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Preface
Special values of ζ-functions or L-functions are among the most attractive objects in Number
Theory. For example, the class number formula for a Dirichlet L-function L(χ, s) describes the
relation between the special value L(χ, 1) and the class number of a quadratic field. Similarly,
it is expected that arithmetic invariants appear in the central value of an L-function associated
to an elliptic curve. Let E be an elliptic curve defined over a number field K and L(E/K, s) the
Hasse–Weil L-function. Then, the special value L(E/K, 1) is expected to be a period of E up to
multiplication of an algebraic number. The full Birch and Swinnerton-Dyer (BSD) conjecture
asserts that the algebraic number is also described by arithmetic invariants of E such as the
Tate–Shafarevich group and Tamagawa factors. Therefore, it is important to study the p-adic
valuation of the algebraic part for each rational prime number p. In this thesis, we discuss two
topics related to the p-adic valuation of the algebraic part of the central value in Part I and Part
II respectively.

In Part I, we study the behavior of the 2-adic valuations of the critical values for elliptic curves
with complex multiplication. In 1997, Zhao [Zha97] gave a lower bound of the 2-adic valuation
of the central value of the Hecke L-function associated to the elliptic curve E−D : y2 = x3 +Dx
defined over Q(i) with some conditions on D ∈ Z[i]. His method is based on the number of the
primes dividing D, and is sometimes referred to as Zhao’s method. To date, Zhao’s method has
been applied to various families of elliptic curves and has even been devised as an application that
shows non-vanishing of the critical values of L-functions associated to elliptic curves, making it
one of the most promising methods for future development. However, due to technical reasons,
Zhao’s method has been applied only when the exponents of the primes dividing the parameter
D are all equal. In Part I, we overcome this difficulty for the elliptic curve E−D and have
succeeded in removing the condition on the exponents of the primes of D. In the proof, multiple
use of Zhao’s method is essential. It is expected that this method will make it possible to give
a lower bound of the p-adic valuations of the critical values of the Hecke L-functions associated
with all CM elliptic curves defined over an imaginary quadratic field.

In Part II, we consider the elliptic curves Ap : x3+y3 = p and E−p : y2 = x3+px defined over
Q for a prime number p. Rodríguez-Villegas and Zagier [RZ95] gave a necessary and sufficient
condition that rankAp(Q) is equal to 2 in terms of the constant term of a polynomial defined by
a simple recurrence formula. Their result gives a criterion for the classical Diophantine problem
“Which prime number p can be written as the sum of two cubes of rational numbers?”. The
main result in Part II consists of two parts. One is that we give another recurrence formula that
is more efficient than the one they gave. The other is that we give a necessary and sufficient
condition that the rank of another elliptic curve E−p is equal to 2 by using a similar recurrence
formula. One of the key points of the proof is to derive a congruence relation modulo p between
the algebraic part of L(Ap/Q, 1) (resp. L(E−p/Q, 1)) and that of the central critical value of
some Hecke L-function associated to the prime-independent elliptic curve A1 : x3+y3 = 1 (resp.
E−1 : y2 = x3 + x). By using this result, the computation of the rank of these elliptic curves is
reduced to an elementary computation of polynomials, which can be easily implemented using
a computer.
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Chapter 1

Introduction

1.1 Background
Special values of ζ-functions or L-functions are among the most attractive objects in Number
Theory. For example, the class number formula for a Dirichlet L-function L(χ, s) asserts that
the class number of a quadratic field appears in the special value L(χ, 1). Following Deligne, we
call L(χ, 1) a critical value in the sense that s = 1 is not a pole of the gamma factor appearing in
the functional equation of L(χ, s). In general, it is considered that arithmetic invariants appear
in the critical values of ζ-functions or L-functions. In this thesis, we focus on the critical values
of L-functions associated to elliptic curves.

Let E be an elliptic curve defined over a number field K and L(E/K, s) the Hasse–Weil
L-function. We define the complete Hasse–Weil L-function over K by

Λ(E/K, s) := As/2ΓK(s) · L(E/K, s),

where the constant A and the gamma factor ΓK(s) are given as follows:

A = NK/Q(fE/K) · |dK |2, ΓK(s) = ((2π)−sΓ(s))[K:Q].

Here, fE/K is the conductor of E over K and dK is the discriminant of K (cf. [Hus04, p.313-
314]). Then, it is conjectured that Λ(E/K, s) has an analytic continuation to the entire complex
plane and satisfies the functional equation

Λ(E/K, 2− s) = ±Λ(E/K, s).

We call an integer m critical if m is neither a pole of ΓK(s) nor a pole of ΓK(2− s). Therefore,
the critical value of L(E/K, s) is only the special value at s = 1, that is, the central value. For
each elliptic curve, a value called period is defined up to multiplication by a non-zero algebraic
number. For example, the value obtained by integrating an invariant differential of an elliptic
curve over some domain is a period. The detailed definition of the period is given in Section
2.1, and here we fix a suitable period ΩE/K of E. There is a deep relationship between the
period ΩE/K and the critical value of L(E/K, s). We assume that L(E/K, s) has an analytic
continuation. Then, the value

L(E/K, 1)
ΩE/K

(1.1)

is expected to be algebraic. We call such a value the algebraic part of the critical value of
L(E/K, s). Note that the algebraic part depends on the choice of the period.
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The Birch and Swinnerton-Dyer (BSD) conjecture asserts that the rank of E(K) is equal to
the order of the zero of L(E/K, s) at s = 1. In addition, the Tate–Shafarevich group X(E/K)
is expected to be finite. Furthermore, when L(E/K, 1) 6= 0, the BSD conjecture also predicts
that the algebraic part (1.1) can be written in terms of arithmetic invariants of the elliptic curve
E, that is, the following equation holds:

L(E/K, 1)
ΩE/K

=
∏

p cp ·#X(E/K)√
|dK | · (#E(K)tors)2

, (1.2)

where cp is the local Tamagawa factor at the prime p. For cases where L(E/K, 1) is not nec-
essarily non-zero, for example, refer to [DD10, Conjecture 2.1]. The equality for the p-adic
valuation of both sides of equation (1.2) for each rational prime p is called the p-part of the BSD

conjecture, which has also not been completely proven. Hence, studying the p-adic valuations of
the algebraic parts is important. We are especially concerned with the 2-adic valuations of the
algebraic parts. This is because, in general, the case of p = 2 is theoretically difficult but easy
to compute.

In Part I, we consider elliptic curves defined over Q(i) with complex multiplication by Z[i].
In this case, the p-adic valuation of the algebraic part makes sense for each prime number p
from the following theorems.

Theorem 1.1 (Hecke–Deuring). Let E be an elliptic curve defined over a number field F with
complex multiplication by the ring of integers OK of an imaginary quadratic field K.

(i) Assume that K ⊂ F and we write ψE/F be the Hecke character associated to E/F . Then

L(E/F, s) = L(ψE/F , s)L(ψE/F , s).

(ii) Assume that K 6⊂ F , and let F ′ = FK. We write ψE/F ′ be the Hecke character associated
to E/F ′. Then

L(E/F, s) = L(ψE/F ′ , s).

In particular, L(E/F, s) has an analytic continuation to the entire complex plane.

Proof. For example, see [Sil94, CHAPTER II, Theorem 10.5] and [Sil94, CHAPTER II, Corol-
lary 10.5.1].

Theorem 1.2 (Damerell’s Theorem). Let E be an elliptic curve defined over an imaginary
quadratic field K with complex multiplication by OK . Let L be a period lattice of E and take
ΩE ∈ C× so that L = ΩEOK . Denote the Hecke character of K associated to E by ψ. For each
positive integer k, we have

L(ψk
, k)

Ωk
E

∈ Q.

Proof. For example, see [Dam70, Theorem 1] or [Rub99, Corollary 7.18].

Remark 1.3. As an aside, when E is defined over Q which does not necessarily have complex
multiplication, the results of Wiles and others ([Wil95], [TW95], [Bre+01]) show the analytic
continuation of L(E/Q, s). Furthermore, it follows from the results of Manin [Man72] and
Drinfel’d [Dri73] that the algebraic part of L(E/Q, 1) is indeed algebraic. The algebraic part
of the special value at s = 1 of the first derivative of L(E/Q, s) is also defined with a slight
modification, and the algebraicity in that case is proved by Gross and Zagier [GZ86].
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1.2 Previous research and main result
In 1997, Zhao [Zha97] gave a lower bound of the 2-adic valuations of the central values of the
Hecke L-functions associated to a family of elliptic curves ED : y2 = x3 −Dx defined over Q(i)
with certain conditions on D ∈ Z[i]. His method is based on the number of the primes dividing
D, and is sometimes referred to as Zhao’s method.

Several works are giving lower bounds of the p-adic valuations of various families of elliptic
curves with complex multiplication when p = 2, 3, using Zhao’s method. First, we explain
some results for elliptic curves of the form y2 = x3 − Dx. Zhao gave a lower bound of the
2-adic valuations when D is the square of the product of distinct Gaussian primes (π1 · · ·πn)2 ∈
Z[i] (πi ≡ 1 mod 4) in [Zha97] and when D is the square of the product of distinct rational
primes (p1 · · · pn)2 (pi ≡ 1 mod 8) in [Zha01]. He also gave it for D = 4(π1 · · ·πn)2 (πi ≡
1 mod 2 + 2i) in [Zha03]. We note that these results treated the case where all exponents of
the primes dividing D are equal. Qiu and Zhang gave a lower bound of the 2-adic valuations
for D = π1 · · ·πn, (π1 · · ·πr)2πr+1 · · ·πn (πi ≡ 1 mod 4) in [QZ02a]. In the latter case, not all
exponents of the primes dividing D are equal, however, no proof has been given. Next, we
explain some results for elliptic curves of the form y2 = x3 − 432D. Qiu and Zhang gave a
lower bound of the 3-adic valuations when D is the square of the product of distinct Eisenstein
primes (π1 · · ·πn)2 ∈ Z[ω] (πi ≡ 1 mod 6) in [QZ02b]. Qiu also gave it for D = (π1 · · ·πn)4 (πi ≡
1 mod 6) and for D = (π1 · · ·πn)3 (πi ≡ 1 mod 12) in [Qiu03]. Kezuka gave a lower bound of the
3-adic valuations for the elliptic curves y2 = x3 − 432D2 defined over Q when D is a cube-free
integer with (D, 3) = 1 in [Kez21]. When the j-invariant of a CM elliptic curve is not 0 or 1728,
it is difficult to calculate the 2-adic valuation. However, there are some results even for this case
(cf. [Coa+15], [Coa+14], [Cho19]).

Let K = Q(i). We consider the elliptic curve E−D : y2 = x3+Dx defined over K for D ∈ K
which is coprime to 2. We write the Hecke character associated to E−D as ψ−D. We give a
lower bound for the 2-adic valuation of the algebraic part of L(ψ−D, 1). The following theorem
is the main result of Part I.

Theorem 1.4. Suppose D ∈ OK is quartic-free and congruent to 1 modulo 2 + 2i. Let ψ−D

be the Hecke character associated to the elliptic curve E−D : y2 = x3 +Dx defined over K. We
define L2(ψ−D, s) to be the Hecke L-function of ψ−D omitting the Euler factor corresponding
to the prime (1 + i)OK . If D /∈ K×2, then we have

v2

(
L2(ψ−D, 1)

Ω

)
≥ r(D)− 2

2 , (1.3)

where r(D) is the number of distinct primes of K dividing D, Ω = 2.6220575 . . . is the least
positive real element of the period lattice of E1 : y2 = x3 − x and v2 is the 2-adic valuation of
Q2 normalized so that v2(2) = 1.

Remark 1.5. The left-hand side of (1.3) is independent of the choice of an embedding Q ↪→ Q2.

Remark 1.6. When D ∈ K×2, Zhao gave the lower bound (2r(D)−3)/2 (cf. [Zha03, Theorem
1]). Note that Zhao uses a period of E4D, while we use a period Ω of E1.

Remark 1.7. The condition that D ∈ OK is quartic-free and congruent to 1 modulo 2 + 2i in
Theorem 1.4 is not essential. If D ∈ K is not quartic-free, then we can take D0 ∈ OK so that
it is quartic-free and E−D is isomorphic to E−D0 over K. For any D ∈ OK which is coprime to
2, only one of {±D,±iD} is congruent to 1 modulo 2 + 2i. For more details, see Section 2.2.
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Remark 1.8. In the inequality (1.3), it is expected that the equality holds for many D. See
the numerical examples in Section 3.4.

We prove Theorem 1.4 by combining Theorem 3.4 with Theorem 3.5. Here, Theorem 3.4
deals with the case where all the exponents of the primes dividing D are equal, and Theorem
3.5 deals with the other case. Zhao’s lower bound in [Zha03, Theorem 1] is a special case of
Theorem 3.4. The key of the proof of Theorem 3.4 and Theorem 3.5 is to consider not only
an elliptic curve E−D for a parameter D but also elliptic curves E−DT for all divisors DT of
D. Theorem 3.4 is proved by Zhao’s method, that is, using the induction on the number of
the primes dividing D. However, due to technical reasons, Zhao’s method can only be applied
to the case where all exponents of the primes dividing D are equal. In order to apply Zhao’s
method to the other case, we decompose D into D1D2D3, where Di is the product of the primes
dividing D whose exponents are all equal to i. By iterating Zhao’s method for each Di, we give
a lower bound of the 2-adic valuation for general D and prove Theorem 3.5.

We deal only with the family E−D : y2 = x3+Dx in this paper. However, the essence of the
proof of Theorem 3.5 is that D can be uniquely decomposed into the product of primes in K.
Therefore, our iterative Zhao’s method may be applicable to all CM elliptic curves defined over
imaginary quadratic fields with class number one.

At almost the same time, we noticed that Kezuka has also given a lower bound of the 3-adic
valuations for the elliptic curves y2 = x3 − 432D2 defined over Q using an iterative Zhao’s
method similar to ours in the proof of [Kez21, Theorem 2.4].

Part I is organized as follows. In Chapter 2, we make some calculations on various invariants
of the elliptic curve E−D and write the L-value at s = 1 as a finite sum using a special value of
the Weierstrass ℘-function. In Chapter 3, we give a lower bound of the 2-adic valuation of the
L-value by using Zhao’s method. Numerical examples of Theorem 1.4 are given in Section 3.4.
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Chapter 2

Preliminaries

2.1 BSD invariants
In this section, we make some calculations on various invariants of the elliptic curve E−D : y2 =
x3+Dx defined over K = Q(i). Since E−D is isomorphic to E−d4D over K for d ∈ K×, we may
assume that D ∈ OK and quartic-free. In the rest of Part I, we consider only the elliptic curve
E−D : y2 = x3+Dx defined over K, where D ∈ OK is non-trivial, coprime to 2 and quartic-free.

Proposition 2.1. The following holds:

#E−D(K)tors =


4 (D ∈ K×2),
10 (D = ±(1± 2i)),
2 (otherwise).

Proof. It is straightforward to verify the claim using the Nagell–Lutz theorem for K. In partic-
ular when D /∈ K×2, it is computed in [OS21, Lemma 6.2] and [OS21, Remark 6.3].

Proposition 2.2. Suppose D ∈ OK is congruent to 1 modulo 2 + 2i. The elliptic curve E−D

has bad reduction at all primes dividing D. Moreover, E−D has good reduction at the prime
(1 + i)OK if and only if (i/D)4 = i, where (·/·)4 is the quartic residue character.

Proof. Since the discriminant of the equation y2 = x3+Dx is (1+ i)12D3 and D is quartic-free,
the equation of E−D is minimal at all primes dividing D. Therefore, the first claim follows. We
show that E−D has good reduction at (1 + i)OK when (i/D)4 = i using Tate’s algorithm. In
the other cases, we can show similarly that E−D has bad reduction at (1+ i)OK . From now on,
we follow Silverman’s notation and steps (cf. [Sil94, p.366]).

We start from Step 1. Set π = 1 + i and we have

∆ = π12D3, a1 = a2 = a3 = a6 = 0, a4 = D,

b2 = b6 = 0, b4 = 2D, b8 = −D2.

Since π | ∆, we proceed to Step 2. The curve Ẽ obtained by reduction of E at π has the singular
point (1, 0). Thus, we do the transformation x 7→ x+ 1 and obtain the new equation

y2 = x3 + 3x2 + (D + 3)x+ (D + 1)

whose reduction curve has the singular point (0, 0). Then, we have

a1 = a3 = 0, a2 = 3, a4 = D + 3, a6 = D + 1,
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b2 = 12, b4 = 2D + 6, b6 = 4D + 4, b8 = −D2 + 6D + 3.

We can easily check

π | b2, π2 | a6, π3 | b6, b8

and proceed to Step 6. Let k be the residue field OK/(π) and fix an algebraic closure k. For
simplcity, we set ai,r = π−rai. The following equations over k

Y 2 + a1Y − a2 ≡ (Y − α)2 mod π,
Y 2 + a3,1Y − a6,2 ≡ (Y − β)2 mod π

have the solution α = β = 1. Thus, we do the transformation y 7→ y+x+π and obtain the new
equation

y2 + 2xy + 2πy = x3 + 2x2 + (D + 3− 2π)x+ (D + 1− π2).

Then, we have

a1 = a2 = 2, a3 = 2π, a4 = D + 3− 2π, a6 = D + 1− π2,

b2 = 12, b4 = 2D + 6, b6 = 4D + 4, b8 = −D2 + 6D + 3.

We consider the factorization over k of the polynomial

P (T ) = T 3 + a2,1T
2 + a4,2T + a6,3.

If we write D = 1 + (2 + 2i)(s + ti) for s, t ∈ Z, then we see that P (T ) = T 3 − (s − t − 1).
By properties of the quartic residue symbol, (i/D)4 = i is equivalent to s − t ≡ 3 mod 4 (see,
[Lem00, Theorem 6.9]). Thus, P (T ) has the triple root T = 0 and we proceed to Step 8. Since
the polynomial over k

Y 2 + a3,2Y − a6,4 = Y 2 − s

has the double root Y = 0 if s ≡ 0 mod 2 and Y = 1 if s ≡ 1 mod 2. We suppose s ≡ 0 mod 2
and proceed to Step 9. (For the case s ≡ 1 mod 2, we proceed to Step 9 after transformation
y 7→ y + π2.) Since s− t ≡ 3 mod 4, we have π4 | a4 and π6 | a6, and proceed to Step 11. Then,
the transformation x 7→ π2x, y 7→ π3y leads to the new equation

y2 + 2
π
xy + 2

π2
y = x3 + 2

π2
x2 + D + 3− 2π

π4
x+ D + 1− π2

π6

whose discriminant is D3. Therefore, the elliptic curve E has good reduction at (1 + i)OK and
we finish Tate’s algorithm.

Remark 2.3. If (i/D)4 = i, then the minimal model of E−D at (1 + i)OK is{
y2 + (1− i)xy − iy = x3 − ix2 − D+1−2i

4 x+ iD+2+i
8 (s ≡ 0 mod 2),

y2 + (1− i)xy + (1− 2i)y = x3 − ix2 − D+1−6i
4 x+ iD+6+9i

8 (s ≡ 1 mod 2),

where D = 1 + (2 + 2i)(s+ ti) (s, t ∈ Z).
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Local informations at (1+i)OK including Kodaira symbols are summarized in Table 2.1. For
other primes that divide D, we obtain Table 2.2 by Tate’s algorithm. Here, Di is the product
of the primes dividing D whose exponents are all equal to i. For the definition of the quantities
mD, vD, fD and cD associated to E−D/Kv for each finite place v of K, see [Sil94, p.363].

(i/D)4 Kodaira Symbol mD vD fD cD
±1 I∗0 5 12 8 2
i I0 1 0 0 1
−i II∗ 9 12 4 1

Table 2.1: Local informations at (1 + i)OK

π | D Kodaira Symbol mD vD fD cD
π | D1 III 2 3 2 2

π | D2, (D1D3/π)2 = 1 I∗0 5 6 2 4
π | D2, (D1D3/π)2 = −1 I∗0 5 6 2 2

π | D3 III∗ 8 9 2 2

Table 2.2: Local informations at πOK (π | D)

Next, we recall the definition of the period of an elliptic curve appearing in the BSD conjec-
ture. For details, see [Tat95] or [DD10] for example. Let E be an elliptic curve defined over a
number field F and fix an invariant differential ω on E. Denote the normalized absolute value
at a place v of F by |·|v. Let ωo

v be a minimal differential at a finite place v. Then, we define

ΩE/F :=
∏
v∤∞

∣∣∣∣ ωωo
v

∣∣∣∣
v

∏
v|∞
real

∫
E(Fv)

|ω|
∏
v|∞

complex

2
∫
E(Fv)

ω ∧ ω,

where Fv is the completion of F at v. Note that ΩE/F is independent of the choice of ω by
the product formula, and independent of the choice of ωo

v. If we fix a Weierstrass model of E
with discriminant ∆E/F , in terms of the minimal discriminant ideal dE/F , the period ΩE/F is
rewritten as follows:

ΩE/F =
∣∣∣∣∣N(∆E/F )
N(dE/F )

∣∣∣∣∣
1/12 ∏

v|∞
real

∫
E(Fv)

|ω|
∏
v|∞

complex

2
∫
E(Fv)

ω ∧ ω.

Let ω1 = dx/2y be an invariant differntial of E1 : y2 = x3 − x and E0
1(R) the connected

component of E1(R) containing the identity of E1. Then, the period lattice of ω1 is of the form
ΩZ+ iΩZ, where

Ω :=
∫
E0

1(R)
ω1 =

∫ ∞

1

dx√
x3 − x

≒ 2.6220576.

Note that
∫
E1(C) ω1 ∧ ω1 is equal to the area of the fundamental parallelogram of the lattice

ΩZ+ iΩZ and therefore equal to Ω2.

Proposition 2.4. We have

ΩE−D/K =


4Ω2

N(D)1/4
((i/D)4 = i),

2Ω2

N(D)1/4
(otherwise).
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Proof. Fix an embedding Q ↪→ C and a quartic root (−D)1/4 ∈ C. We write E−D : y2 = x3+Dx
and E1 : Y 2 = X3 −X. Let ω−D = dx/2y an invariant differential on E−D. The transformaion
x = (−D)2/4X, y = (−D)3/4Y leads to an isomorphism over C between E−D and E1. Therefore,
we obtain ∫

E−D(C)
ω−D ∧ ω−D = N(D)−1/4

∫
E1(C)

ω1 ∧ ω1 = N(D)−1/4Ω2.

By Table 2.1 and Table 2.2, we have∣∣∣∣∣N(∆E/K)
N(dE/K)

∣∣∣∣∣
1/12

=
{
2 ((i/D)4 = i),
1 (otherwise).

Thus, the proposition follows.

2.2 L-value as a finite sum
In this section, we write the L-value at s = 1 as a finite sum using a special value of the
Weierstrass ℘-function. Theorem 2.10 has already been proved by Birch and Swinnerton-Dyer
[BS65]; however, for readers convenience, we calculate it again.

Let ψ−D be the Hecke character of K associated to E−D and let Ω be the least positive real
element of the period lattice of E1 : y2 = x3 − x defined by∫ ∞

1

dx√
x3 − x

= 2.6220575 · · · .

For a non-zero element g ∈ OK , Lg(ψ, s) denotes the Hecke L-function of ψ omitting all Euler
factors corresponding to the primes that divide gOK ; that is;

Lg(ψ, s) = L(ψ, s)
∏

p|gOK

(
1− ψ(p)

Nps

)
.

For a non-zero ideal g of OK , we define Lg(ψ, s) in the same way. Fix Q and Q2 as algebraic
closures of Q and Q2, and fix embeddings Q ↪→ Q2 and Q ↪→ C. Let v2 denote the 2-adic
valuation of Q2 normalized so that v2(2) = 1 and extend to Q2, which is also written as v2.

Proposition 2.5. Suppose D ∈ OK is congruent to 1 modulo 2+2i. Then, the following holds:

v2

(
L2D(ψ−D, 1)

Ω

)
= v2

(
L2(ψ−D, 1)

Ω

)
=


v2

(
L(ψ−D, 1)

Ω

)
− 1

2 ((i/D)4 = i),

v2

(
L(ψ−D, 1)

Ω

)
(otherwise).

Proof. For each prime π dividing D, we have ψ−D((π)) = 0, and ψ−D((1 + i)) = 0 if (i/D)4 6= i
by Proposition 2.2. When (i/D)4 = i, the value ψ−D((1 + i)) is non-zero and equal to u(1 + i)
for some u ∈ O×

K . Therefore, we have

v2

(
ψ−D((1 + i))
N(1 + i)

)
= v2

(
u(1 + i)

2

)
= −1

2 6= 0.

Thus, the 2-adic valuation of the Euler factor at (1 + i)OK is equal to −1/2.
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As mentioned in Section 1.2, we iterate Zhao’s method. For this purpose, we first decompose
D uniquely up to units in OK according to the exponents of a prime dividing D, such as
D

(n)
1 D

(m)
2 D

(`)
3 , where

D
(n)
1 =

∏
π1,i∈S1

π1,i, D
(m)
2 =

∏
π2,j∈S2

π22,j , D
(`)
3 =

∏
π3,k∈S3

π33,k,

and S1 = {π1,1, . . . , π1,n}, S2 = {π2,1, . . . , π2,m}, S3 = {π3,1, . . . , π3,`} are disjoint sets of distinct
primes of OK which are coprime to 2. (We put D(0)

i = 1 if Si = ∅.) Here, a prime of OK is
said to be primary if it is congruent to 1 modulo 2 + 2i. For a prime π which is coprime to
2, it is known that only one of {±π,±iπ} is primary. Hence, all primes in Si are assumed to
be primary, and D is congruent to 1 modulo 2 + 2i. We simply write D(∗)

i as Di if there is no
confusion.

Next, we represent all divisors DT ofD as follows. Let T1 ⊂ {1, . . . , n}, T2 ⊂ {1, . . . ,m}, T3 ⊂
{1, . . . , `} be arbitrary subsets (including the case where T1, T2, and T3 are empty sets). Then,
we define

DT1 =
∏
i∈T1

π1,i, DT2 =
∏
j∈T2

π22,j , DT3 =
∏
k∈T3

π33,k

and DT = DT1DT2DT3 . When Ti = ∅ (i = 1, 2, 3), we define DTi = 1.
For a lattice L of C, z ∈ C and integer k ≥ 0, we define the holomorphic function of s on

the domain Re(s) > 1 + k/2 by

Hk(z, s,L) =
∑
w∈L

′ (z + w)k

|z + w|2s .

Here,
∑′ implies that w = −z is excluded if z ∈ L. The function s 7→ Hk(z, s,L) has the

analytic continuation to the entire complex s-plane if k ≥ 1. We set

E∗
1 (z,L) = H1(z, 1,L).

Proposition 2.6 ([GS81, Proposition 5.5]). Let E be an elliptic curve over an imaginary
quadratic field K with complex multiplication by OK . Fix a Weierstrass model of E and take
ΩE ∈ C× such that the period lattice of E is ΩEOK . We write φ as the Hecke character of K
associated to E and suppose the conductor of φ divides a non-zero integral ideal g of K. Let B
be a minimal set consisting of ideals prime to g such that

Gal(K(E[g])/K) = {σb | b ∈ B},

where σb is the Artin symbol corresponding to b. We take ρ ∈ ΩEK
× such that ρΩ−1

E OK = g−1.
Then, for k ≥ 1, the following holds:

ρk

|ρ|2sLg(φ
k
, s) =

∑
b∈B

Hk(φ(b)ρ, s,L).

For the moment, we take an element ∆ ∈ OK , which is congruent to 1 modulo 2 + 2i, so
that the conductor of ψ−DT divides 4∆OK . Later, we explicitly define ∆ (see the paragraph
after Lemma 3.1).

Lemma 2.7. We apply Proposition 2.6 to E = E−DT , φ = ψ−DT , g = 4∆OK . Then a set B
can be taken as

B = {(4c+∆), (4c+ (1 + 2i)∆) | c ∈ C},

where C is a complete system of representatives of (OK/∆OK)×.
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Proof. Since the conductor of ψ−DT divides 4∆OK , [GS81, Lemma 4.7] shows that the field
K(E−DT [4∆]) coincides with K(4∆), the ray class field of K associated to the modulus 4∆OK .
Thus the following isomorphism via the Artin map holds:

Gal(K(E−DT [4∆])/K) ' (OK/4∆OK)×/O×
K .

Hence the cardinality of B must be equal to 2 ·#(OK/∆OK)×. Therefore, it is sufficient to show
that the Artin symbols corresponding to any two different elements in B are different from each
other. We show that σ(4c+∆) 6= σ(4c′+∆) for c 6= c′ ∈ C. Assume that σ(4c+∆) = σ(4c′+∆). Then
4c + ∆ must be congruent to 4c′ + ∆ modulo 4∆. However, this implies that c and c′ belong
same equivalence class in (OK/∆OK)×, which is a contradiction. Other cases can be shown in
the same way.

We define the sign of ∆ by sgn(∆) = 1 if ∆ ≡ 1 mod 4 and sgn(∆) = −1 if ∆ ≡ 3+2i mod 4.
For simplicity, we set

εT = sgn(∆)
(−1
DT

) 1+sgn(∆)
2

4
∈ {±1}.

Lemma 2.8. For c ∈ C, we have

ψ−DT ((4c+∆)) = εT

(
c

DT

)
4
(4c+∆)

ψ−DT ((4c+ (1 + 2i)∆)) = εT

(
c

DT

)
4
(4c+ (1 + 2i)∆).

Proof. As is well-known, for an ideal a of OK prime to 4DT , it holds that

ψ−DT (a) =
(−DT

α

)
4
α (a = (α), α ≡ 1 mod 2 + 2i).

For example, see [Sil94, CHAPTER II, Exercise 2.34]. Since 4c+∆ ≡ 1 mod 2 + 2i, we have

ψ−DT ((4c+∆)) =
( −DT

4c+∆

)
4
(4c+∆)

=
( −1
4c+∆

)
4

(
DT

4c+∆

)
4
(4c+∆)

= sgn(∆)
(

DT

4c+∆

)
4
(4c+∆).

Let pTi be the number of distinct primes that divide DTi and that are congruent to 3+2i modulo
4. First, we consider the case of sgn(∆) = +1. By the quartic reciprocity law, we can calculate
as follows: (

DT

4c+∆

)
4
=
∏
i∈T1

(
π1,i

4c+∆

)
4

∏
j∈T2

(
π2,j

4c+∆

)2

4

∏
k∈T3

(
π3,k

4c+∆

)3

4

=
∏
i∈T1

(
4c+∆
π1,i

)
4

∏
j∈T2

(
4c+∆
π2,j

)2

4

∏
k∈T3

(
4c+∆
π3,k

)3

4

=
∏
i∈T1

(
−c
π1,i

)
4

∏
j∈T2

(
−c
π2,j

)2

4

∏
k∈T3

(
−c
π3,k

)3

4
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= (−1)pT1+pT3
∏
i∈T1

(
c

π1,i

)
4

∏
j∈T2

(
c

π2,j

)2

4

∏
k∈T3

(
c

π3,k

)3

4

=
(−1
DT

)
4

(
c

DT

)
4
.

In the same way, if sgn(∆) = −1, then(
DT

4c+∆

)
4
=
∏
i∈T1

(
π1,i

4c+∆

)
4

∏
j∈T2

(
π2,j

4c+∆

)2

4

∏
k∈T3

(
π3,k

4c+∆

)3

4

= (−1)pT1+pT3
∏
i∈T1

(
4c+∆
π1,i

)
4

∏
j∈T2

(
4c+∆
π2,j

)2

4

∏
k∈T3

(
4c+∆
π3,k

)3

4

= (−1)pT1+pT3
∏
i∈T1

(
−c
π1,i

)
4

∏
j∈T2

(
−c
π2,j

)2

4

∏
k∈T3

(
−c
π3,k

)3

4

=
∏
i∈T1

(
c

π1,i

)
4

∏
j∈T2

(
c

π2,j

)2

4

∏
k∈T3

(
c

π3,k

)3

4

=
(
c

DT

)
4
.

The rest can be proved similarly.

Lemma 2.9. Denote the period lattice ΩOK of E1 : y2 = x3 − x as LΩ. Let ℘(z) = ℘(z,LΩ)
be the Weierstrass ℘-function and let ζ(z) = ζ(z,LΩ) be the Weierstrass ζ-function. Then for
c ∈ C, we have

E∗
1

(
cΩ
∆ + Ω

4 ,LΩ

)
+ E∗

1

(
cΩ
∆ + (1 + 2i)Ω

4 ,LΩ

)
= 2

{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}
+ ℘′(cΩ/∆)

2

{
1

℘(cΩ/∆)− (1 +
√
2)

+ 1
℘(cΩ/∆)− (1−

√
2)

}

+
√
2 +

{
2 +

√
2

℘(cΩ/∆)− (1 +
√
2)

− 2−
√
2

℘(cΩ/∆)− (1−
√
2)

}
,

where $ = 3.1415 . . . denotes pi.

Proof. For a lattice L = uZ+ vZ (Im(v/u) > 0) of C, we set

s2(L) = lim
s→+0

∑
w∈L\{0}

1
w2|w|2s , A(L) = uv − uv

2$i .

Then, the identity E∗
1 (z,L) = ζ(z,L)− zs2(L)− zA(L)−1 holds (cf. [GS81, Proposition 1.5]). It

is easy to see s2(LΩ) = 0 and A(LΩ) = Ω2/$. Hence, we see that

E∗
1 (z,LΩ) = ζ(z,LΩ)−

$z

Ω2 . (2.1)

The addition formula

ζ(z1 + z2,L) = ζ(z1,L) + ζ(z2,L) +
1
2
℘′(z1,L)− ℘′(z2,L)
℘(z1,L)− ℘(z2,L)
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and equation (2.1) lead to

E∗
1

(
cΩ
∆ + Ω

4 ,LΩ

)
= ζ

(
cΩ
∆ + Ω

4

)
− $

Ω2

(
cΩ
∆ + Ω

4

)
= ζ

(
cΩ
∆

)
+ ζ

(Ω
4

)
+ 1

2
℘′(cΩ/∆)− ℘′(Ω/4)
℘(cΩ/∆)− ℘(Ω/4) − $

4Ω − $

Ω

(
c

∆

)
.

Similarly, we obtain

E∗
1

(
cΩ
∆ + (1 + 2i)Ω

4 ,LΩ

)
= ζ

(
cΩ
∆

)
+ ζ

((1 + 2i)Ω
4

)
+ 1

2
℘′(cΩ/∆)− ℘′((1 + 2i)Ω/4)
℘(cΩ/∆)− ℘((1 + 2i)Ω/4) − (1− 2i)$

4Ω − $

Ω

(
c

∆

)
.

Moreover from [Zha03, (2.7)], we know ℘(Ω/4) = 1+
√
2, ℘′(Ω/4) = −4−2

√
2, ℘((1+2i)Ω/4) =

1−
√
2, ℘′((1 + 2i)Ω/4) = 4− 2

√
2 and

ζ

(Ω
4

)
+ ζ

((1 + 2i)Ω
4

)
− (1− i)$

2Ω =
√
2.

By combining these results, the lemma holds.

Theorem 2.10 (cf. [BS65]). We put χ = χ(DT ) = ((1 + i)/DT )4. Then, the following holds:

εT∆
Ω L2∆(ψ−DT , 1)

=



√
2
4
∑
c∈C

(
c

DT

)
4
+ 1√

2
∑
c∈C

(
c

DT

)
4

℘(cΩ/∆) + 1
℘(cΩ/∆)2 − 2℘(cΩ/∆)− 1 ((i/DT )4 = ±1),

1
8
∑
c∈C

(
c

DT

)
4

{ (1− i)χ
1− (1− i)χ

℘′(cΩ/∆)
℘(cΩ/∆) + 2℘′(cΩ/∆)(℘(cΩ/∆)− 1)

℘(cΩ/∆)2 − 2℘(cΩ/∆)− 1

}
((i/DT )4 = i),

1
4
∑
c∈C

(
c

DT

)
4

℘′(cΩ/∆)(℘(cΩ/∆)− 1)
℘(cΩ/∆)2 − 2℘(cΩ/∆)− 1 ((i/DT )4 = −i).

Proof. Take ΩT ∈ C× so that the period lattice of the elliptic curve E−DT : y2 = x3 + DTx
is ΩTOK and set α = Ω/ΩT . In Proposition 2.6, substituting k = s = 1, g = (4∆), ρ =
ΩT /(4∆),L = ΩTOK leads to

4∆
ΩT

L2∆(ψ−DT , 1) =
∑
b∈B

E∗
1

(
ψ−DT (b)

ΩT

4∆ ,ΩTOK

)
. (2.2)

Moreover, by using Lemma 2.7 and Lemma 2.8, the right-hand side of the equation (2.2) can be
calculated as

∑
c∈C

E∗
1

(
εT

(
c

DT

)
4

4c+∆
4∆

Ω
α
,
Ω
α
OK

)
+
∑
c∈C

E∗
1

(
εT

(
c

DT

)
4

4c+ (1 + 2i)∆
4∆

Ω
α
,
Ω
α
OK

)
.

Note that for λ ∈ C× and a lattice L of C, E∗
1 (λz, λL) = λ−1E∗

1 (z,L) holds. Thus, by Lemma
2.9, we have

εT∆
Ω L2∆(ψ−DT , 1) =

1
4
∑
c∈C

(
c

DT

)
4

{
E∗
1

(
cΩ
∆ + Ω

4 ,LΩ

)
+ E∗

1

(
cΩ
∆ + (1 + 2i)Ω

4 ,LΩ

)}
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= 1
4
∑
c∈C

(
c

DT

)
4
(f1(c) + f2(c) + g(c)), (2.3)

where

f1(c) = 2
{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}
,

f2(c) =
℘′(cΩ/∆)

2

{
1

℘(cΩ/∆)− (1 +
√
2)

+ 1
℘(cΩ/∆)− (1−

√
2)

}
,

g(c) =
√
2 +

{
2 +

√
2

℘(cΩ/∆)− (1 +
√
2)

− 2−
√
2

℘(cΩ/∆)− (1−
√
2)

}
.

The functions f1(c) and f2(c) are odd with respect to c, and g(c) is even with respect to c. We
prove by cases according to the value (i/DT )4.

First, we consider the case of (i/DT )4 = ±1. Since (−1/DT )4 = 1, the function (c/DT )4 is
even with respect to c. We can take C so that if c ∈ C, then −c ∈ C because of (2,∆) = 1. Thus,
we have ∑

c∈C

(
c

DT

)
4
f1(c) =

∑
c

(
c

DT

)
4
f2(c) = 0 ((i/DT )4 = ±1). (2.4)

Next, we consider the case of (i/DT )4 = −i. Since (−1/DT )4 = −1, the function (c/DT )4 is
odd with respect to c. As in the previous case, it holds that∑

c∈C

(
c

DT

)
4
g(c) = 0 ((i/DT )4 = −i). (2.5)

Furthermore, we can take C so that if c ∈ C, then ic ∈ C. Then, the value(
c

DT

)
4

{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}
+
(
ic

DT

)
4

{
ζ

(
icΩ
∆

)
− $

Ω

(
ic

∆

)}

is equal to 0. Hence, we have∑
c∈C

(
c

DT

)
4
f1(c) = 0 ((i/DT )4 = −i). (2.6)

Finally, we consider the case of (i/DT )4 = i. Note that the value

∑
c∈C

(
c

DT

)
4

{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}

does not depend on the choice of C. In fact, we can show it by using the identities ζ(z + 1) =
ζ(z) +$ and ζ(z + i) = ζ(z)−$i. Therefore, the transformation c 7→ (1 + i)c leads to

∑
c∈C

(
c

DT

)
4

{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}

=
∑
c∈C

((1 + i)c
DT

)
4

{
ζ

((1 + i)cΩ
∆

)
− $

Ω

((1 + i)c
∆

)}

= χ
∑
c∈C

(
c

DT

)
4

{
ζ

(
cΩ
∆

)
+ ζ

(
icΩ
∆

)
+ 1

2
℘′(cΩ/∆)− ℘′(icΩ/∆)
℘(cΩ/∆)− ℘(icΩ/∆) − (1− i)$

Ω

(
c

∆

)}
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= (1− i)χ
∑
c∈C

(
c

DT

)
4

{
ζ

(
cΩ
∆

)
+ 1

4
℘′(cΩ/∆)
℘(cΩ/∆) − $

Ω

(
c

∆

)}

= (1− i)χ
∑
c∈C

(
c

DT

)
4

{
ζ

(
cΩ
∆

)
− $

Ω

(
c

∆

)}
+ (1− i)χ

4
∑
c∈C

(
c

DT

)
4

℘′(cΩ/∆)
℘(cΩ/∆) .

Thus, we see that

2
∑
c∈C

(
c

DT

)
4
f1(c) =

(1− i)χ
1− (1− i)χ

1
2
∑
c∈C

(
c

DT

)
4

℘′(cΩ/∆)
℘(cΩ/∆) ((i/DT )4 = i). (2.7)

We substitute (2.4), (2.5), (2.6) and (2.7) into (2.3) and the theorem follows.

We set P(c) = ℘(cΩ/∆),P ′(c) = ℘′(cΩ/∆) and L∗
2∆(ψ−DT , 1) = εT∆L2∆(ψ−DT , 1) for

simplicity. Note that we have

v2

(
L∗
2∆(ψ−DT , 1)

Ω

)
= v2

(
L2∆(ψ−DT , 1)

Ω

)
.

As in the proof of Theorem 2.10, we take C so that if c ∈ C, then −c,±ic ∈ C. Let V be the
subset of C consisting of all primary elements, that is,

V = {c ∈ C | c ≡ 1 mod 2 + 2i}.

We can rewrite the sums over C in Theorem 2.10 as the sums over V . For example if (i/DT )4 = 1,
then we have

1√
2
∑
c∈C

(
c

DT

)
4

P(c) + 1
P(c)2 − 2P(c)− 1 =

∑
c∈V

(
c

DT

)
4

2
√
2(3P(c)2 − 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) .

The same calculation yields the following corollary.

Corollary 2.11. Under the same conditions as Theorem 2.10, we have

L∗
2∆(ψ−DT , 1)

Ω

=



√
2
4
∑
c∈C

(
c

DT

)
4
+
∑
c∈V

(
c

DT

)
4

2
√
2(3P(c)2 − 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) ((i/DT )4 = 1),
√
2
4
∑
c∈C

(
c

DT

)
4
+
∑
c∈V

(
c

DT

)
4

2
√
2P(c)(P(c)2 + 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) ((i/DT )4 = −1),

∑
c∈V

(
c

DT

)
4

P ′(c)
P(c)

χ(P(c)4 − 6P(c)2 + 1) + (P(c)3 + P(c))
(P(c)2 − 2P(c)− 1)(P(c) + 2P(c)− 1) ((i/DT )4 = i),

∑
c∈V

(
c

DT

)
4

P ′(c)(P(c)2 + 1)
(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) ((i/DT )4 = −i).
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Chapter 3

Multiple Zhao’s method

3.1 Overview of multiple Zhao’s method
In this section, we give an overview of multiple Zhao’s method. First, we explain the original
Zhao’s method using the 2-adic valuation

v2

L∗
2(ψ−D

(n)
1
, 1)

Ω


as an example (cf. Theorem 3.4). The proof is based on induction on n. This method begins
with a lower bound of the 2-adic valuation of the following sum over T1:

∑
T1⊂{1,...,n}

L∗
2∆(ψ−DT1

, 1)
Ω ,

which is obtained in Proposition 3.3. Then, the above sum is decomposed as follows:

L∗
2∆(ψ−1, 1)

Ω︸ ︷︷ ︸
T1=∅

+
∑

∅ 6=T1⊊{1,...,n}

L∗
2∆(ψ−DT1

, 1)
Ω +

L∗
2(ψ−D

(n)
1
, 1)

Ω︸ ︷︷ ︸
T1={1,...,n}

. (3.1)

Since the first term of (3.1) does not depend on T1, we can easily give a lower bound of its 2-adic
valuation. For the second term of (3.1), since 1 ≤ #T1 < n, we can also give a lower bound by
using the induction hypothesis. These calculations lead to a lower bound of the 2-adic valuation
of the third term of (3.1), which is what we have desired.

Next, we explain how to give a lower bound of the 2-adic valuation of

L∗
2(ψ−D

(n)
1 D

(m)
2
, 1)

Ω

by using a double induction on n and m (cf. Theorem 3.5). In this case, we use the double
induction based on the following steps (see Figure 3.1 and Figure 3.2):

Step 1 It holds for (1,m) for all m.

Step 2 It holds for (n, 1) for all n.

Step 3 If it holds for (n0,m0) 6= (n,m) (1 ≤ n0 ≤ n, 1 ≤ m0 ≤ m), then (n,m) holds.
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1 2 · · · n− 1 n

1

2

...

m− 1

m

Figure 3.1: Step 1 and Step 2

1 2 · · · n− 1 n

1

2

...

m− 1

m

Figure 3.2: Step 3

Step 1 and Step 2 are proved by induction on m and n, respectively. We begin with a lower
bound of the 2-adic valuation of the following sum over T1 and T2:

∑
T1⊂{1,...,n}
T2⊂{1,...,m}

L∗
2∆(ψ−DT1DT2

, 1)
Ω . (3.2)

As in the case of the original Zhao’s method, we decompose the sum into seven terms for each
part enclosed by the circles in the following figure:

1 2 · · · n− 1 n

1

2

...

m− 1

m

Figure 3.3: Decomposition of the equation (3.2)

Then, by using lower bounds in the cases of D = D
(n)
1 and D = D

(m)
2 , and the assumption

of Step 3, we can give lower bounds of the 2-adic valuations of all terms except for the term
enclosed by the red circle in Figure 3.3, which is what we have desired. In this way, we calculate
the 2-adic valuation in the case of D = D

(n)
1 D

(m)
2 and finish multiple Zhao’s method.
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3.2 2-adic valuation of L-value
Let C be a complete system of representatives of (OK/∆OK)× and

V = {c ∈ C | c ≡ 1 mod 2 + 2i}.

For each c ∈ V , we define quantities appearing in Corollary 2.11 as follows:

W1(c) =
2
√
2(3P(c)2 − 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) ,

W−1(c) =
2
√
2P(c)(P(c)2 + 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) ,

Wi(c) =
P ′(c)
P(c)

χ(P(c)4 − 6P(c)2 + 1) + (P(c)3 + P(c))
(P(c)2 − 2P(c)− 1)(P(c) + 2P(c)− 1) ,

W−i(c) =
P ′(c)(P(c)2 + 1)

(P(c)2 − 2P(c)− 1)(P(c)2 + 2P(c)− 1) ,

where χ = ((1 + i)/DT )4, P(c) = ℘(cΩ/∆) and P ′(c) = ℘′(cΩ/∆).

Lemma 3.1. For c ∈ V , it holds that

v2(W1(c)) = v2(W−1(c)) = v2(Wi(c)) = v2(W−i(c)) = −1
2 .

Proof. [BS65, Lemma 5] shows

v2(P(c)2 − 2P(c)− 1) = v2(P(c)2 + 2P(c)− 1) = 7
4 ,

v2(P(c)− 1) = 1
2 , v2(P(c)2 − 1) = 1, v2(P(c)2 + 1) = 3

2 .

Thus, we have

v2(3P(c)2 − 1) = v2(P(c)2 − 3) = 3
2 , v2(P(c)) = 0,

and v2(P ′(c)) = 3/2 from the identity ℘′(z)2 = 4℘(z)3−4℘(z). The claim follows from here.

Let ∆i ∈ OK be the radical of Di; that is;

∆1 =
∏

π1,i∈S1

π1,i, ∆2 =
∏

π2,j∈S2

π2,j , ∆3 =
∏

π3,k∈S3

π3,k,

where S1 = {π1,1, . . . , π1,n}, S2 = {π2,1, . . . , π2,m}, S3 = {π3,1, . . . , π3,`} are disjoint sets of dis-
tinct primes of OK which are coprime to 2. Then, we define ∆ = ∆1∆2∆3. When Si = ∅,
we put ∆i = 1. Note that we have ∆ 6= 1 since we assume that D ∈ OK is non-trivial. From
[ST68, Theorem 12], we see that the conductor of the elliptic curve E−DT is the square of the
conductor of the Hecke character ψ−DT . Therefore by Table 2.1 and Table 2.2, the conductor
of ψ−DT divides 4∆OK .

Lemma 3.2. We write D = D
(n)
1 D

(m)
2 D

(`)
3 . Then, for any c ∈ V , we have the following lower

bound of the 2-adic valuation:

v2

 ∑
T1,T2,T3

(
c

DT

)
4

 ≥ n

2 +m+ `

2 ,

where T1, T2 and T3 run over all subsets of {1, . . . , n}, {1, . . . ,m} and {1, . . . , `}, respectively.
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Proof. Since it holds that∑
T1⊂{1,...,n}
T2⊂{1,...,m}

(
c

DT1DT2

)
4
=

∑
T1⊂{1,...,n}

(
c

DT1

)
4
·

∑
T2⊂{1,...,m}

(
c

DT2

)
4
,

it is sufficient to show that

∑
T1⊂{1,...,n}

(
c

DT1

)
4
=
{
1 +

(
c

π1,1

)
4

}
· · ·
{
1 +

(
c

π1,n

)
4

}
. (3.3)

Note that for any c ∈ V , we have

v2

(
1 +

(
c

π1,i

)
4

)
≥ 1

2 , v2

(
1 +

(
c

π22,j

)
4

)
≥ 1.

We show (3.3) by induction on n. Clearly, it holds for n = 1. Suppose it is true for 1, . . . , n− 1.
Then, we have∑

T1⊂{1,...,n}

(
c

DT1

)
4
=

∑
T1⊂{1,...,n−1}

(
c

DT1

)
4
+

∑
T1⊂{1,...,n}

n∈T1

(
c

DT1

)
4

=
∑

T1⊂{1,...,n−1}

(
c

DT1

)
4
+
(

c

π1,n

)
4

∑
T1⊂{1,...,n−1}

(
c

DT1

)
4

=
{
1 +

(
c

π1,n

)
4

} ∑
T1⊂{1,...,n−1}

(
c

DT1

)
4

=
{
1 +

(
c

π1,1

)
4

}
· · ·
{
1 +

(
c

π1,n

)
4

}
,

where the last equality follows from the induction hypothesis. Thus, it is true for n. This
completes the proof.

Proposition 3.3. We write D = D
(n)
1 D

(m)
2 D

(`)
3 . Then, the following holds:

v2

(∑
T

L∗
2∆(ψ−DT , 1)

Ω

)
≥ n+ 2m+ `− 1

2 ,

where T1, T2 and T3 run over all subsets of {1, . . . , n}, {1, . . . ,m} and {1, . . . , `}, respectively.

Proof. We only prove the case of D = D
(n)
1 . Consider the summation over T1 for the equations

in Corollary 2.11. Then, we have ∆ = ∆1 and

∑
T1

L∗
2∆1

(ψ−DT1
, 1)

Ω =



√
2
4
∑
T1

∑
c∈C

(
c

DT1

)
4
+
∑
c∈V

W1(c)
∑
T1

(
c

DT1

)
4

((i/DT1)4 = 1),
√
2
4
∑
T1

∑
c∈C

(
c

DT1

)
4
+
∑
c∈V

W−1(c)
∑
T1

(
c

DT1

)
4

((i/DT1)4 = −1),

∑
c∈V

Wi(c)
∑
T1

(
c

DT1

)
4

((i/DT1)4 = i),

∑
c∈V

W−i(c)
∑
T1

(
c

DT1

)
4

((i/DT1)4 = −i),
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where T1 runs over all subsets of {1, . . . , n}. By Lemma 3.1 and Lemma 3.2, for any ◦ ∈ {±1,±i},
we have

v2

∑
c∈V

W◦(c)
∑
T1

(
c

DT1

)
4

 ≥ min
c∈V

v2(W◦(c)) + v2

∑
T1

(
c

DT1

)
4

 = −1
2 + n

2 .

Since

∑
c∈C

(
c

DT1

)
4
=
{
0 (T1 6= ∅),
#C (T1 = ∅),

it holds that

v2

√
2
4
∑
T1

∑
c∈C

(
c

DT1

)
4

 = v2(#C)− 3
2 ≥ 2n− 3

2 >
n− 1
2 .

The proposition follows from this.

3.3 Proof of the main theorems
Theorem 3.4. Let ψ−D be the Hecke character associated to the elliptic curve E−D : y2 =
x3+Dx defined overK and Ω is the least positive element of the period lattice of E1 : y2 = x3−x.
Then, we have

v2

(
L2(ψ−D, 1)

Ω

)
≥



n− 2
2 (D = D

(n)
1 ),

2m− 3
2 (D = D

(m)
2 ),

`− 2
2 (D = D

(`)
3 ).

Proof. We only prove the case of D = D
(n)
1 . When T1 = {1, . . . , n}, we see that E−DT1

= E−D
(n)
1

and L∗
2∆1

(ψ−DT1
, 1) = L∗

2(ψ−D
(n)
1
, 1) holds by Corollary 2.5. When T1 = ∅, the elliptic curve

E−DT1
= E−1 has bad reduction at the prime (1 + i)OK . Therefore, we have

L∗
2∆1

(ψ−1, 1) = L∗
∆1

(ψ−1, 1) = L∗(ψ−1, 1)
n∏

i=1

(
1−

ψ−1((π1,i))
N(π1,i)

)
.

Since L(ψ−1, 1) = Ω/(2
√
2) (cf. [BS65, p.87]), we obtain

v2

(
L∗
2∆1

(ψ−1, 1)
Ω

)
=

n∑
i=1

v2

(
π1,i −

(
−1
π1,i

)
4

)
− 3

2 ≥ n− 3
2 . (3.4)

We prove the theorem by induction on n. For n = 1, by Proposition 3.3, we see that the 2-adic
valuation of

L∗
2∆1

(ψ−1, 1)
Ω +

L∗
2(ψ−D

(n)
1
, 1)

Ω (3.5)

is greater than −1/2. Since the 2-adic valuation of the first term in (3.5) is greater than or equal
to −1/2 by (3.4), the valuation of the second term must also be greater than or equal to −1/2.
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Thus, it holds for n = 1. Suppose it is true for 1, . . . , n− 1. Then by Proposition 3.3, the 2-adic
valuation of

L∗
2∆1

(ψ−1, 1)
Ω +

∑
∅ 6=T1⊊{1,...,n}

L∗
2∆1

(ψ−DT1
, 1)

Ω +
L∗
2(ψ−D

(n)
1
, 1)

Ω (3.6)

is greater than (n − 2)/2. The valuation of the first term in (3.6) is greater than or equal to
(n− 2)/2 by (3.4). By using the induction hypothesis, it holds that

v2

 ∑
∅ 6=T1⊊{1,...,n}

L∗
2∆1

(ψ−DT1
, 1)

Ω


= v2

 ∑
∅ 6=T1⊊{1,...,n}

L∗
2(ψ−DT1

, 1)
Ω

∏
π1,i∤DT1

(
1−

ψ−DT1
((π1,i))

N(π1,i)

)
≥ min

∅ 6=T1⊊{1,...,n}

#T1 − 2
2 +

∑
π1,i∤DT1

v2
(
π1,i − ψ−DT1

((π1,i))
)

≥ min
∅ 6=T1⊊{1,...,n}

{#T1 − 2
2 + n−#T1

2

}
= n− 2

2 .

Thus, it also holds for n and we obtain the theorem.

Theorem 3.5. Under the same conditions as Theorem 3.4, we have

v2

(
L2(ψ−D, 1)

Ω

)
≥



n+m− 2
2 (D = D

(n)
1 D

(m)
2 ),

m+ `− 2
2 (D = D

(m)
2 D

(`)
3 ),

n+ `− 2
2 (D = D

(n)
1 D

(`)
3 ),

n+m+ `− 2
2 (D = D

(n)
1 D

(m)
2 D

(`)
3 ).

Proof. We only prove the case of D = D
(n)
1 D

(m)
2 by double induction on n and m based on the

following steps.

Step 1 It holds for (1,m) for all m.

Step 2 It holds for (n, 1) for all n.

Step 3 If it holds for (n0,m0) 6= (n,m) (1 ≤ n0 ≤ n, 1 ≤ m0 ≤ m), then (n,m) holds.

First, we show Step 1 by induction on m. For m = 1, the 2-adic valuation of

L∗
2∆1∆2

(ψ−1, 1)
Ω︸ ︷︷ ︸

T1=T2=∅

+
L∗
2∆1∆2

(ψ−D
(1)
2
, 1)

Ω︸ ︷︷ ︸
T1=∅,T2={1}

+
L∗
2∆1∆2

(ψ−D
(1)
1
, 1)

Ω︸ ︷︷ ︸
T1={1},T2=∅

+
L∗
2(ψ−D

(1)
1 D

(1)
2
, 1)

Ω︸ ︷︷ ︸
T1={1},T2={1}

(3.7)

is greater than 0 from Proposition 3.3. Therefore, we need to show the first three terms of (3.7)
is greater than or equal to 0. For the first term, we see that

v2

(
L∗
2∆1∆2

(ψ−1, 1)
Ω

)
= v2

(
L∗
2(ψ−1, 1)

Ω

(
1−

ψ−1((π1,1))
N(π1,1)

)(
1−

ψ−1((π2,1))
N(π2,1)

))
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≥ −3
2 + 1 + 1

> 0.

For the second term, by Theorem 3.4, we have

v2

L∗
2∆1∆2

(ψ−D
(1)
2
, 1)

Ω

 = v2

L∗
2(ψ−D

(1)
2
, 1)

Ω

1− ψ−D
(1)
2
((π1,1))

N(π1,1)

 ≥ −1
2 + 1 > 0.

For the third term, we can show that the 2-adic valuation is greater than 0 similarly to the
second term. Thus it holds for m = 1. Suppose it is true for 1, . . . ,m − 1. Then the 2-adic
valuation of

L∗
2∆1∆2

(ψ−1, 1)
Ω︸ ︷︷ ︸

T1=T2=∅

+
∑

∅ 6=T2⊂{1,...,m}

L∗
2∆1∆2

(ψ−DT2
, 1)

Ω +
L∗
2∆1∆2

(ψ−D
(1)
1
, 1)

Ω︸ ︷︷ ︸
T1={1},T2=∅

+
∑

∅ 6=T2⊊{1,...,m}

L∗
2∆1∆2

(ψ−D
(1)
1 DT2

, 1)

Ω +
L∗
2(ψ−D

(1)
1 D

(m)
2
, 1)

Ω︸ ︷︷ ︸
T1={1},T2={1,...,m}

(3.8)

is greater than (m− 1)/2 from Proposition 3.3. Therefore, we need to show the first four terms
of (3.8) is greater than or equal to (m− 1)/2. For the first term, we see that

v2

(
L∗
2∆1∆2

(ψ−1, 1)
Ω

)
= v2

L∗
2(ψ−1, 1)

Ω

(
1−

ψ−1((π1,1))
N(π1,1)

)
m∏
j=1

(
1−

ψ−1((π2,j))
N(π2,j)

)
≥ −3

2 + 1 +m

>
m− 1

2 .

For the second term, by Theorem 3.4, we have

v2

 ∑
∅ 6=T2⊂{1,...,m}

L∗
2∆1∆2

(ψ−DT2
, 1)

Ω


≥ min

∅ 6=T2⊂{1,...,m}

v2
L∗

2(ψ−DT2
, 1)

Ω

(
1−

ψ−DT2
((π1,1))

N(π1,1)

) ∏
π2,j ∤DT2

(
1−

ψ−DT2
((π2,j))

N(π2,j)

)
≥ min

∅ 6=T2⊂{1,...,m}

{2#T2 − 3
2 + 1 + (m−#T2)

}
>
m− 1

2 .

For the third term, by Theorem 3.4, it follows

v2

L∗
2∆1∆2

(ψ−D
(1)
1
, 1)

Ω

 = v2

L∗
2(ψ−D

(1)
1
, 1)

Ω

m∏
j=1

1− ψ−D
(1)
1
((π2,j))

N(π2,j)


≥ −1

2 + 1
2 ·m

= m− 1
2 .
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For the fourth term, by the induction hypothesis, it holds

v2

 ∑
∅ 6=T2⊊{1,...,m}

L∗
2∆1∆2

(ψ−D
(1)
1 DT2

, 1)

Ω


≥ min

∅ 6=T2⊊{1,...,m}

v2
L∗

2(ψ−D
(1)
1 DT2

, 1)

Ω
∏

π2,j ∤DT2

1− ψ−D
(1)
1 DT2

((π2,j))

N(π2,j)


≥ 1 + #T2 − 2

2 + 1
2 · (m−#T2)

= m− 1
2 .

Thus it holds for m and Step 1 is done.
By a similar calculation, Step 2 can be shown by induction on n. We show Step 3. Suppose

it is true for (n0,m0) (1 ≤ n0 ≤ n, 1 ≤ m0 ≤ m, (n0,m0) 6= (n,m)). The 2-adic valuation of

L∗
2∆1∆2

(ψ−1, 1)
Ω︸ ︷︷ ︸

T1=T2=∅

+
∑

∅ 6=T2⊂{1,...,m}

L∗
2∆1∆2

(ψ−DT2
, 1)

Ω +
∑

∅ 6=T1⊂{1,...,n}

L∗
2∆1∆2

(ψ−DT1
, 1)

Ω

+
∑

∅ 6=T1⊊{1,...,n}
∅ 6=T2⊊{1,...,m}

L∗
2∆1∆2

(ψ−DT1DT2
, 1)

Ω +
∑

∅ 6=T1⊊{1,...,n}

L∗
2∆1∆2

(ψ−DT1D
(m)
2
, 1)

Ω

+
∑

∅ 6=T2⊊{1,...,m}

L∗
2∆1∆2

(ψ−D
(n)
1 DT2

, 1)

Ω +
L∗
2(ψ−D

(n)
1 D

(m)
2
, 1)

Ω︸ ︷︷ ︸
T1={1,...,n},T2={1,...,m}

(3.9)

is greater than (n +m − 2)/2 from Proposition 3.3. Therefore, we need to show the first sixth
terms of (3.9) is greater than or equal to (n +m − 2)/2. We calculate the 2-adic valuation for
the first term, second term and fourth term. For the others term, one could calculate similarly.
For the first term, we see that

v2

(
L∗
2∆1∆2

(ψ−1, 1)
Ω

)
= v2

L∗
2(ψ−1, 1)

Ω

n∏
i=1

(
1−

ψ−1((π1,i))
N(π1,i)

)
m∏
j=1

(
1−

ψ−1((π2,j))
N(π2,j)

)
≥ −3

2 + n+m

>
n+m− 2

2 .

For the second term, by Theorem 3.4, it follows

v2

 ∑
∅ 6=T2⊂{1,...,m}

L∗
2∆1∆2

(ψ−DT2
, 1)

Ω


≥ min

∅ 6=T2⊂{1,...,m}

v2
L∗

2(ψ−DT2
, 1)

Ω

n∏
i=1

(
1−

ψ−DT2
((π1,i))

N(π1,i)

) ∏
π2,j ∤DT2

(
1−

ψ−DT2
((π2,j))

N(π2,j)

)
≥ min

∅ 6=T2⊂{1,...,m}

{2#T2 − 3
2 + 1 · n+ 1 · (m−#T2)

}
>
n+m− 2

2 .
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For the fourth term, by the induction hypothesis, it holds

v2

 ∑
∅ 6=T1⊊{1,...,n}
∅ 6=T2⊊{1,...,m}

L∗
2∆1∆2

(ψ−DT1DT2
, 1)

Ω


≥ min

∅ 6=T1⊊{1,...,n}
∅ 6=T2⊊{1,...,m}

v2
L∗

2(ψ−DT1DT2
, 1)

Ω
∏

π1,i∤DT1

(
1−

ψ−DT1DT2
((π1,i))

N(π1,i)

) ∏
π2,j ∤DT2

(
1−

ψ−DT1DT2
((π2,j))

N(π2,j)

)
≥ min

∅ 6=T1⊊{1,...,n}
∅ 6=T2⊊{1,...,m}

{#T1 +#T2 − 2
2 + 1

2 · (n−#T1) +
1
2 · (m−#T2)

}
= n+m− 2

2 .

Thus it is true for (n0,m0) = (n,m) and Step 3 is done. This completes the proof.

3.4 Numerical Examples
As mentioned in Remark 1.8, the lower bounds in Theorem 3.4 and Theorem 3.5 are expected
to be sharp in the sense that there exist elliptic curves E−D for which equality holds. We have
listed the 2-adic valuation for the case D = D

(1)
1 and D = D

(1)
1 D

(1)
2 . Here, we have arranged it

in ascending order of the absolute value of D.
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v2(L2(ψ−D, 1)/Ω) D (i/D)4
−1/2 2i− 1 i
0 −3 −1

−1/2 −2i+ 3 −i
∞ −4i+ 1 1

−1/2 2i− 5 −i
−1/2 6i− 1 i
0 −4i+ 5 −1
∞ −7 1

−1/2 −2i+ 7 i
−1/2 −6i− 5 −i
0 8i− 3 −1
0 8i+ 5 −1
1 −4i+ 9 1

−1/2 10i− 1 i
−1/2 10i+ 3 −i
∞ −8i− 7 1
0 −11 −1
0 −4i− 11 −1

−1/2 −10i+ 7 i
−1/2 6i+ 11 −i
−1/2 2i− 13 −i
−1/2 −10i− 9 i
∞ −12i− 7 1

−1/2 14i− 1 i
−1/2 −2i+ 15 i
0 8i+ 13 −1
1 −4i− 15 1
∞ −16i+ 1 1

−1/2 −10i− 13 −i
−1/2 −14i− 9 i
0 16i+ 5 −1

−1/2 2i− 17 i
0 −12i+ 13 −1

−1/2 14i+ 11 −i
1 16i+ 9 1

−1/2 −18i− 5 −i
∞ −8i+ 17 1
0 −19 −1

−1/2 18i+ 7 i
−1/2 10i− 17 i

v2(L2(ψ−D, 1)/Ω) D (i/D)4
−1/2 −6i+ 19 −i
1 −20i+ 1 1
0 20i− 3 −1

−1/2 −14i+ 15 i
∞ −12i+ 17 1
∞ 20i− 7 1
0 −4i+ 21 −1

−1/2 10i+ 19 −i
−1/2 22i− 5 −i
0 −20i− 11 −1
∞ −23 1

−1/2 10i− 21 −i
−1/2 −14i+ 19 −i
0 20i+ 13 −1
∞ −24i+ 1 1
∞ −8i− 23 1
0 −24i+ 5 −1

−1/2 −18i− 17 i
0 −16i− 19 −1
1 −4i+ 25 1

−1/2 −22i− 13 −i
−1/2 6i− 25 i
∞ −12i− 23 1

−1/2 26i− 1 i
−1/2 −26i− 5 −i
−1/2 −22i+ 15 i
−1/2 −2i+ 27 −i
−1/2 26i− 9 i
0 −20i− 19 −1
∞ −12i+ 25 1

−1/2 −22i− 17 i
−1/2 26i+ 11 −i
0 28i+ 5 −1

−1/2 −14i− 25 i
−1/2 −10i+ 27 −i
−1/2 18i+ 23 i
0 −4i+ 29 −1

−1/2 −6i− 29 −i
1 16i+ 25 1
2 20i− 23 1

Table 3.1: 2-adic valuation for D = D
(1)
1
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v2(L2(ψ−D, 1)/Ω) D
(1)
1 D

(1)
2 (i/D)4

∞ −3 (2i− 1)2 1
0 −2i+ 3 (2i− 1)2 i
0 2i− 1 (−3)2 i
1 −4i+ 1 (2i− 1)2 −1
1/2 2i− 5 (2i− 1)2 i
0 2i− 1 (−2i+ 3)2 −i
0 6i− 1 (2i− 1)2 −i
∞ −4i+ 5 (2i− 1)2 1
1/2 −2i+ 3 (−3)2 −i
1/2 −7 (2i− 1)2 −1
∞ −4i+ 1 (−3)2 1
1/2 2i− 1 (−4i+ 1)2 i
1 −3 (−2i+ 3)2 1
0 2i− 5 (−3)2 −i
1/2 −3 (−4i+ 1)2 −1
1/2 −4i+ 1 (−2i+ 3)2 −1
∞ 6i− 1 (−3)2 i
1 −11 (2i− 1)2 1

1/2 −4i+ 5 (−3)2 −1
0 −2i+ 3 (−4i+ 1)2 −i
2 −7 (−3)2 1
∞ 2i− 1 (2i− 5)2 −i
0 2i− 5 (−2i+ 3)2 i
0 6i− 1 (−2i+ 3)2 −i
0 2i− 1 (6i− 1)2 −i
1 −4i+ 5 (−2i+ 3)2 1

3/2 −3 (2i− 5)2 1
1/2 −7 (−2i+ 3)2 −1
∞ 2i− 5 (−4i+ 1)2 −i
0 2i− 1 (−4i+ 5)2 i
1 −19 (2i− 1)2 1
∞ −11 (−3)2 −1
1/2 6i− 1 (−4i+ 1)2 i
0 −2i+ 3 (2i− 5)2 i
∞ −4i+ 5 (−4i+ 1)2 −1
0 2i− 1 (−7)2 i
1 −3 (6i− 1)2 1

1/2 −23 (2i− 1)2 −1
3/2 −7 (−4i+ 1)2 1
∞ −4i+ 1 (2i− 5)2 −1

v2(L2(ψ−D, 1)/Ω) D
(1)
1 D

(1)
2 (i/D)4

1/2 −3 (−4i+ 5)2 −1
0 −2i+ 3 (6i− 1)2 i
∞ −11 (−2i+ 3)2 1
∞ −3 (−7)2 −1
1/2 −2i+ 3 (−4i+ 5)2 −i
1 −4i+ 1 (6i− 1)2 −1
1 −31 (2i− 1)2 −1
2 −4i+ 1 (−4i+ 5)2 1
∞ −19 (−3)2 −1
0 6i− 1 (2i− 5)2 −i
0 −2i+ 3 (−7)2 −i
1 −4i+ 5 (2i− 5)2 1
1/2 −11 (−4i+ 1)2 −1
0 2i− 5 (6i− 1)2 i
5/2 −4i+ 1 (−7)2 1
1 −7 (2i− 5)2 −1
∞ −23 (−3)2 1
∞ −43 (2i− 1)2 1
∞ 2i− 5 (−4i+ 5)2 −i
1/2 −47 (2i− 1)2 −1
3/2 −4i+ 5 (6i− 1)2 1
3/2 −19 (−2i+ 3)2 1
0 6i− 1 (−4i+ 5)2 i
1 −7 (6i− 1)2 −1
1/2 2i− 5 (−7)2 −i
1/2 2i− 1 (−11)2 i
2 −31 (−3)2 1
3/2 −7 (−4i+ 5)2 1
1/2 6i− 1 (−7)2 i
2 −23 (−2i+ 3)2 −1
1/2 −4i+ 5 (−7)2 −1
3/2 −11 (2i− 5)2 1
1 −19 (−4i+ 1)2 −1
∞ −3 (−11)2 −1
∞ −3 (−11)2 −1
∞ −43 (−3)2 −1
3/2 −23 (−4i+ 1)2 1
1/2 −31 (−2i+ 3)2 −1
1 −11 (6i− 1)2 1
3 −47 (−3)2 1

Table 3.2: 2-adic valuation for D = D
(1)
1 D

(1)
2
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Recurrence formula
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Chapter 4

Motivation

Which prime number p can be written as the sum of two cubes of rational numbers? This is one
of the classical Diophantine problems and there are various works (cf. [DV18], [Yin22]). This
problem is related to the existence of Q-rational points of the curve Ap : x3+ y3 = p. The curve
Ap has the structure of an elliptic curve defined over Q with the point ∞ = [1 : −1 : 0]. For
an odd prime number p, we see that Ap(Q)tors = {∞}. Therefore an odd prime number p is
written as the sum of two cubes if and only if the rank of Ap over Q is not 0. [Sat86] shows the
upper bound

rankAp(Q) ≤


0 (p ≡ 2, 5 mod 9),
1 (p ≡ 4, 7, 8 mod 9),
2 (p ≡ 1 mod 9).

In addition to the above upper bound, we explain that it is possible to determine whether the
rank of Ap(Q) is even or odd.

For an elliptic curve E defined over a number field K, let us denote p∞-Selmer group by

Selp∞(E/K) := Ker
(
H1(K,E[p∞]) −→

∏
v

H1(Kv, E[p∞])
E(Kv)⊗Z Qp/Zp

)
,

where v runs over all places of K. The p∞-Selmer group Selp∞(E/K) is a cofinitely generated
Zp-module (cf. [Gre99]) and sits in the exact sequence

0 −→ E(K)⊗Z Qp/Zp −→ Selp∞(E/K) −→ X(E/K)[p∞] −→ 0.

Therefore if the Tate–Shafarevich group X(E/K) is finite, the rank of E(K) over Q is equal to
the corank of Selp∞(E/K) over Zp. The following theorem is called the p-parity conjecture that
is proved by Nekovář [Nek09].

Theorem 4.1 ([Nek09, Theorem 1]). Let k be a totally real number field, k0/k a finite abelian
extension and k′/k0 a Galois extension of odd degree. Let E be an elliptic curve over k; assume
that at least one of the following conditions is satisfied:

(i) E is modular (over k) and 2 ∤ [k : Q];

(ii) j(E) /∈ Ok;

then, for each prime number p 6= 2, the parity conjecture

corankZp Selp∞(E/k′) ≡ ords=1 L(E/k′, s) mod 2

holds. If k = Q, then the statement also holds for p = 2.
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Let ε(Ap/Q) be the sign of the functional equation for the Hasse–Weil L-function L(Ap/Q, s)
of Ap. By [ZK87, Table 1], the sign ε(Ap/Q) is computed as +1 if p is congruent to 1, 2, 5 modulo
9 and −1 otherwise. Hence if X(Ap/Q) is finite, we have

(−1)rankAp(Q) = ε(Ap/Q) =
{
+1 (p ≡ 1, 2, 5 mod 9),
−1 (otherwise)

from Theorem 4.1. Thus for the case where p ≡ 1 mod 9 (resp. p ≡ 4, 7, 8 mod 9), the rank of
Ap is 0 or 2 (resp. 1).

The remaining problem is essentially whether the rank of Ap is 0 or 2 for the case where
p is congruent to 1 modulo 9. In the paper [RZ95], Rodríguez-Villegas and Zagier gave three
necessary and sufficient conditions that the rank is equal to 2 under the Birch and Swinnerton-
Dyer (BSD) conjecture. One of the conditions is described in terms of a recurrence formula
although they did not give the details of the proof.

In this thesis, we give a similar formula for the elliptic curve E−p : y2 = x3+px. A 2-descent
[Sil86, Proposition 6.2] shows the upper bound

rankE−p(Q) ≤


0 (p ≡ 7, 11 mod 16),
1 (p ≡ 3, 5, 13, 15 mod 16),
2 (p ≡ 1, 9 mod 16).

For the case where p is congruent to 1, 9 modulo 16, the sign of functional equation of the Hasse–
Weil L-function of E−p over Q is +1. Similarly for the case of Ap, we see that rankE−p(Q) = 0
or 2 if we assume the Tate–Shafarevich group is finite. We obtain the following result.

Theorem 4.2. Let p be a prime number which is congruent to 1, 9 modulo 16. If the rank
of E−p over Q is equal to 2, then p divides f3(p−1)/8(0), where the polynomial fn(t) ∈ Z[t] is
defined by the recurrence formula

fn+1(t) = −12(t+ 1)(t+ 2)f ′n(t) + (4n+ 1)(2t+ 3)fn(t)− 2n(2n− 1)(t2 + 3t+ 3)fn−1(t).

The initial condition is f0(t) = 1, f1(t) = 2t + 3. Moreover if we assume the finiteness of the
Tate–Shafarevich group and the BSD conjecture, then the converse is also true.

This theorem tells us a criterion for determining whether the rank is 2 or not although we
may not be able to decide the rank exactly when we use the usual descent algorithm. In fact,
using RankBounds command of Magma [BCP97], we can see that the exact rank of E−12553(Q)
is not determined. However, since f3(p−1)/8(0) ≡ 11060( 6≡ 0) mod p for p = 12553, the rank
of E−12553(Q) is zero under some conjectures. In addition, there is an advantage that the
recurrence formula in Theorem 4.2 can be implemented in the same way by everyone in the
same environment without advanced functions. As a reference, we summarize a behavior of
{fn(t)}n≥1 in Table 4.3 and Table 4.4.
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Now, we return to the elliptic curve Ap : x3 + y3 = p. We tried to recover the proof of
Theorem 4.3 below. Although we could not obtain the proof of Theorem 4.3, we obtain Theorem
4.4 instead. Our recurrence formula (4.2) is simpler than (4.1). In Table 4.1 and Table 4.2, we
show the first several terms for the two recurrence formulas. The degree of the polynomial
and the number of terms of (4.2) are less than (4.1). Moreover, the time of calculating the
percentage of rank 2 up to p < 5000 on Magma [BCP97] version V2.24-5 on dual-core Intel Core
i5 processor (3.1 GHz), 8GM RAM and mac OS Catalina, the formula (4.2) is about 34 seconds
faster than (4.1). (The percentage of rank 2 is about 37% up to p < 5000.) The idea of the
proof of Theorem 4.4 is essentially the same as [RZ95].

Theorem 4.3 ([RZ95, Theorem 3]). Let p be a prime number which is congruent to 1 modulo 9,
the rank of Ap over Q is equal to 2, then p divides a(p−1)/3(0), where the polynomial an(t) ∈ Z[t]
is defined by the recurrence formula

an+1(t) = −(1− 8t3)a′n(t)− (16n+ 3)t2an(t)− 4n(2n− 1)tan−1(t). (4.1)

The initial condition is a0(t) = 1, a1(t) = −3t2. Moreover if we assume the finiteness of the
Tate–Shafarevich group and the BSD conjecture, then the converse is also true.

Theorem 4.4. Let p be a prime number which is congruent to 1 modulo 9, the rank of Ap over
Q is equal to 2, then p divides x(p−1)/3(0), where the polynomial xn(t) ∈ Z[t] is defined by the
recurrence formula

xn+1(t) = −2(1− 8t3)x′n(t)− 8nt2xn(t)− n(2n− 1)txn−1(t). (4.2)

The initial condition is x0(t) = 1, x1(t) = 0. Moreover if we assume the finiteness of the
Tate–Shafarevich group and the BSD conjecture, then the converse is also true.

We now explain the proof of Theorem 4.2. For the case where p is congruent to 1, 9 modulo
16, we see that rankE−p(Q) = 2 if and only if L(E−p/Q, 1) = 0 under the BSD conjecture. The
calculation L(E−p/Q, 1) reduces to L(ψ2k−1, k) for some Hecke character ψ and some positive
integer k related to p. More precisely, by a theory of p-adic L-functions, there exists a mod
p congruence relation between the algebraic part Sp of L(E−p/Q, 1) and that of L(ψ2k−1, k).
Therefore with the estimate |Sp| < p, it holds that L(E−p/Q, 1) = 0 if and only if p divides the
algebraic part LE,k of L(ψ2k−1, k), that is, the p-adic valuation of LE,k is positive. We write the
algebraic part of L(ψ2k−1, k) in terms of a recurrence formula by using the method of [RZ93].

Part II is organized as follows. In Chapter 5, we show the rank of E−p is equal to 2 if and
only if p divides the algebraic part of L(ψ2k−1, k). In Chapter 6, we represent the special value
L(ψ2k−1, k) as some special value of the derivative by the Maass–Shimura operator ∂k of some
modular form. In Chapter 7, we write the special value of ∂k-derivative of the modular form as
the constant term of some polynomial that is defined by a recurrence formula.
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n an(t)
0 1
1 −3t2
2 9t4 + 2t
3 −27t6 − 18t3 − 2
4 81t8 + 108t5 + 36t2
5 −243t10 − 540t7 − 360t4 + 152t
6 729t12 + 2430t9 + 2700t6 − 16440t3 − 152
7 −2187t14 + 10206t11 − 17010t8 + 1311840t5 + 24240t2
8 6561t16 + 40824t13 + 95256t10 − 99234720t7 − 2974800t4 + 6848t
9 −19683t18 − 157464t15 − 489888t12 + 7449816240t9 + 359465040t6 − 578304t3 − 6848

Table 4.1: the first 10 polynomials for an(t)

n xn(t)
0 1
1 0
2 −t
3 2
4 −33t2
5 76t
6 −339t3 − 152
7 4314t2
8 −72687t4 − 3424t
9 228168t3 + 6848

Table 4.2: the first 10 polynomials for xn(t)

p p|f3(p−1)/8(0) p p|f3(p−1)/8(0)
17 false 257 false
41 false 281 true
73 true 313 false
89 true 337 true
97 false 353 true
113 true 401 false
137 false 409 false
193 false 433 false
233 true 449 false
241 false 457 false

Table 4.3: the constant term f3(p−1)/8(0)

n fn(t)
0 1
1 2t+ 3
2 −6t2 − 18t− 9
3 12t3 + 54t2 + 108t+ 81
4 60t4 + 360t3 + 1296t2 + 2268t+ 1377
5 −1512t5 − 11340t4 − · · · − 34992t2 − 13122t+ 2187
6 21816t6 + 196344t5 + · · ·+ 1027890t2 + 433026t+ 80919

Table 4.4: the first 7 polynomials for fn(t)
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Chapter 5

Congruence relation between the
algebraic parts

In this chapter, we show that there exists a mod p congruence relation between the algebraic
part of L(E−p/Q, 1) and that of some special value of a Hecke L-function associated to the
elliptic curve E−1 : y2 = x3 + x. In the rest of Part II, $ denotes the real number 3.1415 · · · .

5.1 Interpolation formula of a p-adic L-function
In this section, we state an interpolation formula of a p-adic L-function that interpolates special
values of Hecke L-functions associated to elliptic curves with complex multiplication and good
ordinary reduction at p. Such p-adic L-functions have been studied by, for example, Manin–
Vishik [VM74] and Katz [Kat76]. We refer to the de Shalit’s book [Sha87] for the contents of
this section.

Let K be an imaginary quadratic field of discriminant −dK and F/K an extension of a field.
Fix Q as an algebraic closure of Q. We write a Hecke character of F whose image belongs to Q by
χ and its conductor by f. For an integral ideal m, Lm(χ, s) denotes the Hecke L-function L(χ, s)
of χ omitting all Euler factors corresponding to the primes that divide m. It is well known that
L(χ, s) admits an analytic continuation on C if χ 6= 1 and satisfies a certain functional equation
(For example, see [Tat67], [Iwa19]). When F = K, the Hecke character χ is said to be of type
(k, j) if χ(αOK) = αkαj with α ≡ 1 mod f.

Fix embeddings i∞ : Q ↪→ C and ip : Q ↪→ Cp. Denote [−,K(fp∞)/K] by the Artin map for
global class field theory associated to the modulus fp∞. The Hecke character χ can be extended
continuously to the Galois character

χ̃ : Gal(K(fp∞)/K) → C×
p , χ̃([a,K(fp∞)/K]) = χ(a) (5.1)

via the embedding ip (cf. [Wei56]). We assume p splits as pp in K and the embedding ip :
Qp ↪→ Cp is compatible with p-adic topology, and if the type of χ is (k, 0) for some k, then the
character (5.1) factors through Gal(K(fp∞)/K). If the type of χ is (0, j), then the character
(5.1) factors through Gal(K(fp∞)/K).
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Let F ′ = K(fp∞) and Fn = K(fpn) so that F ′Fn = K(fpnp∞). For an integral ideal g of
K and a Hecke character ε of type (k, j) whose conductor dividing gp∞, we write ε = ϕkϕjχ,
where ϕ is a Hecke character of conductor prime to p and type (1, 0), and χ is a finite character.
Set

S =
{
γ ∈ Gal(F ′Fn/K)

∣∣ γ|F ′ = [pn, F ′/K]
}
,

where n is the exact power of p dividing the conductor of ε.

Definition 5.1. We define the Gauss sum for ε by

G(ε) = ϕkϕj(pn)
pn

∑
γ∈S

χ(γ)(ζγn)−1.

Remark 5.2. The Gauss sum G(ε) is independent of the decomposition ε = ϕkϕjχ.

Theorem 5.3 (cf. [Sha87, Theorem 4.12]). The following hold:

(i) Let f be any non-trivial integral ideal of K, and p a split prime (p, f) = 1. Then there
exist periods Ω ∈ C× and Ωp ∈ C×

p , and a unique p-adic integral measure µ(f) on G(f) =
Gal(K(fp∞)/K), such that for any Hecke character ε of conductor dividing fp∞ and type
(k, 0), k ≥ 1,

Ω−k
p

∫
G(f)

ε̃(σ)dµ(f;σ) = Ω−k (k − 1)!
(2$)k

G(ε)
(
1− ε(p)

p

)
· Lf(ε−1, 0).

(ii) If f | g and µ(g) is the measure induced from µ(g) on G(f), then

µ(g) =
∏

(1− [l,K(fp∞)/K]−1) · µ(f),

where the product is over all l dividing g but not f.

Remark 5.4. As stated in [Sha87, REMARKS (i), p.76], the claim (i) of Theorem 5.3 holds if
f is replaced by fg∞ with (fg, p) = 1 from the claim (ii) of Theorem 5.3.

Let ζn be the primitive pn root of unity fixed as [Sha87, p.79, CONVENTION]. Also, let
(Ω,Ωp) ∈ (C× × C×

p )/Q
× be the pair of complex period and p-adic period as in [Sha87, p.68,

DEFINITION].

Theorem 5.5 (cf. [Sha87, Theorem 4.14]). Let g be an integral ideal of K, and p a split rational
prime, (p, g) = 1. Let µ be the measure µ(gp∞) on G = Gal(K(gp∞)/K) (see Theorem 5.3 and
Remark 5.4). Then the following formula, both sides of which lie in Q, holds for any Hecke
character ε of conductor dividing gp∞, and of type (k, j), 0 ≤ −j < k:

Ωj−k
p

∫
G
ε̃(σ)dµ(σ) = Ωj−k (k − 1)!

(2$)k

(√
dK
2$

)j

G(ε)
(
1− ε(p)

p

)
· Lgp(ε−1, 0).
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5.2 Congruence relation

Let E−p be the elliptic curve y2 = x3 + px defined over Q. Suppose p satisfies p ≡ 1, 9 mod 16
and splits as pp in the ring of integers OK of K = Q(i). If necessary by replacing p by p, we
may assume a generator π = a+ bi of p satisfies

a ≡ 1 mod 4, b ≡ −
(
p− 1
2

)
!a mod p.

We fix embeddings i∞ : Q ↪→ C, ip : Q ↪→ Cp so that ip is compatible with p-adic topology. Let
ΩE = Γ(1/4)2/(2$1/2) be the real period of E−1 : y2 = x3 + x. We define the algebraic part of
L(E−p/Q, 1) to be

Sp =
2p1/4L(E−p/Q, 1)

ΩE
.

The algebraic part Sp is a rational integer [BS65, Theorem 1]. The BSD conjecture predicts that
Sp is equal to the order of the Tate–Shafarevich group if rankE−p(Q) = 0 and is 0 otherwise.

Proposition 5.6. The algebraic part Sp is 0 if and only if Sp is congruent to 0 modulo p.

Proof. For an elliptic curve E defined over Q of conductor N , [RZ95, Proposition 2] shows

|L(E/Q, 1)| < (4N)1/4
(
log

√
N

8$ + γ

)
+ c0,

where γ = 0.577 · · · is Euler’s constant and c0 = ζ(1/2)2 = 2.13263 · · · . Since p ≡ 1 mod 4, we
see that the conductor of E−p is 64p2 and obtain |Sp| < p. The claim follows from this.

The elliptic curve E−1 : y2 = x3 + x has complex multiplication by OK . Let ψ be the Hecke
character of K associated to E−1 and let χ be the quartic character such that L(E−p/Q, s) =
L(ψχ, s). These characters are explicitly given by

ψ(a) =
(−1
α

)
4
α = (−1)(a−1)/2α if (a, 4) = 1,

χ(a) =
(
α

p

)
4

if (a, p) = 1,

where α = a + bi is the primary generator of a and (·/·)4 is the quartic residue character (cf.
[Sil94, CHAPTER II, Exercice 2.34]). Let k be a positive interger. We define the algebraic part
of L(ψ2k−1, k) to be

LE,k = 2k+13k−1$k−1(k − 1)!
Ω2k−1
E

L(ψ2k−1, k).

Lemma 5.7. Let p be a prime number such that p ≡ 1, 9 mod 16 and k = (3p + 1)/4. For all
non-zero integral ideals a of OK which is prime to 4p, we have

χ(a) ≡
(
α

α

)k−1
mod p,

where α is the primary generator of a.
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Proof. Since 3(N(π)− 1) = 4(k − 1), we have

αk−1 ≡
(
α3

π

)
4
mod π, αk−1 ≡

(
α3

π

)
4
mod π.

We take a ∈ p, b ∈ p so that a+ b = 1. Then by the Chinese Remainder Theorem, we have

αk−1 ≡ a

(
α3

π

)
4
+ b

(
α3

π

)
4
mod pOK , (5.2)

αk−1 ≡ a

(
α3

π

)
4
+ b

(
α3

π

)
4
mod pOK . (5.3)

Since the equation (5.2) multiplied by (α3/π)4 equals to the equation (5.3) multiplied by (α3/π)4,
it holds that (

α3

π

)
4
αk−1 ≡

(
α3

π

)
4
αk−1 mod pOK .

Therefore we obtain

αk−1

αk−1 ≡
(
α3

π

)
4

(
α3

π

)
4
=
(
α

p

)3
= χ(a) mod pOK .

Proposition 5.8. Under the same assumptions as in Lemma 5.7, we have the following mod p
congruence relation:

πSp ≡ u24k−533k−3LE,k mod p

for some u ∈ O×
K .

Proof. It is straightforward to check

L(ψχ, 1) =
∑

(a,4p)=1
χ(a) 1

ψ(a)Nas

∣∣∣∣∣∣
s=0

,

L(ψ2k−1, k) =
∑

(a,4)=1

(
α

α

)k−1 1
ψ(a)Nas

∣∣∣∣∣∣
s=0

.

We set ε1(a) = χ(a)ψ(a), ε2(a) = (ψ(a)/ψ(a))k−1ψ(a) so that L4p(ε−1
1 , 0) = L(ψχ, 1) and

L4(ε−1
2 , 0) = L(ψ2k−1, k). Since p splits in K (or the elliptic curve E−1 is ordinary at p),

by Theorem 5.5, the following identities, both sides of which lie in Q, holds:

1
Ωp

∫
G
ε̃1(σ)dµ(σ) =

1
ΩG(ε1)L4p(ε−1

1 , 0),

1
Ω2k−1
p

∫
G
ε̃2(σ)dµ(σ) =

(k − 1)!
Ω2k−1 $k−1G(ε2)

(
1− ε2(p)

p

)2
L4(ε−1

2 , 0),

where µ is the p-adic measure on G = Gal(K(4p∞)/K). Lemma 5.7 shows∣∣∣∣∫
G
ε̃1(σ)dµ(σ)−

∫
G
ε̃2(σ)dµ(σ)

∣∣∣∣
π
≤ max

(a,4p)=1
|ε1(a)− ε2(a)|π ≤ 1

p
.
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Therefore we obtain the congruence relation

Ωp

Ω G(ε1)L4p(ε−1
1 , 0) ≡

Ω2k−1
p (k − 1)!
Ω2k−1 $k−1L4(ε−1

2 , 0) mod p.

By [Sha87, p.91, Lemma] and [Lox77, p.8, (14)], G(ε1)2 is equal to √
pπ up to units in O×

K and
G(ε2) is equal to 1. Moreover, [Sha87, p.9-10] shows Ωp−1

p ≡ π−1 mod p. Hence it follows that

πSp ≡ u24k−533k−3LE,k mod p (5.4)

for some u ∈ O×
K .

Remark 5.9. It is known that (p−1
2 )!2 ≡ −1 mod p and [Lem00, Corollary 6.6] shows(p−1

2
p−1
4

)
≡ π + π mod p.

Thus (5.4) can be rewritten as

Sp ≡ ±
(
p− 1
4

)
!224k−533k−3LE,k mod p.

The proof of Proposition 5.8 essentially shows Rodríguez-Villegas’ and Zagier’s congruence re-
lation [RZ95, p.7]

SA,p ≡ (−3)(p−10)/3
(
p− 1
3

)
!2LA,k mod p,

where SA,p is the algebraic part of the special value L(Ap/Q, 1). The algebraic number LA,k is
explained in detail below.

By Corollary 5.10, we only need to calculate the algebraic part LE,k. Actually, LE,k is the
square of a rational integer. We calculate the square root of it in Chapter 6.

Let ψ′ be the Hecke character of Q(
√
−3) associated to A1 : x3 + y3 = 1. We define the

algebraic part of L(ψ′2k−1, k) to be

LA,k = 3ν
(

2$
3
√
3Ω2

A

)k−1 (k − 1)!
ΩA

L(ψ′2k−1, k),

where ΩA = Γ(1/3)3/(2$
√
3) is the real period of A1 and ν = 2 if k ≡ 2 mod 6, ν = 1 otherwise.

For the case where p is congruent to 1 modulo 9, we see that the rank of Ap is equal to 0 if and
only if p divides LA,k in the same way for E−p.

Corollary 5.10. Let p be a prime number such that p ≡ 1, 9 mod 16 and k = (3p+1)/4. If the
rank of E−p (resp. Ap) is equal to 2, then p divides the algebraic part LE,k (resp. the algebraic
part LA,k). Moreover, if we assume the finiteness of the Tate–Shafarevich group and the BSD
conjecture, then the converse is true.

Proof. It follows from Coates–Wiles theorem [CW77], Proposition 5.6 and Proposition 5.8.
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Chapter 6

Square formula of L-value

6.1 Maass–Shimura operator
Unless otherwise stated, we denote by Γ ⊂ SL2(R) a congruence subgroup. Let Mk(Γ) be the
space of holomorphic modular forms of weight k for Γ. In general, M∗

k (Γ) denotes the space of
differentiable modular form, possibly with some character or multiplier system. For a function
f on H∪Q∪{∞} with values in C∪{∞} and γ =

(
a b
c d

)
∈ Γ, we define the usual slash operator

·|[γ]k by

(f |[γ]k)(z) := (cz + d)−kf(γz) = (cz + d)−kf

(
az + b

cz + d

)
.

Let D be the differential operator

D = 1
2$i

d

dz
= q

d

dq
(q = e2$iz).

By a simple calculation, we see that

(Df)
(
az + b

cz + d

)
= (cz + d)k+2(Df)(z) + k

2$ic(cz + d)k+1f(z). (6.1)

Therefore the operator D does not preserve modularity. On the other hand, the Maass–Shimura
operator

∂k = D − k

4$y (z = x+ iy)

preserves it although does not preserve holomorphy. We define ∂(h)k by ∂k+2h−2 ◦ ∂k+2h−4 ◦ · · · ◦
∂k+2 ◦ ∂k.

Proposition 6.1. The Maass–Shimura operator is compatible with the slash operator, that is,
for γ ∈ Γ, we have

∂k(f |[γ]k) = (∂kf)|[γ]k+2.

In particular, if f ∈M∗
k (Γ), then we have ∂(h)k f ∈M∗

k+2h(Γ).

Proof. It follows from the equation (6.1).

Proposition 6.2. The following holds:

∂
(h)
k =

h∑
j=0

(
h

j

)
(h+ k − 1)!
(j + k − 1)!

( −1
4$y

)h−j

Dj .
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Proof. It can be easily shown by using induction on h.

Proposition 6.3 ([RZ93, p.4, (16)]). The following holds:

∂
(h)
k

( 1
(mz + n)k

)
= (h+ k − 1)!

(k − 1)!

( −1
4$y

mz + n

mz + n

)h 1
(mz + n)k

.

Proof. By Proposition 6.2, we calculate as follows:

∂
(h)
k

( 1
(mz + n)k

)
=

h∑
j=0

(
h

j

)
(h+ k − 1)!
(j + k − 1)!

( −1
4$y

)h−j

Dj 1
(mz + n)k

=
h∑

j=0

(
h

j

)
(h+ k − 1)!
(j + k − 1)!

( −1
4$y

)h−j 1
(2$i)j

(−m)jk(k + 1) · · · (k + j − 1)
(mz + n)k+j

= (h+ k − 1)!
(k − 1)!

1
(mz + n)k

h∑
j=0

(
h

j

)( −m
2$i(mz + n)

)j( −1
4$y

)h−j

= (h+ k − 1)!
(k − 1)!

1
(mz + n)k

( −m
2$i(mz + n) +

−1
4$y

)h

= (h+ k − 1)!
(k − 1)!

( −1
4$y

mz + n

mz + n

)h 1
(mz + n)k

.

We define the h-th generalized Laguerre polynomial to be

Lα
h(z) =

∞∑
j=0

(
h+ α

h− j

)
(−z)j
j! (h ∈ Z≥0, α ∈ C).

In the special case α = 1/2, −1/2, we see that

H2n(z) = (−4)nn!L−1/2
n (z2), H2n+1(z) = 2(−4)nn!zL1/2

n (z2), (6.2)

where

Hn(z) =
∑

0≤j≤n/2

n!
j!(n− 2j)! (−1)j(2z)n−2j

is the n-th Hermite polynomial.

Proposition 6.4 ([RZ93, p.3, (9)]). The following holds:

∂
(h)
k

( ∞∑
n=0

a(n)e2$inz

)
= (−1)hh!

(4$y)h
∞∑
n=0

a(n)Lk−1
h (4$ny)e2$inz.

In particular for k = 1/2, 3/2, we have

∂
(h)
1/2

( ∞∑
n=0

a(n)e$in2z

)
= (−1)hh!

(4$y)h
∞∑
n=0

a(n)L−1/2
h (2n2$y)e$in2z,

∂
(h)
3/2

( ∞∑
n=0

a(n)e$in2z

)
= (−1)hh!

(4$y)h
∞∑
n=0

a(n)L1/2
h (2n2$y)e$in2z.
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Proof. By Proposition 6.2, we have

∂
(h)
k

( ∞∑
n=0

a(n)e2$inz

)
=

 h∑
j=0

(
h

j

)
(h+ k − 1)!
(j + k − 1)!

( −1
4$y

)h−j

Dj

 ∞∑
n=0

a(n)e2$inz

= (−1)hh!
(4$y)h

∞∑
n=0

a(n)
h∑

j=0

(h+ k − 1)!
(h− j)!(j + k − 1)!

(−4$y)j
j! Dje2$inz

= (−1)hh!
(4$y)h

∞∑
n=0

a(n)
h∑

j=0

(
h+ k − 1
h− j

)
(−4$ny)j

j! e2$inz

= (−1)hh!
(4$y)h

∞∑
n=0

a(n)Lk−1
h (4$ny)e2$inz.

For the special case k = 1/2, 3/2, it can be shown similarly.

We introduce the following theta series, whose notation is based on [FK01].

θ

[
ε
ε′

]
(z, τ) :=

∑
n∈Z

exp 2$i
{
1
2

(
n+ ε

2

)2
τ +

(
n+ ε

2

)(
z + ε′

2

)}
(ε, ε′ ∈ Q), (6.3)

θ′
[
ε
ε′

]
(0, τ) := ∂

∂z
θ

[
ε
ε′

]
(z, τ)

∣∣∣∣∣
z=0

= 2$i
∑
n∈Z

(
n+ ε

2

)
exp 2$i

{
1
2

(
n+ ε

2

)2
τ + ε′

2

(
n+ ε

2

)}
. (6.4)

The action of the Maass–Shimura operator on (6.3) and (6.4) is described by

θ(p)

[
µ
ν

]
(z) := i−p(2$y)−p/2 ∑

n∈Z+µ

Hp(n
√
2$y) exp($in2z + 2$iνn) (µ, ν ∈ Q, p ∈ Z≥0).

Proposition 6.5. For h ∈ Z≥0, it holds that

θ(2h)

[
µ
ν

]
(z) = (−1)h23h∂(h)1/2

(
θ

[
2µ
2ν

]
(0, z)

)
,

θ(2h+1)

[
µ
ν

]
(z) = −i(−1)h23h+1∂

(h)
3/2

(
1

2$iθ
′
[
2µ
2ν

]
(0, z)

)
.

Proof. It follows by Proposition 6.4 and the identities (6.2).

6.2 The L-value with Maass–Shimura operator
6.2.1 The case for E−p

Let ψ be the Hecke character of K = Q(i) associated to E−1 : y2 = x3+x. For an integral ideal
a of OK which is prime to 4, we have

ψ(a) = (−1)(a−1)/2(a+ bi),

where a + bi is the primary generator of a, that is, a + bi satisfies (a, b) ≡ (1, 0), (3, 2) mod 4.
We set ε(a+ bi) = (−1)(a−1)/2.
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Lemma 6.6. An integral ideal a of OK which is prime to 4 is written in the form

a = (r + 4N − 2mi) (r ∈ {1, 3}, N,m ∈ Z).

Proof. An ideal (a+ bi) is prime to 4 if and only if its norm a2+ b2 is prime to 4. Therefore such
an ideal (a + bi) must satisfy (a, b) ≡ (1, 0), (0, 1) mod 2. There is nothing to prove the former
case. For the latter case, it follows from (a+ bi) = (b− ai).

Let Θ(z) be the theta series

Θ(z) =
∑

λ∈OK

qNK/Qλ =
∑

n,m∈Z
qn

2+m2 ∈M1(Γ1(4)).

Proposition 6.7. We have

L(ψ2k−1, k) = (−1)k−12−3$k

(k − 1)!
(
∂
(k−1)
1 Θ(z)|z=i/4 + ∂

(k−1)
1 Θ(z)|z=i/4+1/2

)
.

Proof. We consider the Eisenstein series of weight 1 for Γ1(4)

G1,ε(z) = lim
s→0

1
2
∑′

n,m

ε(n)
(4mz + n)|4mz + n|2s

(z ∈ H),

where the prime means that summation over the terms whose denominator is not zero. By using
Proposition 6.3, we have

∂
(k−1)
1 G1,ε(z) = (k − 1)!

( −1
4$y

)k−1 1
2
∑′

n,m

ε(n)(n+ 4mz)2k−1

|n+ 4mz|2k
.

Since G1,ε(z) = $/4 ·Θ(z) (Note that dimM1(Γ1(4)) = 1), it holds that

L(ψ2k−1, k) =
∑′

r,N,m

ψ((r + 4N − 2mi))2k−1

|r + 4N − 2mi|2k

= 1
2
∑′

r,N,m

ε(r + 4N)(r + 4N − 2mi)2k−1

|r + 4N + 2mi|2k

= 1
2
∑′

n,m

ε(n)(n− 2mi)2k−1

|n+ 2mi|2k

= (−1)k−12k−3$k

(k − 1)! ∂
(k−1)
1 Θ(z)|z=i/2, (6.5)

Finally the identity [Köh11, p.192]

2Θ(z) = Θ
(
z

2

)
+Θ

(
z + 1
2

)
yields the claim.

Corollary 6.8. If k is an even integer, then L(ψ2k−1, k) = 0.

Proof. For γ =
( 0 −1
4 0

)
∈ GL+

2 (Q), we have Θ(z)|[γ]1 = −iΘ(z) (cf. [Kob93, p.124]). By
Proposition 6.1, we have

∂
(k−1)
1 Θ(z) = i(2z)−2k+1∂

(k−1)
1 Θ(z)|z=−1/4z.

Thus we obtain ∂(k−1)
1 Θ(z)|z=i/2 = 0 and the colollary follows by the equality (6.5).
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Next, we write the special value L(ψ2k−1, k) as the square of the ∂k-derivative of some
modular form. The key is Theorem 6.9 below. For z = x + iy ∈ H, we put Qz(n,m) =
|mz − n|2/2y. Note that by Proposition 6.4, it holds that

∂
(k−1)
1 Θ(z)|z=i/4 + ∂

(k−1)
1 Θ(z)|z=i/4+1/2

=2(−1)k−1(k − 1)!
$k−1

∑
(0,0),(1,1)

L0
k−1(2$Qi(n,m))e−$(n2+m2)/2,

where
∑

(a,b) implies that (n,m) runs over all pairs of integers which satisfy (n,m) ≡ (a, b) mod 2.
For simplicity, we set

an,m := L0
k−1(2$Qi(n,m))e−$(n2+m2)/2.

Theorem 6.9 ([RZ93, p.7]). For a ∈ Z>0, z ∈ H, µ, ν ∈ Q and p, α ∈ Z≥0, the following
identity holds.

(−1)pp!
($y)p

∑
n,m∈Z

e2$i(nµ+mν)
(
mz − n

ay

)α

Lα
p

(2$
a
Qz(n,m)

)
e$(inm−Qz(n,m))/a

=
√
2ay(ay)αθ(p)

[
aµ
ν

]
(a−1z)θ(p+α)

[
µ

−aν

]
(−az).

In particular for the case a = 1, α = 0, the right hand side is

(−1)p
√
2y
∣∣∣∣∣θ(p)

[
µ
ν

]
(z)
∣∣∣∣∣
2

.

We define θ2, θ4 to be

θ2(z) := θ

[
1
0

]
(0, z) =

∑
n∈Z+1/2

e$in2z, θ4(z) := θ

[
0
1

]
(0, z) =

∑
n∈Z

(−1)ne$in2z.

Theorem 6.10. Let ψ be the Hecke character of K = Q(i) associated to E−1 : y2 = x3 + x.
Then for L(ψ2k−1, s), we have

L(ψ2k−1, k) =


23k−9/2$k

(k − 1)!

∣∣∣∂(N)
1/2 θ2(z)|z=i

∣∣∣2 (k = 2N + 1),

0 (k = 2N).

Proof. We apply for p = k − 1, a = 1, α = 0, z = i in Theorem 6.9. By substituting (µ, ν) =
(1/2, 0), (0, 1/2), we see that

(k − 1)!
$k−1

 ∑
(0,0),(0,1),(1,1)

an,m −
∑
(1,0)

an,m

 =
√
2
∣∣∣∣∣θ(k−1)

[
1/2
0

]
(i)
∣∣∣∣∣
2

, (6.6)

(k − 1)!
$k−1

 ∑
(0,0),(1,0),(1,1)

an,m −
∑
(0,1)

an,m

 =
√
2
∣∣∣∣∣θ(k−1)

[
0
1/2

]
(i)
∣∣∣∣∣
2

. (6.7)

Note that ∣∣∣∣∣θ(k−1)

[
1/2
0

]
(z)
∣∣∣∣∣
2

=
∣∣∣∣∣θ(k−1)

[
0

1/2

]
(z)
∣∣∣∣∣
2

.



Chapter 6. Square formula of L-value 52

By adding (6.6) and (6.7), we obtain

∂
(k−1)
1 Θ(z)|z=i/4 + ∂

(k−1)
1 Θ(z)|i/4+1/2 = (−1)k−123/2

∣∣∣∣∣θ(k−1)

[
1/2
0

]
(i)
∣∣∣∣∣
2

.

Therefore the theorem follows by Proposition 6.5.

Corollary 6.11. Under the same condition as Theorem 6.10, we have

L(ψ2k−1, k) ≥ 0.

6.2.2 The case for Ap

Let ψ′ be the Hecke character of K = Q(ω) associated to A1 : x3 + y3 = 1, where ω =
(−1 +

√
−3)/2. For an integral ideal a of OK which is prime to 3, we have

ψ′(a) = ψ′((a+ bi)) = ε′(a+ bi)(a+ bi),

where ε′ : (OK/3OK)× → C× is some sextic character.

Lemma 6.12. An integral ideal a of OK which is prime to 3 is written in the form

a = (r + 3(N +mω2)) (r ∈ {1, 2}, N,m ∈ Z),

Proof. A proof is the same as Lemma 6.6.

Let Θ′(z) be the theta series

Θ′(z) =
∑

λ∈OK

qNλ =
∑
n,m

qn
2+nm+m2 ∈M1(Γ1(3)).

Proposition 6.13. We have

L(ψ′2k−1, k) = (−1)k−12k−13−k/2−2$k

(k − 1)! ωk−1(1− ω)∂(k−1)
1 Θ′(z)|z=(ω−2)/3.

Proof. Similarly for the case E−p, we obtain

L(ψ′2k−1, k) = 1
2
∑′

n,m

ε′(n)(n+ 3mω2)2k−1

|n+ 3mω|2k

= (−1)k−12k−13k/2−2$k

(k − 1)! ∂
(k−1)
1 Θ′(z)|z=ω.

For the Atkin–Lehner involutionW3 =
(

0 −1/
√
3√

3 0

)
, we have Θ′(z)|[W3]1 = −iΘ′(z) (cf. [Köh11,

p.155]). By Proposition 6.1, we have

∂
(k−1)
1 Θ′(z) = i(

√
3z)−2k+1∂

(k−1)
1 Θ′(z)|z=−1/3z.

The proposition follows by substituting z = ω.
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By Proposition 6.4, it holds that

∂
(k−1)
1 Θ(z)|z=(ω−2)/3

=(−1)k−1√3k−1(k − 1)!
2k−1$k−1

∑
n,m∈Z

L0
k−1(2$Qω(n,m))e2$i(n2+nm+m2)(ω−2)/3.

For simplicity, we set

an,m := L0
k−1(2$Qω(n,m))e2$i(n2+nm+m2)(ω−2)/3.

Let η(z) = q1/24
∏

n≥1(1− qn) be the Dedekind eta function.

Lemma 6.14. For h,N ∈ Z≥0, the following holds:

(i) ∂(h)1/2 θ

[
1/3
−1/3

]
(0, z)

∣∣∣∣∣
z=ω

= eh$i/3−$i/431/4 ∂(h)1/2η(z)
∣∣∣
z=ω

,

(ii) ∂(h)3/2
1

2$iθ
′
[
1
1

]
(z)
∣∣∣∣∣
z=ω

= e$i/2∂
(h)
3/2η(z)

3|z=ω,

(iii) ∂(3N+1)
3/2

1
2$iθ

′
[

1/3
−1/3

]
(z)
∣∣∣∣∣
z=ω

= eN$i−13$i/362−135/4∂(3N+1)
3/2 η(3z)3|z=ω.

Proof. (i) By using identity [FK01, p.241]

θ

[
1/3
1

]
(0, z) = e$i/6η(z),

we have

θ

[
1/3
−1/3

]
(0, z) = e−7$i/36θ

[
1/3
1

]
(0, z) = e−$i/36η

(
z − 1
3

)
.

It follows from this and Proposition 6.1.
(ii) It follows from the identity [FK01, p.289, (4.14)]

θ′
[
1
1

]
(0, τ) = −2$η(τ)3. (6.8)

(iii) Proposition 6.1, we have

∂
(3N+1)
3/2 η(z)3|z=ω = 0. (6.9)

It follows from (6.8), (6.9) and the identity [FK01, p.240, (3.40)]

6e$i/3θ′
[
1/3
1

]
(0, 3z) = θ′

[
1
1

]
(0, z/3) + 3θ′

[
1
1

]
(0, 3z).
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Theorem 6.15. Let ψ′ be the Hecke character of K = Q(ω) associated to A1 : x3 + y3 = 1.
Then for L(ψ′2k−1, s), we have

L(ψ′2k−1, k) =



$k

(k − 1)!2
2k−13k/2−9/4

∣∣∣∂(3N)
1/2 η(z)|z=ω

∣∣∣2 (k = 6N + 1),

$k

(k − 1)!2
2k−33k/2−11/4

∣∣∣∂(3N+1)
3/2 η(z)3|z=ω

∣∣∣2 (k = 6N + 2),

$k

(k − 1)!2
2k−43k/2−1/4

∣∣∣∂(3N+1)
3/2 η(3z)3|z=ω

∣∣∣2 (k = 6N + 4),

0 (otherwise).

Proof. We apply for p = k − 1, a = 1, α = 0, z = ω in Theorem 6.9. By substituting (µ, ν) =
(1/2, 1/2) with multiplication by ω2, (µ, ν) = (1/6,−1/6) and (−1/6, 1/6), we see that

2k−1(k − 1)!
√
3k−1

$k−1

 ∑
n−m≡1,2,4,5

an,m +
∑

n−m≡0,3
an,m

 = ω2 4√3
∣∣∣∣∣θ(k−1)

[
1/2
1/2

]
(ω)
∣∣∣∣∣
2

, (6.10)

2k−1(k − 1)!
√
3k−1

$k−1

 ∑
n−m≡0,1,3,4

an,m +
∑

n−m≡2,5
an,m

 = 4√3
∣∣∣∣∣θ(k−1)

[
1/6
−1/6

]
(ω)
∣∣∣∣∣
2

, (6.11)

2k−1(k − 1)!
√
3k−1

$k−1

 ∑
n−m≡0,2,3,5

an,m +
∑

n−m≡1,4
an,m

 = 4√3
∣∣∣∣∣θ(k−1)

[
−1/6
1/6

]
(ω)
∣∣∣∣∣
2

, (6.12)

where
∑

n−m≡a implies that (n,m) runs over all pairs of integers which satisfy n−m ≡ a mod 6.
Note that ∣∣∣∣∣θ(p)

[
µ
−ν

]
(z)
∣∣∣∣∣
2

=
∣∣∣∣∣θ(p)

[
−ν
µ

]
(z)
∣∣∣∣∣
2

.

By adding (6.10), (6.11) and (6.12), we obtain

L(ψ′2k−1, k) = 2−k+13k/2−11/4$k

(k − 1)!

ωk+1
∣∣∣∣∣θ(k−1)

[
1/2
1/2

]
(ω)
∣∣∣∣∣
2

+ 2ωk−1
∣∣∣∣∣θ(k−1)

[
1/6
−1/6

]
(ω)
∣∣∣∣∣
2
.

Since L(ψ′2k−1, k) takes a real number, it holds that

L(ψ′2k−1, k) =



0 (k ≡ 0, 3 mod 6),
2−k+23k/2−11/4$k

(k − 1)!

∣∣∣∣∣θ(k−1)

[
1/6
1/6

]
(ω)
∣∣∣∣∣
2

(k ≡ 1, 4 mod 6),

2−k+13k/2−11/4$k

(k − 1)!

∣∣∣∣∣θ(k−1)

[
1/2
1/2

]
(ω)
∣∣∣∣∣
2

(k ≡ 2, 5 mod 6).

The theorem follows by Proposition 6.5, Lemma 6.14 and the equation

θ

[
1
1

]
(0, z) = 0.

Corollary 6.16. Under the same condition as Theorem 6.15, we have

L(ψ′2k−1, k) ≥ 0.
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Chapter 7

Recurrence formula for the algebraic
part

7.1 On the Cohen–Kuznetsov series
The differential operator D does not preserve modularity, but it does preserve holomorphy. On
the other hand, the Maass–Shimura operator ∂k preserves modularity, but does not preserve
holomorphy. We introduce an operator that preserves the properties of both modularity and
holomorphy. Let us denote the Ramanujan–Serre operator by

ϑk = D − k

12E2.

Here, E2(z) = 1 − 24
∑∞

n=1 σ1(n)qn is the Eisenstein series of weight 2. This Eisenstein series
is not a modular form, but the function E∗

2(z) = E2(z) − 3/$y is a non-holomorphic modular
form. Since the Ramanujan–Serre operator is also expressed as ϑk = ∂k − kE∗

2/12, we see that
ϑk maps a modular form of weight k to a modular form of weight k + 2. We sometimes drop
the subscript k of ϑk if it is clear the weight of a modular form on which ϑ acts.

To express the difference between the operators D, ∂k and ϑk, Rodríguez-Villegas and Zagier
have introduced formal power series in the variable X: the Cohen–Kuznetsov series defined by

fD(z,X) :=
∞∑
n=0

Dnf(z)
(k)n

Xn

n! (z ∈ H, f ∈Mk(Γ))

and the modified Cohen–Kuznetsov series defined by

f∂(z,X) :=
∞∑
n=0

∂
(n)
k f(z)
(k)n

Xn

n! ,

where (k)n = k(k + 1) · · · (k + n− 1) is the Pochhammer symbol.

Proposition 7.1. The following holds:

f∂(z,X) = e−X/4$yfD(z,X).

Proof. By direct computation, we have

e−X/4$yfD(z,X) =
∞∑
n=0

(
n∑

`=0

(
n

`

)
(n+ k − 1)!
(`+ k − 1)!D

`f(z)
)

Xn

(k)nn!
.

The claim follows from Proposition 6.2
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Proposition 7.2. Let f ∈Mk(Γ). For all z ∈ H, X ∈ C and γ =
(
a b
c d

)
∈ Γ, it follows that

fD

(
az + b

cz + d
,

X

(cz + d)2
)
= (cz + d)k exp

(
c

cz + d

X

2$i

)
fD(z,X), (7.1)

f∂

(
az + b

cz + d
,

X

(cz + d)2
)
= (cz + d)kf∂(z,X). (7.2)

Proof. The equation (7.2) follows from the fact that ∂(n)k f transforms like a modular form of
weight k + 2n. For the equation (7.1), by using Proposition 7.1, we have

fD

(
az + b

cz + d
,

X

(cz + d)2
)
= exp

(
X

4$y
cz + d

cz + d

)
f∂

(
az + b

cz + d
,

X

(cz + d)2
)

= (cz + d)k exp
(
X

4$y
cz + d

cz + d

)
f∂(z,X)

= (cz + d)k exp
(
X

4$y

(
cz + d

cz + d
− 1

))
fD(z,X)

= (cz + d)k exp
(

c

cz + d

X

2$i

)
fD(z,X).

A series such as the Cohen–Kuznetsov series for the Ramanujan–Serre operator is not defined
in the same way. We define

fϑ(z,X) := e−E∗
2 (z)X/12f∂(z,X). (7.3)

Then, expansion coefficients of fϑ(z,X) satisfy a certain recurrence relation.

Proposition 7.3 ([RZ95, p.12]). Let f ∈Mk(Γ). Then the series fϑ(z,X) has the expansion

fϑ(z,X) =
∞∑
n=0

Fn(z)
(k)n

Xn

n! ,

where Fn ∈Mk+2n(Γ) is the modular form that is defined by the following recurrence formula:

Fn+1 = ϑk+2nFn − n(n+ k − 1)
144 E4Fn−1. (7.4)

The initial condition is F0 = f, F1 = ϑkf .

Proof. Proposition 7.2 shows the function Fn is a modular form of weight k + 2n. By the
definition (7.3) and Proposition 7.1, we have

fϑ(z,X) = e−E2(z)X/12fD(z,X). (7.5)

Expanding the right-hand side of (7.5), we obtain

Fn(z) =
n∑

`=0

n!
`!

(
n+ k − 1
n− `

)(
−E2(z)

12

)n−`

D`f(z). (7.6)

We can see that the function (7.6) satisfies the recurrence formula (7.4) by using the equation
[Bru+08, Proposition 15]

D

(
−E2(z)

12

)
−
(
−E2(z)

12

)2
= E4(z)

144 .
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If a CM point z0 satisfies E∗
2(z0) = 0, then f∂(z0, X) = fϑ(z0, X) by (7.3). Therefore by

Proposition 7.3, we see that

∂
(n)
k f(z)|z=z0 = Fn(z0),

where Fn is the modular form that is defined by the recurrence formula (7.4).

7.2 Recurrence formula
7.2.1 The case for E−p

We apply Proposition 7.3 for f = θ2,Γ = Γ(2). The graded ring ⊕k∈ 1
2Z
Mk(Γ(2)) is isomorphic

to C[θ2, θ4] as C-algebra (cf. [Bru+08, p.28-29]). Since θ2 and θ4 are algebraically independent
over C, we sometimes regard θ2 and θ4 as indeterminates and C[θ2, θ4] as the polynomial ring
in two variables over C.

Lemma 7.4. We have

ϑθ2 =
1
12θ2θ

4
4 +

1
24θ

5
2, ϑθ4 = − 1

12θ
4
2θ4 −

1
24θ

5
4.

Proof. It follows from the fact that ϑθ42 and ϑθ44 are of weight 4 and the ring M4(Γ(2)) is
generated by θ42, θ44.

By Lemma 7.4, the Ramanujan–Serre operator ϑ acts on C[θ2, θ4] as

ϑ =
( 1
12θ2θ

4
4 +

1
24θ

5
2

)
∂

∂θ2
−
( 1
12θ

4
2θ4 +

1
24θ

5
4

)
∂

∂θ4
.

Lemma 7.5. The following holds:

θ2(i) = 2−1/4$−1/2Ω1/2
E .

Proof. The lemma holds from the identity θ2(z) = 2η(2z)2/η(z) (For example, see [Bru+08,
p.28-29]) and well-known formula:

η(i) = Γ(1/4)
2$3/4 , η(2i) = Γ(1/4)

211/8$3/4 .

Theorem 7.6. We define the algebraic part of L(ψ2k−1, k) to be

LE,k = 2k+13k−1$k−1(k − 1)!
Ω2k−1
E

L(ψ2k−1, k).

Then LE,k is the square of a rational integer and

√
LE,k =

{
|fN (0)| (k = 2N + 1),
0 (k = 2N),

where fn(t) ∈ Z[t] is the polynomial that is defined by the recurrence formula

fn+1(t) = (4n+ 1)(2t+ 3)fn(t)− 12(t+ 1)(t+ 2)f ′n(t)− 2n(2n− 1)(t2 + 3t+ 3)fn(t).

The initial condition is f0(t) = 1, f1(t) = 2t+ 3.
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Proof. By Proposition 7.3 and Lemma 7.4, we have ∂(n)1/2θ2(z)|z=i = Fn(i), where Fn is the
modular form that is defined by the recurrence formula

Fn+1 =
( 1
12θ2θ

2
4 +

1
24θ

5
2

)
∂Fn

∂θ2
−
( 1
12θ

4
2θ4 +

1
24θ

5
4

)
∂Fn

∂θ4
− n(n− 1/2)

144 E4Fn−1. (7.7)

We set fn = 24nFn/θ
4n+1
2 , which has degree 0. Then we can rewrite the recurrence formula

(7.7) as follows:

fn+1 = (4n+ 1)
θ42 + 2θ44

θ42
fn +

θ42 + 2θ44
θ42

∂fn
∂θ2

−
2θ42θ4 + θ54

θ42

∂fn
∂θ4

− 2n(2n− 1)E4
θ82
fn−1. (7.8)

Moreover we set t = (θ44 − θ42)/θ42 which satisfies t(i) = 0. Note that E4 = θ82 + θ42θ
4
4 + θ84. Then

the recurrence formula (7.8) transforms

fn+1(t) = (4n+ 1)(2t+ 3)fn(t)− 12(t+ 1)(t+ 2)f ′n(t)− 2n(2n− 1)(t2 + 3t+ 3)fn(t).

The initial condition is f0(t) = 1, f1(t) = 2t+ 3. Therefore, by Lemma 7.5, we obtain∣∣∣∂(N)
1/2 θ2(z)|z=i

∣∣∣2 = 2−4k+7/23−k+1$−2k+1Ω2k−1
E |fN (0)|2.

7.2.2 The case for Ap

First we consider the case for k = 6N+1 (The case for k = 6N+2 is almost the same). We apply
Proposition 7.3 for f = η,Γ = Γ(1). The graded ring ⊕k∈ZMk(Γ(1)) is isomorphic to C[E4, E6]
as C-algebra. Since E4 and E6 are algebraically independent over C, we sometimes regard E4
and E6 as indeterminates and C[E4, E6] as the polynomial ring in two variables over C. We
denote by ∂

∂E4
and ∂

∂E6
the derivative with respect to formal variables E4 and E6. We take a

sufficiently small neighborhood D of ω so that E1/3
6 can be defined. (Note that E6(ω) 6= 0.) In

the following, we restrict the domain of functions in C[E4, E6, E
1/3
6 , E−1

6 , η] to D.

Lemma 7.7. We have

ϑE4 = −1
3E6, ϑE6 = −1

2E
2
4 , ϑη = 0.

Proof. The proof is the same as Lemma 7.4.

By the above lemma, the Ramanujan–Serre operator ϑ acts on C[E4, E6] as

ϑ = −E6
3

∂

∂E4
−
E2

4
2

∂

∂E6
. (7.9)

The derivatives ∂
∂E4

and ∂
∂E6

on C[E4, E6] are uniquely extended on C[E4, E6, E
−1
6 , E

1/3
6 , η]

satisfying the following:

∂

∂E6
E−1

6 = −E−2
6 ,

∂

∂E6
E

1/3
6 = 1

3E
−1
6 E

1/3
6 .

Next we consider the case for k = 6N + 4. We apply Proposition 7.3 for f = η3,Γ =
Γ0(3), where η3(z) = η(3z)3. It is known that the graded ring ⊕k∈ZMk(Γ0(3)) is isomorphic to
C[C,α, β]/(α2 − Cβ) ∼= C[C,C−1, α] (cf. [Sud11]) as C-algebra, where

C = 1
2(3E2(3z)− E2(z)), α = 1

240(E4(z)− E4(3z)),
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β = 1
12

{ 1
504(E6(3z)− E6(z))− Cα

}
.

Since C and α are algebraically independent over C, we sometimes regard C and α as indetermi-
nates and C[C,α] as the polynomial ring in two variables over C. In the following, we consider
the extension C[C,C−1, α, η3] of C[C,α].

Lemma 7.8. We have

ϑC = −1
6C

2 + 18α, ϑα = 2
3Cα+ 9C−1α2.

Proof. The proof is the same as Lemma 7.4.

Similarly in the case for k = 6N + 1, by Lemma 7.8 the Ramanujan–Serre operator ϑ acts
on C[C,C−1, α, η3] as

ϑ =
(
−1
6C

2 + 18α
)
∂

∂C
+
(2
3Cα+ 9C−1α2

)
∂

∂α
.

Lemma 7.9. The following holds:

|η(ω)| =
33/8Ω1/2

A

21/2$1/2 , |η3(ω)| =
Ω3/2
A

23/231/8$3/2 , E6(ω) =
36Ω6

A

23$6 , C(ω) =
3Ω2

A

$2 .

Proof. It can be shown in the same way as Lemma 7.5.

Theorem 7.10. We define the algebraic part of L(ψ′2k−1, k) to be

LA,k = 3ν
(

2$
3
√
3Ω2

A

)k−1 (k − 1)!
ΩA

L(ψ′2k−1, k),

where ν = 2 if k ≡ 2 mod 6, ν = 1 otherwise. Then LA,k is the square of a rational integer and

√
LA,k =


|x3N (0)| (k = 6N + 1),
|y3N (0)| (k = 6N + 2),
|z3N+1(0)| (k = 6N + 4),
0 (otherwise),

where xn(t), yn(t), zn(t) ∈ Z[t] are polynomials that is defined by the following recurrece formulas

xn+1(t) = −2(1− 8t3)x′n(t)− 8nt2xn(t)− n(2n− 1)txn−1(t),
yn+1(t) = −2(1− 8t3)y′n(t)− 8nt2yn(t)− n(2n+ 1)tyn−1(t),
zn+1(t) = −(t− 1)(9t− 1)z′n(t) + {(6t− 2)n+ 2}zn(t)− 2n(2n+ 1)tzn−1(t).

The initial conditions are

x0(t) = 1, x1(t) = 0,
y0(t) = 1, y1(t) = 0,
z0(t) = 1/2, z1(t) = 1.
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Proof. Since the proof for the case k = 6N +2 is the same for k = 6N +1, we prove for the case
k = 6N + 1, 6N + 4.

First we prove for k = 6N + 1. By Proposition 7.3 and the equation (7.9), we have
∂
(n)
1/2η(z)|z=ω = Xn(ω), where Xn is the modular form that is defined by the recurrence for-

mula

Xn+1 = −E6
3
∂Xn

∂E4
−
E2

4
2
∂Xn

∂E6
− n(n− 1/2)

144 E4Xn−1. (7.10)

We set xn = 12nXn/ηE
n/3
6 and t = E4E

−2/3
6 /2 which satisfies t(ω) = 0. Then we can rewrite

the recurrence formula (7.10) as follows:

xn+1(t) = −2(1− 8t3)x′n(t)− 8nt2xn(t)− n(2n+ 1)txn−1(t).

The initial condition is x0(t) = 1, x1(t) = 0. Therefore, by Lemma 7.9, we obtain

∣∣∣∂(3N)
1/2 η(z)|z=ω

∣∣∣2 = Ω2k−1
A

$2k−1 2
−3k+23k−1/4|x3N (0)|2.

Next we prove for k = 6N + 4. We set η3(z) = η(3z)3. We have ∂(n)3/2η3(z)|z=ω = Zn(ω),
where Zn is the modular form that is defined by the recurrence formula

Zn+1 =
(
−1
6C

2 + 18α
)
∂Zn

∂C
+
(2
3Cα+ 9C−1α2

)
∂Zn

∂α
− n(n+ 1/2)

144 E4Zn−1. (7.11)

We set zn = 23n−1Zn/η3C
n, t = (1+216C−2α)/9, which satisfies t(ω) = 0. Then we can rewrite

the recurrence formula (7.11) as follows:

zn+1(t) = −(t− 1)(9t− 1)z′n(t) + {(6t− 2)n+ 2}zn(t)− 2n(2n+ 1)tzn−1(t).

The initial condition is z0(t) = 1/2, z1(t) = 1. Therefore, by Lemma 7.9, we obtain

∣∣∣∂(3N+1)
3/2 η3(z)|z=ω

∣∣∣ = Ω2k−1
A

$2k−1 2
−3k+53k−9/4|z3N+1(0)|2.



Bibliography

[BS65] B. J. Birch and H. P. F. Swinnerton-Dyer. Notes on elliptic curves. II. In: J. Reine
Angew. Math. 218 (1965), pp. 79–108.

[BCP97] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user

language. In: vol. 24. 3-4. Computational algebra and number theory (London, 1993).
1997, pp. 235–265.

[Bre+01] C. Breuil, B. Conrad, F. Diamond, and R. Taylor. On the modularity of elliptic

curves over Q: wild 3-adic exercises. In: J. Amer. Math. Soc. 14.4 (2001), pp. 843–
939.

[Bru+08] J. H. Bruinier, G. van der Geer, G. Harder, and D. Zagier. The 1-2-3 of modu-

lar forms. Universitext. Lectures from the Summer School on Modular Forms and
their Applications held in Nordfjordeid, June 2004, Edited by Kristian Ranestad.
Springer-Verlag, Berlin, 2008, pp. x+266.

[Cho19] J. Choi. On the 2-adic valuations of central L-values of elliptic curves. In: J. Number
Theory 204 (2019), pp. 405–422.

[CW77] J. Coates and A. Wiles. On the conjecture of Birch and Swinnerton-Dyer. In: Invent.
Math. 39.3 (1977), pp. 223–251.

[Coa+14] J. Coates, M. Kim, Z. Liang, and C. Zhao. On the 2-part of the Birch–Swinnerton-

Dyer conjecture for elliptic curves with complex multiplication. In: Münster J. Math.
7.1 (2014), pp. 83–103.

[Coa+15] J. Coates, Y. Li, Y. Tian, and S. Zhai. Quadratic twists of elliptic curves. In: Proc.
Lond. Math. Soc. (3) 110.2 (2015), pp. 357–394.

[Dam70] R. M. Damerell. L-functions of elliptic curves with complex multiplication. I. In:
Acta Arith. 17 (1970), pp. 287–301.

[DV18] S. Dasgupta and J. Voight. Sylvester’s problem and mock Heegner points. In: Proc.
Amer. Math. Soc. 146.8 (2018), pp. 3257–3273.

[DD10] T. Dokchitser and V. Dokchitser. On the Birch-Swinnerton-Dyer quotients modulo

squares. In: Ann. of Math. (2) 172.1 (2010), pp. 567–596.
[Dri73] V. G. Drinfel’d. Two theorems on modular curves. In: Funkcional. Anal. i Priložen.

7.2 (1973), pp. 83–84.
[FK01] H. M. Farkas and I. Kra. Theta constants, Riemann surfaces and the modular group.

Vol. 37. Graduate Studies in Mathematics. An introduction with applications to uni-
formization theorems, partition identities and combinatorial number theory. Amer-
ican Mathematical Society, Providence, RI, 2001, pp. xxiv+531.

[GS81] C. Goldstein and N. Schappacher. Séries d’Eisenstein et fonctions L de courbes

elliptiques à multiplication complexe. In: J. Reine Angew. Math. 327 (1981), pp. 184–
218.



Bibliography 62

[Gre99] R. Greenberg. Iwasawa theory for elliptic curves. In: Arithmetic theory of elliptic
curves (Cetraro, 1997). Vol. 1716. Lecture Notes in Math. Springer, Berlin, 1999,
pp. 51–144.

[GZ86] B. H. Gross and D. B. Zagier. Heegner points and derivatives of L-series. In: Invent.
Math. 84.2 (1986), pp. 225–320.

[Hus04] D. Husemöller. Elliptic curves. Second. Vol. 111. Graduate Texts in Mathematics.
With appendices by Otto Forster, Ruth Lawrence and Stefan Theisen. Springer-
Verlag, New York, 2004, pp. xxii+487.

[Iwa19] K. Iwasawa. Hecke’s L-functions. SpringerBriefs in Mathematics. Spring, 1964, Lec-
tures at Princeton University, With a foreword by John Coates and Masato Kurihara.
Springer, Singapore, 2019, pp. xi+93.

[Kat76] N. M. Katz. p-adic interpolation of real analytic Eisenstein series. In: Ann. of Math.
(2) 104.3 (1976), pp. 459–571.

[Kez21] Y. Kezuka. Tamagawa number divisibility of central L-values of twists of the Fermat

elliptic curve. In: J. Théor. Nombres Bordeaux 33.3, part 2 (2021), pp. 945–970.
[Kob93] N. Koblitz. Introduction to elliptic curves and modular forms. Second. Vol. 97. Grad-

uate Texts in Mathematics. Springer-Verlag, New York, 1993, pp. x+248.
[Köh11] G. Köhler. Eta products and theta series identities. Springer Monographs in Math-

ematics. Springer, Heidelberg, 2011, pp. xxii+621.
[Lem00] F. Lemmermeyer. Reciprocity laws. Springer Monographs in Mathematics. From

Euler to Eisenstein. Springer-Verlag, Berlin, 2000, pp. xx+487.
[Lox77] J. H. Loxton. On the determination of Gauss sums. In: Séminaire Delange-Pisot-

Poitou, 18e année: 1976/77, Théorie des nombres, Fasc. 2. Secrétariat Math., Paris,
1977, Exp. No. 27, 12.

[Man72] J. I. Manin. Parabolic points and zeta functions of modular curves. In: Izv. Akad.
Nauk SSSR Ser. Mat. 36 (1972), pp. 19–66.

[Nek09] J. Nekovář. On the parity of ranks of Selmer groups. IV. In: Compos. Math. 145.6
(2009). With an appendix by Jean-Pierre Wintenberger, pp. 1351–1359.

[Nom22a] K. Nomoto. Lower bound for the 2-adic valuations of central L-values of elliptic

curves with complex multiplication. 2022. arXiv: 2207.10380 [math.NT].
[Nom22b] K. Nomoto. The rank of a CM elliptic curve and a recurrence formula. In: J. Number

Theory 238 (2022), pp. 60–81.
[OS21] Y. Onishi and F. Sairaiji. Arithmetic over the Gaussian number field on a certain

family of elliptic curves with complex multiplication. In: RIMS Kôkyûroku Bessatsu
(Apr. 2021), pp. 1–22.

[Qiu03] D. Qiu. On p-adic valuations of L(1) of elliptic curves with CM by
√
−3. In: Proc.

Roy. Soc. Edinburgh Sect. A 133.6 (2003), pp. 1389–1407.
[QZ02a] D. Qiu and X. Zhang. L-series and their 2-adic valuations at s = 1 attached to CM

elliptic curves. In: Acta Arith. 103.1 (2002), pp. 79–95.
[QZ02b] D. Qiu and X. Zhang. Elliptic curves with CM by

√
−3 and 3-adic valuations of

their L-series. In: Manuscripta Math. 108.3 (2002), pp. 385–397.
[RZ93] F. Rodrıíguez-Villegas and D. Zagier. Square roots of central values of Hecke L-

series. In: Oxford Sci. Publ. (1993), pp. 81–99.

https://arxiv.org/abs/2207.10380


63 Bibliography

[RZ95] F. Rodrıíguez-Villegas and D. Zagier. Which primes are sums of two cubes? In: CMS
Conf. Proc. 15 (1995), pp. 295–306.

[Rub99] K. Rubin. Elliptic curves with complex multiplication and the conjecture of Birch and

Swinnerton-Dyer. In: Arithmetic theory of elliptic curves (Cetraro, 1997). Vol. 1716.
Lecture Notes in Math. Springer, Berlin, 1999, pp. 167–234.

[Sat86] P. Satgé. Groupes de Selmer et corps cubiques. In: J. Number Theory 23.3 (1986),
pp. 294–317.

[ST68] J.-P. Serre and J. Tate. Good reduction of abelian varieties. In: Ann. of Math. (2)
88 (1968), pp. 492–517.

[Sha87] E. de Shalit. Iwasawa theory of elliptic curves with complex multiplication. Vol. 3.
Perspectives in Mathematics. Academic Press, Inc., Boston, MA, 1987, pp. x+154.

[Sil86] J. H. Silverman. The arithmetic of elliptic curves. Vol. 106. Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1986, pp. xii+400.

[Sil94] J. H. Silverman. Advanced topics in the arithmetic of elliptic curves. Vol. 151. Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1994, pp. xiv+525.

[Sud11] T. Suda. Explicit structure of the graded ring of modular forms. 2011. arXiv: 1111.
4777 [math.NT].

[Tat67] J. T. Tate. Fourier analysis in number fields, and Hecke’s zeta-functions. In: Al-
gebraic Number Theory (Proc. Instructional Conf., Brighton, 1965). Thompson,
Washington, D.C., 1967, pp. 305–347.

[Tat95] J. Tate. On the conjectures of Birch and Swinnerton-Dyer and a geometric analog.
In: Séminaire Bourbaki, Vol. 9. Soc. Math. France, Paris, 1995, Exp. No. 306, 415–
440.

[TW95] R. Taylor and A. Wiles. Ring-theoretic properties of certain Hecke algebras. In: Ann.
of Math. (2) 141.3 (1995), pp. 553–572.

[VM74] M. M. Višik and J. I. Manin. p-adic Hecke series of imaginary quadratic fields. In:
Mat. Sb. (N.S.) 95(137) (1974), pp. 357–383, 471.

[Wei56] A. Weil. On a certain type of characters of the idèle-class group of an algebraic

number-field. In: Proceedings of the international symposium on algebraic number
theory, Tokyo & Nikko, 1955. Science Council of Japan, Tokyo, 1956, pp. 1–7.

[Wil95] A. Wiles. Modular elliptic curves and Fermat’s last theorem. In: Ann. of Math. (2)
141.3 (1995), pp. 443–551.

[Yin22] H. Yin. On the 8 case of the Sylvester conjecture. In: Trans. Amer. Math. Soc. 375.4
(2022), pp. 2705–2728.

[ZK87] D. Zagier and G. Kramarz. Numerical investigations related to the L-series of certain
elliptic curves. In: J. Indian Math. Soc. (N.S.) 52 (1987), 51–69 (1988).

[Zha97] C. Zhao. A criterion for elliptic curves with lowest 2-power in L(1). In: Math. Proc.
Cambridge Philos. Soc. 121.3 (1997), pp. 385–400.

[Zha01] C. Zhao. A criterion for elliptic curves with second lowest 2-power in L(1). In: Math.
Proc. Cambridge Philos. Soc. 131.3 (2001), pp. 385–404.

[Zha03] C. Zhao. A criterion for elliptic curves with lowest 2-power in L(1). II. In: Math.
Proc. Cambridge Philos. Soc. 134.3 (2003), pp. 407–420.

https://arxiv.org/abs/1111.4777
https://arxiv.org/abs/1111.4777

	I The 2-adic valuations
	Introduction
	Background
	Previous research and main result

	Preliminaries
	BSD invariants
	L-value as a finite sum

	Multiple Zhao's method
	Overview of multiple Zhao's method
	2-adic valuation of L-value
	Proof of the main theorems
	Numerical Examples


	II Recurrence formula
	Motivation
	Congruence relation between the algebraic parts
	Interpolation formula of a p-adic L-function
	Congruence relation

	Square formula of L-value
	Maass--Shimura operator
	The L-value with Maass--Shimura operator
	The case for Ep
	The case for Ap


	Recurrence formula for the algebraic part
	On the Cohen--Kuznetsov series
	Recurrence formula
	The case for Ep
	The case for Ap




