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“The work of mathematicians is similar to that of Demon Slayer. When you prove a the-
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far as to annihilate it.”
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Chapter 1

Introduction

1.1 Quandles

A quandle is an algebraic system closely related to knot theory. Here, we would like
to substitute a brief description of its history for its explanation.

In 1982, Joyce, 1982 and Matveev, 1982 defined an algebraic system called quan-
dles and constructed the complete knot invariant called the knot quandle or the fun-
damental quandle of knots. This was amazing since even the isomorphism classes
of knot groups, one of the important knot invariants, are not able to classify knots.
However, for some time after that, not much progress was made in the study of
quandles since the algebraic structure of knot quandles was difficult.

In 1999, Carter et al., 1999 constructed the quandle cocycle invariants of (classi-
cal) knots and surface knots. The invariants are remarkable in that they are much
easier than knot quandles to calculate and to investigate differences. The study of
this invariant and of the quandle homology that emerged in the construction of this
invariant has greatly advanced the study of the algebraic structure of quandles. As a
result, the relationship between existing knot invariants and quandles is also known.
For example, Inoue and Kabaya, 2014 proved that the complex volume, the Chern-
Simons invariants with respect to its principal PSL(2, C) bundle, of a hyperbolic
knots is presented as the quandle cocycle invariants.

Recently, Ishikawa, n.d. defined a quandle class called smooth quandle and con-
structed its fundamental theory . A smooth quandle is a differentiable manifold with
smooth operation which satisfies the quandle condition. Quandle classes are often
compared to group classes and smooth quandles are analogous to Lie groups.

TABLE 1.1: Group classes vs Quandle classes.

group class quandle class
finite groups finite quandles

topological groups topological quandles
Lie groups smooth quandles

1.2 Embedding quandles into groups

Embedding quandles into groups is an important problem and has a long history
since it is known that the quandles embedded into groups are important to apply
quandles to knot theory and to consider the algebraic structure of quandles.

Joyce, 1982, who gave a name to quandles, gave an embedding of free quandles
and suggested that the theory of quandles may be regarded as the theory of conju-
gation of groups. Joyce presented the conjugacy quandles as the first example in his
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paper. It appears that Joyce considered that conjugacy quandles are fundamental
examples of quandles. See Joyce, 1982, Section 4 for more details.

Eisermann, 2014 defined a quandle covering 1 and constructed its fundamental
theory. In his paper, he pointed out that the covering theory of quandles embedded
in groups is essentially the theory of central group extensions.

Bardakov, Dey, and Singh, 2017 dealt with the following problem:

Question 1.2.1 (Bardakov, Dey, and Singh, 2017, Question 3.1). For which quandles X
does there exist a group G such that X embeds in the conjugation quandle Conj G?

They proved that Alexander quandles associated with fixed-point free involu-
tions are embeddable in the paper. After that, they and some people found quandles
satisfying Question 1.2.1.

TABLE 1.2: Quandles satisfying Question 1.2.1.

quandles bibliography
free quandles Joyce, 1982, Theorem 4.1

free n-quandles Joyce, 1982, Corollary 10.3
some Alexander quandles2 Bardakov, Dey, and Singh, 2017

commutative quandles Bardakov and Nasybullov, 2020, §5
latin quandles Bardakov and Nasybullov, 2020, §5

simple quandles Bardakov and Nasybullov, 2020, §5
core quandles Bergman, 2021, (6.5)

some gen. Al. quandles3 Dhanwani, Raundal, and Singh, 2021, Prop. 3.12
twisted conjugate quandles Akita, 2022

Recently, Akita, 2022 proved that twisted conjugate quandles are able to be em-
bedded into a group. Question 1.2.1 has been considered for a long time and still
attracts attention from researchers.

1.3 Embedding smooth quandles into Lie groups

We suggest the following conjecture:

Conjecture 1.3.1. For any topologically connected and algebraically connected smooth quan-
dle X, there is a Lie group G and a smooth embedding ι : X → G that is a quandle homo-
morphism if we consider G to be a conjugacy quandle.

Conjecture 1.3.1 means that there is an embedding with respect to both of the
quandle structures and manifold structures into Lie groups for any smooth quan-
dles. In this thesis, we prove the conjecture in the case of spherical quandles. See
Theorem 4.0.1. We expect that the strategy of the proof can be extend to the case of
the quandles defined over compact Riemann symmetric spaces4.

Conjecture 1.3.2. The algebraically connected and the topologically conneted smooth quan-
dles defined in Subsection 2.3.3 satisfy Conjecture 1.3.1.

1In this thesis, we do not deal with quandle covering and “covering" means a topological covering
in this thesis.

2Alexander quandles associated with fixed-point free involutions.
3Generalized Alexander quandles associated with fixed-point free automorphisms.
4See Subsection 2.3.3 for its definition.



1.4. Our motivation 3

Conjecture 1.3.1 is a kind of Question 1.2.1, the problem dealt with in Section 1.2.
The problem setting of Conjecture 1.3.1 is important since we can use not only alge-
braic conditions but also geometrical conditions. For example, when we consider the
conjecture, we often use the universal covering p : G̃ → G of a connected Lie group
G. The map p has three structures: the (topological) covering structure, the quandle
covering structure defined by Eisermann, 2014 and the central extension. As a side
note, the central extensions of groups are important when we deal with quandles.
Since there are many aspects of the quandle structure that are not well known, it is
important to be able to use the relatively well-known theory of Lie groups and Lie
algebras as support. In this thesis, we also use the geometrical structure to prove the
main theorem, Theorem 4.0.1.

Even if Conjecture 1.3.1 has a counterexample, the conjecture is important in
developing quandle theory. There are two reasons. First, the conjecture makes some
smooth quandles structure clear. In quandle theory, few quandles have well-known
algebraic structures. This fact has hindered the development of quandle theory. In
contrast, there are many examples in Lie group theory. For instance, the structures
of classical groups are well known. Hence, it allows gradual development. For
example, if the fact with respect to SL(2, R), which is isomorphic to Spin(2, 1), is
known, we may extend the fact in the case Spin(n, 1)5. Second, considering the
conjecture is useful for its application to knot theory since Question 1.2.1 is closely
related to the application to knot invariants. A similar perspective may be valid for
quandle theory. We hope that Conjecture 1.3.1 will help develop the study of smooth
quandles.

Some researchers are interested in only finite quandles, since finite quandles are
more useful than the other quandles involving smooth quandles for applying to
knot invariants. However finite groups are often viewed as discrete subgroups of
Lie groups in group theory and the view point is helpful.

1.4 Our motivation

In the main theorem, Theorem 4.0.1, we prove that Conjecture 1.3.1 in the case of
spherical quandles. Our motivation to prove the main theorem is to construct an
example of embedding quandles which are not faithful into conjugacy quandles.

For any quandles, there is a natural quandle homomorphism from a quandle to
its inner automorphism group. A quandle is faithful if the natural quandle homo-
morphism is injective. A quandle Pn

R, which is a quandle defined in Chapter 4, is an
example of faithful quandles.

Quandles defined over Riemannian symmetric spaces, we introduce in Subsec-
tion 2.3.3, are Joyce’s model cases of quandles. In this case, the faithfulness of the
quandles is related to Cartan embedding, a famous mathematical object in symmet-
ric space theory. The inner automorphism group of the quandles has a Lie group
structure and the natural quandle homomorphisms from the quandles to their in-
ner automorphism group are commonly called Cartan embedding. See also Nosaka,
2017b, Example B.3.

In most cases, we wonder if a given quandle is faithful when we approach Ques-
tion 1.2.1. In the case that a given quandle is not faithful, we need to find a group to
embed the quandle. The quandle treated in the main theorem is not faithful. In gen-
eral, few methods to find an appropriate group is known and this is why Question
1.2.1 is difficult.

5The Lie group Spin(n, 1) is the double covering of the unit component of SO(n, 1).



4 Chapter 1. Introduction

Spherical quandles, we treat in the main theorem, are not a faithful. However, we
consider the universal covering group of the inner automorphism group of spherical
quandles and prove that the covering group is the group to embed the quandle. The
manifold structure of sphercial quandles is a key of the proof. We hope that many
mathematicians will be interested in Conjecture 1.3.1 and solve Question 1.2.1.

1.5 Organization of this thesis

This thesis is organized as follows. In Chapter 2, the basic notation and facts on
general quandles and smooth quandles are presented. In Chapter 3, we construct
a lifting of a smooth group action using a covering map. The construction is intro-
duced in Montaldi and Ortega, 2008; Montaldi and Ortega, 2009. However, we do
not describe the original construction, but a reformulation of the method sketched in
Montaldi and Ortega, 2008, Remark 2.2 to apply in the proof of the main theorem. In
Chapter 4, we present the main theorem on Conjecture 1.3.1 in the case of spherical
quandles and prove it. In Chapter 5, some application of the main theorem concisely.
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Chapter 2

Quandles

In this chapter, we introduce what we need to read this thesis on quandles. See
Nosaka, 2017b, Kamada, 2017 and Ishikawa, n.d. for more details.

2.1 Quandle basics

In this section, we define quandles and the algebraic connectivity of quandles.
First, we introduce the definition of quandles.

Definition 2.1.1 (Joyce, 1982; Matveev, 1982). A quandle is a set X with a binary opera-
tion ▷ : X × X → X satisfying the three conditions:
(Q1) x ▷ x = x for any x ∈ X.
(Q2) The map Sy : X → X defined by x 7→ x ▷ y is bijective for any y ∈ X.
(Q3) (x ▷ y) ▷ z = (x ▷ z) ▷ (y ▷ z) for any x, y, z ∈ X.

We denote S−1
y (x) as x ▷−1 y for x, y ∈ X. The conditions Q1, Q2,and Q3 in Defi-

nition 2.1.1 are consistent with Reidemeister moves, operations for knot diagrams in
knot theory, I, II and III respectively. See Figure 2.1.

FIGURE 2.1: Geometric interpretation of the axioms in Definition
2.1.1.

Second, we define the algebraic connectivity of quandles. Suppose that X and Y
are quandles. A map f : X → Y is called a homomorphism if f (x ▷ y) = f (x) ▷ f (y)
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for any x, y ∈ X. Isomorphisms and automorphisms are defined similary. We denote
the automorphism group of a quandle X as Aut X. By the axiom Q3, the bijection
Sy in Q2 is an automorphism. Then we call the subgroup of Aut X generated by
{Sy}y∈X the inner automorphism group and denote it by Inn X. The inner automor-
phism group Inn X acts on X on the right naturally. We say that X is algebraically
connected if the action of Inn X on X is transitive.

2.2 Smooth quandles

In this section, we study the definition of smooth quandles and its inner automor-
phism groups. The facts dealt with in this section are those stated in Ishikawa, n.d.

Definition 2.2.1 (Ishikawa, n.d.). A smooth quandle is a smooth manifold X with a smooth
binary operation ▷ : X × X → X satisfying the two conditions:

1. The algebraic system (X, ▷) is a quandle.

2. The inner automorphism Sy : X → X is a diffeomorphism for any y ∈ X.

To state the theorem on the inner automorphism group of smooth quandles, let
us prepare a subgroup of the inner automorphism of quanles. Let X be a quandle.
The associated group As X of the quandle X generated by {ex}x∈X with relations
ex▷y = eyexe−1

y . There is a natural surjective group homomorphism p : As X →
Inn X. We consider the group homomorphism ε : As X → Z which maps every ex to
1 ∈ Z, and let Inn0 X be the image p(Ker ε).

Theorem 2.2.2 (Ishikawa, n.d.). Suppose X is a topologically connected and algebraically
connected smooth quandle. Then the inner automorpism group Inn X is a Lie transformation
group. Furthermore, the identity component of Inn X is equal to Inn0 X and acts on X
transitively.

By the Theorem 2.2.2, topologically connected and algebraically connected smooth
quandles are homogeneous spaces.

2.3 Examples

In this section, we show some examples that we use in this thesis.

2.3.1 Conjugacy quandles

Let G be a group, and ▷ : G ×G → G be a binary operation defined by g ▷ h = h−1gh.
Then the algebraic system (X, ▷) is a quandle called conjugacy quandle. We denote
the quandle as Conj G. Especially, if G is a Lie group, the quandle Conj G is a smooth
quandle.

2.3.2 Spherical quandles

We introduce the spherical quandle defined by Azcan and Fenn, 1994. Let ⟨−,−⟩ :
Rn+1 × Rn+1 → R be the Euclidean inner product, and let Sn be the n sphere.{

x = (x1, x2, . . . , xn+1) ∈ Rn+1 | ⟨x, x⟩ = x2
1 + x2

2 + · · ·+ x2
n+1 = 1

}
.
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We define the binary operation ▷ : Sn × Sn → Sn as x ▷ y = 2⟨x, y⟩y − x for all
x, y ∈ Sn. Then (Sn, ▷) is a smooth quandle and called the spherical quandle Sn

R.
The inner automorphism Sy can be interpreted as a linear transformation which

identically acts on y and − Id on the the subspace orthogonal of y. Applying the
Cartan–Dieudonné theorem 1, we get the following fact.

Proposition 2.3.1 (Nosaka, 2017a). Suppose n is strictly greater than two. If n is odd,
then Inn Sn

R is isomorphic to the orthogonal group O(n + 1). If n is even, then Inn Sn
R is

isomorphic to the special orthogonal group SO(n + 1).

The action of inner automorphism group on the spherical quandle Sn
R is coinci-

dent with the natural action of the orthogonal group O(n + 1) or the special orthog-
onal group SO(n + 1) on Sn and is transitive. Hence we get the following fact.

Proposition 2.3.2. The spherical quandle is algebraically connected.

Remark 2.3.3. Azcan and Fenn, 1994 defined quandles for a broader class that includes
spherical quandles. We introduce their original definition here. Let K be a fieldof charac-
teristic different from two and ⟨−,−⟩ : Kn × Kn → K be a symmetric bilinear form. K .
Consider a set of the form

Sn
K := {x ∈ Kn+1|⟨x, x⟩ = 1}.

We define the operation x ▷ y to be 2⟨x, y⟩y − x ∈ Sn
K . Then the pair (Sn

K, ▷) is a quandle.

Remark 2.3.4. Clark and Saito, 2018 defined a spherical quandle as a quandle which is
different from Azcan and Fenn, 1994. However, Theorem 4.0.1, our main theorem in this
thesis, provides compatibility between the two definitions. See Appendix A for more details.

2.3.3 Quandles defined over Riemann symmetric spaces

Joyce pointed out that Loos constructed quandles over symmetric spaces in the pa-
per Joyce, 1982. We introduce the quandle constructed in Loos, 1969.

Let X be a symmetric space, i.e., a C∞-manifold equipped with a Riemannian
metric such that each point y ∈ X admits an isometry sy : X → X that reverses every
geodesic line γ : (R, 0) → (X, y), meaning that sy ◦ γ(t) = γ(−t). Then X has a
quandle structure defined by x ▷ y := sy(x) for all x, y ∈ X.

The spherical quandles are a kind of quandles defined by Loos: for any y ∈ Sn,
point symmetry s of Sn is coincident with the inner automorphism Sy of the sphercal
quandle Sn

R. See also Helgason, 2001. Hence the quandles defined by Loos are a kind
of extension of the spherical quandles.

1Every orthogonal transformation can be expressed as a composition of reflections. See Cartan,
2012, Chapter I Section 10.
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Chapter 3

Action of Lie groups on smooth
manifolds

3.1 Preliminaries

In this thesis, the symbols in Tu, 2011 are used without refusal.
A C∞ vector field on a smooth manifold M is a section of a tangent bundle TM

of M, that is, the C∞ map X : M → TM that makes the following diagram commu-
tative:

M X //

idM
��

TM

projection||
M

.

In this thesis, we denote the Lie algebra of the C∞ vector field on M as X(M).
Since a covering map is a local diffeomorphism, we get the following fact.

Proposition 3.1.1. Let M̃ and M be smooth manifolds without boundary, p : M̃ → M be
a smooth covering map and M be a smooth vector field on M. Then there exists a uniquely
defined smooth vector field X̃ on M̃ such that

dp(x)X̃(x) = X ◦ p(x).

3.2 Smooth actions of Lie groups and Lie-Palais theorem

In this section, we discuss smooth actions of Lie groups and Lie-Palais theorem. See
Wang, 2013; Gorbatsevich, Onishchik, and Vinberg, 1997 for more details.

Let G be a finite dimensional Lie group and M be a smooth manifold. Suppose
G acts on M from right smoothly. The action induces a group anti-homomorphism
τ : G → Diff M, where Diff M is the group of diffeomorphisms on M. Then τ
induces an infinitesimal action, that is, a Lie algebra morphism dτ : g → X(M): for
each X ∈ g, we define a vector field XM ∈ X(M) as

(XM(x))(ξ) =
d
dt

∣∣∣∣
t=0

ξ(x · exp tX),

where x ∈ M and ξ is a smooth function defined in the neighborhood of point x.
In certain cases, it can constitute the reverse of the previous discussion, that is,

some Lie algebra morphism can be integrated to Lie group action. One such case is
Lie-Palais theorem.
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Theorem 3.2.1 (Lie-Palais theorem; Palais, 1957). Let G be a connected and simply con-
nected Lie group, ϕ : g → X(M) a Lie algebra homomorphism such that each XM = ϕ(X)
is complete. Then there exists a unique smooth action τ : G → Diff(M) such that dτ = ϕ.

3.3 Lifting Lie group actions

Suppose a connected Lie group G acts on connected manifold M smoothly, and sup-
pose N is a covering of M. Then we can construct a smooth action of the universal
covering group of G on the given cover N. We study the concrete construction of the
action in this section. The construction is introduced in Montaldi and Ortega, 2008;
Montaldi and Ortega, 2009. However, we do not describe the original construction,
but rather a reformulation of the method sketched in Montaldi and Ortega, 2008,
Remark 2.2.

Let p : G̃ → G and πN : N → M be covering maps of a connected Lie group G
and a connected manifold M respectively. We remark that p induces a Lie algebra
isomorphism p∗ : g̃ → g, where g̃ and g are the Lie algebras of G̃ and G respectively.

Suppose G acts on M on the right. Then the action induces a unique group anti-
homomorphism τ : G → Diff M. The group anti-homomorphism also induces a Lie
algebra homomorphism dτ : g → X(M). Using Proposition 3.1.1, for any X ∈ g, an
element X̃ ∈ g̃ and a vector field X̃N ∈ X(N) satisfying{

p∗(X̃) = X
dπNX̃N = XM ◦ πN

exist uniquely. We get a Lie algebra homomorphism

ϕ̃ : g̃ → X(N), X̃ 7→ X̃N .

By Lie-Palais theorem (see Theorem 3.2.1), ϕ̃ induces a group anti-homomorphism
τ̃ : G̃ → Diff(M̃) satisfying dτ̃ = ϕ̃. Therefore we are able to construct an action of
G̃ on the cover N compatible with an action of G on M.

3.4 The relationship between the lifted Lie group actions and
coverings

Suppose a connected Lie group G acts on a connected manifold M smoothly, and
suppose N is a covering of M. As we saw in Section 3.3, we can construct a smooth
action of the universal covering group G̃ of G on the given cover N. In this section,
we see the relationship between the induced action and the covering.

Proposition 3.4.1 (Montaldi and Ortega, 2008; Montaldi and Ortega, 2009). Let p :
G̃ → G be a universal covering map of connected Lie group G. Then the next diagram is
commutative:

N × G̃ N

M × G M

action

πN×p πN

action

.
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Suppose π : M̃ → M is a universal covering of M. The covering map π induces
a covering morphism qN that makes the following diagram commutative:

M̃
qN //

π

��

N

πN~~
M

.

Proposition 3.4.2. The induced covering morphism qN is G̃-equivariant, that is, for any
x̃ ∈ X̃ and g̃ ∈ G̃, the covering morphism qN satisfies qN(x̃ · g̃) = qN(x̃) · g̃.

Proof. Suppose τ : G → Diff(M) is a group anti-homomorphism corresponding to a
group right action of G on M and suppose τ̃ : G̃ → Diff(M̃) and τ̃N : G̃ → Diff(N)
are group anti-homomorphisms induced by group right actions of G̃ on M̃ and N
respectively. For any x̃ ∈ M̃ and g̃ ∈ G̃, by Proposition 3.4.1, we get

πN ◦ qN(x̃ · g̃) = π(x̃) · p(g̃) = πN(qN(x̃) · g̃).

Therefore both qN ◦ τ̃(g̃) and τ̃N(g̃) ◦ qN are covering morphisms induced from a
universal covering τ (p(g̃)) ◦ π : M̃ → M to a covering πN : N → M. Hence we get
qN ◦ τ̃(g̃) = τ̃N(g̃) ◦ qN since the induced covering morphism is unique.
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Chapter 4

Embedding spherical quandles in
Lie groups

In this chapter, we prove the following theorem.

Theorem 4.0.1 (Main theorem). For any positive integer n, there is a Lie group Gn and
a smooth embedding ιn : Sn → Gn which is a quandle homomorphism if we regard Sn as a
spherical quandle and Gn is a conjugacy quandle. Especially,

Gn =


O(2) (n = 1)

Spin(n + 1) (n is even)
Pin(n + 1) (n is odd and n ≥ 3)

.

One can easily see that spherical quandles are embedded in the pin groups in the
case n ≥ 2 since the spin group is an identity component of the pin group. Theorem
4.0.1 is already mentioned by M. Eisermann without proof. See Eisermann, 2014,
Remark 3.12.

4.1 Preliminaries

Suppose M(n, R) is the set of all n-dimensional real square matrices. We consider
two Lie groups: the orthogonal group O(n) = {g ∈ M(n, R) : tgg = I} , where
I is the identity matrix, and the special orthogonal group SO(n) = {g ∈ O(n) :
det g = 1}. Let hn be a diagonal matrix

hn =


1

−1
. . .

−1

 ∈ O(n + 1).

If n is even, the diagonal matrix hn is also an element of SO(n + 1). The special
orthogonal group SO(n) is the unit component of orthogonal group O(n). The or-
thogonal group O(n) has two connected components and has a presentation

O(n) =
{

SO(n) ⊔ hn−1SO(n) (n is even)
SO(n) ⊔ (−I)SO(n) (n is odd)

.

Since SO(n) is a connected Lie group, SO(n) has a unique universal covering group
Spin(n) and a universal covering map p : Spin(n) → SO(n) 1 . The map p is a
double covering and is also induced by the adjoint representation of Spin(n + 1).

1See Cartan, 2012; Chevalley, 1947.
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In this thesis, we use Pin(n) as a double covering group of O(n). The Lie group
Spin(n) is a unit component of Pin(n). We denote the covering map as p : Pin(n) →
O(n). The covering map p : Pin(n) → O(n) induces an exact sequence

1 → Z/2Z → Pin(n)
p−→ O(n) → 1.

See Atiyah, Bott, and Shapiro, 1964, §3 for more details on Pin(n). We denote one of
the two fibers of hn with respect to p as h̃n.

Let ∼n be an equivalence relation on the sphere defined by

x ∼n y ⇐⇒ y = ±x (x, y ∈ Sn).

Then RPn := Sn/ ∼n is a real projective space and the natural projection π : Sn →
RPn is a covering space. Since the relation ∼n is a congruence relation, that is, if
x1, x2, y1, y2 ∈ Sm satisfy x1 ∼n x2 and y1 ∼n y2, then x1 ▷ y1 = x2 ▷ y2. Hence
the quandle structure of Sm

R induces a quandle structure on RPn. We denote the
quandle over RPn as Pn

R. The natural action Sn ↶ O(n + 1) induces the action
RPn ↶ O(n + 1) defined by

π(x) · g = π(xg) (x ∈ Sn, g ∈ O(n + 1)).

Remark 4.1.1. The quandle Pn
R is introduced by Azcan and Fenn, 1994.

4.2 In the case n = 1

The embedding ι1 is presented explicitly:

ι1 : S1 → O(2), (cos θ, sin θ) 7→
(

cos θ − sin θ
− sin θ − cos θ

)
.

We prove ι1 is a diffeomorphism and a quandle homomorphism if we regard S1 as
the one-dimensional spherical quandle and O(2) as a conjugacy quandle. It is easy
to see that the map ι1 is a smooth embedding since the embedding ι1 is a composite
map of a diffeomorphsm

S1 → SO(2), (cos θ, sin θ) 7→
(

cos θ − sin θ
sin θ cos θ

)
,

a natural embedding SO(2) → O(2) and a diffeomorphism2

O(2) → O(2) g 7→ h1g.

Hence it is enough to see that ι1 is a quandle homomorphism. For each θ1, θ2 ∈ R,

(cos θ1, sin θ1) ▷ (cos θ2, sin θ2)

= (cos θ1(2 cos2 θ2 − 1) + 2 sin θ1 sin θ2 cos θ2,
2 cos θ1 sin θ2 cos θ2 + sin θ1(2 sin2 θ2 − 1))

= (cos θ1 cos 2θ2 + sin θ1 sin 2θ2, sin 2θ2 cos θ1 − cos 2θ2 sin θ1)

= (cos (2θ2 − θ1), sin (2θ2 − θ1)).

2See also Hatcher, 2002, p.293.
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Then

ι1(cos θ1, sin θ1) ▷ ι1(cos θ2, sin θ2)

= ι1(cos θ2, sin θ2)
−1ι1(cos θ1, sin θ1)ι1(cos θ2, sin θ2)

=

(
cos θ2 − sin θ2
− sin θ2 − cos θ2

)(
cos θ1 − sin θ1
− sin θ1 − cos θ1

)(
cos θ2 − sin θ2
− sin θ2 − cos θ2

)
=

(
cos (2θ2 − θ1) − sin (2θ2 − θ1)
− sin (2θ2 − θ1) − cos (2θ2 − θ1)

)
= ι1(cos (2θ2 − θ1), sin (2θ2 − θ1))

= ι1((cos θ1, sin θ1) ▷ (cos θ2, sin θ2)).

4.3 Lifting orthogonal group actions on spheres

In this section, we use the discussion in Section 3.3 to construct the action of the
spin group on the sphere from the action of the special orthogonal group on the real
projective space.

Proposition 4.3.1. The action RPn ↶ SO(n + 1) induces an action Sn ↶ Spin(n + 1)
defined by

x · g̃ = xp(g̃) (x ∈ Sn, g̃ ∈ Spin(n + 1)). (4.1)

Proof. Suppose τ̃ : Spin(n + 1) → Diff Sn is a group antihomomorphism induced by
the action defined by Equation (4.1). It is enough to show

dπ ◦ dτ̃
(
X̃Sn

)
=

(
p∗X̃

)
RPn ◦ π

for any X̃ ∈ spin(n + 1). For any x ∈ Sn and ξ which is a smooth function defined in
the neighborhood of point x, using the fact 3 of the differential of smooth maps,(

dπ ◦ dτ̃
(
X̃Sn

)
(x)

)
(ξ) =

(
dτ̃

(
X̃Sn

)
(x)

)
(ξ ◦ π)

=
d
dt

∣∣∣∣
t=0

ξ ◦ π(x · exp tX̃)

=
d
dt

∣∣∣∣
t=0

ξ ◦ π(xp(exp tX̃)).

On the other hand,

(
(

p∗X̃
)

RPn ◦ π(x))(ξ) =
d
dt

∣∣∣∣
t=0

ξ(π(x) · exp tp∗X̃)

=
d
dt

∣∣∣∣
t=0

ξ ◦ π(x exp tp∗X̃)

=
d
dt

∣∣∣∣
t=0

ξ ◦ π(xp(exp tX̃)).

Here, we used the fact that the map p is an adjoint representation of Spin(n + 1) at
the end.

3See Tu, 2011, Section 8.2, equation (8.1).
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4.4 An embedding quandles defined over the projective space
into Lie groups

In this section, we show that a natural quandle homomorphism from the spherical
quandle to its own inner automorphism group induces an embedding of the real
projective space into a Lie group.

Let n be a positive integer, Conj(hn) be a conjugacy class with respect to hn ∈
O(n + 1), and inn be a map defined by

inn : Sn → O(n + 1), e1g 7→ g−1hng. (4.2)

Proposition 4.4.1. The map inn defined by Equation (4.2) is well defined and a quandle
homomorphism.

Proof. First, we prove that the map inn is well defined. The isotropy group Stab(n, e1) ⊂
O(n + 1) of the action Sn ↶ O(n + 1) with respect to e1 = (1, 0, · · · , 0) ∈ Sn is

Stab(n, e1) =

{(
1 0
0 X

)
∈ O(n + 1) : X ∈ O(n)

}
∼= O(n).

The isotropy group Stab(n, h) ⊂ O(n + 1) of the action Conj(hn) ↶ O(n + 1) with
respect to hn ∈ O(n + 1) is

Stab(n, h) =
{(

a 0
0 X

)
∈ O(n + 1) : a ∈ R \ {0}, X ∈ O(n)

}
.

Hence the map inn is well-defined since Stab(n, e1) is a subet of Stab(n, h).
Second, we prove that the map inn is a quandle homomorphism. For any x, y ∈

Sn, there exists A, B ∈ O(n + 1) such that x = e1A, y = e1B. Since

x ▷ y = 2⟨x, y⟩y − x
= 2e1AB−1(te1)e1B − e1A
= e1AB−1(2(te1)e1 − I)B
= e1AB−1hnB,

then

inn(x ▷ y) = (AB−1hnB)−1hn(AB−1hnB)
= (B−1hnB)−1(A−1hn A)(B−1hnB)
= inn(x) ▷ inn(y).

Hence the map inn is a quandle homomorphism.

Proposition 4.4.2. The quandle homomorphism inn : Sn
R → Conj O(n + 1) induces a

quandle isomorphism in : Pn
R → Conj(hn).

Proof. The image of the map inn is coincident with Conj(hn). Since

inn(e1g1) = inn(e1g2) ⇐⇒ g1g−1
2 ∈ Stab(n, h)

⇐⇒ e1g1 ∼n e1g2,

the induced map
in : Pn

R → Conj(hn), π(e1g) 7→ g−1hng
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is a quandle isomorphism.

Remark 4.4.3. The map in is a diffeomorphism.

4.5 A covering space defined over a conjugacy class of a Lie
group

First, we consider the case n = 2m. We construct the universal covering of the
conjugacy class Conj(h2m).

Proposition 4.5.1. Suppose the map p : Spin(2m + 1) → SO(2m + 1) is the universal
covering of SO(2m + 1) and h̃2m ∈ Spin(2m + 1) is a fiber of h2m with respect to the
covering p. Then the map

πh : Conj(h̃2m) → Conj(h2m), x 7→ p(x)

is well-defined and the universal covering of Conj(h2m).

Proof. We denote the Lie algebra of SO(2m + 1) as so(2m + 1). The differential at the
identity of the involution of Spin(2m + 1)

Θ̃ : Spin(2m + 1) → Spin(2m + 1), g̃ 7→ h̃−1
2m g̃h̃2m

is coincident with the involution of so(2m + 1), which is isomorphic to the Lie alge-
bra of Spin(2m + 1),

θ : so(2m + 1) → so(2m + 1), X 7→ h2mXh2m(= h−1
2mXh2m = h2mXh−1

2m).

Suppose Spin(2n+ 1) acts on Conj(h̃2m) from right by conjugation. Then the isotropy
group of h̃2m is

Stab(h̃2m) = {g̃ ∈ Spin(2n + 1) | g̃h̃2m = h̃2m g̃}.

There exists a natural diffeomorphism

Stab(h̃2m)\Spin(2n + 1) → Conj(h̃2m), Stab(h̃2m)g̃ 7→ g̃−1h̃2m g̃. (4.3)

Moreover Stab(h̃2m) is coincident with an isotropy group K̃ of the Cartan involution
Θ̃ : Spin(2m + 1) → Spin(2m + 1). By Borel, 1961, Theorem 3.4, K̃ = Stab(h̃2m) is
topologically connected.

The conjugacy class of O(2m + 1)

Conj(h2m) = {g−1h2mg | g ∈ O(2m + 1)}

is also a conjugacy class of SO(2m + 1). The isotropy group of h2m with respect to
the action is{(

1
X+

)
: X+ ∈ SO(2m)

}
⊔
{(

−1
X−

)
: X− ∈ O(2m) \ SO(2m)

}
and we denote the isotropy group as Stab(h2m). Then, there exists a natural diffeo-
morphism

Stab(h2m)\SO(2m + 1) → Conj(h2m), Stab(h2m)g 7→ g−1h2mg. (4.4)
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Moreover the unit component of Stab(h2m) is

Stab(h2m)0 :=
{(

1
X+

)
: X+ ∈ SO(2m)

}
.

Based on what has been discussed so far, we construct a universal covering of
Stab(h2m). According to Chevalley, 1947, p.52 Proposition 4, the map

Stab(h2m)0\SO(2m + 1) → Stab(h2m)\SO(2m + 1) Stab(h2m)0 g̃ 7→ Stab(h̃2m)g̃

is a covering. Especially the degree of the covering is two since the cardinarity of
Stab(h2m)0\ Stab(h2m) is two. Since K̃ = Stab(h̃2m) is topologically connected, the
Lie algebra so(2n + 1) is simple, and Stab(h2m)0 is closed 4, we can use Helgason,
2001, Proposition 3.6, and the map

K̃\Spin(2m + 1) → Stab(h2m)0\SO(2m + 1), K̃g̃ 7→ Stab(h̃2m)0 p(g̃)

is a universal covering. Then the composition map of them

K̃\Spin(2m + 1) → Stab(h2m)\SO(2m + 1), K̃g 7→ Stab(h̃2m)g

is a universal covering5. Using the diffeomorphisms defined by Equation (4.3) and
Equation (4.4), the map

πh : Conj(h̃2m) → Conj(h2m), x 7→ p(x)

is also a universal covering.

Proposition 4.5.2. An action Conj(h̃2m) ↶ Spin(2m+ 1) induced by the action Conj(h2m) ↶
SO(2m+ 1) defined by conjugation and the universal covering πh : Conj(h̃2m) → Conj(h2m)
constructed in Proposition 4.5.1 is coincident with an action defined by conjugation.

Proof. It is enough to prove that

dπh ◦ X̃Conj(h̃2m)
=

(
p∗X̃

)
Conj(h2m)

◦ πh

for any X̃ ∈ spin(2m + 1). For any x ∈ Conj(h̃2m) and ξ which is a smooth function
defined in the neighborhood of point πh(x), using the fact 6 of the differential of
smooth maps, we get(

dπh ◦ X̃Conj(h̃2m)
(x)

)
(ξ) = X̃Conj(h̃2m)

(x)(ξ ◦ πh)

=
d
dt

∣∣∣∣
t=0

ξ ◦ πh(x · exp tX̃)

=
d
dt

∣∣∣∣
t=0

ξ ◦ πh(exp(−tX̃)x exp(tX̃)).

4In general, each connected component of a topological spcace is closed. If a topological space has
finitely many connected component, each connected components is closed and open.

5We applied a following fact. Let q : X → Y and r : Y → Z be covering maps and let p = q ◦ r. Then
p is a covering map if the degree of r is finite. See Munkres, 2000, §54, Exersise 4.

6See Tu, 2011, Section 8.2, equation (8.1).
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On the other hand,

(
(

p∗X̃
)

Conj(h2m)
◦ πh(x))(ξ) =

d
dt

∣∣∣∣
t=0

ξ(πh(x) · exp tp∗X̃)

=
d
dt

∣∣∣∣
t=0

ξ(exp(−tp∗X̃)πh(x) exp(tp∗X̃))

=
d
dt

∣∣∣∣
t=0

ξ(p(exp(−tX̃))πh(x)p(exp(tX̃)))

=
d
dt

∣∣∣∣
t=0

ξ(p(exp(−tX̃))p(x)p(exp(tX̃)))

=
d
dt

∣∣∣∣
t=0

ξ ◦ p(exp(−tX̃)x exp(tX̃))

=
d
dt

∣∣∣∣
t=0

ξ ◦ πh(exp(−tX̃)x exp(tX̃)).

Here, we used the fact that the map p is an adjoint representation of Spin(2m + 1) at
the end.

Second, we consider the case n = 2m + 1. Since the group Spin(n + 1) acts on
Conj(h2m+2) ⊂ Pin(n + 1) smoothly, we are able to do same discussion in the case
n = 2m + 1. Then we get the following fact.

Proposition 4.5.3. The map

πh : Conj(h̃2m+1) → Conj(h2m+1), x 7→ p(x)

is well defined and a universal covering. Moreover the action Conj(h̃2m+1) ↶ Spin(2m +
2) induced by the action Conj(h2m+1) ↶ SO(2m + 2) defined by conjugation and a uni-
versal covering πh : Conj(h̃2m+1) → Conj(h2m+1) is coincident with the action defined by
conjugation.

4.6 The proof of main theorem in the case n ≥ 2

In this section, we prove the main theorem, Theorem 4.0.1, using in the case n ≥ 2
what we have prepared so far. Using Proposition 4.5.1 and Proposition 4.5.3, the
map πh : Conj(h̃n) → Conj(hn) is a universal covering. By Proposition 4.4.2 and
Remark 4.4.3, the diffeomorphism in induces a diffeomorphism ιn : Sn ∼−→ Conj(h̃n)
that makes the following diagram commutative:

(Sn, e1)
ιn−−−→ (Conj(h̃n), h̃n)

π

y πh

y
(RPn, π(e1))

in−−−→ (Conj(hn), hn)

.

Hence it is enough to prove that the map ιn is a quandle homomorphism.

Proposition 4.6.1. The map ιn is a quandle homomorphism.
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Proof. For any x, y ∈ Sn, there exists A, B ∈ SO(n + 1) such that x = e1A, y = e1B.
Then, by Proposition 3.4.2, we get

ιn(x ▷ y) = ιn(e1AB−1hnB)
= ιn(e1A · ιn(y))
= ιn(x) · ιn(y)
= ιn(y)−1ιn(x)ιn(y)
= ιn(x) ▷ ιn(y).

Therefore the diffeomorphism ιn is a quandle homomorphism.
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Chapter 5

Application

We give some application of Theorem 4.0.1 to some knot invariants concisely.

5.1 The Chern-Simons invariant

Inoue and Kabaya, 2014 proved that the complex volume, the Chern-Simons invari-
ants with respect to its principal PSL(2, C) bundle, of hyperbolic knots is presented
as the quandle cocycle invariants. That is, we need just two objects, a quandle col-
oring and a quandle 2-cocycle, to calculate the complex volume of hyperbolic knots.
Inoue and Kabaya defined the parabolic quandle, which is a smooth quandle em-
bedded in PSL(2, C) and they proved that the parabolic quandle’s quandle coloring
and quandle 2-cocycle are the objects to calculate the complex volume.

Nosaka, 2019 proved that secondary characteristic classes in Dupont, 2001, closely
related to the Chern-Simon class, produce cocycles of quandles. In addition, Nosaka,
2015 showed that there is a bijection between the quandle colorings and the knot
group representations if there is an embedding of quandle into groups. Hence we
expect that we may be able to calculate the Chern-Simons invariant with respect to
principal Spin(n + 1) bundles with the spherical quandle Sn

R as analogy of Inoue-
Kabaya’s work.

5.2 The longitudinal mapping

Clark and Saito, 2018 defined a knot invariant called the longitudinal mapping. Ac-
cording to Clark and Saito, 2018, their invariant is a generalization of the quandle
cocycle invariants. The exact definition of the knot invariant is as follows: Let K be
a knot and G be a group. For each x ∈ G,

Lx
G : { f ∈ Hom(π1(S3 \ K), G) : f (m) = x} → G, f 7→ f (l)

, where m is a meridian and l is a longitude of K.
Since Nosaka, 2015 showed that there is a bijection between the quandle color-

ings and the knot group representations if there is an embedding of quandle into
groups, we are able to relate Sn

R-colorings to the domain of Lx
Spin(n+1) by Theorem

4.0.1. The relation makes the calculation of Lx
Spin(n+1) easier since we can use Sn,

which is easier than Spin(n + 1), to calculate Lx
Spin(n+1).
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Appendix A

The definition of the spherical
quandle in dimension two

Clark and Saito, 2018 defined a family of quandles on conjugacy classes of SU(2)
and called them spherical quandles. Their definition of spherical quandles is differ-
ent from the definition in Section 2.3.2, but we give the compatibility between the
spherical quandles in the sense of Clark and Saito, 2018 and the spherical quandle
S2

R.

A.1 The spherical quandle defined by Clark and Saito, 2018

In this section, we introduce the spherical quandle defined by Clark and Saito, 2018.
Consider the 2-dimentional special unitary group

SU(2) =
{(

a b
−b a

)
: a, b ∈ C, aa + bb = 1

}
, where i =

√
−1 and a, b are conjugation of a, b respectively. Suppose S2(r) is a

conjugacy class of SU(2)

S2(r) =
{

g−1
(

ir 0
0 −ir

)
g : g ∈ SU(2)

}
for any r ∈ R. For any r ∈ R \ {0}, the conjugacy class S2(r) is homeomorphic to the
2-dimensional sphere S2 and is a subquandle of Conj SU(2). Clark and Saito, 2018
called the family of quandles {S2(r)}r∈(0,π) “spherical quandles".

Remark A.1.1. Our description is a little different from Clark and Saito, 2018’s original
one. However our description is equivalent to the original one since the quandle S2(r) is
isomorphic to the quandle S2

2π−2r in Clark and Saito, 2018 for any r ∈ (0, π). See also Clark
and Saito, 2018, Lemma 4.4.

A.2 An embedding S2
R into SU(2)

In this section, we prove that S2
R is isomorphic to S2(π

2 ) and that the spherical quan-
dles in the sense of Clark and Saito, 2018 is a kind of extension of S2

R.
Consider a matrix

H̃2 = exp
(

π
2 i 0
0 −π

2 i

)
=

(
i 0
0 −i

)
∈ SU(2)
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and the Lie algebra of SU(2)

su(2) =
{(

ix a
−a −ix

)
: x ∈ R, z ∈ C

}
.

The adjoint representation ϖ′ : SU(2) → GL(su(2)) induces a covering ϖ : SU(2) →
SO(3). The map is a unique universal covering SO(3) since the Lie group SU(2) is
connected and simply connected. Then there is a unique Lie group isomorphism
j : Spin(3) → SU(2) that makes the following diagram commutative:

(Spin(3), h̃2)
j //

p
��

(SU(2), H̃2)

ϖww
(SO(3), h2)

.

The map j induces a (smooth) quandle isomorphism between Conj(h̃2) and S2(π
2 ).

Hence Theorem 4.0.1 induces a isomorphism from S2
R to S2(π

2 ).

Remark A.2.1. The author gave elementary proof of the fact dealt with in this section. He
also gave a concrete quandle isomorphism as follows:

S2
R → S2(r), (x1, x2, x3) 7→ exp(

π

2

(
ix1 x2 + x3i

−x2 + x3i −ix1

)
) (A.1)

, where exp : su(2) → SU(2) is an exponential map. See Yonemura, 2021 for more details.
Since Spin(5) is isomorphc to Sp(2), we may be able to construct a concrete embedding

of S4
R similar to Equation (A.1).
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