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ABSTRACT

Bacteriorhodopsin (bR) is a transmembrane protein. bR monomers form bR trimers,
and the trimers construct a two-dimensional crystal on a bio-membrane spontaneously.
The driving force for the crystallization is unclear. In this thesis, I assume the driving
force as the depletion force of lipid molecules and examine the validity of the assump-
tion. I focused on experiments conducted by M. P. Krebs et. al. They prepared mutant
bRs that cannot form trimer i.e., the mutants are in monomer form. According to their re-
search, the critical concentration (CC) for the crystallization for the bR monomer is 10.2
times higher than that for the trimer. I explain this result by using depletion force theo-
ries. To adopt the theory, the bR monomer, trimer, and lipid molecules were modeled as
hard disks. The biomembrane was modeled as a two-dimensional plane space. The bi-
nary hard disk system, namely bR—Tlipid system, has a reservoir of lipid molecules to fix
the chemical potential for lipid molecules. The phase diagrams for the bR monomer and
trimer were calculated by using two theoretical approaches: two-dimensional free vol-
ume theory (2D-FVT) and thermodynamic perturbation theory with effective potential.
The CCs for the monomer and the trimer were obtained from the phase diagrams. The
critical concentration ratio (CCR) between the monomer and the trimer was calculated
and compared with the experimental CCR.

First, the phase diagrams for the monomer and trimer were obtained by using the 2D
—FVT approach. Semi-grand potentials for the fluid and ordered phases were calculated
by the 2D—FVT, and pressure and chemical potential for the bR were obtained from the
semi-grand potentials. The pressure and the chemical potential are the same between the
fluid and ordered phases, respectively. Solving those two equations, the fluid—ordered
phase coexistence region was calculated. The coexistence region for the trimer is wider
than that for the monomer. That is, the bR trimers start to crystallize at the lower bR
packing fraction than that for the monomer. This result agrees with the experimental one
qualitatively. In addition, the CCR was obtained from the phase diagrams and showed
good agreement with the experimental one. Therefore, it is indicated that the depletion
force of the lipid molecules is dominant for the bR crystallization. However, I found
a problem with the 2D—FVT approach that the g-dependence of the phase diagram
disappears when ¢ is very small. Therefore, the phase diagrams were also examined by
another theory, namely the thermodynamic perturbation theory with effective potential.

Second, the phase diagrams for the monomer and trimer were obtained by using the
thermodynamic perturbation theory (TPT) with effective potential. The AO potential
and modified AO potential were adopted as the effective potential. Helmholtz free en-
ergies for the bR fluid and ordered phases were calculated by using the TPT. The phase
diagrams were obtained by drawing a common tangent on the free energies. The phase
diagrams obtained by adopting the AO potential as the effective potential show high CC
and indicate that the depletion force is too weak to drive the bR crystallization when the
repulsive core of the lipid molecules is ignored. On the other hand, the phase diagrams
obtained by adopting the modified AO potential show small CC and indicate that the
depletion force is enough strong to drive the crystallization when the repulsive core of
the lipid molecules is considered. In addition, the CCR obtained by using the modified
AO-TPT approach shows good agreement with the experimental one. Therefore, it is
also indicated by the modified AO-TPT approach that the depletion force of the lipid
molecules is dominant for the bR crystallization.
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Chapter 1

Introduction

1.1 Phase separation caused by depletion effect

Bacteriorhodopsin (bR) is a transmembrane protein of Halobacterium salinarum. The
bR is the light-driven proton pump, which transports the proton out of the cell. The
bRs construct a two-dimensional crystal in the biomembrane [1,2]. The crystallization
is considered as essential for the bR function. For example, it is reported that the crys-
tallization prevents the denaturation of the bR [3,4]. The crystal contains some lipids.
However the ratio, lipid weight / protein weight, in the crystal is much smaller than that
in the biomembrane. That is, the crystallization can be regarded as the separation be-
tween bRs and lipids in the two-dimensional system. However, the driving force for the
crystallization is unclear. For example, there is no hydrogen bond or ion bond between
bRs.

I focused on the following point to consider the dominant factor for the crystalliza-
tion. Most of the bR amino acid residues consist of nonpolar amino acid residues. In
addition, the lipid molecule has acyl chains, which are also hydrophobic. That is, the
hydrophobic interaction seems to be dominant in the biomembrane. Thus, I considered
that the van der Waals picture can be adopted. According to the van der Waals picture,
the liquid structure is not formed by attractive force but by repulsive force. Therefore,
the bR structure seems not to be formed by direct attractive force, but by effective inter-
action arising from repulsive force between bRs and lipid molecules, namely depletion
force. The depletion force is the effective attractive force between bRs explained by the
entropy increase of lipid molecules in the canonical ensemble. I consider the hypothe-
sis is worthwhile to study because this effective interaction is enough strong to induce
crystallization in the three-dimensional hard sphere system.

1.1.1 Mixture of ideal gas model

I would like to review the research on the mixing and separation of molecules. Generally,
the mixture is driven by entropy increase. The simplest model is the mixing of the ideal
gas. N; mole ideal gas consisting of molecular species 1 and an N, mole ideal gas con-
sisting of molecular species 2 are in the two insulated containers, respectively (FIG 1.1).
The temperature and the pressure are the same in the two containers. The two containers
are connected. When the divider is removed, the molecule 1 and the molecule 2 mix
spontaneously. In an isolated system, the state changes so that the entropy increases.
That is, the mixing of ideal gas is driven by the entropy increase. The difference of
entropy ASpix before and after the mixing of the gases is calculated as follows:

ASmix = —R(Nlln [)C]] +N21n [XQ] , (1.1)
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Figure 1.1: A mixture of ideal gas. Two species of molecules, moleculel and molecule?2,
are in the insulated containers, respectively. When the two containers are connected, and
the divider is removed, the molecules1 and molecules2 mix spontaneously.

where R is the gas constant, x; and x; are the mole fraction of the molecule 1 and
molecule 2, respectively. x| and x; are written as follows:
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Since 0 < x; < 1 and 0 < xp < 1, the ASpix is positive. The eq. (1.1) shows that the
entropy increases after the mixing.

1.1.2 Lattice model for mixing polymers and solvent molecules

The entropy driven mixing and energy driven demixing were shown by using a lattice
model. The interactions between molecules are not considered in the ideal gas model.
In 1942, Flory and Huggins independently published their theories on the mixing of
polymers and solvent molecules using the lattice model [5, 6]. Their theory contains
direct interactions between polymers and solvent molecules. Polymers “a” and solvent
molecules “b” are mixed (FIG. 1.2). Their theory is as follows. One polymer segment
and one solvent molecule occupy one lattice site. No more than two segments or solvent
molecules can occupy one lattice site. A segment of the polymer is distributed next
to another segment of that polymer. All lattice sites are occupied by the segments or
solvent molecules. The theory assumes a random mixture of polymers and solvents.
The difference of Helmholtz free energy AFpix before and after the mixing is calculated
as follows:

AFnix = AEpix — T ASmix, (1.4)

where AE,ix is the difference of energy before and after the mixing. ASy,ix is the differ-
ence of entropy before and after the mixing. ASp;x is calculated as follows:

ASnix = _kB (Naln [‘Pa] —|-thl [%])) (15)

where kg is the Boltzmann constant. N, and N, are the number of polymers “a” and
solvent molecules “b”, respectively. ¢, and ¢, are the volume fraction of polymers “a”
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Figure 1.2: Lattice model for a mixture of polymer and solvent molecules. A square
shows a segment of a polymer. A circle shows a solvent molecule.

and solvent molecules “b ” , respectively. n is the number of segments in one polymer.
Using the number of all lattice sites, 2, the volume fraction is as follows:

_nN,

0. = e (1.6)
_ M

(Pb = E. (1.7)

The ASpix of the lattice model is similar to the ASyx of the ideal gas model. However,
there is a difference. ASpx of the lattice model is calculated using the volume fraction,
whereas that of the ideal gas model is calculated using the mole fraction. Since 0 < ¢, <
1and 0 < @, < 1, the ASix is positive. That is, the entropy increases when the polymers
and solvents are mixed. If the n segments of the polymer are decomposed so that each
segment can be distributed independently, ASp,ix is

ASmix = —kg (nNyIn [@a] + Npln [g]). (1.8)

This shows that ASyix in eq. (1.8) is larger than that in eq. (1.5). That is, when the
volume fraction is the same, AS,;x decreases as the number of segments in one polymer
increases. The calculation of AEyx is shown. The theory assumes that only substances
in adjacent lattice sites interact with each other. The segments interact with each other
by eaa. The solvent molecules interact with each other by €gg. The segment interacts
with the solvent molecule by €ap. AEyix is calculated as follows:

AEnix = QkpT x 9.y, 1.9)

where T is the temperature. ) is defined as follows:

ZAE
= 1.10
KT’ (1.10)
1
Ae = gAB_*(SAA‘FSBB); (1.11)

2

where z is the number of nearest neighbors for one lattice site. Unlike ASpix, AEmix can
be both positive and negative values. The eq. (1.9) shows that the sign of AE,;x depends
on the sign of . Substituting eq. (1.5), (1.8), and (1.9) to (1.4), AFix is as follows:

BAFnix = kg(NaIn [@4] + Npln [y ]) + QkpT Y ¢ P (1.12)



The first term on the right-hand side is the entropy term. The entropy term is negative.
On the other hand, the second term, the energy term, can be positive. For example, all
interactions are attractive. In other words, €aa, €gp, and €ap are negative. When |gaa |
and |egp| are large and |eag| is small, y is positive. In this case, the energy term drives
the separation of polymer and solvent. That is, the Flory-Huggins theory indicates that
the separation of molecules is not driven by entropy but by energy. However, various
experiments in solution chemistry and other fields have shown that this conclusion is not
necessarily correct. Sometimes an increase in energy due to the molecular aggregation
or oligomerization is observed. Sometimes endothermic phenomena occur during asso-
ciation formation. The reason for this is that the lattice model ignores important factors
in the real system. One of the factors is excluded volume.

1.1.3 Depletion effect

I explain excluded volume. For example, there are two hard spheres (Fig. 1.3). Two
spheres diameter, R, is the same. A center of the sphere cannot approach the center of
the other sphere within 2R. The volume where the center of the other spheres cannot
enter is the excluded volume. Fig. 1.3 shows that the excluded volume is larger than the
volume of one sphere.

The excluded volume induces an effective attractive force between particles. For
example, when the polymers are added to a colloidal solution, the colloid particles ag-
gregate. The reason is as follows in a canonical ensemble. The centers of the polymers
are excluded from the colloid particles because they are unable to overlap the colloidal
particles. Therefore, the excluded volume (the dashed region in Fig. 1.4) exists around
the colloid particles. When the colloid particles are in contact, the excluded volumes
overlap, and the excluded volumes in the system decrease (right side in FIG. 1.4). In
other words, when the colloid particles approach, the region where the centers of poly-
mers can be distributed increases. For this reason, the number of configurations of poly-
mers increases, and the entropy increases when the colloid particles approach. That is,
the effective attractive force arises between the colloid particles because the translational
entropy of the polymers increases. This is called the depletion effect. Note that in the
lattice model explained in the previous section, there is no change in the excluded vol-
ume when particles come into contact with each other. That is because the volume of the
particle agrees with the excluded volume. (Special lattice models exist that incorporate
excluded volume effects.) Therefore, The Flory-Huggins theory [5, 6] does not contain
the depletion effect.

The depletion effect was discovered by Asakura and Oosawa in the 1950s [7,8]. This
effect is ignored for a long time after the discovery, but it was rediscovered by Vrij in
1976 [9]. They derived the effective potential arising from the depletion effect. This
is called the Asakura—QOosawa (AO) theory [7, 8]. In the AO theory, the polymers are
regarded as spheres. That is, the position of the segments within the polymer is fixed. In
addition, the theory adopts an approximation that the polymers can overlap each other.
The effective potential, @(r) is calculated by the AO theory as follows:

o(r) = o r<2R (1.13)
o(r) = —pksTAVex(r)  r=2R, (1.14)
where r is the distance between the centers of colloid particles, p is the number density

of the polymers, and AV, is the overlapping volume of the excluded volume when the
colloid particles come close.



Excluded volume

Figure 1.3: The dashed line shows the excluded volume. The center of other sphere
cannot enter the dashed line. The volume surrounded by dashed line is the excluded
volume.

Colloid

Excluded volume

Figure 1.4: The blue disks show the colloids. The yellow disk shows the polymer. The
dashed line shows the excluded volume for the center of polymer. The center of polymer
can be distributed in green region. The green area is wider when the colloidal particles
are in contact (right) than when they are apart (left).

1.1.4 Phase separation induced by depletion effect

The phase separation of molecules driven by the depletion effect was shown by the
following research. Vrij et al. mix silica particles and polystyrene in cyclohexane sol-
vent [10,11]. The silica particle is the colloid particle, and the polystyrene is the polymer.
Experimental results show that as the concentration of polystyrene increases, phase sep-
aration occurs into two fluids with high and low concentrations of colloidal particles.
The eq. (1.14) shows that as the polymer density increases, the depletion force becomes
more attractive. Therefore, the phase separation is induced as the concentration of the
polymer increases. They calculated the second virial coefficients using the AO theory,
and explained the relationship between the phase separation and cyclohexane concentra-
tion [11].

After this research, some researchers attempt to theoretically determine the phase
diagram of colloidal particles and polymers two-component systems. In 1983, Gast et



al. obtained the phase diagrams using thermodynamic perturbation theory [12]. They
modeled colloidal particles as hard spheres and obtained the free energy of the hard
sphere one-component system. They obtained the effective potential between colloidal
particles arising from the depletion effect of polymers using the AO theory. The free
energy of the hard sphere one-component system is a reference. The change in free
energy from the reference is evaluated by perturbatively incorporating the above AO
potential. The AO potential was obtained by substituting the experimental concentration
of polymers and the experimental diameter of colloidal particle and polymer to eq. (1.13)
and (1.14). The free energy of the colloidal particle effective one-component system
with polymer depletion effects was obtained. The phase diagrams were obtained by
constructing the common tangent on the free energy curves (FIG. 1.5 and 1.6). When
the diameter of the polymer is smaller than that of the colloidal particles by 0.2 times,
no first-order transition of the fluid and fluid phases is observed(FIG. 1.5). On the other
hand, the transition between fluid and solid phases occurs. When the diameter of the
polymer is 0.4 times larger than the diameter of the colloidal particles, fluid—fluid and
fluid—solid first-order transitions occur (FIG. 1.6). In both cases, as the concentration of
the polymer increases, the two-phase coexistence region expands, and the coexistence
region appears at a low colloidal particle packing fraction. These results agree with the
experimental results conducted by Vrij [10, 11] qualitatively.

In the early 1990s, the phase diagrams of the colloidal particle—polymer two-component
systems were obtained by Lekkerker et al. [13,14] using a method different from thermo-
dynamic perturbation theory. Their theory is called free volume theory (FVT). The reser-
voir of the polymer is assumed in FVT. The colloidal particle—polymer two-component
system is connected to the reservoir. That is, the chemical potential of the polymer in
the two-component system is constant. The free energy of this two-component system
is the semigrand potential Q. The Q is calculated using the Legendre transformation of
Helmholtz free energy, F, as follows:

Q (Ne,V, T, ttp) = F (Ne; Ny, V., T) — tpNp, (1.15)

where N. is the number of colloidal particles, N, is the number of polymers, V' is the
volume of the two-component system, T is the temperature, L, is the chemical potential
of the polymer. Using the FVT, Q is calculated as follows:

Q(NmVaTa“p) =Fy (N07V7T) _pres <Vfree>7 (1.16)

where Fy is the Helmholtz free energy for a pure colloidal particle system, P is the
pressure for the reservoir, and < Ve >0 is the volume where the center of the polymer
can be distributed in the colloidal particle pure system. An approximation is adopted
in the FVT. The approximation is that < V.. >, the volume where the center of the
polymer can be distributed in the two component system, is replaced by < Viee >o.
< Viree >0 is obtained using scaled particle theory.

Lekkerker et al. obtained the pressure and the chemical potential of colloidal par-
ticles differentiating Q(N,,V, T, up). When some phases coexist, the pressure and the
chemical potentials are equal between the phases. They obtained the phase diagrams us-
ing the law. The phase diagrams obtained using the FVT are in good agreement with that
obtained using the AO potential and thermodynamic perturbation theory. As the poly-
mer packing fraction increases, the two-phase coexistence region expands, and phase
separation occurs at lower colloidal particle packing fractions. This result agrees with
the experiment qualitatively. When the diameter ratio of the polymer to the colloidal
particle, o}, / Oc, is smaller than 0.32, the fluid-fluid phase separation does not occur, but
the fluid-solid phase separation does. When the diameter ratio is larger than 0.32, the
fluid—fluid and fluid—solid phase separation occur. It is noteworthy that at the size ratio
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Figure 1.5: Phase diagrams calculated using the AO potential and the thermo dynamic
perturbation theory. The diameter of the colloid particle is 2.5 times larger than that of
the polymer. Reprinted from ref [12], Copyright (1983), with permission from Elsevier.
https://doi.org/10.1016/0021-9797(83)90027-9
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Figure 1.6: Phase diagrams calculated using the AO potential and the thermo dynamic
perturbation theory. The diameter of the colloid particle is 5 times larger than that of
the polymer. Reprinted from ref [12], Copyright (1983), with permission from Elsevier.
https://doi.org/10.1016/0021-9797(83)90027-9

of 0.32, three phases of colloidal particles are predicted to coexist at a certain polymer
packing fraction: a dilute fluid phase, a dense fluid phase, and a solid phase of colloidal
particles.

The phase diagram obtained using FVT was compared with experiments [15]. The
FVT indicates that fluid-fluid phase separation occurs as the value of the diameter ratio
increases. To confirm this prediction experimentally, three different polymers are mixed
with the colloidal particles. The diameter ratios, o, /oc, are 0.08, 0.24, and 0.57. For
the diameter ratio of 0.08, the fluid—fluid phases transition is not observed. When the
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Figure 1.7: Phase diagrams obtained by simulation. The y axis is the small parti-
cle packing fraction and the x axis is the large particle packing fraction. (a) Phase
diagram when the diameter ratio os/op is 0.2. (b) Phase diagram when the di-
ameter ratio os/op is 0.1. (c) Phase diagram when the diameter ratio os/or is
0.05. (d) Phase diagram when the diameter ratio os/oy is 0.03333. Reprinted figure
with permission from ref. [20]. Copyright (1999) by the American Physical Society.
https://doi.org/10.1103/PhysRevE.59.5744

diameter ratio is larger than 0.24, the fluid—fluid phases transition is observed. As the the-
ory predicts, the fluid—fluid phase separation occurs when the diameter ratio increases.
Therefore, FVT is valid qualitatively.

In the previous section, the statistical mechanics theories are used to predict the
phase-separation behavior, but those theories contain various approximations. There-
fore, researchers considered conducting a simulation that has less approximation and
comparing the phase diagrams with that obtained theoretically. The phase diagrams for
the two-component system of large and small hard spheres were obtained using Monte
Carlo simulation [16-21] (FIG. 1.7). Comparing the phase diagrams with those obtained
using the thermodynamic perturbation theory or FVT, the phase diagrams are in good
agreement. Therefore, the perturbation theory and FVT are valid quantitatively.

The FVT shows that there are fewer polymers in the solid phase and in the dense
fluid phase of colloidal particles. This suggests that the colloidal particles and the poly-
mers also separate along with the phase separation of colloidal particles. That is, the
separation between the colloidal particles and polymers is driven by the depletion effect.
In conclusion, these series of studies showed that the separation of substances can be
driven not only by energy but also by entropy.



1.2 Formation of ordering structure and liquid structure driven by repul-
sive interaction

1.2.1 Formation of ordering structure driven by repulsive interaction: Alder tran-
sition

The phase transition between fluid phase and ordered phase, such as solid phase, is fre-
quently discussed focusing on the direct attractive interaction between molecules. For
example, water turns into ice when the water is cooled. The reason for this is discussed
as follows. The contribution of entropy to the free energy decreases as the tempera-
ture decreases. Thus, the energy becomes dominant, and drives the ordering of water
molecules. In the above discussion, the isobaric condition is assumed implicitly. How-
ever, the ordering structure formation can be discussed more clearly in the isometric
condition. In the isometric condition, fluid—solid phase transition can occur even when
all interactions between molecules are repulsive. For example, phase transition in the
binary hard sphere system is discussed. There are two species of spheres, large spheres
and small spheres in the system. The spheres cannot overlap each other. The fluid—
solid phase transition of large spheres occurs as the packing fraction of small spheres in-
creases in the isobaric condition. This is because the effective attractive forces between
the large spheres arise due to the depletion effect of small spheres. This was explained
in the previous section. Similarly, in the hard sphere one-component system, fluid—solid
phase transition occurs as the packing fraction increases. In 1962, Alder et al. showed
this phase transition using computer simulation [22]. They investigated the relationship
between pressure and packing fraction in a two-dimensional hard disk one-component
system and confirmed that a van der Waals loop appears. Furthermore, the ordered struc-
ture of the disks was observed when the packing fraction was high. This phase transition
is called the Alder transition.

The energy does not contribute to the free energy for the Alder transition because
there is no direct attractive interaction. That is, the reason for the Alder transition is that
the entropy for the ordered phase is higher than that for the fluid phase as the packing
fraction increases. If the fluid phase remains a single phase with a high packing fraction,
it seems that there are partially high and low particle packing regions. The disks hardly
move in the high packing region, whereas the disks freely move in the low packing
region. On the other hand, in the ordered phase, disks are evenly distributed, and the
range of motion is evenly distributed. According to Boltzmann’s principle, entropy is a
measure of the number of microstates. It seems that the number of microstates, i.e. the
arrangement of the disks, is larger when the range of motion is evenly distributed.

1.2.2 Discussion on the Alder transition based on the free volume

The Alder transition also can be discussed based on free volume. The free volume is the
system volume without the excluded volume (the green region in FIG. 1.4). That is, the
free volume is the volume where the center of a hard particle can be distributed. The
Helmholtz free energy, F, can be calculated using the free volume. The F is

BFvo
\%

¢
- /O Bu(9)dg', (L.17)

where f is the inverse temperature, vy is volume of one particle, V is volume of the sys-
tem, U is the chemical potential, and ¢ is the packing fraction. In a three-dimensional
hard sphere system, the chemical potential is calculated using the Widom insertion the-

orem as follows:
N

<Vfree> ’

Bu =1nA*+1n (1.18)



where A is the de Broglie wavelength, and N is the number of spheres. Substituting the
eq. (1.18) to eq. (1.17), the Helmholtz free energy in the three-dimensional hard sphere

is as follows:
ﬁF Vo

= ¢ln —+¢1n¢ ¢ — /1 (Viree) ATtreel qg. (1.19)

Comparing the free energies in the fluid and solid phases at the same packing fraction,
the reason for the Alder transition is predicted as follows. The free energy in the solid
phase should be higher than that in the fluid phase when the packing fraction is low. On
the other hand, the free energy in the solid phase should be lower than that in the fluid
phase when the packing fraction is high. Eq. (1.19) shows that the free energy decreases
as the free volume decreases. Therefore, this reversal occurs because the free volume
fraction, < Vgee > /V, in the solid phase is smaller than that in the fluid phase at the high
packing fraction.

To confirm the large—small relation change of the free volume fraction between the
fluid and solid phase, the free volume fraction is calculated by scaled particle theory
(SPT) [23,24] as follows:

<Vfree> —6¢ 9(])2
=(1—- — — 1.20
where p is the pressure. The pressure for the fluid phase is calculated by SPT [23,24] as
follows: 5 5
¢+¢°+9¢
Bpauvo = : (1.21)
! (1-9)

The pressure for the solid phase is calculated by cell theory [24,25] as follows:
3
Bpsovo = ]¢¢7 (1.22)

where @, is the close packing (= 0.74). The free volume fraction for the fluid and solid
phases are shown in FIG. 1.8. FIG. 1.8(a) shows that the free volume fraction in the fluid
phase is larger than that in the solid phase in the low packing fraction, whereas the free
volume in the fluid phase is smaller when the packing fraction is higher than about 0.4.
These results agree with the prediction using eq. (1.19). However, the FIG. 1.8(b) shows
that the free volume in the fluid is larger again when the packing fraction is larger than
about 0.7. The solid must not melt as the packing fraction increases in the real system.
Therefore, the SPT seems to give an incorrect free volume fraction in the fluid phase at
the high packing fraction. At the close packing, the pressure must be infinity, and the free
volume must be 0. Actually, in the solid phase, the eqs. (1.20) and (1.22) show that the
pressure is infinity, and the free volume is O at the close packing. However, in the fluid
phase, the pressure calculated by SPT has a finite value, and the free volume calculated
by SPT is not O at the close packing. Therefore, the SPT is not valid for ¢ ~ 0.74. The
validity is also uncertain for 0.49 < ¢ < 0.54 where the Alder transition occurs. To
examine the validity, fluid—solid phase coexistence region is obtained by calculating the
Helmholtz free energies for the fluid and solid phases, Fgy and F,, as follows:
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I calculated In [A3 /vo = O] because this term does not affect the phase diagram. The
Helmbholtz free energies are shown in FIG. 1.9 (a). The phase coexistence region is ob-
tained by common tangent construction (FIG. 1.9 (b)). The coexistence region is 0.475 <
¢ < 0.495. The reported coexistence region obtained using simulation is 0.494 < ¢ <
0.545 [26]. The calculated result is in good agreement with that obtained using simu-
lation. Thus, the SPT is valid for the calculation of the Alder transition. Therefore, the
Alder transition occurs because the free volume fraction in the solid phase is larger than
that in the fluid phase when ¢ is larger than about 0.4.

When the molecules are crowded, the space where a new molecule can be inserted is
small. That is, the free volume fraction is small. On the other hand, when the molecules
are almost empty, the free volume fraction is large. Thus, the free volume fraction
corresponds to the crowding of the molecules. Therefore, the Alder transition shows
that the crowding of molecules can be the critical factor for the fluid—ordered phase
transition.
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Figure 1.8: The y axis shows the free volume fraction. The x axis shows the packing
fraction. (a) The free volume fraction is shown for ¢ < 0.5. (b) The free volume fraction
is shown for ¢ < @cp.

1.2.3 Formation of liquid structure driven by repulsive interaction: van der Waals
picture

The crowding is also critical for the formation of liquid structure. In this section, the
isotropic particles one component system is assumed. Here, the liquid structure means
the average number of particles surrounding one particle. The radial distribution function
is useful to express the liquid structure. The radial distribution function, g(r), is defined
as follows:

) (1.25)

where p(z)(r) is the probability that a particle is at a position » away from any particle.
p is the total number density of the system. I will explain the meaning of g(r). The eq.
(1.25) can be transformed to as follows:

(1.26)

where the p can be interpreted as the probability that a particle is at the origin of a
coordinate. The right side of the eq. (1.26) can be interpreted as a conditional probability.
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Figure 1.9: (a) The Helmholtz free energy fir the fluid phase (blue curve) and the solid
phase (orange curve). (b) The common tangent on the free energy curves. The dotted
arrows show the coexistence region.

That is, the right side of the eq. (1.26) shows the probability that when any particle is at
the origin, another particle is at a position r away from the origin. In other words, the
eq. (1.26) shows the number density of particles at a position r away from the origin
when a particle is at the origin. This expresses the liquid structure. Therefore, the radial
distribution function is useful to express the liquid structure.

The condensed system under isochoric condition is discussed. A picture of the con-
densed system was proposed. The picture asserts that the repulsive interaction between
molecules is dominant for liquid structure formation. This picture is a part of the “ van
der Waals picture ” . I explain how this picture was shown. Chandler et al. divided
the Lennard-Jones potential into a repulsive and an attractive terms. They showed that
just the repulsive term reproduced the radial distribution function of Lennard-Jones
fluid [27-29]. Therefore, the repulsive interaction is dominant for the liquid structure
formation. The details are as follows. The Lennard-Jones potential, (r), is

o= [(5)"- ()]

where r is the distance between centers of Lennard-Jones particles, € and ¢ is fitting
parameters. This potential is shown in the left side of FIG. 1.10. The potential has a
minimum at the distance, ry = 260. The attractive force works between the particles at
the r > rp. On the other hand, the strong repulsive force works between the particles at
the r < ry. Chandler et al. divided the Lennard-Jones potential into a repulsive and an
attractive terms. The repulsive term, ug(r), is as follows:

up(r)=o(r)+e€ r < ro, (1.28)
up(r)=0 r<ry. (1.29)

The attractive term, u(r), is as follows:
u(r) = o(r) —uy(r). (1.30)

The up(r) and u(r) are shown in the right side of FIG. 1.10.
The radial distribution function shows the structure of the liquid. Chandler et. al.
calculated the radial distribution function, go(r), for the repulsive term of Lennard-Jones
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Figure 1.10: The left side shows the Lennard-Jones potential. The right side shows the
repulsive term, ug(r), and the attractive term, u(r), of Lennard-Jones potential.

potential, uy(r). They compared go(r) with that for the Lennard-Jones potential, g(r)
[27]. go(r) agree with g(r), although uy(r) does not contain the attractive term. Thus,
the repulsive interaction seems to be dominant for the liquid structure. In addition, go(r)
is also in good agreement with the radial distribution function for the hard spheres, g;(r)
[27]. Thus, the softness of the Lennard-Jones potential seems to have less influence on
the liquid structure.

The van der Waals picture can be interpreted as that the particles form the structure
colliding with each other in the liquid. That is, the crowding is critical for the structure
of the liquid. However, the reference [27] pointed out that when electronic interactions
are strong or hydrogen bonds are formed, the attractive part is critical, and the van der
Waals picture is not correct. The crystallization of bacteriorhodopsins (bRs) in a bio
membrane is discussed in this thesis. The transmembrane domain of bR is composed
of hydrophobic amino acid, and most of the bR is composed of transmembrane domain.
Therefore, the interactions between the transmembrane domains seem to be dominant
for the crystallization. It has not been reported that the ion bond or the hydrogen bond
is formed between the transmembrane domains. In addition, the biomembrane is a con-
densed system of lipid molecules. The number density of lipid molecules is 2.5 x 10°
pwm~2 in a single layer of a cell membrane [30]. When the diameter of the lipid molecule
is modeled as 0.5 nm, the packing fraction of the lipid molecules is 0.5, which is a very
crowded system of lipid molecules. Therefore, I consider that the van der Waals picture
is valid for the discussion of bR crystallization, and the repulsive force is dominant for
the crystallization.
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1.3 Phase transition in two-dimensional hard disk system

In this section, phase transition in a two-dimensional hard disk system is explained. The
Bacteriorhodopsin (bR) has an almost cylindrical shape, and the top and bottom of the
bR are exposed to water. On the other hand, the side of bR consists of hydrophobic
amino acids, and the side is covered by lipid molecules. Thus, the vertical motion of the
bR to the membrane seems to be energetically unfavorable as it exposes the hydrophobic
region of the bR to the water. Therefore, the motions of bRs seem to be limited to the
lateral direction. That is, the system of transmembrane proteins in a membrane can be
regarded as a condensed system in which the degrees of freedom are generally limited
to the two-dimensions. For this reason, I modeled the crystallization of the bRs as a
phase transition of hard disks in the 2D system. However, phase transition in the 2D
systems differs from that in the 3D system in some respects. Therefore, it is questionable
to discuss the 2D phase transition with the same way as the 3D phase transition. For
example, I explain the phase transition for hard spheres and hard disks one component
system, which is regarded as a reference system for a binary system. In the 3D system,
the fluid—solid first order phase transition occurs [31,32]. On the other hand, in the
2D system, there is an additional phase, namely the hexatic phase, between the fluid and
solid phases [33-35]. That is, the fluid—hexatic first phase transition occurs instead of the
fluid—soild phase transition. When the first order transition of the fluid—solid phases is
assumed in the 2D system, the validity for the theoretical results is uncertain. Therefore,
it is questionable to construct theories for the 2D phase transition with the same way
as the theories for the 3D phase transition. However, according to a reference [36], the
hexatic phase disappears, and the fluid—solid first order transition also occurs in the 2D
binary hard disk system. Therefore, I considered that the 2D theories of the depletion
effect can be constructed with the same way as that for the 3D theories.

1.3.1 Characteristics of the fluid, hexatic, solid phases

I will explain the hexatic phase. The hexatic phase has characteristics intermediate be-
tween the fluid phase and the solid phase. Here, it is hard to distinguish the hexatic
phase and solid phase by their appearance. Thus, it is useful to distinguish each phase
by bond orientational correlation and positional correlation. The characteristics of the
fluid phase, the hexatic phase, and the solid phase will be shown, respectively.

The bond orientational order, W, is defined as follows:

1 .
Ve = NZkeXp [6165] , (1.31)

where N is the number of disks that surround adisk ”j”, “k” is a disk surrounding the
“j”, and 0 is the angle formed by a reference axis and a line connecting the centers of
the disks “j” and “k”. When the disks form a perfect hexagonal lattice, |yg| is 1. As
the hexagonal lattice collapses, || decreases. Each phase is characterized by the length
of bond orientational correlation. The bond orientational correlation function, Cg(r), is
defined using W as follows:

Co(r) = (Wei¥s,) (1.32)
r=|rj—ri, (1.33)

where W; and g ; are the bond orientational order for disks “i” and “j”, respectively, and
r; and 7; are the position vector for “i” and “j”. In the fluid phase, the bond orientational
correlation function decreases exponentially to 0. In the hexatic phase, that function
decreases algebraically to 0. In the solid phase, that function decreases algebraically
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approaching contact value. In other words, the bond orientational correlations for the
fluid, hexatic, and solid phases are short ranged, quasi-long ranged, and long ranged,
respectively.

I will explain the positional correlation function. The positional correlation function
is obtained from the spatial correlation function, g(Ax,Ay). This function is like the
radial distribution function explained in section 1.2.3. However, the variable is not the
distance, r, but the coordinates, Ax and Ay. The spatial correlation function, g(Ax,Ay),
is as follows:

p? (Ax,Ay)
p2
where p(?) (Ax,Ay) is the probability that a particle is at a position Ax and Ay away from
any other particle. p is the total number density for the system. In the hexatic and solid
phases, the maxima of the correlation function line up in a lattice-like pattern (see FIG.
1.12 (a)). The positional correlation function is the spatial correlation function in the
direction where the distance between the maxima is approximately the particle diameter
(see the white line in FIG. 1.12 (a)). In the fluid and hexatic phases, the positional
correlation function decreases faster than r3 , 1.e. the positional correlation is short
ranged. On the other hand, in the solid phase, that function decreases algebraically to 0

slower than r 3 , 1.e. the positional correlation is quasi-long ranged.

g(Ax,Ay) = ; (1.34)

1.3.2 Fluid—hexatic first order phase transition and hexatic—solid continuous
phase transition

It is now considered that the phase transition from the fluid phase to the solid phase
occurs via the hexatic phase. However, there had long been controversy over whether
these phase transitions are continuous or discontinuous. In 2011, the phase transition
for the hard disks in the 2D one component system was examined. Krauth et. al. con-
ducted event chain Montecarlo simulation (ECMC) on the 2D hard disk system [37].
The ECMC is rejection free algorithm, i.e. the displacement of a disk always occurs
without rejection. Therefore, the time for equilibration is shorter than the metropolis
method. In addition, the pressure is easily calculated by the ECMC. When the phase
transition is calculated by simulation, the system size is much smaller than experiments,
and the boundaries between the two phases affect the phase transition, unlike the exper-
iment. That boundary effect become smaller as the system size is larger. That is, the
system size affects the phase transition in the simulation. Krauth et. al. simulated the
very large system where the number of disks was 10242 to reduce the system size effect.
The pressures were examined at various packing fractions. The result shows the van der
Waals loop and it indicates that the first order phase transition occurs (FIG. 1.11). The
pressure is constant during the first order phase transition in the isometric process. On
the other hand, the van der Waals loop appears due to the system size effect in a simu-
lation. Actually, the loop approaches the horizontal line to the x axis as the system size
increases to 2562, 5122, and 1024%. The two phases coexistence region was obtained
by adopting Maxwell equal area rule on the loop. The packing fraction of the phase
coexistence region is from 0.700 to 0.716. The coexistence region is the fluid—hexatic
phase coexsistence region. In addition, they examined the positional correlation function
(FIG. 1.12 (b)). When the packing fraction is 0.718, the positional correlation function
decreases exponentially. It indicates the hexatic phase. On the other hand, when the
packing fraction is 0.720, the positional correlation decreases algebraically. It indicates
the solid phase. In this phase transition, the van der Waals loop was not observed. It
indicates that the hexatic—solid phase transition is continuous. In conclusion, the phase
diagram for the 2D hard disk one component system is FIG. 1.13. The correctness for
this phase diagram was confirmed by other simulation methods [38].
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Figure 1.11: The van der Waals loop calculated by ECMC. The y axis is the pres-
sure scaled by temperature and diameter of disk. The x axis is volume per particle
scaled by diameter of disk. The blue, red, and black curves show the pressure when
the system size is N = 2562, N = 5122, and N = 10242, respectively. Reprinted figure
with permission from ref. [37]. Copyright (2011) by the American Physical Society.
https://doi.org/10.1103/PhysRevLett.107.155704
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The positional correlation function when the packing fraction is 0.718 (blue line) and
0.720 (red line). Reprinted figure with permission from ref. [37]. Copyright (2011) by
the American Physical Society. https://doi.org/10.1103/PhysRevLett.107.155704
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Figure 1.13: The phase diagram for the 2D hard disk one component system. The phase
diagram shows single fluid phase, fluid—hexatic coexistence phase, hexatic single phase,
and single solid phase from left to right.
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1.3.3 Disappearance of the hexatic phase

In addition, the phase diagram for a 2D binary hard disk system was examined by using
simulation. In 2017, Wilding et. al. reported that the hexatic phase disappeared in
the binary hard disk system [36]. In the system, the diameter ratio between the small
disk and the large disk is 1: 1.4. The total number of particles is 256 or 5122. The large
particle and small disk change each other according to activity. When the activity is high,
the large disk easily changes to the small disk. In other words, the small disks increase
as the activity increases. Wilding et. al. examined the pressures at various number
densities and activities, and they obtained the van der Waals loop. They calculated the
number densities for the phase coexistence region at a fixed activity from the loop. The
positional correlation function was examined to distinguish the hexatic phase or the solid
phase around the boundary between coexistence region and the hexatic or solid phases
(FIG. 1.14(c)), and they obtained the phase diagram (FIG. 1.14(a)). The phase diagram
shows that when the small disk number is larger than 1% of the total disk number, the
hexatic phase disappears, and the fluid—solid first order phase transition occurs like a 3D
system. I consider the reason for the disappearance of the hexatic phase as follows. In
the binary hard disk system, the ordered phase of the higher large disk packing fraction
appears due to the depletion force than that in the one component system. At the higher
packing fraction, the solid phase seems to be more stable than the hexatic phase as is
shown in FIG. 1.13.

In conclusion, there is the hexatic phase between the fluid and solid phases. The
hexatic phase has intermediate characteristics between the fluid and solid phases. In the
2D hard disk one component system, the fluid—hexatic first order phase transition oc-
curs and the hexatic—solid continuous phase transition occurs as the packing fraction
increases. However, in the binary hard disk system, the hexatic phase disappears, and
fluid—solid first order phase transition occurs. The reason for the disappearance seems
to be the depletion effect. Therefore, I consider that in the bR-lipid two component sys-
tem, the bR fluid—solid first order phase transition occurs due to the depletion effect of
lipid molecules. Thus, I consider that the crystallization for the bRs can be discussed as
with the 3D system. However, the simulation research which showed the disappearance
of the hexatic phase was conducted with the disk diameter ratio 1 : 1.4, which was far
from the diameter ratio between lipid molecule and bR, 1 : 12.4. The first order phase
transition between the bR fluid—solid phase should be confirmed by the simulation.
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Figure 1.14: (a) Phase diagram for a binary hard disk system. The y axis is num-
ber density for all disks, p. The x axis is the number fraction for small disks to all
disks. The value in the phase diagram shows the activity (x1073). The dotted line
shows the corresponding phase transition. The red squares and black circles show the
first order phase transition in the system of 2562 particles. The green triangles show
hexatic—solid continuous phase transition. The purple diamonds and blue inverted
triangles show the first order and continuous phase transition, respectively in the sys-
tem of 5122 particles. (b) Snapshot when the activity is 15 x 107> at p = 0.91. The
color is assigned by the . (c) Positional correlation function at the p = 0.914 (blue),
p = 0.915 (green), and p = 0.916 (black) when the activity is 2 x 107>, Reprinted fig-
ure with permission from ref. [36]. Copyright (2017) by the American Physical Society.
https://doi.org/10.1103/PhysRevLett.119.115702
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1.4 Crystallization of bacteriorhodopsin

In this section, previous experimental research on crystallization of bacteriorhodopsin
(bR) is summarized. The bR is a transmembrane protein of Halobacterium salinarum.
The bR functions as a light-driven proton pump. The bRs construct a two-dimensional
crystal in the biomembrane. The bR crystal is called purple membrane after its color.
The structure of the crystal is a hexagonal lattice. According to Mermin and Wagner,
there is no perfect crystal of infinite size in the 2D system [39,40]. As is explained in
the section 3.1, the positional correlation function decreases algebraically to O at the in-
finite distance. However, the size of the biomembrane is finite, and the purple membrane
consists of the limited number of the bRs. The number of bR trimers is just 6000 in one
purple membrane [41]. The decrease of the positional correlation function is very small
in that small solid. Therefore, I consider that the purple membrane can be regarded as
the crystal. Generally, it is considered that the bR monomers first form trimers, and the
trimers aggregate to construct a crystal [41]. Actually, the bR trimer apart from the crys-
tal was observed by using high-speed atomic force microscopy [42]. This result indicates
that the bR trimer can exist out of the crystal, and the result supports the hypothesis that
the trimers construct the crystal.

Here, I assume the fluid—solid first order phase transition for the bR. Since the
biomembrame is modeled as a two-dimensional system, there is the possibility for the
fluid—hexatic phase transition. However, there are many lipid molecules in the mem-
brane. As is explained in section 1.2.3, the number density for the lipid molecules is
2.5 x 10%/1um? in the plasma membrane of an animal cell, and the packing fraction of
lipid molecules is about 0.5 when the lipid diameter is modeled as 0.5 nm. The similar
lipid packing fraction is expected in the bacterial membrane. I consider that in such
a condensed system with lipid molecules, the depletion effect works between the bRs.
Therefore, the hexatic phase seems to disappear as described in the section 1.3.3, and
the fluid—solid first order phase transition seems to occur.

1.4.1 Ciritical concentration ratio between bR monomer and bR trimer

In this section, I will explain the difference of crystallization between bR monomer and
trimer. The bR has seven alfa helixes (FIG. 1.15(A)). Each helix is named with an al-
phabet. Two bR monomers contact each other at helices B and D to form a trimer (FIG.
1.15(b)). In 1997, Krebs et al. prepared mutant bRs that failed to form a trimer [43]. An
amino acid present in the helix D of the mutant bR was replaced by another amino acid.
There were four mutants: a mutant in which the glycine at position 113 was replaced
with leucine (G113L), a mutant in which the glycine at position 116 was replaced with
leucine (G116L), a mutant in which the isoleucine at position 117 was replaced with
alanine (I117A), and a mutant in which the isoleucine at position 117 was replaced with
phenylalanine (I117F). Each mutant bRs were expressed in Halobacterium salinarum.
The cells were disrupted, and equilibrium gradient centrifugation was performed. The
bR crystal has high density and can be separated from the cell membrane by the centrifu-
gation. bR crystals were obtained for all mutants. CD spectra of each mutant bR crystal
and wild type bR crystal were measured. The results showed no significant changes
between the wild type and each mutant bRs. Low-angle X-ray diffraction revealed no
significant differences between the mutant and wild-type bR crystals. For these observa-
tions, it is presumed that the mutant bR crystals have the same structure as the wild-type
bR crystal and the 3D structure of the bR mutant is not significantly different from that
of the wild-type bR. In addition, the CD spectra were also examined for mutant bRs that
did not construct crystals (FIG. 1.16). The CD spectrum for the wild type bR trimer
has maxima at about 500 nm and minimum at about 600 nm. However, the bR mutants,
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G113L and I117A, do not show that spectra pattern. Their CD spectra have maxima at
about 600 nm. These results indicate that G113L and I117A do not form the trimer out
of the crystal. The CD spectra agree with that for bR monomer [44]. Therefore, these
results indicate that G113L and [117A are in monomer form out of the crystal. On the
other hand, the CD spectra for G116L and I117F have maxima at about 500 nm and
minimum at about 600 nm. However, the absolute values for the maxima and minimum
are smaller than those of the mutants in the crystal. These results indicate that G116L
and I117F form not only the trimers but also monomers or another multimer out of the
crystal.

In 1999, Krebs et. al. examined the critical concentration (CC) for mutant bRs. At
the CC, the bRs start to crystallize. They compared the CC with that for wild type [45].
The experimental method is as follows. They induced the expression of the mutant or
wild type bRs in the bacteria. They obtained the bacteria with different times of growth
after the induction. Thus, the samples of bR crystals at different growth stages were
obtained. They plotted the relationship between the weight of total bR in the bacteria
(%bRt) and the weight of the bR in the crystals (%bRl) (FIG 1.17). Each value was
scaled by the total protein in the bacteria. The experimental data over 0 were fitted
by a linear function. When the %bRI value of the linear function is 0, the value of
%bRt is the CC. I focus on the bR mutants, G113L and I117A, which are indicated
not to form a trimer out of the crystal. The CC for the wild type bR is 0.24, whereas
the CC for the G113L is 2.45 and the CC for the I117A is 1.65. On the other hand,
the CC for the I117F, which is indicated partially form the trimer is 0.83. The CC for
the I117F is higher than that for the wild type but lower than that for the G113L and
I117A which do not form trimer. The CC for the G116L was not examined. For these
results, the formation of the trimers seems to decrease the CC. I consider that the CC
difference between the monomer, namely G113L and 1117A, and trimer, namely wild
type, can be explained by the depletion effect. When the bR monomers form the trimer,
the diameter becomes larger than that of the monomer. Therefore, the diameter ratio
between lipid and bR trimer becomes larger, and the depletion effect on the bR trimer
become larger. To confirm this hypothesis, I obtained phase diagrams by using theories
containing depletion effect and compared the CC between the monomer and trimer. I
focused on the critical concentration ratio between monomer and trimer (CC monomer/
CC trimer) to compare the experimental results and theoretically calculated results. I
adopt the CC for the monomer as 2.45, which is the CC for G113L, and the CC for the
trimer as 0.24, which is the CC for wild type. Thus, the CCR is 10.2. Here, the CCR
is the weight ratio of bR monomer and trimer in the same system size. The bR weight
and the area which bR occupy is proportional. Therefore, the weight ratio has the same
value of the area ratio between bR monomers and trimers. I calculated packing fractions
of bR monomer and trimer at the beginning of crystallization and obtained CCR. The
results are shown in chapter 2 and 3 in this thesis.
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Figure 1.15: (A) bR crystal on the membrane. Seven alfa helixes are named A, B, C, D,
E, F, and G. (B) Two bRs contact at helix B and D. Alphabets show the amino acid. Num-
bers show the order of amino acids within the protein. Reprinted with permission from
[45]. Copyright 1999 American Chemical Society. https://doi.org/10.1021/b19905563
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Figure 1.16: CD spectra for bR mutants. The CD spectra for G113L, G116L, 1117A,
and I117F are shown from top to bottom. Reprinted from ref. [43]. Copyright (1997),
with permission from Elsevier. https://doi.org/10.1006/jmbi.1996.0848
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Chapter 2

Examination of two-dimensional bR crystallization
driven by lateral depletion effect using
two-dimensional free volume theory

The 2D ordering of bacteriorhodopsins (bRs) in a lipid bilayer was studied using a bi-
nary hard—disk model. The phase diagrams were calculated, using two-dimensional free
volume theory. The critical concentrations of the bR ordering for the monomers and the
trimers were obtained from the phase diagrams. The critical concentration ratio agreed
well with the experiment when the repulsive core interaction between the depletants,
namely the lipids, was taken into account. The results suggest that the depletion effect
is dominant for the bRs ordering. Results in this chapter are reproduced from [46], with
the permission of AIP Publishing

2.1 Introduction

There is no attractive force between two hard spheres in a vaccum. However, an ef-
fective attraction between them may appear when other compounds are added. This
phenomenon was formulated in 1954 by Asakura and Oosawa to discuss the effective
interaction between two macromolecules in a dilute polymer solution [?,7]. Under the
dilute condition, the effective interaction of the Asakura—Oosawa (AO) theory is very
accurate. This effective attractive interaction is driven by an entropy difference when the
system is described by a canonical ensemble. In the 1970s, Vrij resumed the theoretical
work on depletion interactions [9]. After the rediscovery, researchers applied the idea
of depletion interaction to the crowding phenomena in a living cell [47-54]. They stud-
ied the depletion effects in the cell because various macromolecules are present in the
cytoplasm at high concentrations (approx. 0.3 g/ml).

Concepts of the AO theory is not only valid for three-dimensional systems but also
for two-dimensional system. Therefore, similarly to the 3D system, phase transitions
mediated by depletion effects are expected in a 2D system [55]. However, according
to the literature [33-35,37,39,40], the phase transitions occur in different manners be-
tween 2D and 3D systems. In 2011, Bernard and Krauth performed simulations and
showed that there is a hexatic phase between the fluid and solid phases in the 2D hard
disk one component system [37]. The details are explained in the chapter??. Recently,
simulations of two-component hard—disk systems were carried out. The results showed
that the hexatic phase of the larger disks disappeared when the size ratio was 1 : 1.4 and
the packing fraction of the smaller disk was large [36]. Therefore, the fluid—solid phase
transition is expected due to the depletion effects in the binary hard disk systems.

In this thesis, I consider biological membranes, namely lipid molecules—Bacteriorhodopsin
two component system, and discuss the adoption of a simple model. In 3D systems,
hard—sphere model have often been used as simple models to quantify the essential
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physical properties. [15,56—-59] The usefulness of the simple model can be understood in
terms of the van der Waals picture. The details are explained in the section??. According
to the van der Waals picture, the short-ranged repulsive interactions, namely molecular
shapes, play a primary role in intermolecular correlations, and the direct intermolecular
attraction plays a minor role [27]. In other words, the packing of the molecules is impor-
tant to understand the effective interaction between molecules in a liquid. This picture
has been confirmed, and it gives fruitful interpretations of the liquid structure [27-29]
and the phase transition [60, 61]. The picture is valid for the condensed system with no
hydrogen bond or no ion bond [27].

The membrane can be regarded as a 2D phase condensed by proteins and lipid
molecules in the water. That is, the translational motions of proteins and lipid molecules
are virtually constrained within the membrane, and each molecular axis is almost fixed.
Therefore, I thought that the 2D packing problem should provide a new approach to the
interpretation of biomembrane phenomena, although the molecular interactions are com-
plex. The top view of bRs and lipid molecules looks like a disk. Hence, I examine the
two-component hard—disk system as a model of the membrane because the arrangement
of these molecules can be modeled in 2D.

The bacteriorhodopsin (bR) is a kind of trans-membrane protein. Wild-type bRs
make trimers and they form a 2D ordering structure in a lipid bilayer [1,2]. The bR
ordering structure, called purple membranes, work as proton pumps in Halobacterium
salinarum. Some kinds of mutant bRs were reported to construct the 2D ordering struc-
ture, although they did not form trimers [43]. The critical concentrations (CC) of the
mutant bRs for ‘crystallization’ are much larger than those of the wild-type bRs [45].
The ratio of the monomer-CC to the trimer-CC (CCR) is about 10.2 [45]. The details are
in section??

The driving force for the ordering of the bRs has not yet been clarified. There is no
covalent bond, hydrogen bond, or ionic bond between bRs in the membrane [41]. On the
other hand, lateral depletion interactions between the bRs are expected [7,9]. Basically,
the lipid molecules and the bRs are confined to the lipid bilayer. The pseudo-2D space is
crowded by the lipid molecules and the proteins. Therefore, in this thesis, the depletion
interaction caused by the lateral translational motion of lipid molecules was studied.

2.2 Binary hard disk model and two-dimensional free volume theory

Because the exposure of the bRs and the lipid molecules to an aqueous phase must
pay large penalties in free energy, the motions of these molecules are confined to the
psudo-2D space. Hence, the 2D binary hard—disk model was adopted (FIG.2.1). The
diameter oy; = 6.2 nm for the bR trimer was estimated from an electron microscope
image [1,2,62]. The estimated monomer diameter was about 3.0 nm. Three monomer
diameters Gpmono = 2.9,3.0, and 3.1 nm were examined to remove the arbitrariness for
the model. The small disks were lipid molecules with the diameter oy ~ 0.5 nm [30].
For the same reason, three diameters oy, = 0.4,0.5, and 0.6 nm were examined.

The isothermal system, consisting of the binary hard—disks, contacts with a reservoir
that contains only small disks (lipid molecules). The system is in osmotic equilibrium
with the reservoir. The depletion effect in the system is controlled by the packing fraction
of small disks in the reservoir. The coexistence curves of the bR fluid and the ordered
phases were obtained by two equations, as follows:

pr(MoR M) = Pora (MR 10) 2.1)
e (MRS M) = Hora (MR 1) (2.2)

where pf and poq are the bR pressures for the fluid and ordered phases, n,?l‘gid and
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reservoir bR+lipid

Figure 2.1: The binary hard—disk system (right side) with a reservoir of small disks
(left side). The bRs and the lipid molecules are modeled as larger and smaller disks,
respectively. The packing fraction of lipid molecules 7y in the binary hard—disk system

is controlled by nfgf and MpR.

ngﬁdered are the bR packing fractions for the fluid and ordered phases, nlri‘;'f is the pack-
ing fraction of lipid for the reservoir, and ¢, and Uoq are the bR chemical potentials

for the fluid and ordered phases, respectively. Therefore, the values for pf(ngl‘{id, nlrf;f),

pord(ngﬁdered,nﬁif), uf(nl‘}ﬁid,n{ii;), and uord(ngf{dered,nﬁzs) were calculated. Basically,

the method was similar to that explained in a textbook [14,24]. While the textbook de-
scribes 3D systems, the present system is 2D. Not only the 2D Carnahan-Staring-like
equation of state (2D-CSE) [63] was examined, but also the 2D scaled particle theory
(2D-SPT) [23, 64] for the pure bR fluid phases.

First, the pressure and the chemical potential of the pure bR system for the fluid and
the ordered phase were obtained. The pressure of pure bRs for the fluid phase p(f) is
obtained by 2D—CSE as follows:

0 bR + (an)2 /8
= 2.3
Bpfva (1 _an)z P ( )

where Mpr, B, and vpr are the packing fractions of the bRs, 1/ (kg7), and the area for a
bR, respectively; kg is the Boltzmann constant and 7 is the absolute temperature. The
chemical potential of pure bRs for the fluid phase ,u]9 is obtained using Gibbs-Duhem
relation as

2

A 7
Bud=1In [} +1In[npr]| — 5 In[l — NoR]
VbR 8
T —
8(1-r)  8(1—mer)>

2.4)

where A = h(2wmprkp T)*l/ 2 is the thermal de Broglie wavelength in the 2D space. h
and mpr are the Planck constant and the mass for one bR, respectively. By using 2D—
SPT, p? and ,u19 were also obtained, as follows:
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VbR I—=1br| (1 —1pR)

The derivation is shown in Appendix B.2

By contrast, the pressure and the chemical potential of the 2D crystal of pure bRs
were substituted with the values of the 2D-ordered state. The cell theory for a 2D sys-
tem [65] was adopted for this calculation. The pressure and chemical potential for the
hexagonal lattice are

21Mvr

0
v g 7, 2.7
Bpord bR 1— an/ncp ( )
A? n ] 2n
0 cp cp
q = In|—|-2In|——-1|+ —"—, 2.8
Phlon L’bR] L?bR Nep — TbR -5

where 1, = 7/ 2/3 is the packing fraction at close packing.

The adoption of the hexagonal lattice as the ordered phase is discussed here. The
first problem is the possibility of existence of a long-range positional order. Theoretical
studies, such as the Mermin-Wagner theorem, seemed to rule out the existence of an
infinite long-range positional order [39,40]. By contrast, a 2D hexagonal bR ordering
structure has been observed experimentally on the purple membrane of the bacteria [1,2].
The diameter of the ordering structure is large, but is not infinite. It is at most 0.5 um
and the patch has about 6000 bR trimers [66]. It seems that the finite ordering structure
is stable in the bacteria. I think that this ordered state can be treated approximately as a
crystal.

The second problem is the validity for ignoring hexatic phase. A hexatic phase
appears near the solid phase in one component’s hard—disc system [33-35,37]. It means
that the hexatic phase is most stable in the region. The fragility of the hexatic phase was
shown in a simulation study [36]. According to the study of a binary mixture of hard—
disks, the hexatic phase shrinks and disappears as the number of small disks increases in
the binary system. The shrinking appears at very low concentrations of the small disk.
In this chapter, the behaviors of the binary system is discussed at the medium and high
concentrations of the small disk, i.e., the lipid molecule. Therefore, the hexagonal lattice
was adopted as the ordered state. The semi-grand potential € (NbR, V. T, ,ulip) is obtained
by two-dimensional free volume theory (2D-FVT) as follows:

Q (Nor, V. T, tip) = F° (Nor, V, T) — p"* (Viixy. (2.9)

Here, FY is the Helmholtz free-energy of a bR-pure system, p™is the pressure of the

reservoir system, and <V§é‘g‘> is the free-area of lipid in the lipid—bR system. The deriva-
tion is shown in Appendix A. An approximation [24] is adopted to replace <Vfrrré‘ex> by the
Ics

free volume in the pure bR system <Vmix> o- The pressure of ideal gas (pig) or 2D-SPT

free
(p$Sy) and p™ are as follows:

res -2
N, lip Vlipq

Vres
res ,—2
, g
Brlsme = —me? @2.11)

(1-n5)
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Here, vijp is the area of a lipid molecule, N7 is the number of lipid molecules in the
reservoir system, V'™ is the area of reservoir system, and g is the diameter ratio between
abR (monomer or trimer) and a lipid molecule. The (V%) 'is obtained using the scaled
particle theory as follows:

(Vi) o = V™ a. (2.12)

Here, « is defined as
o =exp|—pW], (2.13)

V™MiX is the area of the lipid—bR system, and W is the work to insert a lipid molecule in
the bR-pure system. o is calculated using 2D-SPT as follows:

2MRg 4PTR ] 2.14)

The derivation is shown in Appendix B.1.
The pressure and chemical potential are obtained from Q (NbR, V. T, Hlip) , as follows:

. do
p — pO +presa _ presan <a > , (215)
bR Nor, T Hiip
do
MR = Hgg — P VbR < 3 > ; (2.16)
bR VT, tip

< da ) R+ (P 2+ 2) MR —q* —2g— 1
IMbr (1—mpr)?

2

exp [_ 2MRg — TRY

.17
I—mr  (1-— an)2]

where p%and /.LSR are pressure and chemical potential in the bR-pure system.

2.3 Phase diagrams obtained by two-dimensional free volume theory

The free energies of pure bR-ordered and pure fluid phases were calculated by using
cell theory and 2D—CSE, respectively. p™* is substituted by pgpr. In other words, the
lipid molecules were modeled as hard disks in the reservoir. The phase diagrams for
the bR trimers (solid) and bR monomers (dots) are shown in FIG. 2.2(a). The y axis
shows the packing fraction of lipid molecules in the reservoir and the x axis shows that
of bRs. In the case of the pure bR system (nlri‘;'f =0), the region 0.703 < Mpr < 0.747 is
the coexistence region (fluid + ordered state).

The coexistence regions of the bRs expand around nlri‘;s = 0.35. This expansion
appears both boundary of the fluid side and ordered state side. The fluid side boundary
decreases monotonically as nﬁ%s increases and there is no critical point. The coexistence
region for the bR trimer (¢ = 0.08065) is wider than that for the bR monomer (g =
0.16667). In other words, as the parameter g decreases, the coexistence region becomes
wider. This g-dependence of the width for the coexistence region is consistent with the
g-dependence of the effective attraction between large disks. The g-dependence of the
effective attraction is discussed using second virial coefficients in chapter 3.4.

The bR-ordered phase appears at the boundary of the fluid side, and the concentration
at the boundary is the CC for the ordered phase. The CC value of the trimers is lower
than that of the monomers. For example, when the T]lrff)s was 0.4, the CC for the trimers
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Figure 2.2: Phase diagrams of two-component hard—disk systems. ¢ = 0.16667
(monomer-lipid system), g = 0.08065 (trimer-lipid system). (a) Phase diagrams of the
bR trimer (solid curves) and the bR monomer (dotted curves). The free energy of pure
bR fluid was calculated on the basis of 2D—CSE. (b) Phase diagrams of the bR trimer.
The free energy of pure bR fluid was calculated on the basis of 2D—CSE (solid curves)
and 2D-SPT (dotted curves). (c) Phase diagrams of the bR monomer. The free energy of
pure bR fluid was calculated on the basis of 2D—CSE (solid curves) and 2D-SPT (dotted
curves).

was 0.042 and that for the monomer 0.100. The CC difference obtained from the phase
diagrams qualitatively agrees with that obtained by the experiments [45].

When the nlri‘;f is larger than 0.35, the fluid side boundary is shifted to the very low
packing fraction 7nyRr, as mentioned above. This shift is explained based on the depletion
effects induced by the lateral translational motion of lipid molecules, as follows. The
depletion forces between bRs become stronger with increasing the packing fraction of
the lipid molecules. This effective attraction causes the sudden boundary shift around
Njip = 0.35[7,9].

In this 2D system, the high—low density fluids coexistence region, i. e. vapor-liquid
coexistence region, does not exist because the critical point is not exist. It means that
the bR disordered 2D condensed phase is not observed on the membrane. In FIG. 2.2(a),
2D-CSE was adopted to obtain the free energy for the reference fluid phase; namely, the
pure bR fluid phase. Another theory, namely 2D-SPT, was adopted for comparison. The
free energy for the reference ordered phase was calculated by the cell theory, again. The
theory and connection of the reservoir are also similar to the calculation for FIG. 2.2(a).
The phase diagrams are shown in FIG. 2.2(b) and (c) to compare with those given by the
2D-CSE and 2D-SPT.

For the pure bR system (nlri%s = 0) the coexistence region calculated by using 2D—
SPT was 0.737 < mpr < 0.775. The coexistence region calculated by using 2D-SPT is
a higher npr than that calculated by using 2D—CSE. This difference was caused by the
difference between 2D—CSE and 2D-SPT, because there was no depletant in this system.
On the other hand, the depletion effect becomes stronger as the nﬁ%s increases.

As the N increases, the difference between phase diagrams based on 2D-SPT and

lip
2D-CSE disappears. When the 71,>° > 0.35, the coexistence regions overlap in FIG.

li

2.2(b) and (c). This overlap indiceftes that the depletion effects become more domi-
nant for bR ordering than the reference system as the depletion effect induced by lipid
molecules increases. That is, when the nﬁ%s is above 0.35, the depletion force almost
determines the CC for bR ordering. Therefore, it seems that the difference between the
theories of the reference system disappears.

Some results for the 2D one-component hard—disk system are brought here from ref-
erences [37,67] to discuss the present results. According to the simulation study, the

boundary between the fluid and the coexistence regions exists at 0.700 [37]. An exper-
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imental study gives the value 0.68 for the boundary [67]. The fluid phases disappear at
0.716 (simulation) [37] and 0.70 (experiment) [67]. The fluid and hexatic phases disap-
pear when the packing fraction increases. The monophase for solid becomes most stable
under the high packing fraction region. The boundary between the hexatic and solid
phases is 0.720 (simulation) and 0.73 (experiment), respectively [37,67].

In the present study, the hexagonal crystal structure was adopted as the ordered
phase, and the coexistence regions for the fluid—ordered phase appear 0.703 — —0.747
(for 2D-CSE and 2D-FVT) and 0.737 — —0.775 (for 2D-SPT and 2D-FVT). These
values are different from the exact values given by the simulations and the experiments.
This reason seems to be that the free energy for the hexagonal lattice structure is differ-
ent from that for the hexatic phase. However, it does not mean that the present results
are meaningless to obtain the CCR. Because of the depletion effect, these differences on
the boundaries disappear at the packing fraction of the bio-membrane (nlri‘if =0.5) [30].
FIG. 2.2(b) and (c) show that the CC boundaries virtually agree with each other in the
region nlrf;f > 0.38, suggesting that the effective attraction is strong enough. I, therefore,
assume that the argument of the hexatic phase for the reference bR system is avoided for
the CCR in this thesis.

2.4 CCRs obtained using two-dimensional free volume theory

(a)

035 04 045 05 055 8f3 035 04 045
nres nres
lip lip

Figure 2.3: Calculated CCR of bR trimers to monomers. The horizontal thin solid line
shows the experimental value, 10.2. (a) The diameter of the lipid molecule is 0.5 nm.
The dotted curve ( bR monomer diameter: 2.9 nm), the solid curve ( bR monomer diam-
eter: 3.0 nm), the dashed curve (bR monomer diameter: 3.1 nm). (b) The diameter of
bR monomer is 3.0 nm. The dotted curve (the lipid diameter: 0.6 nm), solid curve (the
lipid diameter: 0.5 nm), dashed curve (the lipid diameter: 0.4 nm).

CCRs (CC for monomer/CC for trimer) were obtained to compare between the cal-
culated and experimental results. CCR becomes larger than 1 because the CC for the
bR trimer is lower than that for the bR monomer. The calculated CCR results are shown
in FIG. 2.3(a) and (b). In all models, the CCRs monotonically increase as the nﬁ’f in-
creases. The increase in CCR becomes steeper as the monomer diameter decreases (
FIG. 2.3(a)). On the other hand, the increase in CCR becomes steeper as the lipid di-
ameter increases (FIG. 2.3(b)). Hence, the CCR curves depend on the model. Here, 2.9
and 3.1 nm are small enough and large enough for the monomer size, respectively; 0.4
and 0.6 nm are also too small and too large for the lipid size, respectively. Therefore, the
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Figure 2.4: Phase diagram of the protein (¢ = 0.27). The solid curves show the co-
existence region between the fluid and the ordered state. The dashed curve shows the
coexistence region between vapor and liquid.

ranges for the parameters are wide enough to discuss the ordering mechanism.

The CCR experimental value is about 10.2 [45]. For example, when the diameters
of the lipid molecule and the bR monomer are 0.5 nm and 3.0 nm, respectively, the
calculated CCR agrees with the experimental CCR at the nlri‘;s = 0.477. This result is
important. According to literature [30], the lipid number density of a cell membrane
monolayer is 2.5 X 106,um_2. When the monomer diameter is 2.9, 3.0, and 3.1 nm, the
calculated CCRs agree with the experimental CCR at the lipid number densities of =
2.40, 2.43, and 2.46 x 106um_2, respectively. Each value is almost the same, about
2.4 x 10°um™2. This value is reasonable compared with 2.5 x 10®um~2.

When the lipid diameter is 0.4, 0.5, and 0.6 nm, the calculated CCR agrees with
the experimental CCR at the lipid number densities of 4.17, 2.43, and 1.61 x 10®um=—2,
respectively. The calculated results are reasonable because the calculated lipid number
density of 2.43 x 10°um™2 is very close to the estimated value of 2.5 x 10°um~2 for a
cell membrane monolayer. The orders of 4.17 and 1.61 x 10°um™? are also the same as
that of 2.5 x 10®um~—2.

Calculated results suggest that the driving force for the ordering is the depletion ef-
fect. Although the model is simple, the calculated CCR is very close to the experimental
value. Indeed, the calculated results depend on the size ratios between disks. However,
the calculated results remain reasonable if the parameters for the models are chosen in
realistic values. Therefore, it seems that this conclusion is robust.

2.5 Vaper-liquid phase transition

When the ordered state of the bR is discussed, the location of the vapor (large disk
poor)-liquid (large disk rich) coexistence curve in the phase diagram should be taken
into account. According to some papers, the vapor—liquid phase separation appears when
g becomes larger [55,68]. Here, the value ¢ is obtained when the critical point appears. I
adopted pgpy for the pressure of the reservoir and the 2D-CSE for the reference system
of the fluid phase. The vapor-liquid transition becomes stable when g is larger than 0.27.
The phase diagram for ¢ = 0.27 is shown in FIG. 2.4. In this case, the vapor—liquid
coexistence curve almost overlaps the liquid—ordered state coexistence curve around the
critical point. The value 0.27 is near as those values given by other methods [55, 68].

The discussion goes back to the ordered state of bR. Because 0.27 is much larger than
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Figure 2.5: Phase diagrams of the protein (¢ = 0.1). The p™* was substituted by pig
(solid) and pgpy (dots).

0.16667 and 0.080635, it is expected that the vapor-liquid coexistence is not observed in
the experiment.

Here, the calculated phase diagrams (FIG. 2.4) are compared with those reported in
a paper [68]. As g increases, the critical point and the vapor-liquid coexistence region
become clearer in the present study. This g dependence appears in the reference [68].
The critical point does not appear in the phase diagram for ¢ = 0.15 in the reference [68],
and the critical point appears in the phase diagram for ¢ = 0.3, which means that the
critical point appears somewhere from g = 0.15 to 0.3. In the paper, the phase diagrams
are obtained using the density functional theory, a method different from the present
study. In the other paper [55], the critical point is estimated to appear somewhere from
g = 0.3 to 0.4. Although the details of the shape are slightly different from the diagrams
in the present study, the g-dependence of the shape of the phase diagram is similar.

2.6 Phase diagrams and CCR using the ideal gas model in the reservoir

The lipid molecules in the reservoir were also modeled as ideal gas, and the phase di-
agrams were examined. The results showed another piece of information. The free
energies for the reference system of the ordered state and of the fluid phase were ob-
tained using 2D cell theory and 2D-CSE, respectively. The phase diagrams for g = 0.1
are shown in FIG. 2.5. The solid curves are the coexistence boundary with the ideal
gas model for the reservoir. The dotted curves represent the coexistence boundary in
the case of the hard disk reservoir where the pressure is obtained by 2D—SPT. The fluid
side boundaries decrease monotonically as n{g increases and there is no critical point
in both cases. The features are the same in both. However, the quantitative differences
are remarkable. The coexistence region for the hard disk reservoir expands widely even
when nﬁ%s is low. By contrast, the coexistence region for the ideal gas reservoir is much
narrower than that for the hard disk reservoir. The coexistence region for the ideal gas

reservoir expands around nlrii’f = 0.6 whereas that for the hard disk reservoir expands

around nlrfl’f = 0.35. The packing fraction of lipid molecules in a biomembrane is about
0.5 in the case of oy, = 0.5 nm [30]. These results suggest that the depletion effects
could hardly work in a biomembrane if the collisions between lipid molecules are ig-
nored.

The phase diagrams of bRs are also calculated assuming an ideal gas reservoir. The
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Figure 2.6: Phase diagrams of the bR trimer (solid curves, g = 0.08065) and the bR
monomer (dotted curves, g = 0.16667). The ideal gas model was adopted as the lipid
IeServoir.
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Figure 2.7: Calculated CCR of bR trimers to monomers. ¢ for the bR trimer and
monomer is 0.08065 and 0.16667, respectively. The ideal gas model was adopted as
the lipid reservoir.

phase diagrams for the bR trimers (solid) and the bR monomers (dots) are shown in FIG.
2.6. Even when the reservoir is the ideal gas model, the coexistence region for the bR
trimer (q = 0.08065) is wider than that for the bR monomer (q = 0.16667). For example,
when the ;7 is 0.7, the CC for the trimers is 0.542 and that for the monomer 0.620.
The calculated large/small relation of CCs qualitatively again agrees with that obtained
by the experiments [45]. However, the results have serious quantitative problems. CCs
are too large when the nlri‘;s is about 0.5. The CCs for trimers and monomers are 0.663
and 0.675, respectively. The ratio is about 1. If a reasonable value for CCR (about 10)
is assumed, the packing fraction n{i‘; could become an unrealistic value. The calculated
CCR for the ideal gas reservoir is shown in FIG. 2.7. gs for the trimer and monomer are
0.08065 and 0.16667. The CCR is 1.608 even when the reservoir packing fraction is the
closest (Nclosest packing = 7/ (21/3) ~ 0.907). By contrast, the CCRs are reasonable when
the hard disk model is adopted as the lipid reservoir. Therefore, the granularity of the
lipid molecule is important for the lateral depletion effects on the bR ordering.

The numerical disagreement between the results for the hard disk reservoir and for
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Figure 2.8: The phase diagrams for small gs calculated by the 2D-FVT approach. The
solid and dashed curves show the phase diagrams for ¢ =0.001 and 0.0001, respectively.
These coexistence regions almost overlap each other.

the ideal gas reservoir is remarkable. The disagreement is discussed based on the equa-
tions of state. The equations of state for 2D—-SPT and 2D—CSE show that the pressures
are much higher than for the ideal gas because each lipid molecule has a repulsive core,
and they are crowded in the reservoir. There is a positive correlation between the pres-
sure in the reservoir and the depletion force. Thus, the effective attraction between bRs
becomes stronger than for the ideal gas reservoir. Therefore, the results indicate that the
crowding in the reservoir is important in the calculation of the depletion effects.

2.7 Problem of two-dimensional free volume theory

Results calculated using the 2D-FVT show good agreement with experimental results.
However, there is problem for the FVT when ¢ is very small. Garcia et al. reported
that the g-dependence of the phase diagram obtained by the FVT disappears in a 3D
system as the value g decreases [69]. They further noticed that this result did not agree
with an experimental result qualitatively [69]. This problem in the 3D systems should be
conserved in the 2D systems. Thus, the g-dependence of phase diagrams obtained using
the 2D-FVT was examined. FIG.2.8 shows the phase diagrams for ¢ = 0.001 and 0.0001
calculated using the 2D-FVT approach. These coexistence regions almost overlap each
other. This agreement numerically shows that the theoretical approach does not have g
dependence when ¢ is small.

The disappearance of the g-dependence for the 2D—FVT approach at small g has to
be explained. In the phase diagram calculation, the bR packing fraction for the fluid
phase n{ti¢ and that for the ordered phase, nS¢™d, must be obtained. These values are
obtained by solving the equations (2.1) and (2.2) [24,46]. The pressure and the chemical
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potential are expressed by 2D-FVT [24,46], as follows:

Bpivik = Bpiver +Bpver (af— MR < 3 ﬂuid) ) ; (2.18)
Tor Nowr, T, biip
0 res ordered 9 Otord
Broavbr = BPoraVor +BP VbR | Oord — Mbr 5 pordered (2.19)
Tbr Nor, T, thip
d 0
Bugpr = ﬁﬂgbR — BP™ver <aﬂuid> ) (2.20)
an V‘,Tﬁ.u'lip
a0, d
B.uord,bR = B“c?rd,bR _ Bpresva <8norzrered) y 2.21)
bR VvTvlJ'lip

where o and 0,4 are the free volume fraction for the fluid phase and ordered phase,
respectively. p(f) and pgrd are the pressure for the fluid and ordered phases in a bR pure
system. ugbR and ugrd‘bR are the chemical potential for the fluid and ordered phases in
the bR pure system. If these values are substituted to the relations (2.1) and (2.2), namely
Dt = Pord> HtpR = Hord bR, tWO equations are obtained, as follows:

. ~ 00 o,
B (o)~ Brl) vor + B vir (ocf— i ( ) g (d)) ~o,

pa) n }?}l{lid pa) n ];)lr{drered
(2.22)
00 0 Olord
B (for — Horapr) = BP™ver ((anﬂm> - (a e >) =0. (2.23)
bR TbRr
o and Of,q are obtained by SPT [24,46] as follows:
_ 9 pyfluid fluid 2
a = (1—nlid)exp|— TR L __Tor 9| (2.24)
1_1" ut (1_ ﬁuld)
bR an
277 ordered q nordered q2
_ __ pordered _ bR _ bR
Oord = (] MorR )CXp [ 1— ng]r{dered (1 . nsﬁdered)z : (2.25)
The partial differentiations are
( J 0 > _ (R + (~ +2¢+2)n¢ — ¢* — 2~ 1
817[1)11‘{11(1 (1 —ngﬁld)z
9 pyfluid fluid 2 (2.26)
exp |- Mr 9 MR 9
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( I\ _ —(MR") + (—¢* + 29+ 2N — > — 24 — 1
anordered - (1 . nordered)z
bR bR 2.27)

2 ordered ordered 2
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bR )

1— nordered B (l . nglradered

The pressure in the reservoir is expressed using SPT [24,46]: namely, eq. (2.11). The
first term on the left-hand side in egs. (2.22) and (2.23) does not depend on g. On the
other hand, the behavior of the second term on the left-hand side in eq. (2.22) must
be confirmed at the limit of ¢ = 0 because the part Bp™v,r goes to infinity, and the
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remaining part—namely, the part in the parentheses—goes to zero. The second term on
the left-hand side in eq. (2.23) also has a similar problem. Thus, these second terms are
expanded to polynomials to discuss the g-dependence.

The left-hand sides of eqs. (2.22) and (2.23) are expanded to the polynomial func-
tions of ¢, as follows.

i\ 2 2
(P? - Pl a)VoR + nﬁ%s — (n&gld) (ngﬁdered)
Ort
(

1 _nlri%s)Z (1 7n]§}121id)2 (1 7n]§)1rzdered

)2) +0(q)=0 (2.28)

nleS 1 — 4nfluid ) fluid) 2 1 — 4nordered ) ordered 2
w0 — 0+ : lip Mor (k) _ bR U +0(g) =0

1 _nlrifgq)z (1 _ngﬁid)z (1 _n&r{dered)Z
(2.29)

The above two equations are solved to obtain the phase boundary. The g—dependence
disappears at the limit of ¢ = 0. Therefore, the phase diagram of the 2D-FVT approach
does not depend on g for small g.

This disappearance of the g-dependence originates in & and Qq. The same theory,
namely SPT, is used to express both o4 and 0,4. Therefore, the Oth-order terms of g for
the fluid and ordered phases cancel each other in eqs. (2.28) and (2.29). ¢ for the bR
trimer, 0.08065, is small. Therefore, this problem may affect the phase diagram. Thus,
the CCRs should be examined by another approach.

2.8 Discussion

The disappearance of the g-dependence may affect the CC, namely CC for trimer. The
2D-FVT seems to underestimate the CC for the trimer because of the disappearance
of the g-dependence. In other words, the 2D-FVT CC for the trimer seems to have
larger value than the real CC due to the existence of lower limit of CC. Therefore, it
can be predicted that the real CCRs increase more steeply as the lipid packing fraction
increase. The effect of the problem is discussed comparing with CCRs obtaind using
another theory, namely thermodynamic perturbation theory, in next chapter.

I also would like to discuss the validity of the assumption for the ordering structure.
It is assumed that the ordered state for the pure bRs formed hexagonal lattice because it
seemed that the argument of the hexatic phase could be avoided in the present study. Ac-
cording to a simulation study for the two-component disk, the hexatic phase disappears
when the number ratio of the small disk is higher than 1% [36]. The result suggests
that the smaller disks stabilize the hexagonal lattice structure of the larger disks. In the
bio-membrane, the smaller disks, lipid molecules, are a major component and the fragile
hexatic phase of bRs can be expected to disappear. On the other hand, the size ratio
between disks ¢ in the simulation (about 0.714) was much larger than in this study [36].
In those smaller gs, such as 0.08065 and 0.16667, the small disk could locate intersti-
tially in the ordered large disks. And the system in vivo contain other molecules and the
impurity effects are not clear. Therefore, further simulation studies are also needed.

2.9 Summary

In this chapter, the ordering behaviors of bR was discussed. The phase diagrams for
the monomers and the trimers with lipid molecules were calculated by using 2D-FVT
with a simple 2D model. The results showed that the depletion effect was dominant for
the larger hard—disk ordering when the T]lrizs > 0.35. The calculated results for CCRs
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agreed with the experimental results, suggesting that the depletion interactions induced
by the lateral translational motions of lipid molecules drive the ordering of bRs, such as
bRs. However, it was shown that the 2D-FVT had a problem when g was very small.
Therefore, the CCRs should be examined by another approach.
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Chapter 3

CCRs obtained using thermodynamic perturbation
theory

Using binary hard disk mixture models, I studied the two-dimensional ordering of bac-
teriorhodopsins in a lipid bilayer. The phase diagrams were calculated using the ther-
modynamic perturbation theory. Two types of effective interactions were examined to
discuss the lateral depletion effects caused by repulsive core interaction between lipid
molecules. The results indicate that the core repulsions drastically broaden the coexis-
tence region for the fluid—ordered phase, and the depletion force is the driving force for
the bR crystallization.

3.1 Introduction

In the chapter 2, the phase diagrams obtained using 2D free volume theory (2D-FVT)
suggested that the lateral depletion effect is dominant in the driving force of bR ordering.
The study focused on the difference between the “crystallization” behaviors of wild-
type bR and mutant bR, which construct the ordering structure. Although the mutant
monomers do not construct trimers, they form a crystal [43]. The critical concentrations
(CCs) of the mutant bRs for the “crystallization” are much larger than those of the wild-
type bRs. According to experiments by M. P. Krebs et al., the ratio CCR(= CC1/CC3) is
about 10.2, where CC1 and CC3 are the critical concentrations for the mutant monomers
and the wild-type trimers, respectively [45].

The calculated results by using 2D-FVT also indicated that the depletion effect was
too weak when the lipid molecules were modeled as an ideal gas, and it differed from
the experimental result [46]. On the other hand, I also described the pressure of the
reservoir using the two-dimensional scaled particle theory (2D-SPT) [23, 64], taking
into account the effects of the repulsive core of the lipid molecule [46]. The phase
diagrams were calculated based on the models. The calculated phase diagrams showed
that the repulsive core enhanced the depletion effect, and the calculated CCRs virtually
agreed with the experimental results [46]. Therefore, I discussed that the depletion effect
significantly contributed to the “crystallization™ in the chapter 2. However, the phase
diagram calculated by using 2D-FVT is not correct when a diameter ratio between lipid
and bR (0iip/ OpR) is very small. Therefore, the CCR is examined by using another theory
in this chapter.

In the chapter 2, the phase diagrams were obtained without calculating the effective
interaction between bRs. In this chapter, first, I calculated the effective interactions
between bR. Next, I calculated the free energies using the thermodynamic perturbation
theory [70-72] with the effective interactions and obtained the phase diagrams. Finally,
the phase diagrams gave the CCRs.
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3.2 Model and theory

A binary hard-disk model was adopted in this chapter. The model is the same as that
in the chapter 2. The lipid bilayer was regarded as a condensed 2D plane space. The
lipid molecules, bR monomers, and bR trimers were modeled as small, medium, and
large hard disks, respectively. The diameter for the bR trimer oy was estimated as 6.2
nm [46,62]. The diameter for the bR monomer G0, Was estimated as 3.0 nm [46]. The
diameter for the lipid molecule oy, was estimated as 0.5 nm [30,46]. In addition, the two
lipid diameters oy, = 0.4 and 0.6 nm were also examined to remove the arbitrariness for
the model.

The system consisted of lipid and bR molecules. The binary hard-disk system was
in osmotic equilibrium with a reservoir. Therefore, I obtained the effective interac-
tions between bR molecules and calculated the phase diagrams using the effective one-
component system. The effective interactions between bR molecules are explained as
follows.

The AO and modified AO potentials [46] were adopted as the effective potential for
bRs. The lipid molecules cannot enter the excluded area Ve« around the bR molecules in
this model. The AO potential wsp between two bRs can be written as

(DAo(r) = oo, 1 < OpR, (3.1)
(DAO(V) = —pﬁ%skBTAVeX(r), r > OpR, (3.2)

where plriif is the number density of lipid molecules in the reservoir, kg is Boltzmann
constant, T is the absolute temperature, AV, is the overlap area of excluded volumes,
r is the distance between the centers of bRs, and opr is the diameter for bR. AV, is
expressed analytically as follows,

1 r
AV (r) = =06 (1 + q)*arccos []
2 1
oor(1+4) (3.3)

a0

where g is the diameter ratio between the lipid molecule and bR (6iip/Obr). PjipksT is
regarded as the pressure of ideal gas in the reservoir. Therefore, the AO interaction is the
pressure-area work for the two-dimensional ideal gas, and the area is AVqx [24]. Thus,
wao also can be written as follows:

1
—ngR(l +¢)*sin [2arccos [

Wr0(r) = oo, r < OpR, (3.4)
C()Ao(r) = —preSAVeX(r), ¥ > OpR- (3.5)

In the conventional AO theory, the repulsive interactions between depletants are ig-
nored, and the lipid molecules overlap. In other words, the pressure in the reservoir is
that of the ideal gas. On the other hand, I replaced the pressure of the ideal gas reservoir
with that estimated using the two-dimensional scaled particle theory (2D-SPT) [24,46],
taking account of the repulsive interactions between depletants. Thus, the pressure in
the reservoir was expressed as follows:

res
P = &1@ T, (3.6)

Ies 2
(1-5%)
where nlriff is the reservoir’s packing fraction of lipid molecules. Here, I call this the
modified AO model. The modified AO potential W04, therefore, is written as
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OMod(r) = o0, 7 < Oig, (3.7
plpes
Opoa(r) = ————2——kTAVe(r), r> Oir. (3.8)
(%)
lip

In this model, there are only two bRs in the lipid condensed system. That is, a very low
bR packing fraction was assumed in the system. As the bR packing fraction increases,
the lipid packing fraction in the system decreases. Therefore, the effective interaction
depends on the bR packing fraction. Here, I adopted an approximation that @Wyjoq is
independent of the bR packing fraction [70,71].
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Figure 3.1: The effective potential between bR monomers (a) and trimers (b) at nlri?j =
0.5. The lipid—bR diameter ratios, gs, are 0.16667 and 0.08065, respectively. The

dashed curves show the AO potential. The solid curves show the modified AO potential.

FIG.3.1 shows the effective potentials at nlrfl‘)s = 0.5. The stability at the contact
distance, (a) » = 3.0 nm and (b) r = 6.2 nm, for the modified AO potential is much
larger than that for the AO potential. The ratio is larger than three in the case of the bR
monomers (FIG. 3.1(a)), and larger than four in the case of the bR trimer (FIG. 3.1(b)).
That is, the effective attraction for the modified AO potential is much stronger than that
for the AO potential.

Here, I mention the difference between the AO and the modified AO potentials.
I prepared the pressure in calculating the quasistatic PV-work to change the excluded
volume of bRs for the lipid fluid. In the case of the AO potential, the pressure of the
ideal gas was used. On the other hand, 2D-SPT was adopted in the case of the modified
AO potential. The latter pressure is higher than the former because of the packing effect
of the lipid hard disks. Therefore, the stability of the contact bR dimer for the modified
AO potential is much larger than that for the AO potential.

To obtain the phase diagrams, the thermodynamic perturbation theory was adopted.
In the perturbation theory, the Helmholtz free energy for the effective one-component
system with @Wap or Wyzoq, F (Nor,V,T), was expressed as follows:

% \% ObR ObR / ObR ObR
3.9

e

where V is the area of the system, vyr is the area of one bR, Fy is the Helmholtz free
energy for the pure bR system, 7Mpr is the packing fraction of the bRs, a)(afR) is the
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effective potential between bRs, and go(é) is the radial distribution function for the
pure bR system scaled by Opg.

In the previous paragraph, the calculation of the perturbation part needed the radial
distribution function. The radial distribution functions were obtained using the event
chain Monte Carlo simulation [37]. The simulation box has 1282 hard disks, and the
sampling was carried out over 1.2 x 10!! steps after equilibration. The radial distribu-
tion functions were calculated within the ranging from 71,r = 0.001 to 1p,r = 0.905 in
the interval of Npr = 0.001. The AO or the modified AO potential were substituted in

O(5-).
Il% was obtained by the same method in the chapter 2. Fj is:
Fover
P v Ban.ut())R - BPOVbRa (3.10)

where ,LLSR and p° are the chemical potential and the pressure for the pure bR system.
The chemical potential and the pressure for the pure bR fluid phase, ,ufo and p?, were
obtained by 2D-Carnahan-Staring like equation of state (2D-CSE) [1,46], as follows:

Byo—ln[/\z}—&—ln[n AT A, L A SE Y 1)
f VbR PRI g bR 8(1—1br) 8(1—1’]bR)2 ’ '

2
bR + (anR)
(1-mr)*

where A = h(2wmprks T)_l/ 2 is the thermal de Broglie wavelength in the 2D space.
h and mpr are the Planck constant and the mass for a bR, respectively. The chemical
potential and the pressure for the pure bR ordered phase, ,ugrd and pgrd, were obtained
by cell theory [46,65] as follows:

Bpever = (3.12)

A? n 2n
U =In []2111 [Cpl}+°", 3.13)
Phong VbR Tbr Nep — bR (
2
Brhavor = T (3.14)
ncp

where 1p = 7/ (21/3) 22 0.907 is the packing fraction at close packing. The first term

on the right-hand side, In {%}, in eq. (3.11), and eq. (3.13) does not affect the phase
diagram, because the term is common in the fluid and ordered phases. The common
tangent method was adopted to obtain the phase diagrams using free energy curves. The
common tangent was drawn on the calculated free energy curves for the fluid and ordered
phase.

3.3 Phase diagrams obtained by using thermodynamic perturbation the-
ory with AO or modified AO potential

The Helmholtz free energy curves were calculated using the thermodynamic perturba-
tion theory with the effective potential. The phase diagrams were obtained using the
common tangent construction on the free energy curves. The phase diagrams are shown
in FIG. 3.2 for bR (a) monomers and (b) trimers calculated using the AO or the modified
AO potentials as the effective potential.

The coexistence region for the modified AO potential expands at a lower lipid pack-
ing fraction than the AO potential. Here, I checked the diagram for the monomers with
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Figure 3.2: Phase diagrams for (a) bR monomer (¢ = 0.16667) and (b) trimer (g =
0.08065). The dotted curves show the phase diagram calculated by the thermodynamic
perturbation theory(TPT) with the AO potential. The solid curves show the phase dia-
gram calculated by the thermodynamic perturbation theory with the modified AO poten-
tial.
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Figure 3.3: Phase diagrams for bR monomer and trimer calculated using the modified
AO-TPT approach. The solid curves show the phase diagrams for the trimer. The dashed
curves show the phase diagrams for the monomer.

the lipids (see FIG. 3.2 (a)). The broadening for the modified AO potential (solid curve)
started at about nfi?j = 0.35, although that for the AO potential (dashed curve) started at
about nlri‘;')s =0.7. I focused on the phase diagrams around nfﬁf = 0.5 because I estimated
the lipid packing fraction of a cell membrane as 0.5 (see the chapter 2). The broadenings
of the coexistence regions for the modified AO potential started lower than 15 = 0.5.
On the other hand, those for the AO potential started higher than nfi‘;s = 0.5 (see FIG.
3.2 (a) and (b)). Therefore, effective potential dependence is critical.

The critical concentration, CC(nfi;S), was defined as the concentration for the small-
est packing fraction for the fluid—ordered phase coexistence state at n{ﬁf. Thus, the
CC(nﬁ%s) gives the boundary curve between the fluid and fluid—ordered states [46]. Un-
fortunately, I could not obtain the phase diagrams for the modified AO potential systems

in the region 1> > 0.4 (see solid curves in FIG.3.2), because the phase diagram cannot

lip
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be calculated by modified AO-TPT approach when the CC is very low. This is because
that the common tangent cannot be drawn on the free energy. However, the CC is al-
most 0 even when nfi';s = 0.4. Therefore, it is expected that the CC is very low when
nlri‘;s = 0.5. This suggests that the depletion effect can be dominant in the driving force
for the bR ordering.

The phase diagrams calculated using modified AO potential for monomer and trimer
are compared in FIG. 3.3. FIG. 3.3 shows that the the coexistence region for the trmer
is wider than that for the monomer. That is, the CC for trimer is lower than that for the
monomer. This result indicates that the depletion effect for the trimer is stronger than
that for the monomer.

3.4 Second virial coefficients for AO and modified AO potential

The second virial coefficient (B,) is useful for discussing whether the particles are at-
tractive or repulsive. I explain the B>. The pressure is expanded by number density, p,
as follows:

Bp=p+Bp*+0(p?), (3.15)

where the coefficient of p? is the By. The B; is an index for the attraction or the repulsion
of the interaction. The equation of state for an ideal gas is

Bp=p. (3.16)

Thus, the B; is zero.

When the B is positive, the pressure is higher than that for the ideal gas. That is, the
effective interaction between particles is more repulsive than the ideal gas. On the other
hand, when the B, is negative, the pressure is lower than that for ideal gas. That is, the
effective interaction is more attractive than the ideal gas. Here, the B, for the 2D case is
calculated as follows:

B, = —ﬂ/r(exp[—ﬁu(r)] —1)dr, (3.17)

where u(r) is the pairwise potential and r is the distance between the centers of the
particles. In this study, the effective interaction w(r) was substituted into the potential
u(r). Therefore, the B, is the effective second virial coefficient. This B, was scaled by
the B, for hard—disks, B,"P. B, / B>MP is the reduced (effective) second virial coefficient.

Two effective potentials between two large hard—disks (proteins) were examined.
One is the conventional AO potential [7]. The other is a modified AO potential. In the
AO theory, the depletants (lipid molecules, small disks) do not interact with each other.
In other words, the depletants are ideal gas molecules. By contrast, for the modified AO
potential, the attraction between two large disks at the contact distance is stronger than
that for the conventional AO potential, because the pressure exerted by the depletants to
the large disks is calculated by using the 2D—SPT. This is because the repulsion between
depletants is not ignored in the 2D-SPT and the pressure becomes larger than that of an
ideal gas.

FIG. 3.4 indicates the g-dependence of the coefficient B,/ B?D (a) for modified AO
and (b) for AO. The negative values appear at around nﬁ%s =0.35 in the plot for modified

AO (FIG. 3.4 (a)). In the plot for nlri‘;'f = 0.35, the coefficient B,/ BIZ"D is almost zero. In
addition, the negative value appears when ¢ is below 0.11. This suggests that the parti-
cles are attractive and the wide coexistence region can appear. This result is consistent
with the phase diagrams with the modified AO potential. However, the absolute value is
still small when 1* = 0.35.

lip
As the packing fraction nlriif becomes larger, the value B,/BP decreases. The
B, /B for modified AO is smaller than 0O for any g when the T[{ﬁf is larger than 0.36.
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Figure 3.4: The reduced second virial coefficient of large disks (bRs) for modified AO
(a) and for AO (b) when the small disks (lipid molecules) packing fraction is 0.30 (dotted
curve), 0.35 (dashed curve), and 0.45(solid curve).

When the nfi%s is 0.45, the absolute value of B,/BP for modified AO becomes very
large because of the effective attraction. It is about -7.4 at ¢ = 0.1, and the appearance
of a condensation phase is expected. In addition, FIG. 3.4 (a) shows that the B,/ B?D for
nlriif = 0.45 increases monotonically as the g increases. As I mentioned in the section
3.3, the depletion attraction between bR trimers is stronger than that between monomers.
Thus, these results for the B, /BYP are consistent with the phase diagrams shown in the
section 3.3.

By contrast, the plots for AO do not have negative values even when ;" = 0.45
(FIG. 3.4 (b)). This means that the particles in the system are repulsive. If nﬁ%s becomes
larger, the coefficient B, /BYP becomes negative. However, the value 1 becomes un-
physical. The Phase diagrams with AO potential does not show the expansion of the
coexistence region at nl’i’l’;m = 0.5, and this result is consistent with the B,/BP. In ad-
dition, a comparison between the B, /B values for modified AO and AO indicates that
the repulsive forces between lipid molecules are important for the association of bRs.

Ie.

3.5 Comparison of phase diagrams between thermodynamic approach and
free volume approach

Here, I compared the phase diagrams obtained using the modified AO-TPT approach
with that obtained using the 2D-FVT approach. In the chapter 2, the chemical potentials
for the fluid and ordered phases were described using the two-dimensional Carnahan-
Starling-like equation of state (2D—CSE) and the cell theory in the case of the pure bR
system (nlri%s = 0). Thus, the reference systems in both approaches are common. Addi-
tionally, I adopted the pressure of the two-dimensional scaled particle theory (2D—SPT)
as the reservoir pressure. This means that the repulsive cores of the lipids in the reservoir
are common between the two approach. However, the framework of 2D-FVT did not
explicitly contain the effective interaction between two bRs [46]. On the other hand, the
modified AO potential was adopted as the effective interaction and the phase diagrams
were calculated using the thermodynamic perturbation theory with the effective interac-
tion (modified AO-TPT) in the present study. The results are compared in FIG.3.5.
Because the theories of the reference systems, namely the pure bR system (T]lri‘;S =0),
are common, the coexistence region appears in the same region (see FIG. 3.5). Even

when 1 increases, the phase diagrams of the 2D-FVT approach are in good agreement
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Figure 3.5: Phase diagrams for (a) bR monomer (¢ = 0.16667) and (b) trimer (g =
0.08065). The solid curves show the phase diagrams calculated by the modified AO—
TPT approach. The dotted curves show the phase diagrams calculated by the 2D— FVT
approach [46].

with the results given by the modified AO-TPT study. In particular, the boundaries
between the fluid and the fluid—ordered coexistence phases in the modified AO-TPT
approach agree very well with the results of 2D-FVT approach. In the chapter 2, I
showed that the 2D-FVT approach explains the experimental results semi-quantitatively
[46]. Therefore, it is expected that the modified AO-TPT approach is also valid.

On the other hand, there is a difference between phase diagrams for the bR trimer
calculated by modified AO-TPT and 2D-FVT approaches. The coexistence region cal-
culated by the modified AO-TPT approach is slightly wider than that calculated by the
2D-FVT approach. This difference increases as the size ratio ¢ approaches 0 (data is
not shown). I cannot deny the problem in the modified AO-TPT approach. However,
the results of the 2D-FVT approach are more suspicious because the g-dependence on
the phase diagram disappears at the small g as shown in the chapter 2. The CC for the
trimer seems to be higher than the real CC because of the existence of lower limit of CC
at small g in the 2D-FVT approach.

However, the CC for the bR trimer ordering is lower than for the monomer ordering
in both theories. For example, when nlri‘;s = 0.4, the CCs for bR monomer ordering and
trimer ordering calculated by the 2D-FVT approach are 0.100 and 0.042, respectively
[46]. On the other hand, the CCs for the bR monomer ordering and the trimer ordering
calculated by the modified AO-TPT approach are 0.097 and 0.013, respectively. The CC
for the bR trimer ordering is lower than that for the monomer ordering in each theory.
These results correspond to experimental results [45] qualitatively. As with the 2D-FVT
approach [46], the modified AO-TPT approach also explains the experimental results for
bR crystallization [45] qualitatively.

3.6 Comparison of CCRs between thermodynamic perturbation theory
approach and free volume theory approach

FIG. 3.6 (a) shows the critical concentration ratios (CCRs) between bR monomer and
trimer (CC monomer/ CC trimer) obtained from the phase diagrams calculated using
the modified AO-TPT approach (symbol). The curves are drawn by sixth-order poly-
nomial approximation when 6jj, = 0.5 and 0.6 nm. On the other hand, the polynomial
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Figure 3.6: (a) The CCRs were calculated by the modified AO-TPT approach. The
triangles, squares, and asterisks show the CCR for oj;, = 0.4, 0.5, and 0.6, respectively.
A dashed line shows the CCR for oy, = 0.4. A solid and dotted lines show the sixth-
order polynomial approximation curves of CCR for oy, = 0.5 and 0.6, respectively. The
experimental value of the CCR, 10.2, is shown as a thin solid line parallel to the x—axis.
(b) The CCRs were calculated by the 2D-FVT approach. The dotted line, a solid line,
and a dashed line show the CCR for oy, = 0.4, 0.5, and 0.6, respectively [46].

approximation for oj;, = 0.4 nm is not drawn because the data are across the line for the
CCR=10.2. FIG.3.6 (b) has the CCR plots calculated by the 2D-FVT approach in the
chapter 2 for comparison. The diameter of the lipid molecule is 0.5 nm as a standard.
However, this model has arbitrariness. The three lipid diameters oj;, = 0.4, 0.5, and 0.6
nm, were examined to remove the arbitrariness. The experimental value of the CCR,
10.2, is shown as a solid line parallel to the x—axis. When the CC is too low, the phase
diagram cannot be obtained using the TPT approach with the modified AO interaction
because the common tangent cannot be drawn on the free energy curves. Therefore, the
CCR cannot be calculated up to 10.2. Thus, the extrapolated plots were drawn when
Oiip = 0.5 and 0.6 nm. The CCR increases in each theory as nﬁf increases.

The CCRs obtained by the modified AO-TPT approach and the 2D-FVT approach
were compared. In the modified AO-TPT approach, the maximum n]ri‘;s where CC can be
calculated for all lipid diameters was 0.40. At nlri‘;'f =0.40, the CCRs obtained by the two
approaches were compared. When the j;p, is 0.4 nm, the CCR obtained by the modified
AO-TPT approach was 12.4. On the other hand, the CCR obtained by the 2D-FVT
approach was 1.60. When the 0, is 0.5 nm, the CCR obtained by the modified AO-TPT
approach was 7.46. On the other hand, the CCR obtained by the 2D-FVT approach was
2.43. When the ojjp is 0.6 nm, the CCR obtained by the modified AO-TPT approach
was 4.96. On the other hand, the CCR obtained by the 2D-FVT approach was 3.18.
The CCR obtained by the modified AO-TPT approach was larger than that obtained by
the 2D-FVT approach for all ojjp. This is because the CC for trimer calculated by the
modified AO-TPT approach is smaller than that calculated by the 2D-FVT approach,
while the CC for monomer is almost the same between the two theories. The difference
of the trimer CC is more significant as the oj;p is smaller, i.e. g is smaller. The reason
seems to be that the CC at smaller g is more affected by the lower limit of CC in the
2D-FVT approach.

The extrapolated CCR plots obtained by the modified AO-TPT approach agree with

experimental CCR value 10.2 at T]{i%s = 0.393, 0.414, 0.443 for o}, = 0.4, 0.5, 0.6
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x 10%um ™2, respectively. On the other hand, the lipid number density in the single layer
of a cell membrane was about 2.5 x 10° ,um*2 [30]. Therefore, the CCRs obtained using
modified AO-TPT approach also show the good agreement with experimental results
semi-quantitatively.

A qualitative difference of CCRs between the 2D-FVT and modified AO-TPT ap-
proaches are found. Comparing FIG. 3.6 (a) and (b), the CCRs order of the dependence
on the lipid diameter for the modified AO-TPT approach is the inverse of that for the
2D-FVT approach. The CCRs obtained by the 2D-FVT approach increase as the lipid
diameter increases. In contrast, the CCRs obtained by the modified AO-TPT approach
decrease as the lipid diameter increases. This discrepancy seems to be caused by a prob-
lem in the 2D-FVT approach: namely, the calculation of CC for the trimer. The order
for the 2D-FVT approach seems to be incorrect because of the disappearance of the g-
dependence at small g. The CC for the trimer decreases as g decreases. However, in the
2D-FVT approach, the decrease is braked due to the lower limit of CC at small g. On
the other hand, the CC for the monomer is not braked because the g is not small. Thus,
the CC decline for the trimer with the g decline is smaller than that for the monomer. On
the other hand, in the modified AO-TPT approach, the CC decline for the trimer is larger
than that for the monomer because there is no lower limit of CC. Therefore, the CCR
order obtained using the 2D-FVT approach is inverse of that obtained using modified
AO-TPT approach, and incorrect.

nm, respectively. n'*s correspond to the lipid number densities 3.13, 2.11, and 1.57

3.7 Discussion

The calculated results indicate that the experimental results are explained by using the
modified AO potential. However, the modified AO potential is based on very simple idea,
and has incompleteness. The modified AO potential does not have a local maximum.
On the other hand, a real effective potential has local maximum at around r = (Opr +
G]ip) /2. This is because that, the lipid molecules around the bR prevent the contact
between bRs. That is, the modified AO potential does not contain the liquid structure of
lipid molecules. The ignorance of the liquid structure of solvents may change the phase
diagram. Therefore, the phase diagrams should be confirmed by simulation.

3.8 Summary

The phase diagrams of binary hard-disk systems were calculated to discuss the driving
force of bR crystallization. To study the effects of the core repulsive force between lipid
molecules as depletants, I calculated the phase diagram and CCR using the thermody-
namic perturbation theory with two effective interactions between bRs [70-72]. The
approach was entirely different from the study in section 2 based on the 2D-FVT ap-
proach [46]. The 2D-FVT approach has problem when ¢ is very small. However, the
CCR obtained using the modified AO-TPT approach also showed good agreement with
the experimental results semi-quantitatively as with the 2D—FVT approach. Therefore,
the present results also support that the depletion effect arising from the lipid molecules
plays an essential role in the driving force of crystallization. In the future, I think that
verification by simulation should be necessary.
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Chapter 4

Conclusion

I assumed the driving force for the bR ordering as the depletion force of lipid molecules
and examined the validity of that assumption. Experiments conducted by M. P. Krebs
et. al. showed that bR monomers start to crystalize in 10.2 times higher bR packing
fraction than trimers. I explained this result by the depletion force theoretically. The bR
phase diagrams were calculated and the critical concentration ratio (CCR) was obtained
from the phase diagrams. The calculated CCRs were compared with experimental CCR.
The CCRs were obtained by two approaches, namely the two-dimensional free volume
theory (2D-FVT) and the thermodynamic perturbation theory with effective potential.
The results are summarized as follows, respectively.

First, I calculated the phase diagrams for the bR monomers and trimers by using 2D
—FVT approach. When the lipid molecules in the reservoir are modeled as ideal gas,
the fluid—ordered phase coexistence region does not expand and the critical concentra-
tion (CC) for the ordering stays high at the lipid packing fraction of the biomembrane,
namely 0.5. On the other hand, when the repulsive interaction between lipid molecules is
considered, the coexistence region expands, and the CC is very small at the lipid packing
fraction = 0.5. Therefore, it is indicated that the depletion force is strong enough to drive
the bR ordering when the repulsive interaction between lipid molecules is considered.
In addition, the CC for the monomer is higher than that for the trimer and the calculated
CCR agrees with the experimental CCR. These results indicate that the depletion force
of lipid molecules is the driving force for the bR ordering.

I adopted AO potential or modified AO potential as the effective potential, and phase
diagrams were obtained by using thermodynamic perturbation theory (TPT). The model
is the same as that adopted in the 2D—FVT approach. When I adopted the AO poten-
tial, which did not contain the repulsion between lipid molecules, the coexistence region
did not expand, and the CC did not decrease. On the other hand, When I adopted the
modified AO potential, which contain the repulsion between lipid molecules, the coex-
istence region expanded, and the CC was very small. As with the 2D—FVT approach,
it is indicated that the depletion force is strong enough to drive the bR ordering when
the repulsive interaction between lipid molecules is considered. In addition, the phase
diagrams shows that the CC for monomer is higher than that for the trimer, and the CCR
shows good agreement with experimental CCR. The results calculated by modified AO
—TPT approach also indicate that the depletion force of lipid molecules is the driving
force for the ordering.

I showed that the depletion force seems to be dominant for the bR ordering. However,
the model and the theory are very simple, and I ignore some aspects of bR crystalliza-
tion. First, I model the biomembrane as a lipid monolayer, although the biomembrane
is a lipid bilayer. Thus, the lipid number density is half of the real biomembrane, and
the depletion force seems to be half of the actual effective force. Second, I modeled
the bR as the disk which has a smooth surface, although the bR has a bumpy surface.
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Lipid molecules are in gap between the bumpy surfaces of two bRs [73]. Therefore, the
actual bR crystal has more lipid molecules than calculation in this thesis. According
to experimental research [74], the lipid molecules in the bR crystal may be important
for the crystallization. To examine the effect of these aspects on the bR crystallization,
further research must be done.
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Appendix A

Derivation of Semi-grand potential by free volume
theory

Here, I derive the semi-grand potential Q (Nyr,V,T,lip) in eq. (). The 2D binary
hard disk system with the reservoir of lipid molecules is considered. € is obtained by
Legendre transformation of Helmholtz free energy F (Nor, V, T, Niip) as follows

Q (Nor, V, T, tiip) = F (Npr, V., T, Niip ) — HiipMiip (A.D)

where Npr is the number of bRs, V is the area of binary hard disk system, 7" is the
temperature, L, is the chemical potential for the lipid molecules, and Nj;, is the number
of lipid molecules. On the other hand, by differentiating €2 by t;,, the Nj;, is obtained

as follows: 50
< > ) = —Nip. (A2)
Mip / oV
Thus, Q is also written as
0 Hiip ,
Q (Not, V. T i) = Qo (Vo V. T 1) = [ Nty (A3)
'u'lip

where Qg and ,ul?p are the semi-grand potential and the chemical potential for the lipid
molecules in reference system. The bR pure system, i.e. N, = 0, is adopted as the

reference system. Here, Qg (NbR, V. T, ,ul(i)p) = F (MR, V,T). 1 define the Helmholtz free
energy for the bR pure system as Fy (Nor,V,T) Thus, the Q is

Hiip
Q (Nor, V. T i) = Fo (Now, V. T) — / Nipdit]. (Ad)

To calculate the integral, Widom insertion Theorem is adopted. The chemical potential
for hard disk is calculated by the theorem as follows:

Niip
Wip = C +kgTln , (A5)
<Vfree>
where C is a constant, kg is the Boltzmann constant, and V.. is the free volume for
one lipid molecule in the binary hard disk system. Here, the chemical potential for lipid

molecules in the reservoir, ulri‘;f, is also written as follows:

res __ th
e = C+kpTln—1 (A.6)

where N7 is the lipid number in the reservoir and Vi is the free volume in the reservoir.
From the egs. (A.5) and (A.6), an equation is obtained as follows:

Nip = (Viree) Plip » (A.7)
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where py 7

eq.(A.4)is

Hiip

Q (Npr, V, T, thip) = Fo (Nor, V., T) — / (Viree) Piip d M-

—oo

To calculate the integral, the Gibbs-Duhem relation,

Piip dthip = dp™*
is adopted. The eq. (A.8) is

Q (Nor, V., T, thiip) = Fo (Nor, Vs T) = (Viree) P"°.
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is the lipid number density in the reservoir. Substituting the eq. (A.7), the
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Appendix B

Derivation of free volume fraction, pressure and
chemical potential for bR pure system

B.1 Derivation of free volume fraction by scaled particle theory

Free volume fraction o is calculated by using scaled particle theory (SPT). The 2D
binary hard disk system with the reservoir of lipid molecules is considered. Adopting the
Widom insertion theorem, the chemical potential for the lipid molecule, t;p, is written
as follows

N.
tip = C+kpTln—P2_ (B.1)
<Vfree>0

where C is constant, kg is the Boltzmann constant, 7" is the temperature, Ny, is the
number of lipid, and (Viee), is the free volume for one lipid molecule in the bR pure
system. Here, I adopted an approximation that replace (Viree) t0 (Viree)o- The iip is also
written by using work, W, to insert one lipid molecule to the bR pure system as follows:

MNip
Hip = C"‘kBTlHT + VV7 (BZ)

where V is the area of binary hard disk system. Comparing the eqs. (B.1) and (B.2), an
equation is obtained as follows:

<Vfree>()
1%
W depends on the diameters of lipid molecule and bR. Here, the diameter of the lipid is
o and that of the bR is 2R. To adopt the SPT, o is scaled by an parameter A. When A
is small, the diameter of lipid is small. On the other hand, when A is large, the diameter
of lipid is large. In the case of A << 1, the overlap area of excluded volume can be
ignored, and the free volume fraction is

=exp[—BW]. (B.3)

(Viee)y  V—F(2R+10)’ Nor
% % '

(B.4)

Therefore, W is
T
W = —kgTIn |1 —prZ(2R+;LG) s (B.5)

where pyg is the number density of bR. In the case of A >> 1, W is p-V work to create
a vacuum space for one lipid molecule. Thus, W is

W=p% (Ao), (B.6)

wherw p is the pressure. The SPT assume that W(A) is the sum of W for A << 1 and
A >>1 as follows:

W(R)=W(0)+ @VDHA 0% (Ao B.7)
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The first and second term in the right side are the Maclaurin expansion of W for A << 1.
The third term is the W for A >> 1. Substituting the p calculated by SPT, p = %,
—TIbR
and A =1, Wis
2R Mbrq>
I=mr (1= 1r)*
where ¢ is the diameter ratio 6 /2R and My is the packing fraction of bR. Thus, the free
volume fraction is as follows

BW = —In[l — MpRr] +

(B.8)

<Vfree > 0
\%

2Mrd ThRG’
T=Mr (1 —myr)?

=(1—mpr)exp |— (B.9)

B.2 Derivation of pressure and chemical potential for bR pure system in
fluid phase by scaled particle theory

Pressure for the bR pure system in the fluid phase is obtained by using scaled particle
theory. W to insert one bR to bR pure system is obtained by substituting g = 1 to eq.
(B.7) as follows:

2Mbr

; + Bvopy, (B.10)
— /bR

BW = —In[1 — nyRr] +

where vg is the area of one bR and p? is the pressure for bR pure system in the fluid
phase. Chemical potential for bR pure system in the fluid phase is as follows:

M
u? :kBTlnA2+kBT1n$ +W, (B.11)

where A is the thermal de Broglie wavelength in the 2D space, Nyr is the number of bR.
Here, the Gibbs-Duhem relation,

oul > < op} >
_ 7 B.12
PoR (aan OMbR ( )

is adopted to eq.(B.11). The eq. (B.11) is

aBM?) J ( NbR) d ( 21MpR ) (313170) 1
- =R} _ —In[1 — ner] + + -
<9an OMbR v IMbR (1= Tor] 1 —1Mor Y0 IR (Bp]i%)

0
Thus, (aapfvo> is as follows:
bR

aBpf VO> 1 2MbR
1-— = . B.14
(=) < IMer I—mor (1 —"Mbr)? (B.19
Therefore, p? is
0 TbrR
Ww=-—"">. (B.15)
PP = (1 2
Substituting the eq. (B.15) to the eq. (B.10), W is
21pR TR
W =—In[l— + + . B.16
B [ an] 1— bR (1 — an)z ( )
The eq. (B.16) is substituted to the eq. (B.11), the chemical potential is
A? } [ YD ] 2 — 1R
0
=In|—| +kgTIn + —2. (B.17)
B [VbR ’ I—mpr] (1 —mR)?
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B.3 Derivation of pressure and chemical potential for bR pure system in
ordered phase

A partition function Q for bR ordered phase is calcluted by cell theory as follows:

<v*>NbR
A2Nbr

0= (B.18)

Here, vx is area where one bR center can move in the hexagonal lattice shown as red
zone in FIG. ??. The area of v is

(v¥) = (r—2R)?, (B.19)

where r is distance between bR centers and R is the radius of bR. The Helmholtz free
energy F is

F = —kgTInQ = —NyrkpTIn [7(r — 2R)?] + Nprkp 7InA”. (B.20)

The eq.(B.20) is rewritten by packing fraction n,r and close packing 7,. When the bRs
construct hexagonal lattice, there are three bRs in the hexagon (FIG. ??). The area of the

hexagon is # The area of bRs in the hexagon is 3vyr. Thus,
2va
= . B.21
bR T3 (B.21)
At the close packing, r = 2R. Therefore,
T
=——=~0.907. B.22
Thus,
r ncp
= . (B.23)
2R TR
Here, I calculate the eq.(B.20) as follows:
2
F = —NirksTln [n(ZR)z (é - 1) } + Norks TInA2. (B.24)
Substituting the eq.(B.23) to eq. (B.24),
M ’ A2
F = —NyrksTIn ( £ _ 1) + Nprkg Tln—. (B.25)
TR 4vpr
Here, adopting the approximation,
1
77“’—1z<'7q’—1>, (B.26)
bR 2 \ MR
the eq. (B.25) is
Nep A?
F = —2NyrkgTIln | — — 1| + Nprkp7TIn—. (B.27)
MbR VbR

Thus, pressure and chemical potential for bR pure system in ordered phase are obtained
by differentiating F as follows:

2MR
0
VR = —— B.28
Bpord bR - an/ ncp ( )
A? n 2n
O = In [] —2In [q’ 1] +——=F B.29
PHon VbR TbrR MNep — MbR ( )
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