f(g, ρp)(αp).

By (5.3.7), (5.3.8) and the way of the Z/NZ-action on Lp, we have the
following commutative diagram

Lp
.g−→ Lp ↶ Z/NZ

ϖp ↓ ↓ ϖp

Fp
.g−→ Fp,

namely,

(5.3.9) (αp.m).g = (αp.g).m, ϖp(αp.g) = ϖp(αp).g

for αp ∈ Fp, m ∈ Z/NZ, g ∈ G. So Lp is a G-equivariant principal Z/NZ-
bundle over Fp. Taking the quotient by the action of G, we have the principal
Z/NZ-bundle ϖp : Lp →Mp. We call ϖp : Lp → Fp or ϖp : Lp →Mp the
arithmetic prequantization Z/NZ-bundle for ∂Vp := Spec(kp).

Let us choose a section xp ∈ Γ(Fp,Lp), namely, the map

xp : Fp −→ Lp such that ϖp ◦ xp = idFp .

This means that we fix a “coordinate” on Lp. In fact, by the trivialization
at xp(ρp) in (5.1.3), we may identify each fiber Lp(ρp) over ρp with Z/NZ:

φxp(ρp) : Lp(ρp)
∼−→ Z/NZ; αp 7→ αp − xp(ρp).

48



For g ∈ G and ρp ∈ Fp, we let

(5.3.10) λ
xp
p (g, ρp) := fp(g, ρp)(xp(ρp))− xp(ρp.g) = xp(ρp).g − xp(ρp.g)

so that we have the following commutative diagram by Lemma 5.1.4 (3):

Lp(ρp)
fp(g,ρp)−→ Lp(ρp.g)

φxp(ρp) ↓ ↓ φxp(ρp.g)

Z/NZ
+λ

xp
p (g,ρp)−→ Z/NZ,

namely, for αp ∈ Lp(ρp), we have

(5.3.11) αp.g − xp(ρp.g) = (αp − xp(ρp)) + λ
xp
p (g, ρp).

We define the map λ
xp
p : G→ Map(Fp,Z/NZ) by

(5.3.12) λ
xp
p (g)(ρp) := λ

xp
p (g, ρp)

for g ∈ G and ρp ∈ Fp.

Theorem 5.3.13. For g, g′ ∈ G, we have

λ
xp
p (gg′) = λ

xp
p (g) + (g.λ

xp
p )(g′).

Namely, the map λ
xp
p is a 1-cocycle:

λ
xp
p ∈ Z1(G,Map(Fp,Z/NZ)).

Proof. For g, g′ ∈ G and ρp ∈ Fp, we have

λ
xp
p (gg′, ρp) = fp(gg

′, ρp)(xp(ρp))− xp(ρp(gg′)) by (5.3.10)
= (xp(ρp) + hgg′ ◦ ρp)− xp(ρp.(gg′)) by (5.3.7)
= (xp(ρp) + hg ◦ ρp + hg′ ◦ (ρp.g))− xp(ρp.(gg′)) by (5.3.3), (5.3.6).

By Lemma 5.1.4 (1), we have

(xp(ρp) + hg ◦ ρp + hg′ ◦ (ρp.g))− xp(ρp.(gg′))
= {(xp(ρp) + hg ◦ ρp)− xp(ρp.g)}+ {(xp(ρp.g) + hg′ ◦ (ρp.g))− xp(ρp.(gg′))}.

Here we see by (5.3.7), (5.3.10) that

(xp(ρp) + hg ◦ ρp)− xp(ρp.g) = λ
xp
p (g, ρp),

(xp(ρp.g) + hg′ ◦ (ρp.g))− xp(ρp.(gg′)) = λ
xp
p (g′, ρp.g).

Combining these, we have

λ
xp
p (gg′, ρp) = λ

xp
p (g, ρp) + λ

xp
p (g′, ρp.g)

for any ρp ∈ Fp. By (5.3.2) and (5.3.12), we obtain the assertion.
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We call λ
xp
p the Chern–Simons 1-cocycle for ∂Vp with respect to the section

xp.

For a section xp ∈ Γ(Fp,Lp), we define Lxp
p by the product (trivial) principal

Z/NZ-bundle over Fp:
Lxp

p := Fp × Z/NZ,
on which G acts from the right by

(5.3.14) Lxp
p ×G→ L

xp
p ; ((ρp,m), g) 7→ (ρp.g,m+ λ

xp
p (g, ρp)),

and so the projection
ϖ

xp
p : Lxp

p −→ Fp

is G-equivariant.

Proposition 5.3.15. We have the following isomorphism of G-equivariant
principal Z/NZ-bundles

Φ
xp
p : Lp

∼−→ Lxp
p ; αp 7→ (ϖp(αp), αp − xp(ϖp(αp))).

In particular, the isomorphism class of Lxp
p is independent of the choice of

a section xp. In other words, for another section x′p ∈ Γ(Fp,Lp), we have

Lx′
p

p ≃ L
xp
p as G-equivariant principal Z/NZ-bundles.

Proof. (i) It is easy to see that ϖ
xp
p ◦ Φ

xp
p = ϖp.

(ii) For αp ∈ Lp and m ∈ Z/NZ, we have

Φ
xp
p (αp.m) = (ϖp(αp.m), αp.m− xp(ϖp(αp.m)))

= (ϖp(αp), αp.m− xp(ϖp(αp)))
= (ϖp(αp), (αp − xp(ϖp(αp))) +m) by Lemma 5.1.4 (1)
= Φ

xp
p (αp).m.

(iii) Φ
xp
p has the inverse defined by (Φ

xp
p )−1((ρp,m)) := xp(ρp).m for (ρp,m) ∈

Fp × Z/NZ.
By (i), (ii), (iii), Φ

xp
p is an isomorphism of principal Z/NZ-bundles. So it

suffices to show that Φxp is G-equivariant. It follows from that

Φ
xp
p (αp.g) = (ϖp(αp.g), αp.g − xp(ϖp(αp.g)))

= (ϖp(αp).g, (αp − xp(ϖp(αp))) + λ
xp
p (g,ϖp(αp)))

= Φ
xp
p (αp).g,

where the 2nd equality holds by (5.3.9), (5.3.11) and the 3rd equality follows
from (5.1.14)
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Taking the quotient of ϖ
xp
p : Lxp

p → Fp by the action of G, we have the
principal Z/NZ-bundle ϖxp

p : Lxp

p → Mp. We call ϖ
xp
p : Lxp

p → Fp or

ϖ
xp
p : Lxp

p → Mp the arithmetic prequantization principal Z/NZ-bundle for
∂Vp with respect to the section xp.

For xp, x
′
p ∈ Γ(Fp,Lp), we define the map δ

xp,x′
p

p : Fp → Z/NZ by

(5.3.16) δ
xp,x′

p
p (ρp) := xp(ρp)− x′p(ρp)

for ρp ∈ Fp.

Lemma 5.3.17. For xp, x
′
p, x

′′
p ∈ Γ(Fp,Lp), we have

δ
xp,xp
p = 0, δ

x′
p,xp

p = −δxp,x′
p

p , δ
xp,x′

p
p + δ

x′
p,x

′′
p

p = δ
xp,x′′

p
p .

Proof. These equalities follow from Lemma 5.1.4 (1).

The following proposition tells us how λ
xp
p is changed when we change the

section xp.

Proposition 5.3.18. For xp, x
′
p ∈ Γ(Fp,Lp), we have

λ
x′
p

p (g)− λxp
p (g) = g.δ

xp,x′
p

p − δxp,x′
p

p

for any g ∈ G. So the cohomology class [λ
xp
p ] ∈ H1(G,Map(Fp,Z/NZ)) is

independent of the choice of a section xp.

Proof. By (5.3.10) and Lemma 5.1.4 (1), (2), we have

λ
x′
p

p (g, ρp)− λxp
p (g, ρp)

= (fp(g, ρp)(x
′
p(ρp))− x′p(ρp.g))− (fp(g, ρp)(xp(ρp))− xp(ρp.g))

= (xp(ρp.g)− x′p(ρp.g)) + (fp(g, ρp)(x
′
p(ρp))− fp(g, ρp)(xp(ρp)))

= (xp(ρp.g)− x′p(ρp.g)) + (x′p(ρp)− xp(ρp))
= (g.δ

xp,x′
p

p )(ρp)− δ
xp,x′

p
p (ρp) by (5.1.2)

for any g ∈ G and ρp ∈ Fp, hence the assertion.

By Proposition 5.3.18, we denote the cohomology class [λ
xp
p ] by [λp], which we

call the arithmetic Chern–Simons 1st cohomology class for ∂Vp. As a corol-
lary of Proposition 5.3.18, we can make the latter statement of Proposition
5.3.15 more precise as follows.
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Corollary 5.3.19. (1) For xp, x
′
p ∈ Γ(Fp,Lp), we have the following isomor-

phism of G-equivariant principal Z/NZ-bundles over Fp:

Φ
xp,x′

p
p : Lxp

p
∼−→ Lx′

p
p ; (ρp,m) 7→ (ρp,m+ δ

xp,x′
p

p (ρp)),

where δ
xp,x′

p
p : Fp → Z/NZ is the map defined in (5.3.16).

(2) For xp, x
′
p, x

′′
p ∈ Γ(Fp,Lp), we have{

Φ
xp,x′

p
p ◦ Φxp

p = Φ
x′
p

p ,

Φ
xp,xp
p = idLxp

p
, Φ

x′
p,xp

p = (Φ
xp,x′

p
p )−1, Φ

x′
p,x

′′
p

p ◦ Φxp,x′
p

p = Φ
xp,x′′

p
p

Proof. (1) We easily see that Φ
xp,x′

p
p is isomorphism of principal Z/NZ-bundles

and so it suffices to show that Φ
xp,x′

p
p is G-equivariant. This follows from

Φ
xp,x′

p
p ((ρp,m).g) = Φ

xp,x′
p

p ((ρp.g,m+ λ
xp
p (g, ρp))) by (5.3.14)

= (ρp.g,m+ λ
xp
p (g, ρp) + δ

xp,x′
p

p (ρp.g))

= (ρp.g,m+ δ
xp,x′

p
p (ρp) + λ

x′
p

p (g, ρp)) by Proposition 5.3.18

= Φ
xp,x′

p
p (ρp,m).g.

(2) The first equality follows from the definitions of Φ
xp
p ,Φ

xp,x′
p

p . The latter
equalities follow from Lemma 5.3.17.

Let F be a field containing µN . Let Lp be the F -line bundle over Fp associ-
ated to the principal Z/NZ-bundle Lp and the homomorphism Z/NZ ↪→ F×;
m 7→ ζmN , namely,
(5.3.20)
Lp := Lp ×Z/NZ F

:= (Lp × F )/(αp, z) ∼ (αp.m, ζ
−m
N z) (αp ∈ Lp,m ∈ Z/NZ, z ∈ F ),

on which G acts from the right by

(5.3.21) Lp ×G→ Lp; ([(αp, z)], g) 7→ [(αp.g, z)].

The projection
ϖp,F : Lp −→ Fp; [(αp, z)] 7→ ϖp(αp)

is a G-equivariant F -line bundle. We denote the fiber ϖ−1
p,F (ρp) over ρp by

Lp(ρp):

(5.3.22) Lp(ρp) := {[(αp, z)] ∈ Lp |ϖp(αp) = ρp, z ∈ F}
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We have a non-canonical bijection by fixing an αp ∈ Lp(ρp):

Lp(ρp)
∼−→ F ; [(αp, z)] 7→ z.

Taking the quotient by the action of G, we obtain the F -line bundles ϖp,F :
Lp → Mp. We call ϖp,F : Lp → Fp or ϖp,F : Lp → Mp the arithmetic
prequantization F -line bundle for ∂Vp.

Let L
xp
p be the product F -line bundle over Fp:

L
xp
p := Fp × F,

on which G acts from the right by

(5.3.23) L
xp
p ×G→ L

xp
p ; ((ρp, z), g) 7→ (ρp.g, zζ

λ
xp
p (g,ρp)

N ),

and the projection
ϖ

xp

p,F : L
xp
p −→ Fp

is G-equivariant. Then we have the following Proposition similar to Propo-
sition 5.3.15 and Corollary 5.3.19.

Proposition 5.3.24. We have the following isomorphism of G-equivariant
F -line bundles over Fp

Φ
xp

p,F : Lp
∼−→ L

xp
p ; [(αp, z)] 7→ (ϖp(αp), zζ

αp−xp(ϖp(αp))
N ).

For another section x′p, we have the following isomorphism of G-equivariant
F -line bundles over Fp

Φ
xp,x′

p

p,F : L
xp
p

∼−→ L
x′
p

p : (ρp, z) 7→ (ρp, zζ
δ
xp,x

′
p

p (ρp)

N ),

where δ
xp,x′

p
p : Fp → Z/NZ is the map in (5.3.16), and we have the equalities{
Φ

xp,x′
p

p,F ◦ Φxp

p,F = Φ
x′
p

p,F

Φ
xp,xp

p,F = idL
xp
p,F
, Φ

x′
p,xp

p,F = (Φ
xp,x′

p

p,F )−1, Φ
x′
p,x

′′
p

p,F ◦ Φxp,x′
p

p,F = Φ
xp,x′′

p

p,F

for xp, x
′
p, x

′′
p ∈ Γ(Fp,Lp).

Proof. (i) It is easy to see that ϖ
xp

p,F ◦ Φ
xp

p,F = ϖp,F .
(ii) For ρp ∈ Fp, we let

L
xp
p (ρp) := (ϖ

xp

p,F )
−1(ρp) = {(ρp, z) | z ∈ F} ≃ F.
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So Φ
xp

p,F restricted to a fiber over ρp

Φ
xp

p,F |Lp(ρp) : Lp(ρp) −→ L
xp
p (ρp); [(αp, z)] 7→ (ρp, zζ

αp−xp(ρp)
N )

is F -linear.
(iv) For g ∈ G, we have

Φ
xp

p,F ([(αp, z)].g) = Φ
xp

p,F ([(αp.g, z)]) by (5.3.21)

= (ϖp(αp.g), zζ
αp.g−xp(ϖp(αp.g))
N )

= (ϖp(αp).g, zζ
(αp−xp(ρp))+λ

xp
p (g,ρp)) by (5.3.11)

= Φ
xp

p,F ([αp, z)]).g by (5.3.23).

Hence Φ
xp

p,F is the isomorphism of G-equivariant F -line bundles over Fp.
The proofs of the latter parts are similar to those of Corollary 5.3.19 (1),

(2).

Taking the quotient ofϖ
xp

p,F : L
xp
p → Fp by the action of G, we have the F -line

bundle ϖ
xp

p,F : L
xp

p →Mp. We call ϖ
xp

p,F : L
xp
p → Fp or ϖ

xp

p,F : L
xp

p →Mp the
arithmetic prequantization F -line bundle for ∂Vp with respect to the section
xp.

Let S = {p1, . . . , pr} be a finite set of finite primes of k and let ∂VS :=
∂Vp1 ⊔ · · · ⊔ ∂Vpr . Let FS be the direct product of Fpi ’s:

FS := Fp1 × · · · × Fpr .

It is a finite set on which G acts diagonally from the right, namely,

(5.3.25) FS ×G→ FS; (ρS, g) 7→ ρS.g := (ρp1 .g, . . . , ρpr .g)

for ρS = (ρp1 , . . . , ρpr) ∈ FS and let MS denote the quotient space by this
action

MS := FS/G.

Let Map(FS,Z/NZ) be the additive group of maps from FS to Z/NZ, on
which G acts from the left by

(5.3.26) (g.ψS)(ρS) := ψS(ρS.g)

for ψS ∈ Map(FS,Z/NZ), g ∈ G and ρS ∈ FS.
For ρS = (ρp1 , . . . , ρpr) ∈ FS, let LS(ρS) be the quotient space of the

product Lp1(ρp1)× · · · × Lpr(ρpr):

(5.3.27) LS(ρS) := (Lp1(ρp1)× · · · × Lpr(ρpr))/ ∼,
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where the equivalence relation ∼ is defined by

(5.3.28) (αp1 , . . . , αpr) ∼ (α′
p1
, . . . , α′

pr)⇐⇒
r∑

i=1

(αpi − α′
pi
) = 0.

We see easily that LS(ρS) is equipped with the simply transitive action of
Z/NZ defined by

LS(ρS)× Z/NZ −→ LS(ρS);
([αS],m) 7→ [αS].m := [(αp1 .m, . . . , αpr)] = · · · = [(αp1 , . . . , αpr .m)]

for αS = (αp1 , . . . , αpr) and hence LS(ρS) is a Z/NZ-torsor.
Let LS be the disjoint union of Lp(ρS) for ρS ∈ FS:

(5.3.29) LS :=
⊔

ρS∈FS

LS(ρS),

on which G acts diagonally from the right by

(5.3.30) LS ×G −→ LS; ([(αp1 , . . . , αpr)], g) 7→ [(αp1 .g, . . . , αpr .g)].

Consider the projection

ϖS : LS −→ FS; [αS] = [(αpi)] 7→ (ϖpi(αpi)),

which is G-equivariant. Since each fiber ϖ−1
p (ρS) = LS(ρS) is a Z/NZ-torsor,

we may regard ϖS : LS −→ FS as a G-equivariant principal Z/NZ-bundle.
Taking the quotient by the action of G, we have the principal Z/NZ-bundle
ϖS : LS → MS. We call ϖS : LS → FS or ϖS : LS → MS the arithmetic
prequantization Z/NZ-bundle for ∂VS = Spec(kp1) ⊔ · · · ⊔ Spec(kpr).

Let xS be a section of ϖS, xS ∈ Γ(FS,LS). By (5.3.27) and (5.3.29), it
is written as xS = [(xp1 , . . . , xpr)], where xpi ∈ Γ(Fpi ,Lpi) for 1 ≤ i ≤ r. For
g ∈ G and ρS = (ρpi) ∈ FS, we set

(5.3.31) λxS
S (g, ρS) := λ

xp1
p1 (g, ρp1) + · · ·+ λ

xpr
pr (g, ρpr)

and define the map λxS
S : G→ Map(FS,Z/NZ) by

(5.3.32) λxS
S (g)(ρS) := λxS

S (g, ρS)

for g ∈ G and ρS ∈ FS.
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Lemma 5.3.33. (1) Let x′pi ∈ Γ(Fpi ,Lpi) be another section for 1 ≤ i ≤ r
such that [(x′p1 , . . . , x

′
pr)] = xS. Then we have

r∑
i=1

λ
xpi
pi (g, ρpi) =

r∑
i=1

λ
x′
pi

pi (g, ρpi)

for g ∈ G and ρpi ∈ Fpi. So λxS
S (g, ρS) is independent of the choic of xpi’s

such that xS = [(xp1 , . . . , xpr)].
(2) The map λxS

S is a 1-cocycle:

λxS
S ∈ Z

1(G,Map(FS,Z/NZ)).

Proof. (1) Since (xp1(ρp1), . . . , xpr(ρpr)) ∼ (x′p1(ρp1), . . . , x
′
pr(ρpr)), by (5.3.28),

we have
r∑

i=1

(xpi(ρpi)− x′pi(ρpi)) = 0.

for any ρpi ∈ Fpi . Therefore we have

r∑
i=1

λ
xpi
pi (g, ρpi) =

r∑
i=1

(fpi(g, ρpi)(xpi(ρpi))− xpi(ρpi .g)) by (5.3.10)

=
r∑

i=1

((fpi(g, ρpi)(xpi(ρpi))− fpi(g, ρpi)(x′pi(ρpi)))

+
r∑

i=1

(fpi(g, ρpi)(x
′
pi
(ρpi))− x′pi(ρpi .g))

+
r∑

i=1

(x′pi(ρpi .g)− xpi(ρpi .g)) by Lemma 5.1.4 (1)

=
r∑

i=1

(fpi(g, ρpi)(x
′
pi
(ρpi))− x′pi(ρpi .g)) by Lemma 5.1.4 (2)

=
r∑

i=1

λ
x′
pi

pi (g, ρpi)

for g ∈ G and ρpi ∈ Fpi .
(2) By Theorem 5.3.13, (5.3.26), (5.3.31) and (5.3.32), we have

λxS
S (gg′, ρS) =

r∑
i=1

λ
xpi
pi (gg′, ρpi)

=
r∑

i=1

λ
xpi
pi (g, ρpi) +

r∑
i=1

λ
xpi
pi (g′, ρpi .g)

= λxS
S (g, ρS) + λxS

S (g′, ρS.g)
= (λxS

S (g) + (g.λxS
S )(g′))(ρS)
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for g ∈ G and ρS = (ρpi) ∈ FS. Thus we obtain the assertion.

We call λxS
S the arithmetic Chern–Simons 1-cocycle for ∂VS with respect to

xS.

Proposition 5.3.34. Let x′S = [(x′p1 , . . . , x
′
pr)] ∈ Γ(FS,LS) be another sec-

tion of ϖS. We define the map δ
xS ,x

′
S

S : FS → Z/NZ by

δ
xS ,x

′
S

S (ρS) :=
r∑

i=1

δ
xpi ,x

′
pi

pi (ρpi)

for ρS = (ρpi) ∈ FS, where δ
xpi ,x

′
pi

pi is the map defined in (5.3.16). Then we
have

λ
x′
S

S (g)− λxS
S (g) = g.δ

xS ,x
′
S

S − δxS ,x
′
S

S

for g ∈ G. So the cohomology class [λxS
S ] ∈ H1(G,Map(FS,Z/NZ)) is inde-

pendent of the choice of xS.

Proof. First, note that δ
xS ,x

′
S

S is proved to be independent of the choices of
xpi ’s in the similar manner to the proof of Lemma 5.3.33 (1). By the definition

of δ
xS ,x

′
S

S , the formula follows from Proposition 5.3.18 by taking the sum over
pi ∈ S.

We denote the cohomology class [λxS
S ] by [λS], which we call the arithmetic

Chern–Simons 1st cohomology class for ∂VS.
Let LxS

S be the product principal Z/NZ-bundle over FS:

LxS
S := FS × Z/NZ,

on which G acts from the right by

LxS
S ×G→ L

xS
S ; ((ρS,m), g) 7→ (ρS.g,m+ λxS

S (g, ρS)).

Proposition 5.3.35. We have the following isomorphism of G-equivariant
principal Z/NZ-bundles over FS:

ΦxS
S : LS

∼−→ LxS
S ; [αS] = [(αp1 , . . . , αpr)] 7→ (ϖS([αS]),

r∑
i=1

(αpi−xpi(ϖpi(αpi))).

For another section x′S, we have the following isomorphism of G-equivariant
F -line bundles over FS

Φ
xS ,x

′
S

S : LxS
S

∼−→ Lx′
S

S : (ρS,m) 7→ (ρS,m+ δ
xS ,x

′
S

S (ρS)),
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where δ
xS ,x

′
S

S : FS → Z/NZ is the map in Proposition 5.3.34. For xS, x
′
S, x

′′
S ∈

Γ(FS,LS) we have the equalities{
Φ

xS ,x
′
S

S ◦ ΦxS
S = Φ

x′
S

S ,

ΦxS ,xS

S = idLxS
S
, Φ

x′
S ,xS

S = (Φ
xS ,x

′
S

S )−1, Φ
x′
S ,x

′′
S

S ◦ ΦxS ,x
′
S

S = Φ
xS ,x

′′
S

S .

Proof. First, suppose [(αp1 , . . . , αpr)] = [(α′
p1
, . . . , α′

pr)]. Then ϖpi(αpi) =
ϖpi(α

′
pi
) and

∑r
i=1(α

′
pi
− αpi) = 0 by (5.3.28). So we have

r∑
i=1

(α′
pi
− xpi(ϖpi(α

′
pi
))) =

r∑
i=1

(
(α′

pi
− αpi) + (αpi − xpi(ϖpi(α

′
pi
)))
)

=
r∑

i=1

(αpi − xpi(ϖpi(αpi))).

The proofs of the assertions go well in the similar manner to those of Propo-
sition 5.3.15 and Corollary 5.3.19, by taking the sum over pi ∈ S.

Taking the quotient by the action of G, we obtain the principal Z/NZ-
bundle ϖxS

S : LxS

S → MS. We call ϖxS
S : LxS

S → FS or ϖxS
S : LxS

S → MS

the arithmetic prequantization principal Z/NZ-bundle for ∂VS with respect
to xS.

Let LS be the F -line bundle associated to the principal Z/NZ-bundle LS

over FS and the homomorphism Z/NZ→ F×;m 7→ ζmN :
(5.3.36)
LS := LS ×Z/NZ F

:= (LS × F )/([αS], z) ∼ ([αS].m, ζ
−m
N z) ([αS] ∈ LS,m ∈ Z/NZ, z ∈ F ),

on which G acts from the right by

(5.3.37) LS ×G −→ LS; ([([αS], z)], g) 7→ [([αS].g, z)].

The projection

ϖS,F : LS −→ FS; [([αS], z)] 7→ ϖS([αS])

is a G-equivariant F -line bundle. We denote the fiber ϖ−1
S,F (ρS) over ρS by

LS(ρS), which is non-canonically bijective to F by fixing [αS] ∈ LS(ρS):

(5.3.38) LS(ρS) := {[([αS], z)] ∈ LS |ϖS([αS]) = ρS}
∼→ F ; [([αS], z)] 7→ z.

Taking the quotient by the action of G, we obtain the F -line bundle ϖS,F :
LS → MS. We call ϖS,F : LS → FS or ϖS,F : LS → MS the arithmetic
prequntization F -line bundle for ∂VS.
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Let LxS
S be the trivial F -line bundle over FS:

LxS
S := FS × F,

on which G acts from the right by

LxS
S ×G→ LxS

S ; ((ρS, z), g) 7→ (ρS.g, zζ
λ
xS
S (g,ρS)

N ).

Proposition 5.3.39. We have the following isomorphism of G-equivariant
F -line bundles over FS:

ΦxS
S,F : LS

∼−→ LxS
S ; [([αS], z)] 7→ (ϖS([αS]), zζ

∑r
i=1(αpi−xpi (ϖpi (αpi )))

N )

For another section x′S, we the following isomorphism of G-equivariant F -line
bundles over FS

Φ
xS ,x

′
S

S,F : LxS
S

∼−→ L
x′
S

S : [(ρS, z)] 7→ [(ρS, zζ
δ
xS,x′S
S (ρS)

N )],

where δ
xS ,x

′
S

S : FS → Z/NZ is the map in Proposition 5.3.34. For xS, x
′
S, x

′′
S ∈

Γ(FS,LS), we have the equalities{
Φ

xS ,x
′
S

S,F ◦ ΦxS
S,F = Φ

x′
S

S,F ,

ΦxS ,xS

S,F = idLxS
S
, Φ

x′
S ,xS

S,F = (Φ
xS ,x

′
S

S,F )−1, Φ
x′
S ,x

′′
S

S,F ◦ ΦxS ,x
′
S

S,F = Φ
xS ,x

′′
S

S,F .

Proof. The assertions can be proved in the similar manner to those of the
assertions in Proposition 5.3.24, by taking the sum over pi ∈ S.

Taking the quotient by the action of G, we obtain the line F -bundle ϖxS
S,F :

L
xS

S →MS. We call ϖxS
S,F : LxS

S → FS or ϖxS
S,F : L

xS

S →MS the arithmetic
prequantization F -line bundle for ∂VS with respect to xS.

We may also give the description of LS in terms of the tensor product of
F -line bundles. Let pi : FS → Fpi be the i-th projection. Let p∗i (Lpi) be the
F -line bundle over FS induced from Lpi by pi:

p∗i (Lpi) := {(ρS, [(αpi , zi)]) ∈ FS × Lpi | pi(ρS) = ϖpi(αpi)},

and let
p∗i (ϖpi) : p

∗
i (Lpi) −→ FS; (ρS, [(αpi , zi)]) 7→ ρS
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be the induced projection. The fiber over ρS = (ρpi) is given by

p∗i (ϖpi)
−1(ρS) = {ρS} × {[(αpi , zi)] ∈ Lpi | ρpi = ϖpi(αpi), zi ∈ F}

≃ Lpi(ρpi)
≃ F,

where Lpi(ρpi) is as in (5.3.22). Let Lp1 ⊠ · · ·⊠ Lpr be the tensor product of
p∗i (Lpi)’s:

Lp1 ⊠ · · ·⊠ Lpr := p∗1(Lp1)⊗ · · · ⊗ p∗r(Lpr),

which is an F -line bundle over FS. An element of Lp1 ⊠ · · ·⊠ Lpr is written
by

(ρS, [(αp1 , z1)]⊗ · · · ⊗ [(αpr , zr)]),

where ρS = (ρpi) ∈ FS, [(αpi , zi)] ∈ Lpi(ρpi). Let ϖ
⊠
S : Lp1 ⊠ · · ·⊠ Lpr → FS

be the projection. For fiber over ρS, we have

(5.3.40) (ϖ⊠S )
−1(ρS)

∼→ F ; (ρS, [(αp1 , z1)]⊗ · · · ⊗ [(αpr , zr)]) 7→
r∏

i=1

zi.

The right action of G on Lp1 ⊠ · · ·⊠ Lpr is given by
(5.3.41)
Lp1 ⊠ · · ·⊠ Lpr ×G→ Lp1 ⊠ · · ·⊠ Lpr ;
((ρS, [(αp1 , z1)]⊗ · · · ⊗ [(αpr , zr)]), g) 7→ (ρS.g, [(αp1 .g, z1)]⊗ · · · ⊗ [(αpr .g, zr)]).

The projection ϖ⊠S is G-equivariant.

Proposition 5.3.42. We have the following isomorphism of G-equivariant
F -line bundles over FS

Φ⊠S,F : Lp1 ⊠ · · ·⊠ Lpr
∼−→ LS;

(ρS, [(αp1 , z1)]⊗ · · · ⊗ [(αpr , zr)]) 7→ [([αS],
∏r

i=1 zi)],

where ρS = (ρpi) ∈ FS, [(αpi , zi)] ∈ Lpi(ρpi), and αS = (αp1 , . . . , αpr).

Proof. If (αpi , zi) is changed to (αpi .mi, ζ
−mi
N zi) formi ∈ Z/NZ, (αS,

∏r
j=1 zj)

is changed to ([αS].mi, ζ
−mi
N

∏r
j=1 zj) ∼ ([αS],

∏r
j=1 zj). So, by (5.3.20) and

(5.3.36), Φ⊠S,F is well-defined.
(i) It is easy to see that ϖS,F ◦ Φ⊠S,F = ϖ⊠S .
(ii) By (5.3.40), Φ⊠S,F restricted to a fiber over ρS is F -linear.
(iii) By (5.3.30), (5.3.37) and (5.3.41), we see that Φ⊠S,F is G-equivariant.
Therefore Φ⊠S,F is a morphism of G-equivariant F -line bundles over FS. The
inverse is given by

(Φ⊠S,F )
−1 : LS

∼−→ Lp1 ⊠ · · ·⊠ Lpr ;
([αS], z) 7→ (ϖS([αS]), [(αp1 , z)]⊗ [(αp2 , 1)]⊗ · · · ⊗ [(αpr , 1)]),

Hence Φ⊠S,F is a G-equivariant isomorphism.
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5.4 Arithmetic Chern–Simons functionals

Let Ok be the ring of integers of k. Let Xk := Spec(Ok) and let X∞
k denote

the set of infinite primes of k. We set Xk := Xk ⊔X∞
k . Let S = {p1, . . . , pr}

be a finite set of finite primes of k. Let XS := Xk \ S. We denote by ΠS the
modified étale fundamental group of XS with geometric base point Spec(k)
(k being a fixed algebraic closure of k), which is the Galois group of the
maximal subextension kS of k over k, unramified outside S. We assume that
all maximal ideals of Ok dividing N are contained in S (in particular, S is
non-empty).

Let FXS
denote the set of continuous representations of ΠS to G:

FXS
:= Homcont(ΠS, G),

on which G acts from the right by

(5.4.1) FXS
×G→ FXS

; (ρ, g) 7→ ρ.g := g−1ρg,

and letMXS
denote the quotient set by this action:

MXS
:= FXS

/G.

Let Map(FXS
,Z/NZ) be the additive group of maps from FXS

to Z/NZ, on
which G acts from the left by

(5.4.2) (g.ψ)(ρ) := ψ(ρ.g)

for g ∈ G,ψ ∈ Map(FXS
,Z/NZ) and ρ ∈ FXS

.

We fix an embedding k ↪→ kpi , which induces the continuous homomor-
phism for each 1 ≤ i ≤ r

ιpi : Πpi −→ ΠS.

Let respi and resS denote the restriction maps (the pull-backs by ιpi) defined
by

(5.4.3)
respi : FXS

−→ Fpi ; ρ 7→ ρ ◦ ιpi ,
resS := (respi) : FXS

−→ FS; ρ 7→ (ρ ◦ ιpi),

which are G-equivariant by (5.3.1), (5.3.25) and (5.4.1). We denote by Respi
and ResS the homomorphisms on cochains defined by
(5.4.4)
Respi : C

n(ΠS,Z/NZ) −→ Cn(Πpi ,Z/NZ); α 7→ α ◦ ιpi ,
ResS := (Respi) : C

n(ΠS,Z/NZ) −→
∏r

i=1C
n(Πpi ,Z/NZ); α 7→ (α ◦ ιpi).

Firstly, we note the following

Lemma 5.4.5. We have

H3(ΠS,Z/NZ) = 0.
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Proof. It suffices to show that the p-primary part H3(ΠS,Z/NZ)(p) = 0 for
any prime number p. Since H3(ΠS,Z/NZ)(p) = 0 for p ∤ N , we may assume
that p | N .
Case that N > 2. Then k is totally imaginary and so ΠS = ΠS∪X∞

k

(ΠS∪X∞
k

:= πét1 (Spec(Ok \ S) being the Galois group of the maximal exten-
sion of k unramified outside S ∪X∞

k ). By our assumption on S, all primes
over p are contained in S. So the cohomological p-dimension cdp(ΠS) ≤ 2 by
[NSW; Proposition 8.3.18]. Hence H3(ΠS,Z/NZ)(p) = 0.
Case that N = 2 and so p = 2. Since S does not contain any real primes of
k, the cohomological 2-dimension cd2(ΠS) ≤ 2 by [NSW; Theorem 10.6.7].
Hence H3(ΠS,Z/2Z)(2) = 0.

Let ρ ∈ FXS
and so c ◦ ρ ∈ Z3(ΠS,Z/NZ). By Lemma 5.2.5, there is

βρ ∈ C2(ΠS,Z/NZ)/B2(ΠS,Z/NZ) such that

(5.4.6) c ◦ ρ = dβρ,

where d : C2(ΠS,Z/NZ) → C3(ΠS,Z/NZ) is the coboundary homomor-
phism. By (5.4.3), (5.4.4) and (5.4.6), we see that

(5.4.7) c ◦ respi(ρ) = dRespi(βρ)

for 1 ≤ i ≤ r. By (5.3.4), (5.3.27) and (5.4.7), we have

(5.4.8) [ResS(βρ)] ∈ LS(resS(ρ)).

Let res∗S(LS) be the G-equivariant principal Z/NZ-bundle over FXS
in-

duced from LS by resS:

(5.4.9) res∗S(LS) := {(ρ, αS) ∈ FXS
× LS | resS(ρ) = ϖS(αS)}.

and let res∗S(ϖS) be the projection res∗S(LS) → FXS
. The quotient by the

action of G is the principal Z/NZ-bundle res∗(LS) overMXS
induced from

LS by resS. By (5.4.9), a section of res∗S(ϖS) is naturally identified with a
map yS : FXS

→ LS satisfying ϖS ◦ yS = resS:

(5.4.10) Γ(FXS
, res∗S(LS)) = {yS : FXS

→ LS |ϖS ◦ yS = resS},

on which G acts by (g.yS)(ρ) := yS(ρ.g) for ρ ∈ FXS
, g ∈ G. We denote by

ΓG(FXS
, res∗S(LS)) the set of G-equivariant sections of res∗S(ϖS). We define

the (mod N) arithmetic Chern–Simons functional CSXS
: FXS

→ LS by

(5.4.11) CSXS
(ρ) := [ResS(βρ)]
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for ρ ∈ FXS
. The value CSXS

(ρ) ∈ LS is called the arithmetic Chern–Simons
invariant of ρ.

Lemma 5.4.12. (1) CSXS
(ρ) is independent of the choice of βρ.

(2) CSXS
is a G-equivariant section of res∗S(ϖS):

CSXS
∈ ΓG(FXS

, res∗S(LS)) = Γ(MXS
, res∗S(LS)).

Proof. (1) Let β′
ρ ∈ C2(ΠS,Z/NZ)/B2(ΠS,Z/NZ) be another choice satis-

fying c◦ρ = dβ′
ρ. Then we have β′

ρ = βρ+ z for some z ∈ H2(ΠS,Z/NZ) and
so

Respi(β
′
ρ)− Respi(βρ) = invpi(Respi(z)) (1 ≤ i ≤ r).

Noting that any primes dividing N is contained in S, Tate-Poitou exact
sequence ([NSW; 8.6.10]) implies that the composite of the following maps

H2(ΠS,Z/NZ)
∏

p∈S Resp
−→

∏
p∈S

H2(Πp,Z/NZ)
∑

p∈S invp
−→ Z/NZ

is the zero map, where S = S ∪ X∞
k . For any infinite prime v ∈ X∞

k ,
the restriction map Πv := Gal(kv/kv) → ΠS = Gal(kS/k) is the trivial
homomorphism, because any infinite prime is unramified in kS/k. So Resv :
H2(ΠS,Z/NZ)→ H2(Πv,Z/NZ) is the zero map. Hence we have

r∑
i=1

invpi(Respi(z)) = 0.

By (5.3.28), we obtain

[ResS(β
′
ρ)] = [ResS(βρ)].

(2) By (5.4.8), (5.4.10) and (5.4.11), we have

CSXS
∈ Γ(FXS

, res∗S(LS)).

So it suffices to show that CSXS
is G-equivariant. By (5.3.5) and (5.4.6), we

have

dβρ.g = c ◦ (ρ.g) = (g.c) ◦ ρ = (c+ dhg) ◦ ρ = d(βρ + hg ◦ ρ).

for g ∈ G and ρ ∈ FXS
. Therefore there is z ∈ H2(ΠS,Z/Z) such that

βρ.g = βρ + hg ◦ ρ+ z and so

ResS(βρ.g) = ResS(βρ) + hg ◦ resS(ρ) + ResS(z)
= ResS(βρ).g +ResS(z).
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By the same argument as in (1) above, we obtain

CSXS
(ρ.g) = [ResS(βρ.g)] = [ResS(βρ)].g = CSXS

(ρ).g.

Let xS = [(xp1 , . . . , xpr)] ∈ Γ(FS,LS) be a section and let LxS
S be the

arithmetic prequantization principal Z/NZ-bundle over FS with respect to
xS. Let res∗S(L

xS
S ) be the G-equivariant principal Z/NZ-bundle over FXS

induced from LxS
S by resS:

res∗S(L
xS
S ) = {(ρ, (ρS,m)) ∈ FXS

× LxS
S | resS(ρ) = ρS}

= FXS
× Z/NZ

by identifying (ρ, (ρS,m)) with (ρ,m). So a section of res∗S(L
xS
S ) over FXS

is
identified with a map FXS

→ Z/NZ:

Γ(FXS
, res∗S(L

xS
S )) = Map(FXS

,Z/NZ),

on which G acts by (5.4.2). Therefore, letting MapG(FXS
,Z/NZ) denote the

set of G-equivariant maps FXS
→ Z/NZ, we have the identification

ΓG(FXS
, res∗S(L

xS
S )) = MapG(FXS

,Z/NZ)
= {ψ : FXS

→ Z/NZ |ψ(ρ.g) = ψ(ρ) + λxS
S (g, resS(ρ))

for ρ ∈ FXS
, g ∈ G}.

The isomorphism ΦxS
S : LS

∼→ LxS
S in Proposition 5.3.35 induces the isomor-

phism

ΨxS : ΓG(FXS
, res∗S(LS))

∼−→ ΓG(FXS
, res∗S(L

xS
S )) = MapG(FXS

,Z/NZ)
yS 7→ ΦxS

S ◦ yS.

We then define the arithmetic Chern–Simons functional CSxS

XS
: FXS

→
Z/NZ with respect to xS by the image of CSXS

under ΨxS :

(5.4.13) CSxS

XS
:= ΨxS(CSXS

).

Theorem 5.4.14. (1) For ρ ∈ FXS
, we have

CSxS

XS
(ρ) =

r∑
i=1

(Respi(βρ)− xpi(respi(ρ))),

which is independent of the choice of βρ.
(2) We have the following equality in C1(G,Map(FXS

,Z/NZ))

dCSxS

XS
= res∗(λxS

S ).
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Proof. (1) This follows from the definition of ΦxS
S in Proposition 5.3.35 and

(5.4.13).
(2) Since CSxS

XS
∈ MapG(FXS

,Z/NZ), we have

CSxS

XS
(ρ.g) = CSxS

XS
(ρ) + λxS

S (g, resS(ρ))

for g ∈ G and ρ ∈ FXS
, which means the assertion.

Proposition 5.4.15. Let x′S ∈ Γ(FS,LS) be another section which yields

CS
x′
S

XS
, and let δ

xS ,x
′
S

S : FS → Z/NZ be the map in Proposition 5.3.34. Then

we have
CS

x′
S

XS
(ρ)− CSxS

XS
(ρ) = δ

xS ,x
′
S

S (resS(ρ)).

Proof. By Proposition 5.4.14 (1) and Lemma 5.1.4 (1), we have

CS
x′
S

XS
(ρ)− CSxS

XS
(ρ) =

r∑
i=1

(Respi(βρ)− x′pi(respi(ρ)))−
r∑

i=1

(Respi(βρ)− xpi(respi(ρ)))

=
r∑

i=1

(xpi(respi(ρ))− x′pi(respi(ρ)))

= δ
xS ,x

′
S

S (resS(ρ)).

For xS, x
′
S ∈ Γ(FS,LS), the G-equivariant isomorphism Φ

xS ,x
′
S

S : LxS
S

∼→
Lx′

S
S induces the isomorphism

ΨxS ,x
′
S : ΓG(FXS

, res∗S(L
xS
S ))

∼−→ ΓG(FXS
, res∗S(L

xS
S )); ψxS 7→ Φ

xS ,x
′
S

S ◦ ψxS .

By Proposition 5.3.35, we have{
ΨxS ,x

′
S ◦ΨxS = Ψx′

S

ΨxS ,xS = idΓG(FXS
,res∗S(L

xS
S )),Ψ

x′
S ,xS = (ΨxS ,x

′
S)−1,Ψx′

S ,x
′′
S ◦ΨxS ,x

′
S = ΨxS ,x

′′
S .

So we can define the equivalence relation∼ on the disjoint union of ΓG(FXS
, res∗S(L

xS
S ))

over xS ∈ Γ(FS,LS) by

ψxS ∼ ψx′
S ⇐⇒ ΨxS ,x

′
S(ψxS) = ψx′

S

for ψxS ∈ ΓG(FXS
, res∗S(L

xS
S )) and ψx′

S ∈ ΓG(FXS
, res∗S(L

xS
S )).Since Φ

x′
S

S =

Φ
xS ,x

′
S

S ◦ ΦxS
S , CSxS

XS
≃ CS

x′
S

XS
. Thus we have the following identification:

(5.4.16)
ΓG(FXS

, res∗S(LS)) =
⊔

xS∈Γ(FS ,LS)
ΓG(FXS

, res∗S(L
xS
S ))/ ∼;

ψ 7→ [ΨxS(ψ)]

where CSXS
and [CSxS

XS
] are identified.
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5.5 Arithmetic quantum spaces

Following the construction of the quantum Hilbert space, we define the
arithmetic quantum space HS for ∂VS by the space of G-equivariant sections
of the arithmetic prequantization F -line bundle ϖS,F : LS → FS:

HS := ΓG(FS, LS) = Γ(MS, LS).

It is a finite dimensional F -vector space.
Let xS = [(xp1 , . . . , xpr)] ∈ Γ(FS,LS) be a section and let LxS

S be the
arithmetic prequantization F -line bundle over FS with respect to xS and let
(5.5.1)
HxS

S := ΓG(FS, L
xS
S ) = Γ(MS, L

xS

S )

= {θ : FS → F | θ(ρS.g) = ζ
λ
xS
S (g,ρS)

N θ(ρS) for ρS ∈ FS, g ∈ G},

which we call the arithmetic quantum space for ∂VS with respect to xS. The
isomorphism ΦxS

S,F : LS
∼→ LxS

S in Proposition 5.3.39 induces the isomorphism

(5.5.2) ΘxS : HS
∼−→ HxS

S ; θ 7→ ΦxS
S,F ◦ θ.

We call an element of HS or HxS
S an arithmetic theta function (cf. Remark

5.6.4 below).

For xS, x
′
S ∈ Γ(FS,LS), the isomorphism Φ

xS ,x
′
S

S,F : LxS
S

∼→ L
x′
S

S induces the
isomorphism of F -vector spaces:

ΘxS ,x
′
S : HxS

S

∼−→ Hx′
S

S ; θxS 7→ Φ
xS ,x

′
S

S,F ◦ θxS

and, by Proposition 5.3.39, we have{
ΘxS ,x

′
S ◦ΘxS = Θx′

S

ΘxS ,xS = idHxs
S
,Θx′

S ,xS = (ΘxS ,x
′
S)−1,Θx′

S ,x
′′
S ◦ΘxS ,x

′
S = ΘxS ,x

′′
S .

So the equivalence relation ∼ is defined on the disjoint union of all HxS
S

running over xS ∈ Γ(FS,LS) by

θxS ∼ θx
′
S ⇐⇒ ΘxS ,x

′
S(θxS) = θx

′
S

for θxS ∈ HxS
S and θx

′
S ∈ Hx′

s
S . Then we have the following identification:

(5.3.3) HS =
⊔

xS∈Γ(FS ,LS)

HxS
S / ∼ .

Remark 5.5.4. The arithmetic quantum spaceHS is an arithmetic analog of
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the quantum Hilbert space HΣ for a surface Σ in (2+1)-dimensional Chern–
Simons TQFT. We recall that HΣ is known to coincides with the space of
conformal blocks ([BL]) and its dimension formula was shown by Verlinde
([Ve]). It would also be an interesting question in number theory to de-
scribe the dimension and a canonical basis of HS in comparison of Verlinde’s
formulas.

5.6 Arithmetic Dijkgraaf–Witten partition functions

For ρS ∈ FS, we define the subset FXS
(ρS) of FXS

by

FXS
(ρS) := {ρ ∈ FXS

| resS(ρ) = ρS}.

We then define the arithmetic Dijkgraaf–Witten invariant ZxS

XS
(ρS) of ρS with

respect to xS by

(5.6.1) ZxS

XS
(ρS) :=

1

#G

∑
ρ∈FXS

(ρS)

ζ
CS

xS
XS

(ρ)

N .

Theorem 5.6.2. (1) ZxS

XS
(ρS) is independent of the choice of βρ.

(2) We have
ZxS

XS
∈ HxS

S .

Proof. (1) This follows from Lemma 5.4.12 (1).
(2) This follows from Theorem 5.4.14 (2) and (5.6.1).

We call ZxS

XS
∈ HxS

S the arithmetic Dijkgraaf–Witten partition function for

XS with respect to xS.

The following proposition tells us how they are changed when we change xS.

Proposition 5.6.3. For sections xS, x
′
S ∈ Γ(FS,LS), we have

ΘxS ,x
′
S(ZxS

XS
) = Z

x′
S

XS
.
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Proof. We have

ΘxS ,x
′
S(ZxS

XS
)(ρS) = (Φ

xS ,x
′
S

S,F ◦ ZXS
)(ρS)

= ZXS
(ρS)ζ

δ
xS,x′S
S (ρS)

N by Proposition 5.3.39

=
1

#G

∑
ρ∈FXS

(ρS)

ζ
CS

xS
XS

(ρ)+δ
xS,x′S
S (ρS)

N by (5.6.1)

=
1

#G

∑
ρ∈FXS

(ρS)

ζ
CS

x′S
XS

(ρ)

N by Proposition 5.4.15

= Z
x′
S

XS
(ρS)

for ρS ∈ FS. So we obtain the assertion.

By the identification (5.5.3), ZxS

XS
defines the element ZXS

of HS which is

independent of the choice of xS. We call it the arithmetic Dijkgraaf–Witten
partition function for XS.

Remark 5.6.4. In (2+1)-dimensional Chern–Simons TQFT, an element of
HΣ for a surface Σ may be regarded as a (non-abelian) generalization of the
classical theta function on the Jacobian manifold of Σ (cf. [BL]. It goes back
to Weli’s paper [We]. See [Mo1] for an arithmetic analog.) In this respect, it
may be interesting to observe that the Dijkgraaf–Witten partition function
in (5.4.1) may look like a variant of (non-abelian) Gaussian sums.

5.7 Change of the 3-cocycle c

The theory given in the section 5.3, 5.4, 5.5, and 5.6 depends on a chosen
3-cocycle c. We shall see in the following that when c is changed in the
cohomology class [c], objects are changed to isomorphic ones, and hence the
theory depends essentially on the cohomology class [c]. Let c′ ∈ Z3(G,Z/NZ)
be another 3-cocycle representing [c]. The objects constructed by using c′

will be denoted by using ′, for example, by L′
p, L

′
p, . . . etc.

There is b ∈ C2(G,Z/NZ) such that c′ − c = db. Then we have the
isomorphism of Z/NZ-torsors for ρp ∈ Fp:

Lp(ρp)
∼−→ L′

p(ρp); αp 7→ αp + b ◦ ρp,

which induces the following isomorphisms of arithmetic quantization bundles:

(5.7.1)
ξp : Lp

∼−→ L′
p, ξp,F : Lp

∼−→ L′
p,

ξS : LS
∼−→ L′

S, ξS,F : LS
∼−→ L′

S.
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Let xp ∈ Γ(Fp,Lp) and xS = [(xp1 , . . . , xpr)] ∈ Γ(FS,LS), and let x′p ∈
Γ(F ′

p,L′
p) and x

′
S ∈ Γ(F ′

F ,L′
S). Denote by λ′p and λ′S the arithmetic Chern–

Simons 1-cocycles for ∂Vp and ∂VS with respect to x′p and x′S, respectively.
We define κp : Fp → Z/NZ and κS : FS → Z/NZ by

κp(ρp) := (ξp ◦ xp)(ρp)− x′p(ρp), κS(ρS) :=
r∑

i=1

κpi(ρpi)

for ρp ∈ Fp and ρS = (ρp1 , . . . , ρpr) ∈ FS, respectively. Then we have

λ′p(g)− λp(g) = g.κp − κp, λ′S(g)− λS(g) = g.κS − κS.

We note that if we take x′p := ξp ◦xp and x′S := ξS ◦xS, κp = 0 and so κS = 0.
As in Corollary 5.3.19, Propositions 5.3.24, 5.3.35 and 5.3.39, using κp and
κS, we have the isomorphisms

Lxp
p

∼−→ L′
p
x′
p , L

xp
p

∼−→ L′
p
x′
p ,

LxS
S

∼−→ L′
S
x′
S , LxS

S

∼−→ L′
S
x′
S .

which are compatible with the isomorphisms in (5.1.1) via the isomorphisms
Lp ≃ Lxp

p , Lp ≃ L
xp
p ,LS ≃ LxS

S and LS ≃ LxS
S in Propositions 5.3.15, 5.3.24,

5.3.35 and 5.3.39.
The isomorphism ξS : LS

∼→ L′
S induces the isomorphism

ΓG(FXS
, res∗S(LS))

∼−→ ΓG(FXS
, res∗S(L′

S))

which sends CSXS
to CS ′

XS
, and the isomorphism ξS,F : LS

∼→ L′
S induces

the isomorphisms

HS
∼−→ H′

S, H
xS
S

∼−→ H′
S
x′
S ,

which sends ZXS
to Z ′

XS
.

Remark 5.7.2. A cochain α ∈ Cn(G,A) is called normalized if α(g1, . . . , gn) =
0 whenever one of gi’s is 1. It is known that any cocyle is cohomologous to a
normalized one, namely, any cohomology class of Hn(G,A) is represented by
a normalized cocycle ([NSW; Chapter I, §2, Exercise 4], [EM; Lemma 6.1]).
Therefore, by the above argument, we may assume that we can take the fixed
cocycle c ∈ Z3(G,Z/NZ) in our theory to be normalized.

5.8 Change of number fields

Let k′ be an another number field contains a primitive N -th root of unity and
let S ′ = {p′1, . . . , p′r′} be a finite set of finite primes of k′ such that any finite
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prime dividing N is contained in S ′. The objects constructed by using k′ and
S ′ will be denoted by, for example, Lp′ , Lp′ ,LS′ , LS′ , . . . etc, for simplicity of
notations . Assume that r = r′ and there are isomorphisms ξi : kpi

∼→ k′p′i
for 1 ≤ i ≤ r. Then ξi’s induces the following isomorphisms of arithmetic
quantization bundles:

ξpi : Lpi
∼−→ Lp′i

, ξpi,F : Lpi
∼−→ Lp′i

ξS : LS
∼−→ LS′ , ξS,F : LS

∼−→ LS′ .

Let xpi ∈ Γ(Fpi ,Lpi) and xS = [(xp1 , . . . , xpr)] ∈ Γ(FS,LS), and let xp′i ∈
Γ(Fp′i

,Lp′i
) and xS′ = [(xp′1 , . . . , xp′r)] ∈ Γ(FS′ ,LS′). Then we have the iso-

morphisms of arithmetic prequantization bundles with respect to sections

Lxpi
pi

∼−→ L
xp′

i

p′i
, L

xpi
pi

∼−→ L
xp′

i

p′i

LxS
S

∼−→ LxS′
S′ , LxS

S

∼−→ L
xS′
S′ .

Suppose further that there is an isomorphism τ : k
∼→ k′ of number fields

which sends pi to p′i for 1 ≤ i ≤ r. so that we have the isomorphism

ξ : XS := Xk \ S
∼−→ Xk′\S ′ =: XS′ .

For example, let k := Q( 3
√
2), k′ := Q( 3

√
2ω), ω := exp(2π

√
−1

3
) and so N = 2.

Let ξ be the isomorphism k
∼→ k′ defined by ξ( 3

√
2) := 3

√
2ω. Noting 2Ok =

( 3
√
2)2, X3−2 = (X−4)(X−7)(X−20) mod 31, let S := {p1 := ( 3

√
2), p2 :=

(31, 3
√
2 − 4), p2 := (31, 3

√
2 − 7), p4 := (31, 3

√
2 − 20)}, S ′ := ξ(S) = {p′1 :=

( 3
√
2ω), p′2 := (31, 3

√
2ω − 4), p′3 := (31, 3

√
2ω − 7), p′4 := (31, 3

√
2ω − 20)}, so

that we have kp1 = k′p′1
= Q2 and kpi = k′p′i

= Q31 (2 ≤ i ≤ 4). So this

example satisfies the above conditions.
The isomorphism ξ : XS

∼→ XS′ induces the bijection ξ∗ : FXS′

∼−→ FXS
.

By the constructions in the section 5.4, 5.5, and 5.6, we have the following

Proposition 5.8.1. The isomorphism ξS : LS
∼→ LS′ induces the bijection

ΓG(FXS
, res∗S(LS))

∼−→ ΓG(FXS′ , res
∗
S′(LS′))

which sends CSXS
to CSXS′ . The isomorphism ξS,F : LS

∼→ LS′ induces the
isomorphism

HS
∼−→ HS′ ,

which sends ZXS
to ZXS′ .

70



Remark 5.8.2. Proposition 5.8.1 may be regarded as an arithmetic analogue
of the axiom in (2+1)-diemnsional TQFT, which asserts that an orientation

homeomorphism f : Σ
≈→ Σ′ between closed surfaces induces an isomorphism

HΣ
∼→ HΣ′ of quantum Hilbert spaces and if f extends to an orientation

preserving homeomorphism M
≈→ M ′, with ∂M = Σ, ∂M ′ = Σ′, ZM is sent

to ZM ′ under the induced isomorphism H∂M
∼→ H∂M ′ .

5.9 Disjoint union of finite sets of primes and reversing
the orientation of ∂VS

In the theory in the section 5.3, 5.4, 5.5, and 5.6, we can include the case
that S is the empty set ∅ as follows.

We define F∅ to be the space of a single point, F∅ := {∗}. We define
the arithmetic prequantization principal Z/NZ-bundle L∅ to be Z/NZ, on
which G acts trivially, so that the map ϖ∅ : L∅ → F∅ is G-equivariant. So the
arithmetic prequantization F -line bundle L∅ is defined by Z/NZ×Z/NZ F =
F . The arithmetic Chern–Simons 1-cocycle λ∅ is defined to be 0.

Let Π̃k be the modified étale fundamental group of Xk defined by con-
sidering the Artin-Verdier topology on Xk, which takes the real primes into
account (cf. [AC], [Bi], [Zi]). It is the Galois group of the maximal extension
of k unramified at all finite and infinite primes. We set

FXk
:= Homcont(Π̃k, G).

Following the section 4.3, we define the mod N arithmetic Chern–Simons
invariant CSXk

(ρ) of ρ ∈ FXk
again by the image of c under the composition

H3(G,Z/NZ) ρ∗→ H3(Π̃k,Z/NZ)→ H3(Xk,Z/NZ) ≃ Z/NZ,

where the cohomology group of Xk is the modified étale cohomology defined
in the Artin-Verdier topology. Thus we have the arithmetic Chern–Simons
functional CSXk

: FXk
→ Z/NZ and so we see that

CSXk
∈ ΓG(FXk

, res∗∅(L∅)) = Map(MXk
,Z/NZ),

where res∅ is the (unique) restriction map FXk
→ F∅. Then we have

dCSXk
= 0 = res∗∅(λ∅).

The arithmetic quantum space H∅ is defined by ΓG(F∅, L∅) = F . Fol-
lowing the section 4.3, we define the arithmetic Dijkgraaf–Witten invariant
Z(Xk) of Xk again by

Z(Xk) :=
1

#G

∑
ρ∈FXk

ζ
CSXk

(ρ)

N
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and the arithmetic Dijkgraaf–Witten partition function by ZXk
: F∅ → F by

ZXk
(∗) := Z(Xk) for ∗ ∈ F∅. So we have

ZXk
∈ H∅.

We note that when [c] is trivial, Z(Xk) coincides with the (averaged) number
of continuous homomorphism from Π̃k to G:

Z(Xk) =
#Homcont(Π̃k, G)

#G
,

which is the classical invariant for the number field k.

5.10 Disjoint union of finite sets of primes and revers-
ing the orientation of ∂VS

Let S1 = {p1, . . . , pr1} and S2 = {pr1+1, . . . , pr} be disjoint sets of finite
primes of k and let S = S1 ⊔ S2. We include the case where S1 is empty,
but S2 is non-empty. (For the case where S1 and S2 are both empty, the
following arguments are trivial.) Then we have

FS = FS1 ×FS2 .

For the arithmetic quantization principal Z/NZ-bundles, we define the
map

⊞ : LS1 × LS2 −→ LS,

as follows. For the case that S1 = ∅ (and so S2 = S), we set

(5.10.1) m⊞ [αS2 ] := [αS2 ].m

for (m, [αS]) ∈ L∅ × LS2 . For the case that S1 ̸= ∅, we set

(5.10.2) [αS1 ]⊞ [αS2 ] := [(αS1 , αS2)]

for ([αS1 ], [αS2 ]) ∈ LS1 × LS2 .
For the arithmetic quantization F -line bundles, we let p∗i (LSi

) be the
G-equivariant F -line bundle over FS induced from LSi

by the projection
pi : FS → FSi

for i = 1, 2:

p∗i (LSi
) := {(ρS, [([αSi

], zi)]) ∈ FS × LSi
| ρSi

= ϖSi
([αSi

]) }

for ρS = (ρS1 , ρS2). When S1 = ∅, we think of p∗i (L∅) = F simply over
F∅ = {∗}. Let

p∗i (ϖSi
) : p∗i (LSi

) −→ FS
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be the projection. The fiber over ρS = (ρS1 , ρS2) is given by

p∗i (ϖSi
)−1(ρS) = {ρS} × {[([αSi

], zi)] ∈ LSi
| ρSi

= ϖSi
([αSi

]), zi ∈ F}
= LSi

(ρSi
)

≃ F,

where LSi
(ρSi

) is as in (5.3.38). We set

LS1 ⊠ LS2 := p∗1(LS1)⊗ p∗2(LS2),

which is the F -line bundle over FS and whose element is written by

(ρS, [([αS1 ], z1)]⊗ [([αS2 ], z2)]),

where ρS = (ρS1 , ρS2) ∈ FS, [([αSi
], zi)] ∈ LSi

(ρSi
). The right action on

LS1 ⊠ LS2 is defined by

(ρS, [([αS1 ], z1)]⊗ [([αS2 ], z2)]).g := (ρS.g, [([αS1 ].g, z1)]⊗ [([αS2 ].g, z2)])

so that the projection LS1 ⊠ LS2 → FS is G-equivariant. Then, as in Propo-
sition 5.3.42, we have the isomorphism of G-equivariant F -line bundles over
FS:

LS1 ⊠ LS2

∼−→ LS; (ρS, [([αS1 ], z1)]⊗ [([αS2 ], z2)]) 7→ [([αS], z1z2)],

where αS = (αS1 , αS2). Choose xSi
∈ Γ(FSi

,LSi
) and let xS := [(xS1 , xS2)] ∈

Γ(FS,LS). Then we see that

λ
xS1
S1

(g, ρS1) + λ
xS2
S2

(g, ρS2) = λxS
S (g, ρS)

for g ∈ G, ρS = (ρS1 , ρS2) and, as in the case that LS, we have the isomor-
phism

L
xS1
S1
⊠LxS2

S2 := p∗1(L
xS1
S1

)⊗p∗2(L
xS2
S2

)
∼−→ LxS

S ; ((ρS1 , ρS2), z1⊗ z2) 7→ (ρS, z1z2)

for ρS = (ρS1 , ρS2), which is compatible with LS1 ⊠LS2 ≃ LS via Proposition
5.1.39.

Proposition 5.10.3. For θi ∈ H
xSi
Si

(i = 1, 2), we define θ1 · θ2 ∈ HxS
S by

(θ1 · θ2)(ρS) := θ1(ρS1)θ2(ρS2)

for ρS = (ρS1 , ρS2). Then we have the following isomorphism of F -vector
spaces

HxS1
S1
⊗HxS2

S2

∼−→ HxS
S ; θ1 ⊗ θ2 7→ θ1 · θ2.
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For θi ∈ HSi
(i = 1, 2), we define θ1 ⊠ θ2 ∈ HS by

(θ1 ⊠ θ2)(ρS) := p∗1(θ1(ρS1))⊗ p∗2(θ2(ρS2))

for ρS = (ρS1 , ρS2). Here p
∗
1(θ1(ρS1))⊗ p∗2(θ2(ρS2)) denotes [([αS], z1z2)] when

θi(ρSi
) = [([αSi

], zi)], αS = (αS1 , αS2). Then we have the following isomor-
phism of F -vector spaces

HS1 ⊗HS2

∼−→ HS; (θ1, θ2) 7→ θ1 ⊠ θ2.

The above isomorphisms are compatible via the isomorphisms ΘxSi : HSi
≃

HxSi
Si

(i = 1, 2) and ΘxS : HS ≃ HxS
S in (5.5.2).

Proof. We may assume by Remark 5.1.2 that the cocycle c is normalized.
For θ ∈ HxS

S , set θ1(ρS1) := θ(ρS1 , 1) and θ2(ρS2) := θ(1, ρS2). Since c is
normalized, by (5.3.7) and (5.3.10), we have λp(g, 1) = 0 for g ∈ G and
p ∈ Si. From this, we have θi ∈ H

xSi
Si

. Then the map HxS
S → H

xS1
S1
⊗HxS2

S2
;

θ 7→ θ1 ⊗ θ2, gives the inverse of the former map. By the definitions, the
second map is compatible with the first one via Θ

xSi
Si

: HSi
≃ HxSi

Si
(i = 1, 2)

and ΘxS : HS ≃ HxS
S and so we have the following commutative diagram

HS1 ⊗HS2 −→ HS

ΘxS1 ⊗ΘxS2 ≀ ↓ ↓ ≀ ΘxS

HxS1
S1
⊗HxS2

S2

∼−→ HxS
S ,

from which the second isomorphism follows.

Remark 5.10.4. Proposition 5.10.3 may be regarded as an arithmetic ana-
log of the multiplicative property that HΣ1⊔Σ2 = HΣ1 ⊗HΣ2 for disjoint sur-
faces Σ1 and Σ2 which is one of the axioms required in (2 + 1)-dimensional
TQFT (Definition 3.1.1).

For a finite prime p of k, the canonical isomorphism

invp : H
2

ét(∂Vp,Z/NZ) ∼−→ Z/NZ

indicates that ∂Vp is “orientable” and we choose (implicitly) the “orientation”
of ∂Vp corresponding 1 ∈ Z/NZ. We let ∂V ∗

p = ∂Vp with the “opposite
orientation”, namely, invp([∂V

∗
p ]) = −1.

The arithmetic prequantization principal Z/NZ-bundle for ∂V ∗
p , denoted

by Lp∗ , is defined (formally) by Lp with the opposite action of the structure
group Z/NZ, (αp,m) 7→ αp.(−m) for αp ∈ Lp∗ and m ∈ Z/NZ. So the
arithmetic prequantization F -line bundle Lp∗ for ∂V ∗

p is the dual bundle of
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Lp, Lp∗ = L∗
p. Noting Γ(Fp,Lp∗) = Γ(Fp,Lp), the arithmetic Chern–Simons

1-cocycle λ
xp

p∗ for ∂V ∗
p is given by −λxp

p for xp ∈ Γ(Fp,Lp∗). The actions of G
on Lxp

p∗ = Fp × Z/NZ and L
xp

p∗ = Fp × F are changed to those via λ
xp

p∗ .
For a finite set of finite primes S = {p1, . . . , pr}, we set ∂V ∗

S := ∂V ∗
p1
⊔

· · · ⊔ ∂V ∗
pr . Then the arithmetic prequantization bundles LS∗ , LS∗ ,LxS

S∗ and
LxS
S∗ (xS ∈ Γ(FS,LS∗) = Γ(Fp,LS)) are defined in the similar manner. For

the arithmetic Chern–Simons 1-cocycle, we have

λxS
S∗ = −λxS

S .

Let HxS
S∗ be the arithmetic quantum space for ∂V ∗

S with respect to xS.
Then we see that

HxS
S∗ = {θ∗ : FS → F | θ∗(ρS.g) = ζ

λ
xS
S∗ (g,ρS)

N θ∗(ρS) for ρS ∈ FS, g ∈ G}
= {θ∗ : FS → F | θ∗(ρS.g) = ζ

−λS(g,ρS)
N θ∗(ρS) for ρS ∈ FS, g ∈ G}

= HxS

S ,

where HxS

S is the complex conjugate of HxS
S . Since the pairing

HxS
S∗ ×HxS

S −→ F ; (θ∗, θ) 7→
∑

ρS∈FS

θ∗(ρS)θ(ρS)

is a (Hermitian) perfect pairing, together with (5.3.2), we have the following

Proposition 5.10.5. HxS
S∗ and HS∗ are the dual spaces of HxS

S and HS,
respectively:

HxS
S∗ = (HxS

S )∗, HS∗ = (HS)
∗.

Remark 5.10.6. Proposition 5.10.5 may be regarded as an arithmetic ana-
log of the involutory property that HΣ∗ = H∗

Σ, where Σ
∗ = Σ with the oppo-

site orientation, which is one of the axioms required in (2 + 1)-dimensional
TQFT (Definition 3.1.1).

In the section 5.4, 5.5, and 5.6, we have chosen implicitly the orientation
of XS so that the boundary ∂XS with induced orientation may be identified
with ∂VS. Let X

∗
S denote XS with the opposite orientation. Then, the arith-

metic Chern–Simons functional and the Dijkgraaf–Witten partition function
for X

∗
S are given as follows:

(5.10.7) CSxS

X
∗
S
= −CSxS

XS
, ZxS

X
∗
S
(ρS) =

1

#G

∑
ρ∈FXS

ζ
−CS

xS
XS

(ρ)

N .
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5.11 Arithmetic Chern–Simons functionals and arith-
metic Dijkgraaf–Witten partition functions for VS

For a finite prime p of k, let Op denote the ring of p-adic integers and we let
Vp := Spec(Op). For a non-empty finite set of finite primes S = {p1, · · · , pr}
of k, let VS := Vp1 ⊔ · · · ⊔ Vpr , which plays a role analogous to a tubular
neighborhood of a link, and so ∂VS plays a role of the boundary of VS.
In this section, we introduce the arithmetic Chern–Simons functional and
arithmetic Dijkgraaf–Witten partition function for VS, which will be used for
our gluing formula in the next section.

Let Π̃p be the étale fundamental group of Vp, namely, the Galois group of
the maximal unramified extension of kp and we set

FVp := Homcont(Π̃p, G), FVS
:= FVp1

× · · · × FVpr
.

Since Π̃p ≃ Ẑ (profinite infinite cyclic group), FVp ≃ G. G acts on FVS
from

the right by

FVS
×G→ FVS

; ((ρ̃pi)i, g) 7→ ρ.g := (g−1ρ̃pig)i,

and letMVS
denote the quotient set by this action:

MVS
:= FVS

/G.

Let ˜respi : FVpi
→ Fp and ˜resS := ( ˜respi) : FVS

→ FS denote the restriction

maps induced by the natural continuous homomorphisms vpi : Πpi → Π̃pi

(1 ≤ i ≤ r), which are G-equivariant. We denote by R̃espi and R̃esS the
homomorphisms on cochains given as the pull-back by vpi :

R̃espi : C
n(Π̃pi ,Z/NZ) −→ Cn(Πpi ,Z/NZ);αi 7→ αi ◦ vpi ,

R̃esS := (R̃espi) :
r∏

i=1

Cn(Π̃pi ,Z/NZ) −→
r∏

i=1

Cn(Πpi ,Z/NZ); (αi) 7→ (αi ◦ vpi).

For ρ̃ = (ρ̃pi)i ∈ FVS
, c ◦ ρ̃pi ∈ Z3(Π̃pi ,Z/NZ). Since H3(Π̃pi ,Z/NZ) = 0,

there is β̃pi ∈ C2(Π̃pi ,Z/NZ) such that

c ◦ ρ̃pi = dβ̃pi .

We see that
c ◦ ˜respi(ρ̃pi) = dR̃espi(β̃pi)

for 1 ≤ i ≤ r and we have

[R̃esS((β̃pi)i)] ∈ LS( ˜resS(ρ̃)).
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Let ˜res∗S(LS) be the G-equivariant principal Z/NZ-bundle over FVS
induced

from LS by ˜resS:

˜res∗S(LS) := {(ρ̃, αS) ∈ FVS
× LS | ˜resS(ρ̃) = ϖS(αS)}

and let ˜res∗S(ϖS) be the projection ˜res∗S(LS)→ FVS
. We define the arithmetic

Chern–Simons functional CSVS
: FVS

→ LS by

CSVS
(ρ̃) := [R̃esS((β̃pi)i)]

for ρ̃ ∈ FVS
. The value CSVS

(ρ̃) is called the arithmetic Chern–Simons
invariant of ρ̃.

Lemma 5.11.1. (1) CSVS
(ρ̃) is independent of the choice of β̃pi.

(2) CSVS
is a G-equivariant section of ˜res∗S(ϖS):

CSVS
∈ ΓG(FVS

, ˜res∗S(LS)) = Γ(MVS
, ˜res∗S(LS)).

Proof. (1) This follows from the fact that the cohomological dimension of
Π̃pi is one.
(2) The proof of this lemma is almost same as Lemma 5.4.12. (2).

For a section xS = [(xp1 , . . . , xpr)] ∈ Γ(FS,LS), the isomorphism ΦxS
S : LS

∼→
LxS

S induces the isomorphism

Ψ̃xS : ΓG(FVS
, ˜res∗S(LS))

∼−→ ΓG(FVS
, ˜res∗S(L

xS
S )) = MapG(FVS

,Z/NZ);
yS 7→ ΦxS

S ◦ yS.

We define the arithmetic Chern–Simons functional CSxS
VS

: FVS
→ Z/NZ

with respect to xS by the image of CSVS
under Ψ̃xS .

Proposition 5.11.2. (1) For ρ ∈ FVS
, we have

CSxS
VS
(ρ̃) =

r∑
i=1

(R̃esS(β̃pi)− xpi( ˜respi(ρ̃pi))).

(2) We have the following equality in C1(G,Map(FVS
,Z/NZ))

dCSVS
= ˜res∗(λxS

S ).

Proof. (1) This follows from the definition of Ψ̃xS .
(2) Since CSVS

∈ MapG(FVS
,Z/NZ), we have

CSxS
VS
(ρ̃.g) = CSxS

VS
(ρ̃) + λxS

S (g, ˜resS(ρ̃))

for g ∈ G and ρ̃ ∈ FVS
, which means the assertion.

77



Proposition 5.11.3. Let x′S ∈ Γ(FS,LS) be another section, which yields

CS
x′
S

VS
and let δ

xS ,x
′
S

S : FS → Z/NZ be the map in Proposition 5.3.34. Then
we have

CS
x′
S

VS
(ρ̃)− CSxS

VS
(ρ̃) = δ

xS ,x
′
S

S ( ˜resS(ρ̃)).

Proof. This follows from Proposition 5.11.2. (1) and Lemma 5.1.4.

For ρS ∈ FS, we define the subset FVS
(ρS) of FVS

by

FVS
(ρS) := {ρ̃ ∈ FVS

| ˜resS(ρ̃) = ρS}.

We then define the arithmetic Dijkgraaf–Witten invariant ZVS
(ρS) of ρS with

respect to xS by

ZxS
VS
(ρS) :=

1

#G

∑
ρ̃∈FVS

(ρS)

ζN
CS

xS
VS

(ρ̃)
.

Theorem 5.11.4. (1) ZxS
VS
(ρS) is independent of the choice of β̃ρpi .

(2) We have
ZxS

VS
∈ HxS

S .

Proof. (1) This follows from Proposition 5.11.1. (1).
(2) This follows from Proposition 5.11.2. (2).

We call ZxS
VS

the arithmetic Dijkgraaf–Witten partition function for VS with
respect to xS.

Proposition 5.11.5. For sections xS, x
′
S ∈ Γ(FS,LS) we see that

ΘxS ,x
′
S(ZxS

VS
) = Z

x′
S

VS
.

Proof. This follows from Proposition 5.11.3.

By the identification (5.5.3), ZxS
VS

defines the element ZVS
of HS which is

independent of the choice of xS. We call it the arithmetic Dijkgraaf–Witten
partition function for VS.

In the above, the orientation of VS is chosen so that it is compatible with
that of ∂VS as explained in the section 5.4. Let V ∗

S denote VS with opposite
orientation. Then, following (5.4.7), the arithmetic Chern–Simons functional
and the arithmetic Dijkgraaf–Witten partition function are given by

(5.11.6) CSxS
V ∗
S
= −CSxS

VS
, ZxS

V ∗
S
(ρS) =

1

#G

∑
ρ̃∈FVS

(ρS)

ζ
−CS

xS
XS

(ρ̃)

N .
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5.12 Gluing formulas for arithmetic Chern–Simons in-
variants and gluing formulas for arithmetic Dijkgraaf–
Witten partition functions

Let S1 and S2 be disjoint sets of finite primes of k, where S1 may be empty
and S2 is non-empty. We assume that any prime dividing N is contained
in S2 if S1 is empty and that any prime dividing N is contained in S1 if
S1 is non-empty. We let S := S1 ⊔ S2. We may think of XS1 as the space
obtained by gluing XS and V ∗

S2
along ∂VS2 . Let ηS : ΠS → ΠS1 , ιp : Πp → ΠS,

vp : Πp → Π̃p, and up : Π̃p → ΠS1 be the natural homomorphisms, where
p ∈ S2, so that we have ηS ◦ ιp = up ◦ vp for p ∈ S2.

HHHHj

Πp

����*

Π̃p
����*

ΠS HHHHj
ΠS1

vp

ιp

up

ηS

Let ⊞ : LS1 ×LS2 → LS be the map defined as in (5.10.1) and (5.10.2). Now
we have the following decomposition formula.

Theorem 5.12.1 (Decomposition formula). For ρ ∈ Homcont(ΠS1 , G), we
have

CSXS1
(ρ)⊞ CSVS2

((ρ ◦ up)p∈S2) = CSXS
(ρ ◦ ηS).

Proof. Case that S1 = ∅. Although this may be well known, we give a
proof for the sake of readers. By the Artin–Verdier Duality for compact
support étale cohomologies ([Mi2; Chapter II. Theorem 3.1]) and modified
étale cohomologies ([Bi; Theorem 5.1]), we have the following isomorphisms
for a fixed ζN ∈ µN ,

H3
comp(XS,Z/NZ) ∼= HomXS

(Z/NZ,Gm,XS
)∼ ∼= µN(k)

∼ ∼= Z/NZ,

H3(Xk,Z/NZ) ∼= HomXk
(Z/NZ,Gm,Xk

)∼ ∼= µN(k)
∼ ∼= Z/NZ,

where Gm,XS
(resp. Gm,Xk

) is the sheaf of units on XS (resp. Xk) and
(−)∼ is given by Hom(−,Q/Z). We denote the isomorphisms above by
inv′ : H3

comp(XS,Z/NZ) → Z/NZ and inv : H3(Xk,Z/NZ) → Z/NZ. Now
we recall the definition of H3

comp(XS,Z/NZ) ([Mi2; p.165]). We define the
complex Ccomp(ΠS,Z/NZ) by

Cn
comp(ΠS,Z/NZ) := Cn(ΠS,Z/NZ)×

∏
p∈S

Cn−1(Πp,Z/NZ),
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d(a, (bp)) := (da, (Resp(a)− dbp)),

where a ∈ Cn(ΠS,Z/NZ) and (bp) ∈
∏
p∈S

Cn−1(Πp,Z/NZ). Hn
comp(XS,Z/NZ)

is defined by

Hn
comp(XS,Z/NZ) := Hn(C∗

comp(ΠS,Z/NZ)).

Then we can describe inv′ : H3
comp(XS,Z/NZ) → Z/NZ as follows. Let

[(a, (bp))] ∈ H3
comp(XS,Z/NZ). Since da = 0 and H3(ΠS,Z/NZ) = 0, there

is a cochain b ∈ C2(ΠS,Z/NZ) such that db = a. Then we have

inv′([(a, (bp)]) =
∑
p∈S

invp([Resp(b)− bp]),

where invp : H
2(Πp,Z/NZ)→ Z/NZ is the canonical isomorphism given by

the theory of Brauer groups. We note that the right side of the equation above
doesn’t depend on the choice of b. Recall that Π̃k denotes the modified étale
fundamental group of Xk. Let j3 : H

3(Π̃k,Z/NZ)→ H3(Xk,Z/NZ) be the
natural homomorphism induced by the modified Hochschild-Serre spectral
sequence (Corollary 4.2.8). We describe the image of the cohomology class
[c ◦ ρ] ∈ H3(Π̃k,Z/NZ) by the composed map

inv′
−1 ◦ inv ◦ j3 : H3(Π̃k,Z/NZ)→ H3

comp(XS,Z/NZ).

Since c ◦ (ρ ◦ ηS) ∈ Z3(ΠS,Z/NZ) and H3(ΠS,Z/NZ) = 0, there exists a
cochain βρ◦ηS ∈ C2(ΠS,Z/NZ) such that dβρ◦ηS = c ◦ (ρ ◦ ηS). We note that
dResp(βρ◦ηS) = d(βρ◦ηS ◦ ιp) = c◦ρ◦up ◦vp. Since c◦ (ρ◦up) ∈ Z3(Π̃p,Z/NZ)
and H3(Π̃p,Z/NZ) = H2(Π̃p,Z/NZ) = 0, there exists a cochain β̃ρ◦up ∈
C2(Π̃p,Z/NZ) such that dβ̃ρ◦up = c ◦ (ρ ◦ up). We set βρ◦up◦vp := β̃ρ◦up ◦ vp ∈
C2(Πp,Z/NZ). So we have dβρ◦up◦vp = c ◦ (ρ ◦ up ◦ vp). Then we obtain

(inv′
−1 ◦ inv ◦ j3)([c ◦ ρ]) = [(c ◦ (ρ ◦ ηS), (βρ◦up))].

We see that [Resp(βρ◦ηS)], [βρ◦up◦vp ] ∈ Lp(ρ ◦ up ◦ vp). Thus we obtain

CSXk
(ρ) = (inv ◦ j3)([c ◦ ρ])

= (inv′ ◦ inv′−1 ◦ inv ◦ j3)([c ◦ ρ])
= inv′([(c ◦ (ρ ◦ ηS), (βρ◦up◦vp))])

=
∑
p∈S

invp([Resp(βρ◦ηS)− βρ◦up◦vp ])

= CSXS
(ρ ◦ ηS)− CSVS

((ρ ◦ up)p∈S).
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Case that S1 ̸= ∅. Let βρ ∈ C2(ΠS1 ,Z/NZ) be a cochain such that dβρ = c◦ρ.
We have d(βρ ◦ ηS) = c ◦ (ρ ◦ ηS) and d(βρ ◦ up) = c ◦ (ρ ◦ up) for p ∈ S2. So
we obtain

CSXS1
(ρ)⊞ CSVS2

((ρ ◦ up)p∈S2
) = [(βρ ◦ ηS ◦ ιp)p∈S1 ]⊞ [(βρ ◦ up ◦ vp)p∈S2 ]

= [(βρ ◦ up ◦ vp)p∈S]
= [(βρ ◦ ηS ◦ ιp)p∈S]
= CSXS

(ρ ◦ ηS).

Let xSi
∈ Γ(FSi

,LSi
) (i = 1, 2)) be any sections. We define the section

xS ∈ Γ(FS,LS) by

xS(ρS1 , ρS2) := xS1(ρS1)⊞ xS1(ρS2).

By the proof of Theorem 5.12.1, we have the following

Corollary 5.12.2. Notations being as above, we have the following equality
in Z/NZ.

CS
xS1

XS1

(ρ) + CS
xS2
VS2

((ρ ◦ up)p∈S2) = CSxS

XS
(ρ ◦ ηS).

We consider the situation that we obtain the space XS1 by gluing XS and
V ∗
S2

along ∂VS2 . We define the pairing < , >: HxS
S ×H

xS2

S2
∗ → HxS1

S1
by

(5.12.3) < θS, θS2
∗ > (ρS1) := #G

∑
ρS2

∈FS2

θS(ρS1 , ρS2)θS2
∗(ρS2)

for θS ∈ HxS
S , θS∗

2
∈ HxS2

S∗
2

and ρS1 ∈ FS1 . This induces the pairing < , >:

HS ×HS2
∗ → HS1 by (5.3.2). Now we prove the following gluing formula.

Theorem 5.12.4 (Gluing formula). Notations being as above, We have the
following equality

< ZXS
, ZV ∗

S2
> = ZXS1

.

Proof. We show the equality

< ZxS

XS
, Z

xS2
V ∗
S2

> = Z
xS1

XS1
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for any sections xSi
∈ Γ(FSi

,LSi
) (i = 1, 2). Noting (5.11.6), we have

< ZxS

XS
, Z

xS1
V ∗
S2

> (ρS1)

= #G
∑

ρS2
∈FS2

( 1

#G

∑
ρ′∈FXS

(ρS1
,ρS2

)

ζN
CS

xS
XS

(ρ′)
)( 1

#G

∑
ρ̃∈FVS2

(ρS2
)

ζN
−CS

xS2
VS2

(ρ̃′)
)

=
∑

ρS2
∈FS2

( 1

#G

∑
(ρ′,ρ̃)∈FXS

(ρS1
,ρS2

)×FVS2
(ρS2

)

ζN
CS

xS
XS

(ρ′)−CS
xS2
VS2

(ρ̃)
)

for ρS1 ∈ FS1 . We define the map

χ(ρS1) : FXS1
(ρS1)→

⊔
ρS2

∈FS2

(
FXS

(ρS1 , ρS2)×FVS2
(ρS2)

)
by

χ(ρS1)(ρ1) = (ρ1 ◦ ηS, (ρ1 ◦ up)p∈S2)

for ρ1 ∈ FXS1
(ρS1). In order to obtain the required statement by Corol-

lary 5.2.2, it suffices to show that χ(ρS1) is bijective. (Though this may be
seen by noticing that ΠS1 is the push-out of the maps ιp and vp (ΠS1 is the
amalgamated product of ΠS and Π̃k along Πp) for S2 = {p}, we give here a
straightforward proof.)
χ(ρS1) is injective: Suppose χ(ρS1)(ρ1) = χ(ρS1)(ρ

′
1) for ρ1, ρ

′
1 ∈ FXS1

(ρS1).

Then ρ1 ◦ ηS = ρ′1 ◦ ηS. Since ηS is surjective, ρ1 = ρ′1.
χ(ρS1) is surjective: Let (ρ, (ρ̃p)p∈S2) ∈ FXS

(ρS1 , ρS2) × FVS2
(ρS2). Then we

have
resS1(ρ) = ρS1 , resS2(ρ) = ρS2 , ˜resS2((ρ̃p)p∈S2) = ρS2 .

Since ˜resp(ρ̃p) is unramified representation of Πp for p ∈ S2, ρ is unramified
over S2. Therefore there is ρ1 ∈ FXS1

such that ρ = ρ1 ◦ ηS. Since we see

that
ρ1 ◦ up ◦ vp = ρ1 ◦ ηS ◦ ιp = ρ ◦ ιp = ρ̃p ◦ vp

for p ∈ S2 and vp is surjective, we have ρ1 ◦ up = ρ̃p for p ∈ S2. Hence
χ(ρS1)(ρ1) = (ρ, (ρ̃p)p∈S2) and so χ(ρS1) is surjective.

Remark 5.12.5 (1) In [CKKPY] and [LP], the authors used the decomposi-
tion formula (Theorem 5.12.1) in order to compute arithmetic Chern–Simons
invariants CSX(ρ) for various examples. In [BCGKPT] and [AC], computa-
tions of CSX(ρ) have also been carried out by number theoretic methods.
(2) In [CKKPPY], arithmetic Dijkgraaf–Witten correlation functions for fi-
nite cyclic gauge groups were computed in terms of arithmetic linking num-
bers of primes. Their formula may be regarded as arithmetic finite analogue
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of the path integral for linking numbers in abelian Chern–Simons gauge the-
ory.
(3) In [Ki], Kim introduced arithmetic Chern–Simons functionals for the case
of p-adic Lie gauge group. In [CK], an arithmetic analogue of topological BF
theory was studied, and, in [CCKKPY], the authors showed an arithmetic
path integral formula for the Kubota-Leopoldt p-adic L-function.
(4) A deep aspect of the 3-dimensional Chern–Simons TQFT with com-
pact connected gauge group is a connection with 2-dimensional conformal
field theory ([Ko]). For Dijkgraaf–Witten TQFT, Brylinski and McLaughlin
([BM2], [BM3]) studied the analogue for a finite gauge group of Segal–Witten
reciprocity law in conformal field theory ([Seg], [BM1], [BM2]). We may find
an analogous feature between central extensions of loop groups in conformal
field theory and metaplectic coverings in number theory such as Segal–Witten
reciprocity law and Hilbert reciprocity law ([Kub], [We], [BD]). It would be
interesting to pursue this analogy in connection with (arithmetic) Chern–
Simons TQFT.
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