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ABSTRACT

Bacteriorhodopsin (bR) is a transmembrane protein. bR monomers form bR trimers,
and the trimers construct a two-dimensional crystal on a bio-membrane spontaneously.
The driving force for the crystallization is unclear. In this thesis, I assume the driving
force as the depletion force of lipid molecules and examine the validity of the assump-
tion. I focused on experiments conducted by M. P. Krebs et. al. They prepared mutant
bRs that cannot form trimer i.e., the mutants are in monomer form. According to their re-
search, the critical concentration (CC) for the crystallization for the bR monomer is 10.2
times higher than that for the trimer. I explain this result by using depletion force theo-
ries. To adopt the theory, the bR monomer, trimer, and lipid molecules were modeled as
hard disks. The biomembrane was modeled as a two-dimensional plane space. The bi-
nary hard disk system, namely bR―lipid system, has a reservoir of lipid molecules to fix
the chemical potential for lipid molecules. The phase diagrams for the bR monomer and
trimer were calculated by using two theoretical approaches: two-dimensional free vol-
ume theory (2D–FVT) and thermodynamic perturbation theory with effective potential.
The CCs for the monomer and the trimer were obtained from the phase diagrams. The
critical concentration ratio (CCR) between the monomer and the trimer was calculated
and compared with the experimental CCR.

First, the phase diagrams for the monomer and trimer were obtained by using the 2D
―FVT approach. Semi-grand potentials for the fluid and ordered phases were calculated
by the 2D―FVT, and pressure and chemical potential for the bR were obtained from the
semi-grand potentials. The pressure and the chemical potential are the same between the
fluid and ordered phases, respectively. Solving those two equations, the fluid―ordered
phase coexistence region was calculated. The coexistence region for the trimer is wider
than that for the monomer. That is, the bR trimers start to crystallize at the lower bR
packing fraction than that for the monomer. This result agrees with the experimental one
qualitatively. In addition, the CCR was obtained from the phase diagrams and showed
good agreement with the experimental one. Therefore, it is indicated that the depletion
force of the lipid molecules is dominant for the bR crystallization. However, I found
a problem with the 2D―FVT approach that the q-dependence of the phase diagram
disappears when q is very small. Therefore, the phase diagrams were also examined by
another theory, namely the thermodynamic perturbation theory with effective potential.

Second, the phase diagrams for the monomer and trimer were obtained by using the
thermodynamic perturbation theory (TPT) with effective potential. The AO potential
and modified AO potential were adopted as the effective potential. Helmholtz free en-
ergies for the bR fluid and ordered phases were calculated by using the TPT. The phase
diagrams were obtained by drawing a common tangent on the free energies. The phase
diagrams obtained by adopting the AO potential as the effective potential show high CC
and indicate that the depletion force is too weak to drive the bR crystallization when the
repulsive core of the lipid molecules is ignored. On the other hand, the phase diagrams
obtained by adopting the modified AO potential show small CC and indicate that the
depletion force is enough strong to drive the crystallization when the repulsive core of
the lipid molecules is considered. In addition, the CCR obtained by using the modified
AO–TPT approach shows good agreement with the experimental one. Therefore, it is
also indicated by the modified AO–TPT approach that the depletion force of the lipid
molecules is dominant for the bR crystallization.
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Chapter 1

Introduction

1.1 Phase separation caused by depletion effect

Bacteriorhodopsin (bR) is a transmembrane protein of Halobacterium salinarum. The
bR is the light-driven proton pump, which transports the proton out of the cell. The
bRs construct a two-dimensional crystal in the biomembrane [1, 2]. The crystallization
is considered as essential for the bR function. For example, it is reported that the crys-
tallization prevents the denaturation of the bR [3, 4]. The crystal contains some lipids.
However the ratio, lipid weight / protein weight, in the crystal is much smaller than that
in the biomembrane. That is, the crystallization can be regarded as the separation be-
tween bRs and lipids in the two-dimensional system. However, the driving force for the
crystallization is unclear. For example, there is no hydrogen bond or ion bond between
bRs.

I focused on the following point to consider the dominant factor for the crystalliza-
tion. Most of the bR amino acid residues consist of nonpolar amino acid residues. In
addition, the lipid molecule has acyl chains, which are also hydrophobic. That is, the
hydrophobic interaction seems to be dominant in the biomembrane. Thus, I considered
that the van der Waals picture can be adopted. According to the van der Waals picture,
the liquid structure is not formed by attractive force but by repulsive force. Therefore,
the bR structure seems not to be formed by direct attractive force, but by effective inter-
action arising from repulsive force between bRs and lipid molecules, namely depletion
force. The depletion force is the effective attractive force between bRs explained by the
entropy increase of lipid molecules in the canonical ensemble. I consider the hypothe-
sis is worthwhile to study because this effective interaction is enough strong to induce
crystallization in the three-dimensional hard sphere system.

1.1.1 Mixture of ideal gas model

I would like to review the research on the mixing and separation of molecules. Generally,
the mixture is driven by entropy increase. The simplest model is the mixing of the ideal
gas. N1 mole ideal gas consisting of molecular species 1 and an N2 mole ideal gas con-
sisting of molecular species 2 are in the two insulated containers, respectively (FIG 1.1).
The temperature and the pressure are the same in the two containers. The two containers
are connected. When the divider is removed, the molecule 1 and the molecule 2 mix
spontaneously. In an isolated system, the state changes so that the entropy increases.
That is, the mixing of ideal gas is driven by the entropy increase. The difference of
entropy ∆Smix before and after the mixing of the gases is calculated as follows:

∆Smix =−R(N1ln [x1]+N2ln [x2] , (1.1)
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Adiabatic

process

Molecule1 : N1 mol

Molecule2 : N2 mol

Figure 1.1: A mixture of ideal gas. Two species of molecules, molecule1 and molecule2,
are in the insulated containers, respectively. When the two containers are connected, and
the divider is removed, the molecules1 and molecules2 mix spontaneously.

where R is the gas constant, x1 and x2 are the mole fraction of the molecule 1 and
molecule 2, respectively. x1 and x2 are written as follows:

x1 =
N1

N1 +N2
, (1.2)

x2 =
N2

N1 +N2
. (1.3)

Since 0 < x1 < 1 and 0 < x2 < 1, the ∆Smix is positive. The eq. (1.1) shows that the
entropy increases after the mixing.

1.1.2 Lattice model for mixing polymers and solvent molecules

The entropy driven mixing and energy driven demixing were shown by using a lattice
model. The interactions between molecules are not considered in the ideal gas model.
In 1942, Flory and Huggins independently published their theories on the mixing of
polymers and solvent molecules using the lattice model [5, 6]. Their theory contains
direct interactions between polymers and solvent molecules. Polymers“ a”and solvent
molecules“ b”are mixed (FIG. 1.2). Their theory is as follows. One polymer segment
and one solvent molecule occupy one lattice site. No more than two segments or solvent
molecules can occupy one lattice site. A segment of the polymer is distributed next
to another segment of that polymer. All lattice sites are occupied by the segments or
solvent molecules. The theory assumes a random mixture of polymers and solvents.
The difference of Helmholtz free energy ∆Fmix before and after the mixing is calculated
as follows:

∆Fmix = ∆Emix −T ∆Smix, (1.4)

where ∆Emix is the difference of energy before and after the mixing. ∆Smix is the differ-
ence of entropy before and after the mixing. ∆Smix is calculated as follows:

∆Smix =−kB(Naln [ϕa]+Nbln [ϕb]), (1.5)

where kB is the Boltzmann constant. Na and Nb are the number of polymers“ a”and
solvent molecules“b”, respectively. ϕa and ϕb are the volume fraction of polymers“a”
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Polymer a

Solvent molecule b

Figure 1.2: Lattice model for a mixture of polymer and solvent molecules. A square
shows a segment of a polymer. A circle shows a solvent molecule.

and solvent molecules“ b”, respectively. n is the number of segments in one polymer.
Using the number of all lattice sites, Ω, the volume fraction is as follows:

ϕa ≡ nNa

Ω
, (1.6)

ϕb ≡ Nb

Ω
. (1.7)

The ∆Smix of the lattice model is similar to the ∆Smix of the ideal gas model. However,
there is a difference. ∆Smix of the lattice model is calculated using the volume fraction,
whereas that of the ideal gas model is calculated using the mole fraction. Since 0 < ϕa <
1 and 0 < ϕb < 1, the ∆Smix is positive. That is, the entropy increases when the polymers
and solvents are mixed. If the n segments of the polymer are decomposed so that each
segment can be distributed independently, ∆Smix is

∆Smix =−kB(nNaln [ϕa]+Nbln [ϕb]). (1.8)

This shows that ∆Smix in eq. (1.8) is larger than that in eq. (1.5). That is, when the
volume fraction is the same, ∆Smix decreases as the number of segments in one polymer
increases. The calculation of ∆Emix is shown. The theory assumes that only substances
in adjacent lattice sites interact with each other. The segments interact with each other
by εAA. The solvent molecules interact with each other by εBB. The segment interacts
with the solvent molecule by εAB. ∆Emix is calculated as follows:

∆Emix = ΩkBTχϕaϕb, (1.9)

where T is the temperature. χ is defined as follows:

χ ≡ z∆ε
kBT

, (1.10)

∆ε ≡ εAB − 1
2
(εAA + εBB), (1.11)

where z is the number of nearest neighbors for one lattice site. Unlike ∆Smix, ∆Emix can
be both positive and negative values. The eq. (1.9) shows that the sign of ∆Emix depends
on the sign of χ . Substituting eq. (1.5), (1.8), and (1.9) to (1.4), ∆Fmix is as follows:

β∆Fmix = kB(Naln [ϕa]+Nbln [ϕb])+ΩkBTχϕaϕb (1.12)
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The first term on the right-hand side is the entropy term. The entropy term is negative.
On the other hand, the second term, the energy term, can be positive. For example, all
interactions are attractive. In other words, εAA, εBB, and εAB are negative. When |εAA|
and |εBB| are large and |εAB| is small, χ is positive. In this case, the energy term drives
the separation of polymer and solvent. That is, the Flory-Huggins theory indicates that
the separation of molecules is not driven by entropy but by energy. However, various
experiments in solution chemistry and other fields have shown that this conclusion is not
necessarily correct. Sometimes an increase in energy due to the molecular aggregation
or oligomerization is observed. Sometimes endothermic phenomena occur during asso-
ciation formation. The reason for this is that the lattice model ignores important factors
in the real system. One of the factors is excluded volume.

1.1.3 Depletion effect

I explain excluded volume. For example, there are two hard spheres (Fig. 1.3). Two
spheres diameter, R, is the same. A center of the sphere cannot approach the center of
the other sphere within 2R. The volume where the center of the other spheres cannot
enter is the excluded volume. Fig. 1.3 shows that the excluded volume is larger than the
volume of one sphere.

The excluded volume induces an effective attractive force between particles. For
example, when the polymers are added to a colloidal solution, the colloid particles ag-
gregate. The reason is as follows in a canonical ensemble. The centers of the polymers
are excluded from the colloid particles because they are unable to overlap the colloidal
particles. Therefore, the excluded volume (the dashed region in Fig. 1.4) exists around
the colloid particles. When the colloid particles are in contact, the excluded volumes
overlap, and the excluded volumes in the system decrease (right side in FIG. 1.4). In
other words, when the colloid particles approach, the region where the centers of poly-
mers can be distributed increases. For this reason, the number of configurations of poly-
mers increases, and the entropy increases when the colloid particles approach. That is,
the effective attractive force arises between the colloid particles because the translational
entropy of the polymers increases. This is called the depletion effect. Note that in the
lattice model explained in the previous section, there is no change in the excluded vol-
ume when particles come into contact with each other. That is because the volume of the
particle agrees with the excluded volume. (Special lattice models exist that incorporate
excluded volume effects.) Therefore, The Flory-Huggins theory [5, 6] does not contain
the depletion effect.

The depletion effect was discovered by Asakura and Oosawa in the 1950s [7,8]. This
effect is ignored for a long time after the discovery, but it was rediscovered by Vrij in
1976 [9]. They derived the effective potential arising from the depletion effect. This
is called the Asakura―Oosawa (AO) theory [7, 8]. In the AO theory, the polymers are
regarded as spheres. That is, the position of the segments within the polymer is fixed. In
addition, the theory adopts an approximation that the polymers can overlap each other.
The effective potential, ω(r) is calculated by the AO theory as follows:

ω(r) = ∞ r < 2R, (1.13)

ω(r) = −ρkBT∆Vex(r) r ≥ 2R, (1.14)

where r is the distance between the centers of colloid particles, ρ is the number density
of the polymers, and ∆Vex is the overlapping volume of the excluded volume when the
colloid particles come close.
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2R

Excluded volume

Figure 1.3: The dashed line shows the excluded volume. The center of other sphere
cannot enter the dashed line. The volume surrounded by dashed line is the excluded
volume.

Polymer

Colloid

Excluded volume

Figure 1.4: The blue disks show the colloids. The yellow disk shows the polymer. The
dashed line shows the excluded volume for the center of polymer. The center of polymer
can be distributed in green region. The green area is wider when the colloidal particles
are in contact (right) than when they are apart (left).

1.1.4 Phase separation induced by depletion effect

The phase separation of molecules driven by the depletion effect was shown by the
following research. Vrij et al. mix silica particles and polystyrene in cyclohexane sol-
vent [10,11]. The silica particle is the colloid particle, and the polystyrene is the polymer.
Experimental results show that as the concentration of polystyrene increases, phase sep-
aration occurs into two fluids with high and low concentrations of colloidal particles.
The eq. (1.14) shows that as the polymer density increases, the depletion force becomes
more attractive. Therefore, the phase separation is induced as the concentration of the
polymer increases. They calculated the second virial coefficients using the AO theory,
and explained the relationship between the phase separation and cyclohexane concentra-
tion [11].

After this research, some researchers attempt to theoretically determine the phase
diagram of colloidal particles and polymers two-component systems. In 1983, Gast et
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al. obtained the phase diagrams using thermodynamic perturbation theory [12]. They
modeled colloidal particles as hard spheres and obtained the free energy of the hard
sphere one-component system. They obtained the effective potential between colloidal
particles arising from the depletion effect of polymers using the AO theory. The free
energy of the hard sphere one-component system is a reference. The change in free
energy from the reference is evaluated by perturbatively incorporating the above AO
potential. The AO potential was obtained by substituting the experimental concentration
of polymers and the experimental diameter of colloidal particle and polymer to eq. (1.13)
and (1.14). The free energy of the colloidal particle effective one-component system
with polymer depletion effects was obtained. The phase diagrams were obtained by
constructing the common tangent on the free energy curves (FIG. 1.5 and 1.6). When
the diameter of the polymer is smaller than that of the colloidal particles by 0.2 times,
no first-order transition of the fluid and fluid phases is observed(FIG. 1.5). On the other
hand, the transition between fluid and solid phases occurs. When the diameter of the
polymer is 0.4 times larger than the diameter of the colloidal particles, fluid–fluid and
fluid–solid first-order transitions occur (FIG. 1.6). In both cases, as the concentration of
the polymer increases, the two-phase coexistence region expands, and the coexistence
region appears at a low colloidal particle packing fraction. These results agree with the
experimental results conducted by Vrij [10, 11] qualitatively.

In the early 1990s, the phase diagrams of the colloidal particle–polymer two-component
systems were obtained by Lekkerker et al. [13,14] using a method different from thermo-
dynamic perturbation theory. Their theory is called free volume theory (FVT). The reser-
voir of the polymer is assumed in FVT. The colloidal particle–polymer two-component
system is connected to the reservoir. That is, the chemical potential of the polymer in
the two-component system is constant. The free energy of this two-component system
is the semigrand potential Ω. The Ω is calculated using the Legendre transformation of
Helmholtz free energy, F , as follows:

Ω
(
Nc,V,T,µp

)
= F

(
Nc,Np,V,T

)
−µpNp, (1.15)

where Nc is the number of colloidal particles, Np is the number of polymers, V is the
volume of the two-component system, T is the temperature, µp is the chemical potential
of the polymer. Using the FVT, Ω is calculated as follows:

Ω
(
Nc,V,T,µp

)
= F0 (Nc,V,T)−pres ⟨Vfree⟩ , (1.16)

where F0 is the Helmholtz free energy for a pure colloidal particle system, Pres is the
pressure for the reservoir, and <Vfree >0 is the volume where the center of the polymer
can be distributed in the colloidal particle pure system. An approximation is adopted
in the FVT. The approximation is that < Vfree >, the volume where the center of the
polymer can be distributed in the two component system, is replaced by < Vfree >0.
<Vfree >0 is obtained using scaled particle theory.

Lekkerker et al. obtained the pressure and the chemical potential of colloidal par-
ticles differentiating Ω(Nc,V,T,µp). When some phases coexist, the pressure and the
chemical potentials are equal between the phases. They obtained the phase diagrams us-
ing the law. The phase diagrams obtained using the FVT are in good agreement with that
obtained using the AO potential and thermodynamic perturbation theory. As the poly-
mer packing fraction increases, the two-phase coexistence region expands, and phase
separation occurs at lower colloidal particle packing fractions. This result agrees with
the experiment qualitatively. When the diameter ratio of the polymer to the colloidal
particle, σp/σc, is smaller than 0.32, the fluid-fluid phase separation does not occur, but
the fluid-solid phase separation does. When the diameter ratio is larger than 0.32, the
fluid–fluid and fluid–solid phase separation occur. It is noteworthy that at the size ratio
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ter alone is predicted below the triple point 
(Fig. 7). 
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Figure 1.5: Phase diagrams calculated using the AO potential and the thermo dynamic
perturbation theory. The diameter of the colloid particle is 2.5 times larger than that of
the polymer. Reprinted from ref [12], Copyright (1983), with permission from Elsevier.
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fluid phase. Both improvements altered the 
phase diagrams substantially as shown for d2/ 
d3 = 5 in Fig. 8. The Verlet-Weis improve- 
ment to the PY distribution function in- 

creases the density distribution close to the 
particle and diminishes it further away (Fig. 
2), causing a more abrupt transition at 
slightly higher densities. 

Here we compare the predictions of per- 
turbation theory with data ofdeHek and Vrij 
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Journal of Colloid and Interface Science, Vol. 96, No. 1, November 1983 

Figure 1.6: Phase diagrams calculated using the AO potential and the thermo dynamic
perturbation theory. The diameter of the colloid particle is 5 times larger than that of
the polymer. Reprinted from ref [12], Copyright (1983), with permission from Elsevier.
https://doi.org/10.1016/0021-9797(83)90027-9

of 0.32, three phases of colloidal particles are predicted to coexist at a certain polymer
packing fraction: a dilute fluid phase, a dense fluid phase, and a solid phase of colloidal
particles.

The phase diagram obtained using FVT was compared with experiments [15]. The
FVT indicates that fluid-fluid phase separation occurs as the value of the diameter ratio
increases. To confirm this prediction experimentally, three different polymers are mixed
with the colloidal particles. The diameter ratios, σp/σc, are 0.08, 0.24, and 0.57. For
the diameter ratio of 0.08, the fluid–fluid phases transition is not observed. When the
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For q<0.2, an enormous widening of the fluid-solid tran-
sition is observed when h2

r increases sufficiently. This im-
plies that the coexisting fluid and solid phases become
progressively more dilute and dense, respectively, upon in-
creasing h2

r . This widening is consistent with findings by
Gast et al. @61# in perturbation theory studies of the Asakura-
Oosawa depletion potential model @30,31#, and has also been
observed in experiments on colloid mixtures, where small
amounts of small spheres induce a rapid decrease in the lat-
tice constant of the crystal @39#. The shape of the coexistence
curve for h2

r.0.1 implies that the fluid phase only persists to
very low values of h1.
The calculations also reveal the existence of a fluid-fluid

transition for q<0.1. However, this fluid-fluid coexistence is
metastable with respect to the broad fluid-solid transition for
all q and h2

r . It is of interest to note that for all q<0.1 the
critical point of the metastable fluid-fluid coexistence curve
occurs at a value of h2

r that is about twice that of the fluid-
solid curve at the same h1. Thus the fluid-fluid curve does
not move deeper into the fluid-solid coexistence region upon
decreasing q, i.e., upon decreasing the range of the potential.
This situation is in contrast to the findings of Ref. @71# where
for a Yukawa pair potential decreasing the range of the at-
traction lowers, in temperature, the fluid-fluid coexistence

into the fluid-solid region. Here there is no trend that sug-
gests a stable fluid-fluid curve at q,0.033. For q50.2 we do
not find a spinodal instability in the fluid branch for h2

r

,0.46, while we do find a spinodal instability in the solid
branch for h2

r.0.12. However, in Fig. 5 we show that as
soon as the spinodal instability appears in the solid phase,
this instability is very broad and disappears in the fluid
phase. We were not able therefore to find a metastable solid-
solid coexistence using the common-tangent construction.
Rather, we plot in Fig. 4~a! the spinodal ~dashed curve!
which is given by (]2 f /]h1

2)50. The presence of this spin-
odal instability on the solid branch may be important for the
kinetics of the phase separation of the mixture @36,76#.
More surprisingly perhaps, the phase diagrams also show

the existence of an isostructural solid-solid transition for q
<0.1. For q50.1, the solid-solid coexistence region is found
to be metastable with respect to the freezing transition, al-
though the critical point of the solid-solid binodal is very
close to the stable fluid-solid phase boundary. For smaller q
the most striking feature is the downward shift of the solid-
solid with respect to the fluid-solid binodal, so that there is a
regime with a stable solid-solid coexistence for q<0.05. Si-
multaneously, the solid-solid critical point shifts closer to
close packing upon decreasing q. These results are consistent

FIG. 4. Phase diagram of binary hard-sphere mixtures with size ratios ~a! q50.20, ~b! q50.10, ~c! q50.05, and ~d! q50.033 as a
function of the large-sphere packing fraction h1 and the small sphere reservoir packing fraction h2

r as obtained from simulations of the
effective one-component Hamiltonian. F and S denote the stable fluid and solid ~fcc! phase. F1S ,F1F , and S1S denote, respectively, the
stable fluid-solid, the metastable fluid-fluid, and the solid-solid coexistence regions. The dashed line in ~a! denotes the spinodal instability on
the solid branch. Note that the solid-solid coexistence for q<0.05 becomes stable and that all the tie lines are horizontal ~not drawn!.

5754 PRE 59DIJKSTRA, van ROIJ, AND EVANS

Figure 1.7: Phase diagrams obtained by simulation. The y axis is the small parti-
cle packing fraction and the x axis is the large particle packing fraction. (a) Phase
diagram when the diameter ratio σS/σL is 0.2. (b) Phase diagram when the di-
ameter ratio σS/σL is 0.1. (c) Phase diagram when the diameter ratio σS/σL is
0.05. (d) Phase diagram when the diameter ratio σS/σL is 0.03333. Reprinted figure
with permission from ref. [20]. Copyright (1999) by the American Physical Society.
https://doi.org/10.1103/PhysRevE.59.5744

diameter ratio is larger than 0.24, the fluid–fluid phases transition is observed. As the the-
ory predicts, the fluid–fluid phase separation occurs when the diameter ratio increases.
Therefore, FVT is valid qualitatively.

In the previous section, the statistical mechanics theories are used to predict the
phase-separation behavior, but those theories contain various approximations. There-
fore, researchers considered conducting a simulation that has less approximation and
comparing the phase diagrams with that obtained theoretically. The phase diagrams for
the two-component system of large and small hard spheres were obtained using Monte
Carlo simulation [16–21] (FIG. 1.7). Comparing the phase diagrams with those obtained
using the thermodynamic perturbation theory or FVT, the phase diagrams are in good
agreement. Therefore, the perturbation theory and FVT are valid quantitatively.

The FVT shows that there are fewer polymers in the solid phase and in the dense
fluid phase of colloidal particles. This suggests that the colloidal particles and the poly-
mers also separate along with the phase separation of colloidal particles. That is, the
separation between the colloidal particles and polymers is driven by the depletion effect.
In conclusion, these series of studies showed that the separation of substances can be
driven not only by energy but also by entropy.
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1.2 Formation of ordering structure and liquid structure driven by repul-
sive interaction

1.2.1 Formation of ordering structure driven by repulsive interaction: Alder tran-
sition

The phase transition between fluid phase and ordered phase, such as solid phase, is fre-
quently discussed focusing on the direct attractive interaction between molecules. For
example, water turns into ice when the water is cooled. The reason for this is discussed
as follows. The contribution of entropy to the free energy decreases as the tempera-
ture decreases. Thus, the energy becomes dominant, and drives the ordering of water
molecules. In the above discussion, the isobaric condition is assumed implicitly. How-
ever, the ordering structure formation can be discussed more clearly in the isometric
condition. In the isometric condition, fluid―solid phase transition can occur even when
all interactions between molecules are repulsive. For example, phase transition in the
binary hard sphere system is discussed. There are two species of spheres, large spheres
and small spheres in the system. The spheres cannot overlap each other. The fluid―
solid phase transition of large spheres occurs as the packing fraction of small spheres in-
creases in the isobaric condition. This is because the effective attractive forces between
the large spheres arise due to the depletion effect of small spheres. This was explained
in the previous section. Similarly, in the hard sphere one-component system, fluid–solid
phase transition occurs as the packing fraction increases. In 1962, Alder et al. showed
this phase transition using computer simulation [22]. They investigated the relationship
between pressure and packing fraction in a two-dimensional hard disk one-component
system and confirmed that a van der Waals loop appears. Furthermore, the ordered struc-
ture of the disks was observed when the packing fraction was high. This phase transition
is called the Alder transition.

The energy does not contribute to the free energy for the Alder transition because
there is no direct attractive interaction. That is, the reason for the Alder transition is that
the entropy for the ordered phase is higher than that for the fluid phase as the packing
fraction increases. If the fluid phase remains a single phase with a high packing fraction,
it seems that there are partially high and low particle packing regions. The disks hardly
move in the high packing region, whereas the disks freely move in the low packing
region. On the other hand, in the ordered phase, disks are evenly distributed, and the
range of motion is evenly distributed. According to Boltzmann’s principle, entropy is a
measure of the number of microstates. It seems that the number of microstates, i.e. the
arrangement of the disks, is larger when the range of motion is evenly distributed.

1.2.2 Discussion on the Alder transition based on the free volume

The Alder transition also can be discussed based on free volume. The free volume is the
system volume without the excluded volume (the green region in FIG. 1.4). That is, the
free volume is the volume where the center of a hard particle can be distributed. The
Helmholtz free energy, F , can be calculated using the free volume. The F is

βFv0

V
=
∫ ϕ

0
β µ(ϕ ′)dϕ ′, (1.17)

where β is the inverse temperature, v0 is volume of one particle, V is volume of the sys-
tem, µ is the chemical potential, and ϕ is the packing fraction. In a three-dimensional
hard sphere system, the chemical potential is calculated using the Widom insertion the-
orem as follows:

β µ = lnΛ3 + ln
N

⟨Vfree⟩
, (1.18)
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where Λ is the de Broglie wavelength, and N is the number of spheres. Substituting the
eq. (1.18) to eq. (1.17), the Helmholtz free energy in the three-dimensional hard sphere
is as follows:

βFv0

V
= ϕ ln

Λ3

v0
+ϕ lnϕ −ϕ −

∫ ϕ

0
ln
⟨Vfree⟩

V
dϕ . (1.19)

Comparing the free energies in the fluid and solid phases at the same packing fraction,
the reason for the Alder transition is predicted as follows. The free energy in the solid
phase should be higher than that in the fluid phase when the packing fraction is low. On
the other hand, the free energy in the solid phase should be lower than that in the fluid
phase when the packing fraction is high. Eq. (1.19) shows that the free energy decreases
as the free volume decreases. Therefore, this reversal occurs because the free volume
fraction, <Vfree > /V , in the solid phase is smaller than that in the fluid phase at the high
packing fraction.

To confirm the large–small relation change of the free volume fraction between the
fluid and solid phase, the free volume fraction is calculated by scaled particle theory
(SPT) [23, 24] as follows:

⟨Vfree⟩
V

= (1−ϕ)exp
[
−6ϕ
1−ϕ

− 9ϕ 2

2(1−ϕ)2 −βpv0

]
, (1.20)

where p is the pressure. The pressure for the fluid phase is calculated by SPT [23,24] as
follows:

β pfluv0 =
ϕ +ϕ 2 +ϕ 3

(1−ϕ)3 . (1.21)

The pressure for the solid phase is calculated by cell theory [24, 25] as follows:

β psolv0 =
3ϕ

1− ϕ
ϕcp

, (1.22)

where ϕcp is the close packing (≈ 0.74). The free volume fraction for the fluid and solid
phases are shown in FIG. 1.8. FIG. 1.8(a) shows that the free volume fraction in the fluid
phase is larger than that in the solid phase in the low packing fraction, whereas the free
volume in the fluid phase is smaller when the packing fraction is higher than about 0.4.
These results agree with the prediction using eq. (1.19). However, the FIG. 1.8(b) shows
that the free volume in the fluid is larger again when the packing fraction is larger than
about 0.7. The solid must not melt as the packing fraction increases in the real system.
Therefore, the SPT seems to give an incorrect free volume fraction in the fluid phase at
the high packing fraction. At the close packing, the pressure must be infinity, and the free
volume must be 0. Actually, in the solid phase, the eqs. (1.20) and (1.22) show that the
pressure is infinity, and the free volume is 0 at the close packing. However, in the fluid
phase, the pressure calculated by SPT has a finite value, and the free volume calculated
by SPT is not 0 at the close packing. Therefore, the SPT is not valid for ϕ ≈ 0.74. The
validity is also uncertain for 0.49 < ϕ < 0.54 where the Alder transition occurs. To
examine the validity, fluid–solid phase coexistence region is obtained by calculating the
Helmholtz free energies for the fluid and solid phases, Fflu and Fsol, as follows:

βFfluv0

V
= ϕ ln

[
Λ3

v0

]
+ϕ ln

[
ϕ

1−ϕ

]
− 5

2
ϕ +

3
2

ϕ
(1−ϕ)2 (1.23)

βFfluv0

V
= ϕ ln

[
Λ3

v0

]
+ϕ lnϕ +(1−ϕ)ln(1−ϕ)− 3

2
ϕ +

9
2(1−ϕ)

+3ln [1−ϕ ]

−3ϕcp(ϕcpln
[
ϕcp −ϕ

]
+ϕ)− 9

2
+3ϕ 2

cplnϕcp (1.24)
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I calculated ln
[
Λ3/v0 = 0

]
because this term does not affect the phase diagram. The

Helmholtz free energies are shown in FIG. 1.9 (a). The phase coexistence region is ob-
tained by common tangent construction (FIG. 1.9 (b)). The coexistence region is 0.475<
ϕ < 0.495. The reported coexistence region obtained using simulation is 0.494 < ϕ <
0.545 [26]. The calculated result is in good agreement with that obtained using simu-
lation. Thus, the SPT is valid for the calculation of the Alder transition. Therefore, the
Alder transition occurs because the free volume fraction in the solid phase is larger than
that in the fluid phase when ϕ is larger than about 0.4.

When the molecules are crowded, the space where a new molecule can be inserted is
small. That is, the free volume fraction is small. On the other hand, when the molecules
are almost empty, the free volume fraction is large. Thus, the free volume fraction
corresponds to the crowding of the molecules. Therefore, the Alder transition shows
that the crowding of molecules can be the critical factor for the fluid―ordered phase
transition.

Vfree

V

φ

(a) Vfree

V

φ

(b)

Figure 1.8: The y axis shows the free volume fraction. The x axis shows the packing
fraction. (a) The free volume fraction is shown for ϕ < 0.5. (b) The free volume fraction
is shown for ϕ < ϕcp.

1.2.3 Formation of liquid structure driven by repulsive interaction: van der Waals
picture

The crowding is also critical for the formation of liquid structure. In this section, the
isotropic particles one component system is assumed. Here, the liquid structure means
the average number of particles surrounding one particle. The radial distribution function
is useful to express the liquid structure. The radial distribution function, g(r), is defined
as follows:

g(r)≡ ρ(2)(r)
ρ2 , (1.25)

where ρ(2)(r) is the probability that a particle is at a position r away from any particle.
ρ is the total number density of the system. I will explain the meaning of g(r). The eq.
(1.25) can be transformed to as follows:

ρg(r) =
ρ(2)(r)

ρ
, (1.26)

where the ρ can be interpreted as the probability that a particle is at the origin of a
coordinate. The right side of the eq. (1.26) can be interpreted as a conditional probability.
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Figure 1.9: (a) The Helmholtz free energy fir the fluid phase (blue curve) and the solid
phase (orange curve). (b) The common tangent on the free energy curves. The dotted
arrows show the coexistence region.

That is, the right side of the eq. (1.26) shows the probability that when any particle is at
the origin, another particle is at a position r away from the origin. In other words, the
eq. (1.26) shows the number density of particles at a position r away from the origin
when a particle is at the origin. This expresses the liquid structure. Therefore, the radial
distribution function is useful to express the liquid structure.

The condensed system under isochoric condition is discussed. A picture of the con-
densed system was proposed. The picture asserts that the repulsive interaction between
molecules is dominant for liquid structure formation. This picture is a part of the“ van
der Waals picture”. I explain how this picture was shown. Chandler et al. divided
the Lennard-Jones potential into a repulsive and an attractive terms. They showed that
just the repulsive term reproduced the radial distribution function of Lennard-Jones
fluid [27–29]. Therefore, the repulsive interaction is dominant for the liquid structure
formation. The details are as follows. The Lennard-Jones potential, ω(r), is

ω(r) = 4ε
[( r

σ

)12
−
( r

σ

)6
]
, (1.27)

where r is the distance between centers of Lennard-Jones particles, ε and σ is fitting
parameters. This potential is shown in the left side of FIG. 1.10. The potential has a
minimum at the distance, r0 = 2

1
6 σ . The attractive force works between the particles at

the r > r0. On the other hand, the strong repulsive force works between the particles at
the r < r0. Chandler et al. divided the Lennard-Jones potential into a repulsive and an
attractive terms. The repulsive term, u0(r), is as follows:

u0(r) = ω(r)+ ε r < r0, (1.28)

u0(r) = 0 r ≤ r0. (1.29)

The attractive term, u(r), is as follows:

u(r) = ω(r)−u0(r). (1.30)

The u0(r) and u(r) are shown in the right side of FIG. 1.10.
The radial distribution function shows the structure of the liquid. Chandler et. al.

calculated the radial distribution function, g0(r), for the repulsive term of Lennard-Jones
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Figure 1.10: The left side shows the Lennard-Jones potential. The right side shows the
repulsive term, u0(r), and the attractive term, u(r), of Lennard-Jones potential.

potential, u0(r). They compared g0(r) with that for the Lennard-Jones potential, g(r)
[27]. g0(r) agree with g(r), although u0(r) does not contain the attractive term. Thus,
the repulsive interaction seems to be dominant for the liquid structure. In addition, g0(r)
is also in good agreement with the radial distribution function for the hard spheres, gd(r)
[27]. Thus, the softness of the Lennard-Jones potential seems to have less influence on
the liquid structure.

The van der Waals picture can be interpreted as that the particles form the structure
colliding with each other in the liquid. That is, the crowding is critical for the structure
of the liquid. However, the reference [27] pointed out that when electronic interactions
are strong or hydrogen bonds are formed, the attractive part is critical, and the van der
Waals picture is not correct. The crystallization of bacteriorhodopsins (bRs) in a bio
membrane is discussed in this thesis. The transmembrane domain of bR is composed
of hydrophobic amino acid, and most of the bR is composed of transmembrane domain.
Therefore, the interactions between the transmembrane domains seem to be dominant
for the crystallization. It has not been reported that the ion bond or the hydrogen bond
is formed between the transmembrane domains. In addition, the biomembrane is a con-
densed system of lipid molecules. The number density of lipid molecules is 2.5× 106

µm−2 in a single layer of a cell membrane [30]. When the diameter of the lipid molecule
is modeled as 0.5 nm, the packing fraction of the lipid molecules is 0.5, which is a very
crowded system of lipid molecules. Therefore, I consider that the van der Waals picture
is valid for the discussion of bR crystallization, and the repulsive force is dominant for
the crystallization.
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1.3 Phase transition in two-dimensional hard disk system

In this section, phase transition in a two-dimensional hard disk system is explained. The
Bacteriorhodopsin (bR) has an almost cylindrical shape, and the top and bottom of the
bR are exposed to water. On the other hand, the side of bR consists of hydrophobic
amino acids, and the side is covered by lipid molecules. Thus, the vertical motion of the
bR to the membrane seems to be energetically unfavorable as it exposes the hydrophobic
region of the bR to the water. Therefore, the motions of bRs seem to be limited to the
lateral direction. That is, the system of transmembrane proteins in a membrane can be
regarded as a condensed system in which the degrees of freedom are generally limited
to the two-dimensions. For this reason, I modeled the crystallization of the bRs as a
phase transition of hard disks in the 2D system. However, phase transition in the 2D
systems differs from that in the 3D system in some respects. Therefore, it is questionable
to discuss the 2D phase transition with the same way as the 3D phase transition. For
example, I explain the phase transition for hard spheres and hard disks one component
system, which is regarded as a reference system for a binary system. In the 3D system,
the fluid―solid first order phase transition occurs [31, 32]. On the other hand, in the
2D system, there is an additional phase, namely the hexatic phase, between the fluid and
solid phases [33–35]. That is, the fluid–hexatic first phase transition occurs instead of the
fluid–soild phase transition. When the first order transition of the fluid―solid phases is
assumed in the 2D system, the validity for the theoretical results is uncertain. Therefore,
it is questionable to construct theories for the 2D phase transition with the same way
as the theories for the 3D phase transition. However, according to a reference [36], the
hexatic phase disappears, and the fluid―solid first order transition also occurs in the 2D
binary hard disk system. Therefore, I considered that the 2D theories of the depletion
effect can be constructed with the same way as that for the 3D theories.

1.3.1 Characteristics of the fluid, hexatic, solid phases

I will explain the hexatic phase. The hexatic phase has characteristics intermediate be-
tween the fluid phase and the solid phase. Here, it is hard to distinguish the hexatic
phase and solid phase by their appearance. Thus, it is useful to distinguish each phase
by bond orientational correlation and positional correlation. The characteristics of the
fluid phase, the hexatic phase, and the solid phase will be shown, respectively.

The bond orientational order, ψ6, is defined as follows:

ψ6 ≡
1
N

Σkexp
[
6iθjk

]
, (1.31)

where N is the number of disks that surround a disk ”j”,“k”is a disk surrounding the
“ j”, and θ jk is the angle formed by a reference axis and a line connecting the centers of
the disks“ j”and“ k”. When the disks form a perfect hexagonal lattice, |ψ6| is 1. As
the hexagonal lattice collapses, |ψ6| decreases. Each phase is characterized by the length
of bond orientational correlation. The bond orientational correlation function, C6(r), is
defined using ψ6 as follows:

C6(r) =
⟨
ψ6iψ∗

6 j
⟩
, (1.32)

r = |r j −ri|, (1.33)

where ψ6i and ψ6 j are the bond orientational order for disks“i”and“j”, respectively, and
ri and r j are the position vector for“i”and“j”. In the fluid phase, the bond orientational
correlation function decreases exponentially to 0. In the hexatic phase, that function
decreases algebraically to 0. In the solid phase, that function decreases algebraically
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approaching contact value. In other words, the bond orientational correlations for the
fluid, hexatic, and solid phases are short ranged, quasi-long ranged, and long ranged,
respectively.

I will explain the positional correlation function. The positional correlation function
is obtained from the spatial correlation function, g(∆x,∆y). This function is like the
radial distribution function explained in section 1.2.3. However, the variable is not the
distance, r, but the coordinates, ∆x and ∆y. The spatial correlation function, g(∆x,∆y),
is as follows:

g(∆x,∆y) =
ρ(2)(∆x,∆y)

ρ2 , (1.34)

where ρ(2)(∆x,∆y) is the probability that a particle is at a position ∆x and ∆y away from
any other particle. ρ is the total number density for the system. In the hexatic and solid
phases, the maxima of the correlation function line up in a lattice-like pattern (see FIG.
1.12 (a)). The positional correlation function is the spatial correlation function in the
direction where the distance between the maxima is approximately the particle diameter
(see the white line in FIG. 1.12 (a)). In the fluid and hexatic phases, the positional
correlation function decreases faster than r

−1
3 , i.e. the positional correlation is short

ranged. On the other hand, in the solid phase, that function decreases algebraically to 0
slower than r

−1
3 , i.e. the positional correlation is quasi-long ranged.

1.3.2 Fluid―hexatic first order phase transition and hexatic―solid continuous
phase transition

It is now considered that the phase transition from the fluid phase to the solid phase
occurs via the hexatic phase. However, there had long been controversy over whether
these phase transitions are continuous or discontinuous. In 2011, the phase transition
for the hard disks in the 2D one component system was examined. Krauth et. al. con-
ducted event chain Montecarlo simulation (ECMC) on the 2D hard disk system [37].
The ECMC is rejection free algorithm, i.e. the displacement of a disk always occurs
without rejection. Therefore, the time for equilibration is shorter than the metropolis
method. In addition, the pressure is easily calculated by the ECMC. When the phase
transition is calculated by simulation, the system size is much smaller than experiments,
and the boundaries between the two phases affect the phase transition, unlike the exper-
iment. That boundary effect become smaller as the system size is larger. That is, the
system size affects the phase transition in the simulation. Krauth et. al. simulated the
very large system where the number of disks was 10242 to reduce the system size effect.
The pressures were examined at various packing fractions. The result shows the van der
Waals loop and it indicates that the first order phase transition occurs (FIG. 1.11). The
pressure is constant during the first order phase transition in the isometric process. On
the other hand, the van der Waals loop appears due to the system size effect in a simu-
lation. Actually, the loop approaches the horizontal line to the x axis as the system size
increases to 2562, 5122, and 10242. The two phases coexistence region was obtained
by adopting Maxwell equal area rule on the loop. The packing fraction of the phase
coexistence region is from 0.700 to 0.716. The coexistence region is the fluid―hexatic
phase coexsistence region. In addition, they examined the positional correlation function
(FIG. 1.12 (b)). When the packing fraction is 0.718, the positional correlation function
decreases exponentially. It indicates the hexatic phase. On the other hand, when the
packing fraction is 0.720, the positional correlation decreases algebraically. It indicates
the solid phase. In this phase transition, the van der Waals loop was not observed. It
indicates that the hexatic―solid phase transition is continuous. In conclusion, the phase
diagram for the 2D hard disk one component system is FIG. 1.13. The correctness for
this phase diagram was confirmed by other simulation methods [38].

15



form a thermodynamically stable loop due to the interface
free energy. The pressure loop in the coexistence window of
a finite system is caused by the curved interface between a
bubble of minority phase and the surroundingmajority phase
[see Fig. 2(b) and 2(d)]. In a system with periodic boundary
conditions, the pressure loop contains a horizontal piece
corresponding to the ‘‘stripe’’ regime, where the interfaces
are flat. This is visible near !! 0:708 for the largest sys-
tems in Fig. 2. In a finite system, the Maxwell construction
suppresses the interface effects. For the equation of state of
Fig. 2(a), this construction confirms the boundary densities
! ¼ 0:700 and ! ¼ 0:716 of Fig. 1 for the coexistence
interval, with very small finite-size effects. The interface
free energy per disk, the hatched area in Fig. 2, depends on
the length /

ffiffiffiffi
N

p
of the interface in the stripe regime so that

!f ¼ !F=N / 1=
ffiffiffiffi
N

p
[see Fig. 2(f)].

The first-order nature of the transition involving the
liquid is thus established by (i) the visual evidence of phase
coexistence in Fig. 1, (ii) the / 1=

ffiffiffiffi
N

p
scaling of the inter-

face free energy per disk [23], and (iii) the characteristic
shape of the equation of state in a finite periodic system
[24–26]. We stress that the system size is larger than the
physical length scales so that the results hold in the ther-
modynamic limit (see [22]).
In the coexistence interval, the individual phases are

difficult to analyze at large length scales because of the
fluctuating interface, and only the low-density coexisting
phase is identified as a liquid with orientational correlations
below a scale of !100" [see Figs. 1(a) and 1(d)]. Unlike
constant NV simulations, Gibbs ensemble simulations can
have phase coexistence without interfaces, but these

FIG. 2 (color). Equilibrium equation of state for hard disks.
The pressure is plotted vs volume per particle [v ¼ V=N) (lower
scale) and density ! (upper scale)]. In the coexistence region, the
strong system-size dependence stems from the interface free
energy. The Maxwell constructions (horizontal lines) suppress
the interface effects (with a convex free energy) for each N.
Stripe [(c), for N ¼ 10242] and bubble configurations (b), (d) are
shown in the coexistence region, together with two single-phase
configurations (a), (e). The interface free energy per disk #!f
(hatched area) scales as 1=

ffiffiffiffi
N

p
(f).

FIG. 1 (color). Phase coexistence for 10242 thermalized hard disks at density ! ¼ 0:708. (a) Color-coded local orientations "k

showing long orientational correlations [blue region, see (b), (c)] coexisting with short-range correlations [see (d)]. (e) Local densities
(averaged over a radius of 50"), demonstrating the connection between density and local orientation (see [22]). In (b), (c), and (d),
disks with five (seven) neighbors are colored in gray (black).

PRL 107, 155704 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

7 OCTOBER 2011

155704-2

Figure 1.11: The van der Waals loop calculated by ECMC. The y axis is the pres-
sure scaled by temperature and diameter of disk. The x axis is volume per particle
scaled by diameter of disk. The blue, red, and black curves show the pressure when
the system size is N = 2562, N = 5122, and N = 10242, respectively. Reprinted figure
with permission from ref. [37]. Copyright (2011) by the American Physical Society.
https://doi.org/10.1103/PhysRevLett.107.155704
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simulations are very slow at large N (see [22]). The single-
phase system at density ! ¼ 0:718 is above the coexistence
window for allN (see Fig. 2), and it allows us to characterize
the high-density coexisting phase.

Positional order can be studied in the two-dimensional
pair correlation gð!rÞ, the high-resolution histogram of
periodic pair distances !rij ¼ ri $ rj sampled from all
NðN $ 1Þ=2 pairs i, j of disks. To average this two-
dimensional histogram over configurations (as in Fig. 3)
the latter are oriented such that the !x axis points in the
direction of the sample orientation ". At short distances,
hexagonal order is evident at ! ¼ 0:718 [see Fig. 3(a)].
The excellent contrast between peaks and valleys of gð!rÞ
at small j!rj * 2" underlines the single-phase nature of
the system at this density. The cut of the histogram along
the positive !x axis leaves no doubt that the system has
exponentially decaying positional order on a length scale
of %100" and cannot be a solid. The (one-dimensional)
positional correlation function ckðrÞ, computed by the
Fourier transform of gð!rÞ, fully confirms these statements
(see [22]).

The orientational correlations at density ! ¼ 0:718 de-
cay extremely slowly and do not allow us to distinguish
between quasi-long-range and long-range order (see [22]).
However, short-ranged positional correlation is inconsis-
tent with long-ranged orientational order. It follows that the
orientation must be quasi-long-ranged with a small expo-
nent & 0, and that the system at ! ¼ 0:718 and the high-
density coexisting phase are both hexatic.

The two-dimensional pair correlation gð!rÞ $ 1 of
Fig. 3(b) allows us to follow the transition from the hexatic
to the solid: The positional order increases continuously
with density and crosses over into power-law behavior at
density !% 0:720, with an exponent ’ $1=3 which cor-

responds to the stability limit of the solid phase in the
KTHNY scenario. The hexatic-solid transition thus takes
place at ! * 0:720. At this density, the positional correla-
tion function at large distances r displays the finite-size
effects characteristic of a continuous transition, but up to a
few hundred ", ck is well stabilized with the system size
(see [22]). Moreover, no pressure loop is observed in the
equation of state, and the compressibility remains very
small. The system is clearly in a single phase. Unlike the
liquid-hexatic transition, the hexatic-solid transition there-
fore follows the KTHNY scenario, and is continuous.
The single-phase hexatic regime is confined to a density

interval ! 2 ½0:716; 0:720'. Although narrow, it is an order
of magnitude larger than the scale set by density fluctuations
for our largest systems and can be easily resolved (see [22]).
In the hexatic phase, the orientational correlations decay
extremely slowly. The exponent of the orientational corre-
lations is close to zero and negative. It remains far from the
lower limit of$1=4 at the continuous KTHNY transition, as
this transition is preempted by a first-order instability.
The event-chain algorithm is about 2 orders of magni-

tude faster than the local Monte Carlo algorithm used up to
now, allowing us to thermalize dense systems with up to
10242 disks for the first time. To illustrate convergence
toward thermal equilibrium and to check that hard disks in
the window of densities ! 2 ½0:700; 0:716' are indeed
phase separated, we show in Fig. 4 two one-week simula-
tions of our largest systems after quenches from radically
different initial conditions, namely, the (unstable) crystal,
with j"j ¼ 1, and the liquid, for which j"j ’ 0. For both
initial conditions, a slow process of coarsening takes place
[see Figs. 4(a) and 4(b)]. Phase separation is observed after
%106 displacements per disk, and the sample orientation
takes on similar absolute values [see Fig. 4(c)]. Effective
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FIG. 3 (color). Configuration-averaged two-dimensional pair correlation. gð!rÞ is obtained from the two-dimensional histogram of
periodic distances !rij ¼ ri $ rj. (a) Pair correlation gð!rÞ at density ! ¼ 0:718 for small !r ¼ ð!x;!yÞ. Each disk configuration is
oriented with respect to ". The excellent contrast between the peak and the bottom values of gð!rÞ at j!rj * 2", of about ð16:0:2Þ,
provides evidence for the single-phase nature of the system. (b) Cut of the sample-averaged gð!rÞ $ 1 for !r ¼ ð!x; 0Þ. Decay is
exponential for ! ¼ 0:718 and algebraic for ! ¼ 0:720. (See [22] for positional and orientational correlation functions.)

PRL 107, 155704 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

7 OCTOBER 2011

155704-3

Figure 1.12: (a) A spatial correlation function when the packing fraction is 0.718. (b)
The positional correlation function when the packing fraction is 0.718 (blue line) and
0.720 (red line). Reprinted figure with permission from ref. [37]. Copyright (2011) by
the American Physical Society. https://doi.org/10.1103/PhysRevLett.107.155704
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Figure 1.13: The phase diagram for the 2D hard disk one component system. The phase
diagram shows single fluid phase, fluid―hexatic coexistence phase, hexatic single phase,
and single solid phase from left to right.
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1.3.3 Disappearance of the hexatic phase

In addition, the phase diagram for a 2D binary hard disk system was examined by using
simulation. In 2017, Wilding et. al. reported that the hexatic phase disappeared in
the binary hard disk system [36]. In the system, the diameter ratio between the small
disk and the large disk is 1: 1.4. The total number of particles is 2562 or 5122. The large
particle and small disk change each other according to activity. When the activity is high,
the large disk easily changes to the small disk. In other words, the small disks increase
as the activity increases. Wilding et. al. examined the pressures at various number
densities and activities, and they obtained the van der Waals loop. They calculated the
number densities for the phase coexistence region at a fixed activity from the loop. The
positional correlation function was examined to distinguish the hexatic phase or the solid
phase around the boundary between coexistence region and the hexatic or solid phases
(FIG. 1.14(c)), and they obtained the phase diagram (FIG. 1.14(a)). The phase diagram
shows that when the small disk number is larger than 1% of the total disk number, the
hexatic phase disappears, and the fluid―solid first order phase transition occurs like a 3D
system. I consider the reason for the disappearance of the hexatic phase as follows. In
the binary hard disk system, the ordered phase of the higher large disk packing fraction
appears due to the depletion force than that in the one component system. At the higher
packing fraction, the solid phase seems to be more stable than the hexatic phase as is
shown in FIG. 1.13.

In conclusion, there is the hexatic phase between the fluid and solid phases. The
hexatic phase has intermediate characteristics between the fluid and solid phases. In the
2D hard disk one component system, the fluid―hexatic first order phase transition oc-
curs and the hexatic―solid continuous phase transition occurs as the packing fraction
increases. However, in the binary hard disk system, the hexatic phase disappears, and
fluid―solid first order phase transition occurs. The reason for the disappearance seems
to be the depletion effect. Therefore, I consider that in the bR-lipid two component sys-
tem, the bR fluid―solid first order phase transition occurs due to the depletion effect of
lipid molecules. Thus, I consider that the crystallization for the bRs can be discussed as
with the 3D system. However, the simulation research which showed the disappearance
of the hexatic phase was conducted with the disk diameter ratio 1 : 1.4, which was far
from the diameter ratio between lipid molecule and bR, 1 : 12.4. The first order phase
transition between the bR fluid―solid phase should be confirmed by the simulation.
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In order to obtain accurate coexistence properties of
mixtures, one needs to account carefully for fractionation
effects, i.e., the different partitioning of species among the
coexisting phases [26]. Open ensembles are particularly
suited for this purpose. Here we utilize Monte Carlo (MC)
simulation in the semi-grand canonical ensemble (SGCE),
in which disks can change their species [27], controlled by
a fugacity fraction ξ ¼ fs=ðfl þ fsÞ, with fs and fl the
fugacities of the s and l disks, respectively. The value of ξ
sets the overall concentration, which will generally differ
from that of the individual phases. In order to accelerate
local density and concentration fluctuations we implement
the event-chain algorithm [17,28], as well as a position
swap for randomly selected pairs of disks. In the regime of
small c of interest here, ξ is Oð10−5Þ and for convenience
we quote only its coefficient; e.g., we write ξ ¼ 3 instead
of ξ ¼ 3 × 10−5.
The disks occupy a periodic square box of side L which,

in common with other lengths, we measure in units of σl.
In order to study the effects of varying c, we selected 16
different values of ξ in the interval ξ ∈ ½0; 40&. For each ξ,
we scanned (in a stepwise fashion) the range of number
density ρ ¼ ðNs þ NlÞ=L2 over which melting occurs.
Within a two-phase region these paths of constant ξ
correspond to tie lines along which phase separation occurs
at constant fugacity for each component. We measured the
pressure P along each tie line to obtain the corresponding
equation of state (EOS), PðρÞ as described in the
Supplemental Material [29]. This was found to exhibit
the typical van der Waals loop of a first-order phase
transition in a finite-sized system [30], which for pure
hard disks correspond to the liquid to hexatic transition

[17]. Application of the Maxwell construction permitted
the determination of the coexisting densities that mark the
termini of the tie line.
In order to locate the density of the KT transition

separating the hexatic and solid phases, we extended to
binary mixtures the methods of Ref. [17]. Specifically,
for each ξ we computed the pair correlation function gðrÞ
for a sequence of densities. The hexatic-solid transition is
signaled by a crossover in the form of gðrÞ from exponential
(hexatic order) to power-law (solid) behavior. Since the
system can exhibit a very large correlation length, the
accurate location of the crossover density requires simula-
tions of considerable size and duration. Most of our studies
were performed for N ¼ Ns þ Nl ¼ 2562 particles, while
N ¼ 5122 was used for a selected number of fugacities in
order to assess finite-size effects, the analysis of which is
further discussed in the Supplemental Material [29]. Overall,
our simulations consumed well over 100 years of single-core
CPU time.
Figure 1(a) presents our measurements of the density-

concentration phase diagram. Apparent is a first-order
phase coexistence region delineated by coexistence state
points connected by tie lines. Within this region, a lower
density phase coexists with a higher density phase, the
nature of which we now examine for moderate ξ. A
snapshot inside the coexistence region at ξ ¼ 15 and
ρ ¼ 0.91, is displayed in Fig. 1(b) and shows small
disks as unfilled circles, while large disks are colored
according to the phase of the hexatic order parameter,
ψ j
6 ¼

P
k expði6θjkÞ=nj, where, for each disk j, k is one of

the nj nearest neighbors (defined as the disks whose cells
share one edge with j in the radical Voronoi tessellation),

(a) (b)

(c)

FIG. 1. (a) Phase diagram in the ρ-c plane. Dashed tie lines connect first-order coexistence points for various ξ as marked. The line of
continuous hexatic-solid transitions is shown as symbols, whose size is equal to the error bars (see the Supplemental Material [29]). Data
correspond to N ¼ 2562 unless otherwise indicated. The inset shows the region of low concentration. (b) Snapshot in the coexistence
region at ξ ¼ 15 and ρ ¼ 0.91. The color refers to the phase of the hexatic order parameter, while open circles are small disks plotted
with twice their true size. (c) gðrÞ − 1 (obtained as described in the Supplemental Material [29]) for ξ ¼ 2 at ρ ¼ 0.914 and 0.915
(hexatic phase), and ρ ¼ 0.916 (solid phase). The dashed line is the power-law scaling predicted by KTHNY theory.
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Figure 1.14: (a) Phase diagram for a binary hard disk system. The y axis is num-
ber density for all disks, ρ . The x axis is the number fraction for small disks to all
disks. The value in the phase diagram shows the activity (×10−5). The dotted line
shows the corresponding phase transition. The red squares and black circles show the
first order phase transition in the system of 2562 particles. The green triangles show
hexatic―solid continuous phase transition. The purple diamonds and blue inverted
triangles show the first order and continuous phase transition, respectively in the sys-
tem of 5122 particles. (b) Snapshot when the activity is 15× 10−5 at ρ = 0.91. The
color is assigned by the ψ6. (c) Positional correlation function at the ρ = 0.914 (blue),
ρ = 0.915 (green), and ρ = 0.916 (black) when the activity is 2×10−5. Reprinted fig-
ure with permission from ref. [36]. Copyright (2017) by the American Physical Society.
https://doi.org/10.1103/PhysRevLett.119.115702
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1.4 Crystallization of bacteriorhodopsin

In this section, previous experimental research on crystallization of bacteriorhodopsin
(bR) is summarized. The bR is a transmembrane protein of Halobacterium salinarum.
The bR functions as a light-driven proton pump. The bRs construct a two-dimensional
crystal in the biomembrane. The bR crystal is called purple membrane after its color.
The structure of the crystal is a hexagonal lattice. According to Mermin and Wagner,
there is no perfect crystal of infinite size in the 2D system [39, 40]. As is explained in
the section 3.1, the positional correlation function decreases algebraically to 0 at the in-
finite distance. However, the size of the biomembrane is finite, and the purple membrane
consists of the limited number of the bRs. The number of bR trimers is just 6000 in one
purple membrane [41]. The decrease of the positional correlation function is very small
in that small solid. Therefore, I consider that the purple membrane can be regarded as
the crystal. Generally, it is considered that the bR monomers first form trimers, and the
trimers aggregate to construct a crystal [41]. Actually, the bR trimer apart from the crys-
tal was observed by using high-speed atomic force microscopy [42]. This result indicates
that the bR trimer can exist out of the crystal, and the result supports the hypothesis that
the trimers construct the crystal.

Here, I assume the fluid―solid first order phase transition for the bR. Since the
biomembrame is modeled as a two-dimensional system, there is the possibility for the
fluid―hexatic phase transition. However, there are many lipid molecules in the mem-
brane. As is explained in section 1.2.3, the number density for the lipid molecules is
2.5×106/1µm2 in the plasma membrane of an animal cell, and the packing fraction of
lipid molecules is about 0.5 when the lipid diameter is modeled as 0.5 nm. The similar
lipid packing fraction is expected in the bacterial membrane. I consider that in such
a condensed system with lipid molecules, the depletion effect works between the bRs.
Therefore, the hexatic phase seems to disappear as described in the section 1.3.3, and
the fluid–solid first order phase transition seems to occur.

1.4.1 Critical concentration ratio between bR monomer and bR trimer

In this section, I will explain the difference of crystallization between bR monomer and
trimer. The bR has seven alfa helixes (FIG. 1.15(A)). Each helix is named with an al-
phabet. Two bR monomers contact each other at helices B and D to form a trimer (FIG.
1.15(b)). In 1997, Krebs et al. prepared mutant bRs that failed to form a trimer [43]. An
amino acid present in the helix D of the mutant bR was replaced by another amino acid.
There were four mutants: a mutant in which the glycine at position 113 was replaced
with leucine (G113L), a mutant in which the glycine at position 116 was replaced with
leucine (G116L), a mutant in which the isoleucine at position 117 was replaced with
alanine (I117A), and a mutant in which the isoleucine at position 117 was replaced with
phenylalanine (I117F). Each mutant bRs were expressed in Halobacterium salinarum.
The cells were disrupted, and equilibrium gradient centrifugation was performed. The
bR crystal has high density and can be separated from the cell membrane by the centrifu-
gation. bR crystals were obtained for all mutants. CD spectra of each mutant bR crystal
and wild type bR crystal were measured. The results showed no significant changes
between the wild type and each mutant bRs. Low-angle X-ray diffraction revealed no
significant differences between the mutant and wild-type bR crystals. For these observa-
tions, it is presumed that the mutant bR crystals have the same structure as the wild-type
bR crystal and the 3D structure of the bR mutant is not significantly different from that
of the wild-type bR. In addition, the CD spectra were also examined for mutant bRs that
did not construct crystals (FIG. 1.16). The CD spectrum for the wild type bR trimer
has maxima at about 500 nm and minimum at about 600 nm. However, the bR mutants,
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G113L and I117A, do not show that spectra pattern. Their CD spectra have maxima at
about 600 nm. These results indicate that G113L and I117A do not form the trimer out
of the crystal. The CD spectra agree with that for bR monomer [44]. Therefore, these
results indicate that G113L and I117A are in monomer form out of the crystal. On the
other hand, the CD spectra for G116L and I117F have maxima at about 500 nm and
minimum at about 600 nm. However, the absolute values for the maxima and minimum
are smaller than those of the mutants in the crystal. These results indicate that G116L
and I117F form not only the trimers but also monomers or another multimer out of the
crystal.

In 1999, Krebs et. al. examined the critical concentration (CC) for mutant bRs. At
the CC, the bRs start to crystallize. They compared the CC with that for wild type [45].
The experimental method is as follows. They induced the expression of the mutant or
wild type bRs in the bacteria. They obtained the bacteria with different times of growth
after the induction. Thus, the samples of bR crystals at different growth stages were
obtained. They plotted the relationship between the weight of total bR in the bacteria
(%bRt) and the weight of the bR in the crystals (%bRl) (FIG 1.17). Each value was
scaled by the total protein in the bacteria. The experimental data over 0 were fitted
by a linear function. When the %bRl value of the linear function is 0, the value of
%bRt is the CC. I focus on the bR mutants, G113L and I117A, which are indicated
not to form a trimer out of the crystal. The CC for the wild type bR is 0.24, whereas
the CC for the G113L is 2.45 and the CC for the I117A is 1.65. On the other hand,
the CC for the I117F, which is indicated partially form the trimer is 0.83. The CC for
the I117F is higher than that for the wild type but lower than that for the G113L and
I117A which do not form trimer. The CC for the G116L was not examined. For these
results, the formation of the trimers seems to decrease the CC. I consider that the CC
difference between the monomer, namely G113L and I117A, and trimer, namely wild
type, can be explained by the depletion effect. When the bR monomers form the trimer,
the diameter becomes larger than that of the monomer. Therefore, the diameter ratio
between lipid and bR trimer becomes larger, and the depletion effect on the bR trimer
become larger. To confirm this hypothesis, I obtained phase diagrams by using theories
containing depletion effect and compared the CC between the monomer and trimer. I
focused on the critical concentration ratio between monomer and trimer (CC monomer/
CC trimer) to compare the experimental results and theoretically calculated results. I
adopt the CC for the monomer as 2.45, which is the CC for G113L, and the CC for the
trimer as 0.24, which is the CC for wild type. Thus, the CCR is 10.2. Here, the CCR
is the weight ratio of bR monomer and trimer in the same system size. The bR weight
and the area which bR occupy is proportional. Therefore, the weight ratio has the same
value of the area ratio between bR monomers and trimers. I calculated packing fractions
of bR monomer and trimer at the beginning of crystallization and obtained CCR. The
results are shown in chapter 2 and 3 in this thesis.
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where Cr,wt and Cr,m are the Cr values for wild-type and
mutant BR, respectively, and a temperature of 298.15 K was
used.
Characterization of Purified Proteins. Purple membrane

from wild-type and mutant cultures was purified as described
(26). Absorption spectra were recorded on a Perkin-Elmer
Lambda 2 spectrophotometer at room temperature. The 4.7-
5.0 µM BR samples in 25 mM sodium phosphate (pH 6.9)
were dark-adapted at room temperature for 24 h and light-
adapted by illuminating with>520 nm for 5 min. CD spectra
were recorded on an Aviv (Lakewood, NJ) 62A DS circular
dichroism spectrometer, using a 1 cm quartz microcell and
18 µM BR samples in 25 mM sodium acetate (pH 5.0). Two
scans were recorded at 20 °C using a 4 s averaging time, 1
nm bandwidth, and 2 nm sampling interval. A 25 mM
sodium acetate solution (pH 5.0) was used as a baseline.
Before determination of peak-to-peak heights and zero
crossover, CD spectra were smoothed with Igor Pro (Wave-
Metrics, Inc., Lake Oswego, OR) using a binomial algorithm
and smoothing coefficient of 20. For comparison of CD
spectra, the extinction coefficients of the mutant BR proteins
were assumed to be the same as wild-type, which is
reasonable because the mutant and wild-type absorption
spectra exhibit a similar ratio of absorbances at 280 and 570
nm. For X-ray analysis, 0.5 mg samples were packed into
1.0 mm quartz capillaries by low-speed centrifugation.
Diffraction data were collected on a Histar multiwire detector
(Bruker Instruments) with a rotating copper anode X-ray
source and double focusing optics. The sample to detector
distance was 28.020 cm, accurately calibrated with a Pb3O4
diffraction standard. Data were collected for at least 10 min
using GADDS powder diffraction software (Bruker Instru-
ments). Diffraction data were integrated using solid angle
integration and unwarped using a spatial correction standard.
Unwarped peak profiles were analyzed with the freeware
application MacDiff 4.0.2 PPC.
Molecular Modeling.Molecular surface calculations were

performed on a Silicon Graphics workstation using the
MidasPlus interactive molecular display package from the
University of California at San Francisco Computer Graphics
Laboratory. The dms algorithm was used with a probe size
of 1.4 Å, dot density of 5 dots/Å2, and default values for
atomic radii. A BR trimer constructed from 1at9 in Sybyl
(Tripos, Inc., Saint Louis, MO) was used in the calculations.
Mutant monomer and trimer files were created by editing
the wild-type PDB coordinate files to remove C! for A44G
and all side chain atoms except C! for the Ala substitutions.
The dms algorithm includes implicit hydrogens for carbon,
nitrogen, and oxygen atoms.

RESULTS

Expression and Characterization of Mutant Proteins. In
the BR lattice, the only region of contact between BR
monomers occurs at the interface between two monomers
within a trimeric unit (Figure 1A). This region of contact
encompasses approximately 650 Å2 of buried surface area
(20) and includes residues in the membrane core and at the
membrane-aqueous boundary. To test if helix-helix inter-
actions within the membrane contribute to the stability of

the BR lattice, large and small substitutions of single amino
acids were created in this region (Figure 1B). The substitu-
tions were initially designed by analyzing a model of the
helix-helix interface within the membrane derived from
three-dimensional X-ray crystallographic data (1ap9, see
Experimental Procedures). Residues identified from the 1ap9
data were also found in the structure of the native BR lattice
obtained by electron crystallography (1at9, Figure 1B). In
this work, the 1at9 structure has been used preferentially
because of its greater physiological relevance.

∆∆G ) -RT ln(Cr,wt/Cr,m) (2)

FIGURE 1: (A) Model of the purple membrane lattice. Using the
structural coordinates for 1at9 (19) obtained from the Brookhaven
Protein Data Base, a model of the lattice was constructed in Sybyl
(Tripos, Inc., Saint Louis, MO). The polypeptide backbone of each
BR monomer is shown perpendicular to the cytoplasmic membrane
surface. For the central trimer, helices A-G are denoted for one
monomer and Dʹ and Eʹ for a neighboring monomer. (B) Interface
between transmembrane helices of neighboring BR monomers
(ribbons) and residues chosen for substitution (ball-and-stick). The
regions of helix B of one BR monomer and helices Dʹ and Eʹ of
the neighboring monomer that form the BR-BR interface are
depicted using MOLSCRIPT (50). The view is parallel to the
membrane plane as seen from the trimer interior. Horizontal lines
denote the boundaries of the membrane core as defined by the lipid
ether oxygens derived from the 2brd structure (18) when super-
imposed on the 1at9 structure.

Helix-Helix Interactions in BR Lattice Assembly Biochemistry, Vol. 38, No. 28, 1999 9025

Figure 1.15: (A) bR crystal on the membrane. Seven alfa helixes are named A, B, C, D,
E, F, and G. (B) Two bRs contact at helix B and D. Alphabets show the amino acid. Num-
bers show the order of amino acids within the protein. Reprinted with permission from
[45]. Copyright 1999 American Chemical Society. https://doi.org/10.1021/bi9905563
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700 nm, and the bilobed exciton coupling feature
was not observed. The spectrum in this region re-
Øects that of BR, as cytochrome in similar prep-
arations, such as the brown membrane, does not
contribute to CD between 460 and 700 nm
(Papadopoulos & Cassim, 1981). These results
suggest a complete absence of BR aggregates in the
low density fraction obtained from cells expressing
G113L and I117A.
In the low density form of G116L and I117F, a

bilobed feature was observed between 450 and
700 nm, but its shape and magnitude was signiÆ-
cantly altered compared to the corresponding high
density fraction (compare Figure 4). In I117F, the
positive lobe was of slightly lower magnitude than
the negative lobe, and the peak-to-peak magnitude
was ⇠28% of that determined for the high density
fraction of the same mutant. In G116L, the positive
and negative lobes were symmetrical, unlike the
high density form of this protein, and the peak-to-
peak magnitude was ⇠75% of that obtained for the
high density form. These results suggest that BR
oligomers are present in the G116L and I117F low

density fraction, but are distinct from the oligo-
meric form of the protein observed in the lattice.
The current analysis cannot determine if the altered
shape and magnitude of the bilobed feature results
from a smaller size of the BR aggregates, from
an altered geometry of the retinal chromophore
within such aggregates, or both.

Discussion

Wehave demonstrated that single amino acid sub-
stitutions in transmembrane a-helix D of BR are
sufÆcient to disrupt the purple membrane crystal-
line lattice. The substitutions were chosen by ana-
lyzing a structural model of the repeating unit of
the lattice, the BR trimer. I117A, I117F and G113L
change amino acid residues that interact with resi-
dues in helix B of a neighboring BR monomer, and
with lipid molecules on the cytoplasmic side of the
purple membrane. In contrast, G116L changes a re-
sidue which appears to interact exclusively with
lipid molecules. All four mutations decrease the ac-
cumulation of the lattice form of BR. This is not
due to an increase in proteolysis of the mutant pro-
teins or a defect in retinal binding, since the total
cellular level of BR is comparable in the mutant
and wild-type cultures and very little is present in
the apoprotein form. The simplest interpretation of
these results is that the amino acid substitutions af-
fect the stability of the lattice by disrupting the
equilibrium association of BR monomers with each
other or with lipid molecules.
Previous studies have suggested that the BR lattice

is in equilibrium with a non-crystalline form of the
protein. The brown membrane, a non-crystalline
membrane fraction which contains BR and BO, can
be spontaneously converted to the lattice form
upon addition of all-trans retinal (Hwang et al.,
1981). Similarly, intact lattices in whole cells are
converted to a non-crystalline form by hydroxyla-
mine treatment, which breaks the covalent linkage
between retinal and the apoprotein, and are re-
stored when all-trans retinal is added to regenerate
the pigment (Sumper et al., 1976). Conditions have
also been obtained which allow reconstitution of a
two-dimensional crystalline array from detergent-
solubilized BR monomers and halobacterial lipids
(Watts, 1995). Thus, non-covalent BR-BR and BR-
lipid interactions are sufÆcient to direct the stable
assembly of the lattice in H. salinarium membranes
and similar lipid environments. Mutations that sig-
niÆcantly alter these interactions are expected to
decrease the in vivo accumulation of the lattice
form.
The reÆned structural model of the purple mem-

brane (Grigorieff et al., 1996) provides a clear in-
terpretation of the effects of the mutations
introduced in helix D on lattice stability. A loss of
critical BR-BR and BR-lipid contacts is likely in the
I117A substitution. In the reÆned structural model,
this residue is located within 3 to 4 A  of several re-
sidues in helix B of the neighboring monomer, in-

Figure 6. CD spectra of the low density form obtained
from cell lysates expressing BR mutants. Spectra were
obtained from the low density fraction in sucrose at
20�C as in Figure 4.

178 Helix D Mutations Disrupt the Purple Membrane

Figure 1.16: CD spectra for bR mutants. The CD spectra for G113L, G116L, I117A,
and I117F are shown from top to bottom. Reprinted from ref. [43]. Copyright (1997),
with permission from Elsevier. https://doi.org/10.1006/jmbi.1996.0848
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The wild-type Cr value is very low, which reflects the high
stability of the wild-type purple membrane (Figure 4 and
Table 2). Very little of the low-density form of wild-type
BR is observed, suggesting that monomers and possible
intermediate forms are not abundant. The small amount of
the low-density form of wild-type BR is obscured by other
pigments that comigrate with the protein. Consequently, the
value of Cr presented for wild-type (Table 2) should be
considered an upper limit of Cr for this protein.
For analysis of mutant proteins by the self-assembly

model, several criteria must be met regarding assembly of
BR in the H. salinarum membrane. First, the model requires
that equilibrium conditions apply. This requirement was
tested by growing multiple cultures of L48A to the same
density, simultaneously removing them from incubation, and
allowing each to sit for 0, 2, or 4 days before preparing
lysates. After centrifugation, the same distribution of lattice
BR was found for all samples, indicating that equilibrium
had been reached (data not shown). Moreover, in vitro studies
have demonstrated an equilibrium between BR monomers
and aggregates in a lipid bilayer (31), supporting our
assumption. Second, the model requires that molecular
crowding effects that may hinder membrane protein diffusion
within the H. salinarum membrane are minimal. That the
model is valid at high BR concentrations suggests that
departures from ideal behavior caused by such effects are
negligible. Third, to allow comparison of wild-type and
mutant BR Cr values, it is assumed that the ratio between
cell membrane surface area and total cellular protein is
similar for both types of cells. This is reasonable, as cells
are induced in stationary phase when few changes in cell
dimension or total protein levels are expected.
Measure of Self-Assembly in Wild-Type and BR Mutants.

To determine if residues at the helix-helix interface are

important for BR lattice stability, the self-assembly assay
was used to examine the stability of the wild-type and mutant
BR proteins substituted at the helix-helix interface (Figure
4). All the mutant proteins fit the self-assembly model and
thus could be assigned a Cr value. Bulky substitutions of
Gly113 all caused large increases in Cr, and the substitution
of Phe for Ile117 caused a modest increase in Cr. Substitution

FIGURE 3: Distribution of BR as a function of total cellular BR.
(A) Flow cell traces. Wild-type (top) and I117A (bottom) cell lysates
containing increasing BR were applied to sucrose density gradients
and centrifuged to equilibrium; the trace corresponding to the lowest
BR level is shown at the bottom of each series. Gradients were
collected from the top through a spectrophotometric flow cell, and
absorbance was monitored at 570 nm. Absorbance in each trace is
plotted as a function of time. (B) The concentration of BR in the
lattice was graphed against total BR for wild-type (top) and I117A
(bottom). The data were fit with eq 1 to determine the Cr values
for wild-type and I117A lattices. BR concentrations are expressed
as a weight percentage of total cellular protein.

FIGURE 4: Self-assembly assay of wild-type and mutant BR. All
mutants substituted at the helix-helix interface were assayed as
described in Figure 3B and their Cr values determined by fitting to
the self-assembly model.

Table 2: Critical Concentration Values of Bacteriorhodopsin
Mutants

mutant Cr
wild-type 0.24 ( 0.04a
large substitutions
G113I 2.94 ( 0.14
G113L 2.45 ( 0.09
G113V 1.96 ( 0.12
I117F 0.83 ( 0.05

small substitutions
A44G 0.34 ( 0.02
I45A 0.39 ( 0.01
L48A 1.32 ( 0.03
I52A 0.35 ( 0.01
T55A 0.34 ( 0.02
L109A 0.29 ( 0.01
I117A 1.65 ( 0.03

a BR concentrations are expressed as a weight percentage of total
protein and errors are the standard errors as described in ref 49.

Helix-Helix Interactions in BR Lattice Assembly Biochemistry, Vol. 38, No. 28, 1999 9027

Figure 1.17: The y axis shows the bR weight in crystal. The x axis shows the total bR
weight in the cell. Each value are scaled by total protein weight. Symbols show the
experimental value. The experimental data are fitted by linear function. The combi-
nation of alphabet and number shows the mutant type. WT shows the wild type bR.
Reprinted with permission from [45]. Copyright 1999 American Chemical Society.
https://doi.org/10.1021/bi9905563
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Chapter 2

Examination of two-dimensional bR crystallization
driven by lateral depletion effect using
two-dimensional free volume theory

The 2D ordering of bacteriorhodopsins (bRs) in a lipid bilayer was studied using a bi-
nary hard–disk model. The phase diagrams were calculated, using two-dimensional free
volume theory. The critical concentrations of the bR ordering for the monomers and the
trimers were obtained from the phase diagrams. The critical concentration ratio agreed
well with the experiment when the repulsive core interaction between the depletants,
namely the lipids, was taken into account. The results suggest that the depletion effect
is dominant for the bRs ordering. Results in this chapter are reproduced from [46], with
the permission of AIP Publishing

2.1 Introduction

There is no attractive force between two hard spheres in a vaccum. However, an ef-
fective attraction between them may appear when other compounds are added. This
phenomenon was formulated in 1954 by Asakura and Oosawa to discuss the effective
interaction between two macromolecules in a dilute polymer solution [?, 7]. Under the
dilute condition, the effective interaction of the Asakura–Oosawa (AO) theory is very
accurate. This effective attractive interaction is driven by an entropy difference when the
system is described by a canonical ensemble. In the 1970s, Vrij resumed the theoretical
work on depletion interactions [9]. After the rediscovery, researchers applied the idea
of depletion interaction to the crowding phenomena in a living cell [47–54]. They stud-
ied the depletion effects in the cell because various macromolecules are present in the
cytoplasm at high concentrations (approx. 0.3 g/ml).

Concepts of the AO theory is not only valid for three-dimensional systems but also
for two-dimensional system. Therefore, similarly to the 3D system, phase transitions
mediated by depletion effects are expected in a 2D system [55]. However, according
to the literature [33–35, 37, 39, 40], the phase transitions occur in different manners be-
tween 2D and 3D systems. In 2011, Bernard and Krauth performed simulations and
showed that there is a hexatic phase between the fluid and solid phases in the 2D hard
disk one component system [37]. The details are explained in the chapter??. Recently,
simulations of two-component hard–disk systems were carried out. The results showed
that the hexatic phase of the larger disks disappeared when the size ratio was 1 : 1.4 and
the packing fraction of the smaller disk was large [36]. Therefore, the fluid–solid phase
transition is expected due to the depletion effects in the binary hard disk systems.

In this thesis, I consider biological membranes, namely lipid molecules–Bacteriorhodopsin
two component system, and discuss the adoption of a simple model. In 3D systems,
hard–sphere model have often been used as simple models to quantify the essential
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physical properties. [15,56–59] The usefulness of the simple model can be understood in
terms of the van der Waals picture. The details are explained in the section??. According
to the van der Waals picture, the short-ranged repulsive interactions, namely molecular
shapes, play a primary role in intermolecular correlations, and the direct intermolecular
attraction plays a minor role [27]. In other words, the packing of the molecules is impor-
tant to understand the effective interaction between molecules in a liquid. This picture
has been confirmed, and it gives fruitful interpretations of the liquid structure [27–29]
and the phase transition [60, 61]. The picture is valid for the condensed system with no
hydrogen bond or no ion bond [27].

The membrane can be regarded as a 2D phase condensed by proteins and lipid
molecules in the water. That is, the translational motions of proteins and lipid molecules
are virtually constrained within the membrane, and each molecular axis is almost fixed.
Therefore, I thought that the 2D packing problem should provide a new approach to the
interpretation of biomembrane phenomena, although the molecular interactions are com-
plex. The top view of bRs and lipid molecules looks like a disk. Hence, I examine the
two-component hard–disk system as a model of the membrane because the arrangement
of these molecules can be modeled in 2D.

The bacteriorhodopsin (bR) is a kind of trans-membrane protein. Wild-type bRs
make trimers and they form a 2D ordering structure in a lipid bilayer [1, 2]. The bR
ordering structure, called purple membranes, work as proton pumps in Halobacterium
salinarum. Some kinds of mutant bRs were reported to construct the 2D ordering struc-
ture, although they did not form trimers [43]. The critical concentrations (CC) of the
mutant bRs for ‘crystallization’ are much larger than those of the wild-type bRs [45].
The ratio of the monomer-CC to the trimer-CC (CCR) is about 10.2 [45]. The details are
in section??

The driving force for the ordering of the bRs has not yet been clarified. There is no
covalent bond, hydrogen bond, or ionic bond between bRs in the membrane [41]. On the
other hand, lateral depletion interactions between the bRs are expected [7, 9]. Basically,
the lipid molecules and the bRs are confined to the lipid bilayer. The pseudo-2D space is
crowded by the lipid molecules and the proteins. Therefore, in this thesis, the depletion
interaction caused by the lateral translational motion of lipid molecules was studied.

2.2 Binary hard disk model and two-dimensional free volume theory

Because the exposure of the bRs and the lipid molecules to an aqueous phase must
pay large penalties in free energy, the motions of these molecules are confined to the
psudo-2D space. Hence, the 2D binary hard–disk model was adopted (FIG.2.1). The
diameter σtri = 6.2 nm for the bR trimer was estimated from an electron microscope
image [1, 2, 62]. The estimated monomer diameter was about 3.0 nm. Three monomer
diameters σmono = 2.9,3.0, and 3.1 nm were examined to remove the arbitrariness for
the model. The small disks were lipid molecules with the diameter σlip ∼ 0.5 nm [30].
For the same reason, three diameters σlip = 0.4,0.5, and 0.6 nm were examined.

The isothermal system, consisting of the binary hard–disks, contacts with a reservoir
that contains only small disks (lipid molecules). The system is in osmotic equilibrium
with the reservoir. The depletion effect in the system is controlled by the packing fraction
of small disks in the reservoir. The coexistence curves of the bR fluid and the ordered
phases were obtained by two equations, as follows:

pf
(
ηfluid

bR ,η res
lip
)

= pord
(
ηordered

bR ,η res
lip
)
, (2.1)

µf
(
ηfluid

bR ,η res
lip
)

= µord
(
ηordered

bR ,η res
lip
)
, (2.2)

where pf and pord are the bR pressures for the fluid and ordered phases, ηfluid
bR and

26



!
lip
res

!
bR

SFTFSWPJS C3�MJQJE

Figure 2.1: The binary hard–disk system (right side) with a reservoir of small disks
(left side). The bRs and the lipid molecules are modeled as larger and smaller disks,
respectively. The packing fraction of lipid molecules ηlip in the binary hard–disk system
is controlled by η res

lip and ηbR.

ηordered
bR are the bR packing fractions for the fluid and ordered phases, η res

lip is the pack-
ing fraction of lipid for the reservoir, and µf, and µord are the bR chemical potentials
for the fluid and ordered phases, respectively. Therefore, the values for pf(ηfluid

bR ,η res
lip ),

pord(ηordered
bR ,η res

lip ), µf(ηfluid
bR ,η res

lip ), and µord(ηordered
bR ,η res

lip ) were calculated. Basically,
the method was similar to that explained in a textbook [14, 24]. While the textbook de-
scribes 3D systems, the present system is 2D. Not only the 2D Carnahan-Staring-like
equation of state (2D–CSE) [63] was examined, but also the 2D scaled particle theory
(2D–SPT) [23, 64] for the pure bR fluid phases.

First, the pressure and the chemical potential of the pure bR system for the fluid and
the ordered phase were obtained. The pressure of pure bRs for the fluid phase p0

f is
obtained by 2D–CSE as follows:

β p0
f vbR =

ηbR +(ηbR)
2 /8

(1−ηbR)
2 , (2.3)

where ηbR, β , and vbR are the packing fractions of the bRs, 1/(kBT), and the area for a
bR, respectively; kB is the Boltzmann constant and T is the absolute temperature. The
chemical potential of pure bRs for the fluid phase µ0

f is obtained using Gibbs-Duhem
relation as

β µ0
f = ln

[
Λ2

vbR

]
+ ln [ηbR]−

7
8

ln [1−ηbR]

+
7

8(1−ηbR)
+

9

8(1−ηbR)
2 −2,

(2.4)

where Λ = h(2πmbRkBT )−1/2 is the thermal de Broglie wavelength in the 2D space. h
and mbR are the Planck constant and the mass for one bR, respectively. By using 2D–
SPT, p0

f and µ0
f were also obtained, as follows:
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β p0
f vbR =

ηbR

(1−ηbR)
2 , (2.5)

β µ0
f = ln

[
Λ2

vbR

]
+ ln

[
ηbR

1−ηbR

]
+

2−ηbR

(1−ηbR)
2 −2. (2.6)

The derivation is shown in Appendix B.2
By contrast, the pressure and the chemical potential of the 2D crystal of pure bRs

were substituted with the values of the 2D-ordered state. The cell theory for a 2D sys-
tem [65] was adopted for this calculation. The pressure and chemical potential for the
hexagonal lattice are

β p0
ordvbR =

2ηbR

1−ηbR/ηcp
, (2.7)

β µ0
ord = ln

[
Λ2

vbR

]
−2ln

[
ηcp

ηbR
−1
]
+

2ηcp

ηcp −ηbR
, (2.8)

where ηcp = π/2
√

3 is the packing fraction at close packing.
The adoption of the hexagonal lattice as the ordered phase is discussed here. The

first problem is the possibility of existence of a long-range positional order. Theoretical
studies, such as the Mermin-Wagner theorem, seemed to rule out the existence of an
infinite long-range positional order [39, 40]. By contrast, a 2D hexagonal bR ordering
structure has been observed experimentally on the purple membrane of the bacteria [1,2].
The diameter of the ordering structure is large, but is not infinite. It is at most 0.5 µm
and the patch has about 6000 bR trimers [66]. It seems that the finite ordering structure
is stable in the bacteria. I think that this ordered state can be treated approximately as a
crystal.

The second problem is the validity for ignoring hexatic phase. A hexatic phase
appears near the solid phase in one component’s hard–disc system [33–35,37]. It means
that the hexatic phase is most stable in the region. The fragility of the hexatic phase was
shown in a simulation study [36]. According to the study of a binary mixture of hard–
disks, the hexatic phase shrinks and disappears as the number of small disks increases in
the binary system. The shrinking appears at very low concentrations of the small disk.
In this chapter, the behaviors of the binary system is discussed at the medium and high
concentrations of the small disk, i.e., the lipid molecule. Therefore, the hexagonal lattice
was adopted as the ordered state. The semi-grand potential Ω

(
NbR,V,T,µlip

)
is obtained

by two-dimensional free volume theory (2D–FVT) as follows:

Ω
(
NbR,V,T,µlip

)
= F0 (NbR,V,T )− pres ⟨V mix

free
⟩
. (2.9)

Here, F0 is the Helmholtz free-energy of a bR-pure system, presis the pressure of the
reservoir system, and

⟨
V mix

free

⟩
is the free-area of lipid in the lipid–bR system. The deriva-

tion is shown in Appendix A. An approximation [24] is adopted to replace
⟨
V mix

free

⟩
by the

free volume in the pure bR system
⟨
V mix

free

⟩
0. The pressure of ideal gas (pres

IG ) or 2D–SPT
(pres

SPT) and pres are as follows:

β pres
IG vbR =

Nres
lip vlipq−2

V res = η res
lip q−2, (2.10)

β pres
SPTvbR =

η res
lip q−2(

1−η res
lip

)2 . (2.11)
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Here, vlip is the area of a lipid molecule, Nres
lip is the number of lipid molecules in the

reservoir system, V res is the area of reservoir system, and q is the diameter ratio between
a bR (monomer or trimer) and a lipid molecule. The

⟨
V mix

free

⟩
0 is obtained using the scaled

particle theory as follows: ⟨
V mix

free
⟩

0 =V mixα. (2.12)

Here, α is defined as
α ≡ exp [−βW ] , (2.13)

V mix is the area of the lipid–bR system, and W is the work to insert a lipid molecule in
the bR-pure system. α is calculated using 2D–SPT as follows:

α = (1−ηbR)exp
[
− 2ηbRq

1−ηbR
− q2ηbR

(1−ηbR)2

]
. (2.14)

The derivation is shown in Appendix B.1.
The pressure and chemical potential are obtained from Ω

(
NbR,V,T,µlip

)
, as follows:

p = p0 + presα − presηbR

(
∂α

∂ηbR

)
NbR,T,µlip

, (2.15)

µbR = µ0
bR − presvbR

(
∂α

∂ηbR

)
V,T,µlip

, (2.16)

(
∂α

∂ηbR

)
=
−η2

bR +(−q2 +2q+2)ηbR −q2 −2q−1
(1−ηbR)2

exp

[
− 2ηbRq

1−ηbR
− ηbRq2

(1−ηbR)
2

]
,

(2.17)

where p0and µ0
bR are pressure and chemical potential in the bR-pure system.

2.3 Phase diagrams obtained by two-dimensional free volume theory

The free energies of pure bR-ordered and pure fluid phases were calculated by using
cell theory and 2D–CSE, respectively. pres is substituted by pres

SPT. In other words, the
lipid molecules were modeled as hard disks in the reservoir. The phase diagrams for
the bR trimers (solid) and bR monomers (dots) are shown in FIG. 2.2(a). The y axis
shows the packing fraction of lipid molecules in the reservoir and the x axis shows that
of bRs. In the case of the pure bR system (η res

lip = 0), the region 0.703 < ηbR < 0.747 is
the coexistence region (fluid + ordered state).

The coexistence regions of the bRs expand around η res
lip = 0.35. This expansion

appears both boundary of the fluid side and ordered state side. The fluid side boundary
decreases monotonically as η res

lip increases and there is no critical point. The coexistence
region for the bR trimer (q = 0.08065) is wider than that for the bR monomer (q =
0.16667). In other words, as the parameter q decreases, the coexistence region becomes
wider. This q-dependence of the width for the coexistence region is consistent with the
q-dependence of the effective attraction between large disks. The q-dependence of the
effective attraction is discussed using second virial coefficients in chapter 3.4.

The bR-ordered phase appears at the boundary of the fluid side, and the concentration
at the boundary is the CC for the ordered phase. The CC value of the trimers is lower
than that of the monomers. For example, when the η res

lip was 0.4, the CC for the trimers

29



!
lip
res

!
bR

qVJE

qVJE�PSEFSFE�TUBUF

PSEFSFE�

TUBUF

USJNFS

NPOPNFS

	B


!
lip
res

!
bR

�%�$4&	USJNFS


�%�415	USJNFS


	C


!
lip
res

!
bR

�%�$4&	NPOPNFS


�%�415	NPOPNFS


	D


Figure 2.2: Phase diagrams of two-component hard–disk systems. q = 0.16667
(monomer-lipid system), q = 0.08065 (trimer-lipid system). (a) Phase diagrams of the
bR trimer (solid curves) and the bR monomer (dotted curves). The free energy of pure
bR fluid was calculated on the basis of 2D–CSE. (b) Phase diagrams of the bR trimer.
The free energy of pure bR fluid was calculated on the basis of 2D–CSE (solid curves)
and 2D–SPT (dotted curves). (c) Phase diagrams of the bR monomer. The free energy of
pure bR fluid was calculated on the basis of 2D–CSE (solid curves) and 2D–SPT (dotted
curves).

was 0.042 and that for the monomer 0.100. The CC difference obtained from the phase
diagrams qualitatively agrees with that obtained by the experiments [45].

When the η res
lip is larger than 0.35, the fluid side boundary is shifted to the very low

packing fraction ηbR, as mentioned above. This shift is explained based on the depletion
effects induced by the lateral translational motion of lipid molecules, as follows. The
depletion forces between bRs become stronger with increasing the packing fraction of
the lipid molecules. This effective attraction causes the sudden boundary shift around
η res

lip = 0.35 [7, 9].
In this 2D system, the high–low density fluids coexistence region, i. e. vapor–liquid

coexistence region, does not exist because the critical point is not exist. It means that
the bR disordered 2D condensed phase is not observed on the membrane. In FIG. 2.2(a),
2D–CSE was adopted to obtain the free energy for the reference fluid phase; namely, the
pure bR fluid phase. Another theory, namely 2D–SPT, was adopted for comparison. The
free energy for the reference ordered phase was calculated by the cell theory, again. The
theory and connection of the reservoir are also similar to the calculation for FIG. 2.2(a).
The phase diagrams are shown in FIG. 2.2(b) and (c) to compare with those given by the
2D–CSE and 2D–SPT.

For the pure bR system (η res
lip = 0) the coexistence region calculated by using 2D–

SPT was 0.737 < ηbR < 0.775. The coexistence region calculated by using 2D–SPT is
a higher ηbR than that calculated by using 2D–CSE. This difference was caused by the
difference between 2D–CSE and 2D–SPT, because there was no depletant in this system.
On the other hand, the depletion effect becomes stronger as the η res

lip increases.
As the η res

lip increases, the difference between phase diagrams based on 2D–SPT and
2D–CSE disappears. When the η res

lip > 0.35, the coexistence regions overlap in FIG.
2.2(b) and (c). This overlap indicates that the depletion effects become more domi-
nant for bR ordering than the reference system as the depletion effect induced by lipid
molecules increases. That is, when the η res

lip is above 0.35, the depletion force almost
determines the CC for bR ordering. Therefore, it seems that the difference between the
theories of the reference system disappears.

Some results for the 2D one-component hard–disk system are brought here from ref-
erences [37, 67] to discuss the present results. According to the simulation study, the
boundary between the fluid and the coexistence regions exists at 0.700 [37]. An exper-
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imental study gives the value 0.68 for the boundary [67]. The fluid phases disappear at
0.716 (simulation) [37] and 0.70 (experiment) [67]. The fluid and hexatic phases disap-
pear when the packing fraction increases. The monophase for solid becomes most stable
under the high packing fraction region. The boundary between the hexatic and solid
phases is 0.720 (simulation) and 0.73 (experiment), respectively [37, 67].

In the present study, the hexagonal crystal structure was adopted as the ordered
phase, and the coexistence regions for the fluid–ordered phase appear 0.703−−0.747
(for 2D–CSE and 2D–FVT) and 0.737−−0.775 (for 2D–SPT and 2D–FVT). These
values are different from the exact values given by the simulations and the experiments.
This reason seems to be that the free energy for the hexagonal lattice structure is differ-
ent from that for the hexatic phase. However, it does not mean that the present results
are meaningless to obtain the CCR. Because of the depletion effect, these differences on
the boundaries disappear at the packing fraction of the bio-membrane (η res

lip = 0.5) [30].
FIG. 2.2(b) and (c) show that the CC boundaries virtually agree with each other in the
region η res

lip > 0.38, suggesting that the effective attraction is strong enough. I, therefore,
assume that the argument of the hexatic phase for the reference bR system is avoided for
the CCR in this thesis.

2.4 CCRs obtained using two-dimensional free volume theory
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Figure 2.3: Calculated CCR of bR trimers to monomers. The horizontal thin solid line
shows the experimental value, 10.2. (a) The diameter of the lipid molecule is 0.5 nm.
The dotted curve ( bR monomer diameter: 2.9 nm), the solid curve ( bR monomer diam-
eter: 3.0 nm), the dashed curve (bR monomer diameter: 3.1 nm). (b) The diameter of
bR monomer is 3.0 nm. The dotted curve (the lipid diameter: 0.6 nm), solid curve (the
lipid diameter: 0.5 nm), dashed curve (the lipid diameter: 0.4 nm).

CCRs (CC for monomer/CC for trimer) were obtained to compare between the cal-
culated and experimental results. CCR becomes larger than 1 because the CC for the
bR trimer is lower than that for the bR monomer. The calculated CCR results are shown
in FIG. 2.3(a) and (b). In all models, the CCRs monotonically increase as the η res

lip in-
creases. The increase in CCR becomes steeper as the monomer diameter decreases (
FIG. 2.3(a)). On the other hand, the increase in CCR becomes steeper as the lipid di-
ameter increases (FIG. 2.3(b)). Hence, the CCR curves depend on the model. Here, 2.9
and 3.1 nm are small enough and large enough for the monomer size, respectively; 0.4
and 0.6 nm are also too small and too large for the lipid size, respectively. Therefore, the
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Figure 2.4: Phase diagram of the protein (q = 0.27). The solid curves show the co-
existence region between the fluid and the ordered state. The dashed curve shows the
coexistence region between vapor and liquid.

ranges for the parameters are wide enough to discuss the ordering mechanism.
The CCR experimental value is about 10.2 [45]. For example, when the diameters

of the lipid molecule and the bR monomer are 0.5 nm and 3.0 nm, respectively, the
calculated CCR agrees with the experimental CCR at the η res

lip = 0.477. This result is
important. According to literature [30], the lipid number density of a cell membrane
monolayer is 2.5×106µm−2. When the monomer diameter is 2.9, 3.0, and 3.1 nm, the
calculated CCRs agree with the experimental CCR at the lipid number densities of =
2.40, 2.43, and 2.46× 106µm−2, respectively. Each value is almost the same, about
2.4×106µm−2. This value is reasonable compared with 2.5×106µm−2.

When the lipid diameter is 0.4, 0.5, and 0.6 nm, the calculated CCR agrees with
the experimental CCR at the lipid number densities of 4.17, 2.43, and 1.61×106µm−2,
respectively. The calculated results are reasonable because the calculated lipid number
density of 2.43×106µm−2 is very close to the estimated value of 2.5×106µm−2 for a
cell membrane monolayer. The orders of 4.17 and 1.61×106µm−2 are also the same as
that of 2.5×106µm−2.

Calculated results suggest that the driving force for the ordering is the depletion ef-
fect. Although the model is simple, the calculated CCR is very close to the experimental
value. Indeed, the calculated results depend on the size ratios between disks. However,
the calculated results remain reasonable if the parameters for the models are chosen in
realistic values. Therefore, it seems that this conclusion is robust.

2.5 Vaper–liquid phase transition

When the ordered state of the bR is discussed, the location of the vapor (large disk
poor)–liquid (large disk rich) coexistence curve in the phase diagram should be taken
into account. According to some papers, the vapor–liquid phase separation appears when
q becomes larger [55,68]. Here, the value q is obtained when the critical point appears. I
adopted pres

SPT for the pressure of the reservoir and the 2D–CSE for the reference system
of the fluid phase. The vapor–liquid transition becomes stable when q is larger than 0.27.
The phase diagram for q = 0.27 is shown in FIG. 2.4. In this case, the vapor–liquid
coexistence curve almost overlaps the liquid–ordered state coexistence curve around the
critical point. The value 0.27 is near as those values given by other methods [55, 68].
The discussion goes back to the ordered state of bR. Because 0.27 is much larger than
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Figure 2.5: Phase diagrams of the protein (q = 0.1). The pres was substituted by pres
IG

(solid) and pres
SPT (dots).

0.16667 and 0.08065, it is expected that the vapor–liquid coexistence is not observed in
the experiment.

Here, the calculated phase diagrams (FIG. 2.4) are compared with those reported in
a paper [68]. As q increases, the critical point and the vapor–liquid coexistence region
become clearer in the present study. This q dependence appears in the reference [68].
The critical point does not appear in the phase diagram for q= 0.15 in the reference [68],
and the critical point appears in the phase diagram for q = 0.3, which means that the
critical point appears somewhere from q = 0.15 to 0.3. In the paper, the phase diagrams
are obtained using the density functional theory, a method different from the present
study. In the other paper [55], the critical point is estimated to appear somewhere from
q = 0.3 to 0.4. Although the details of the shape are slightly different from the diagrams
in the present study, the q-dependence of the shape of the phase diagram is similar.

2.6 Phase diagrams and CCR using the ideal gas model in the reservoir

The lipid molecules in the reservoir were also modeled as ideal gas, and the phase di-
agrams were examined. The results showed another piece of information. The free
energies for the reference system of the ordered state and of the fluid phase were ob-
tained using 2D cell theory and 2D–CSE, respectively. The phase diagrams for q = 0.1
are shown in FIG. 2.5. The solid curves are the coexistence boundary with the ideal
gas model for the reservoir. The dotted curves represent the coexistence boundary in
the case of the hard disk reservoir where the pressure is obtained by 2D–SPT. The fluid
side boundaries decrease monotonically as η res

lip increases and there is no critical point
in both cases. The features are the same in both. However, the quantitative differences
are remarkable. The coexistence region for the hard disk reservoir expands widely even
when η res

lip is low. By contrast, the coexistence region for the ideal gas reservoir is much
narrower than that for the hard disk reservoir. The coexistence region for the ideal gas
reservoir expands around η res

lip = 0.6 whereas that for the hard disk reservoir expands
around η res

lip = 0.35. The packing fraction of lipid molecules in a biomembrane is about
0.5 in the case of σlip = 0.5 nm [30]. These results suggest that the depletion effects
could hardly work in a biomembrane if the collisions between lipid molecules are ig-
nored.

The phase diagrams of bRs are also calculated assuming an ideal gas reservoir. The
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Figure 2.6: Phase diagrams of the bR trimer (solid curves, q = 0.08065) and the bR
monomer (dotted curves, q = 0.16667). The ideal gas model was adopted as the lipid
reservoir.
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Figure 2.7: Calculated CCR of bR trimers to monomers. q for the bR trimer and
monomer is 0.08065 and 0.16667, respectively. The ideal gas model was adopted as
the lipid reservoir.

phase diagrams for the bR trimers (solid) and the bR monomers (dots) are shown in FIG.
2.6. Even when the reservoir is the ideal gas model, the coexistence region for the bR
trimer (q = 0.08065) is wider than that for the bR monomer (q = 0.16667). For example,
when the η res

lip is 0.7, the CC for the trimers is 0.542 and that for the monomer 0.620.
The calculated large/small relation of CCs qualitatively again agrees with that obtained
by the experiments [45]. However, the results have serious quantitative problems. CCs
are too large when the η res

lip is about 0.5. The CCs for trimers and monomers are 0.663
and 0.675, respectively. The ratio is about 1. If a reasonable value for CCR (about 10)
is assumed, the packing fraction η res

lip could become an unrealistic value. The calculated
CCR for the ideal gas reservoir is shown in FIG. 2.7. qs for the trimer and monomer are
0.08065 and 0.16667. The CCR is 1.608 even when the reservoir packing fraction is the
closest (ηclosest packing = π/(2

√
3)∼ 0.907). By contrast, the CCRs are reasonable when

the hard disk model is adopted as the lipid reservoir. Therefore, the granularity of the
lipid molecule is important for the lateral depletion effects on the bR ordering.

The numerical disagreement between the results for the hard disk reservoir and for
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Figure 2.8: The phase diagrams for small qs calculated by the 2D–FVT approach. The
solid and dashed curves show the phase diagrams for q =0.001 and 0.0001, respectively.
These coexistence regions almost overlap each other.

the ideal gas reservoir is remarkable. The disagreement is discussed based on the equa-
tions of state. The equations of state for 2D–SPT and 2D–CSE show that the pressures
are much higher than for the ideal gas because each lipid molecule has a repulsive core,
and they are crowded in the reservoir. There is a positive correlation between the pres-
sure in the reservoir and the depletion force. Thus, the effective attraction between bRs
becomes stronger than for the ideal gas reservoir. Therefore, the results indicate that the
crowding in the reservoir is important in the calculation of the depletion effects.

2.7 Problem of two-dimensional free volume theory

Results calculated using the 2D–FVT show good agreement with experimental results.
However, there is problem for the FVT when q is very small. García et al. reported
that the q-dependence of the phase diagram obtained by the FVT disappears in a 3D
system as the value q decreases [69]. They further noticed that this result did not agree
with an experimental result qualitatively [69]. This problem in the 3D systems should be
conserved in the 2D systems. Thus, the q-dependence of phase diagrams obtained using
the 2D–FVT was examined. FIG.2.8 shows the phase diagrams for q= 0.001 and 0.0001
calculated using the 2D–FVT approach. These coexistence regions almost overlap each
other. This agreement numerically shows that the theoretical approach does not have q
dependence when q is small.

The disappearance of the q-dependence for the 2D–FVT approach at small q has to
be explained. In the phase diagram calculation, the bR packing fraction for the fluid
phase ηfluid

bR and that for the ordered phase, ηordered
bR , must be obtained. These values are

obtained by solving the equations (2.1) and (2.2) [24,46]. The pressure and the chemical
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potential are expressed by 2D–FVT [24, 46], as follows:

β pfvbR = β p0
f vbR +β presvbR

(
αf −ηfluid

bR

(
∂αf

∂ηfluid
bR

)
NbR,T,µlip

)
, (2.18)

β pordvbR = β p0
ordvbR +β presvbR

(
αord −ηordered

bR

(
∂αord

∂ηordered
bR

)
NbR,T,µlip

)
,(2.19)

β µf,bR = β µ0
f,bR −β presvbR

(
∂αf

∂ηfluid
bR

)
V,T,µlip

, (2.20)

β µord,bR = β µ0
ord,bR −β presvbR

(
∂αord

∂ηordered
bR

)
V,T,µlip

, (2.21)

where αf and αord are the free volume fraction for the fluid phase and ordered phase,
respectively. p0

f and p0
ord are the pressure for the fluid and ordered phases in a bR pure

system. µ0
f,bR and µ0

ord,bR are the chemical potential for the fluid and ordered phases in
the bR pure system. If these values are substituted to the relations (2.1) and (2.2), namely
pf = pord, µf,bR = µord,bR, two equations are obtained, as follows:

β
(

p0
f −β p0

ord
)

vbR+β presvbR

(
αf −ηfluid

bR

(
∂αf

∂ηfluid
bR

)
−αord +ηordered

bR

(
∂αord

∂ηordrered
bR

))
= 0,

(2.22)

β
(
µ0

f,bR −µ0
ord,bR

)
−β presvbR

((
∂αf

∂ηfluid
bR

)
−
(

∂αord

∂ηordered
bR

))
= 0. (2.23)

αf and αord are obtained by SPT [24, 46] as follows:

αf =
(
1−ηfluid

bR
)

exp

[
−

2ηfluid
bR q

1−ηfluid
bR

−
ηfluid

bR q2(
1−ηfluid

bR

)2

]
, (2.24)

αord =
(
1−ηordered

bR
)

exp

[
−

2ηordered
bR q

1−ηordered
bR

−
ηordered

bR q2(
1−ηordered

bR

)2

]
. (2.25)

The partial differentiations are(
∂αf

∂ηfluid
bR

)
=
−(ηfluid

bR )2 +(−q2 +2q+2)ηfluid
bR −q2 −2q−1

(1−ηfluid
bR )2

exp

[
−

2ηfluid
bR q

1−ηfluid
bR

−
ηfluid

bR q2(
1−ηfluid

bR

)2

]
,

(2.26)

(
∂αord

∂ηordered
bR

)
=
−(ηordered

bR )2 +(−q2 +2q+2)ηordered
bR −q2 −2q−1

(1−ηordered
bR )2

exp

[
−

2ηordered
bR q

1−ηordered
bR

−
ηordered

bR q2(
1−ηordered

bR

)2

]
.

(2.27)

The pressure in the reservoir is expressed using SPT [24, 46]: namely, eq. (2.11). The
first term on the left-hand side in eqs. (2.22) and (2.23) does not depend on q. On the
other hand, the behavior of the second term on the left-hand side in eq. (2.22) must
be confirmed at the limit of q = 0 because the part β presvbR goes to infinity, and the
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remaining part—namely, the part in the parentheses—goes to zero. The second term on
the left-hand side in eq. (2.23) also has a similar problem. Thus, these second terms are
expanded to polynomials to discuss the q-dependence.

The left-hand sides of eqs. (2.22) and (2.23) are expanded to the polynomial func-
tions of q, as follows.

(p0
f − p0

ord)vbR +
η res

lip

(1−η res
lip )

2

(
−
(
ηfluid

bR

)2

(1−ηfluid
bR )2

+

(
ηordered

bR

)2

(1−ηordered
bR )2

)
+O(q) = 0 (2.28)

µ0
f −µ0

ord +
η res

lip

(1−η res
lip )

2

(
1−4ηfluid

bR +2
(
ηfluid

bR

)2

(1−ηfluid
bR )2

−
1−4ηordered

bR +2
(
ηordered

bR

)2

(1−ηordered
bR )2

)
+O(q) = 0

(2.29)

The above two equations are solved to obtain the phase boundary. The q−dependence
disappears at the limit of q = 0. Therefore, the phase diagram of the 2D–FVT approach
does not depend on q for small q.

This disappearance of the q-dependence originates in αf and αord. The same theory,
namely SPT, is used to express both αf and αord. Therefore, the 0th-order terms of q for
the fluid and ordered phases cancel each other in eqs. (2.28) and (2.29). q for the bR
trimer, 0.08065, is small. Therefore, this problem may affect the phase diagram. Thus,
the CCRs should be examined by another approach.

2.8 Discussion

The disappearance of the q-dependence may affect the CC, namely CC for trimer. The
2D–FVT seems to underestimate the CC for the trimer because of the disappearance
of the q-dependence. In other words, the 2D–FVT CC for the trimer seems to have
larger value than the real CC due to the existence of lower limit of CC. Therefore, it
can be predicted that the real CCRs increase more steeply as the lipid packing fraction
increase. The effect of the problem is discussed comparing with CCRs obtaind using
another theory, namely thermodynamic perturbation theory, in next chapter.

I also would like to discuss the validity of the assumption for the ordering structure.
It is assumed that the ordered state for the pure bRs formed hexagonal lattice because it
seemed that the argument of the hexatic phase could be avoided in the present study. Ac-
cording to a simulation study for the two-component disk, the hexatic phase disappears
when the number ratio of the small disk is higher than 1% [36]. The result suggests
that the smaller disks stabilize the hexagonal lattice structure of the larger disks. In the
bio-membrane, the smaller disks, lipid molecules, are a major component and the fragile
hexatic phase of bRs can be expected to disappear. On the other hand, the size ratio
between disks q in the simulation (about 0.714) was much larger than in this study [36].
In those smaller qs, such as 0.08065 and 0.16667, the small disk could locate intersti-
tially in the ordered large disks. And the system in vivo contain other molecules and the
impurity effects are not clear. Therefore, further simulation studies are also needed.

2.9 Summary

In this chapter, the ordering behaviors of bR was discussed. The phase diagrams for
the monomers and the trimers with lipid molecules were calculated by using 2D–FVT
with a simple 2D model. The results showed that the depletion effect was dominant for
the larger hard–disk ordering when the η res

lip > 0.35. The calculated results for CCRs
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agreed with the experimental results, suggesting that the depletion interactions induced
by the lateral translational motions of lipid molecules drive the ordering of bRs, such as
bRs. However, it was shown that the 2D–FVT had a problem when q was very small.
Therefore, the CCRs should be examined by another approach.
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Chapter 3

CCRs obtained using thermodynamic perturbation
theory

Using binary hard disk mixture models, I studied the two-dimensional ordering of bac-
teriorhodopsins in a lipid bilayer. The phase diagrams were calculated using the ther-
modynamic perturbation theory. Two types of effective interactions were examined to
discuss the lateral depletion effects caused by repulsive core interaction between lipid
molecules. The results indicate that the core repulsions drastically broaden the coexis-
tence region for the fluid–ordered phase, and the depletion force is the driving force for
the bR crystallization.

3.1 Introduction

In the chapter 2, the phase diagrams obtained using 2D free volume theory (2D–FVT)
suggested that the lateral depletion effect is dominant in the driving force of bR ordering.
The study focused on the difference between the “crystallization” behaviors of wild-
type bR and mutant bR, which construct the ordering structure. Although the mutant
monomers do not construct trimers, they form a crystal [43]. The critical concentrations
(CCs) of the mutant bRs for the “crystallization” are much larger than those of the wild-
type bRs. According to experiments by M. P. Krebs et al., the ratio CCR(= CC1/CC3) is
about 10.2, where CC1 and CC3 are the critical concentrations for the mutant monomers
and the wild-type trimers, respectively [45].

The calculated results by using 2D–FVT also indicated that the depletion effect was
too weak when the lipid molecules were modeled as an ideal gas, and it differed from
the experimental result [46]. On the other hand, I also described the pressure of the
reservoir using the two-dimensional scaled particle theory (2D–SPT) [23, 64], taking
into account the effects of the repulsive core of the lipid molecule [46]. The phase
diagrams were calculated based on the models. The calculated phase diagrams showed
that the repulsive core enhanced the depletion effect, and the calculated CCRs virtually
agreed with the experimental results [46]. Therefore, I discussed that the depletion effect
significantly contributed to the “crystallization” in the chapter 2. However, the phase
diagram calculated by using 2D–FVT is not correct when a diameter ratio between lipid
and bR (σlip/σbR) is very small. Therefore, the CCR is examined by using another theory
in this chapter.

In the chapter 2, the phase diagrams were obtained without calculating the effective
interaction between bRs. In this chapter, first, I calculated the effective interactions
between bR. Next, I calculated the free energies using the thermodynamic perturbation
theory [70–72] with the effective interactions and obtained the phase diagrams. Finally,
the phase diagrams gave the CCRs.
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3.2 Model and theory

A binary hard-disk model was adopted in this chapter. The model is the same as that
in the chapter 2. The lipid bilayer was regarded as a condensed 2D plane space. The
lipid molecules, bR monomers, and bR trimers were modeled as small, medium, and
large hard disks, respectively. The diameter for the bR trimer σtri was estimated as 6.2
nm [46,62]. The diameter for the bR monomer σmono was estimated as 3.0 nm [46]. The
diameter for the lipid molecule σlipwas estimated as 0.5 nm [30,46]. In addition, the two
lipid diameters σlip = 0.4 and 0.6 nm were also examined to remove the arbitrariness for
the model.

The system consisted of lipid and bR molecules. The binary hard-disk system was
in osmotic equilibrium with a reservoir. Therefore, I obtained the effective interac-
tions between bR molecules and calculated the phase diagrams using the effective one-
component system. The effective interactions between bR molecules are explained as
follows.

The AO and modified AO potentials [46] were adopted as the effective potential for
bRs. The lipid molecules cannot enter the excluded area Vex around the bR molecules in
this model. The AO potential ωAO between two bRs can be written as

ωAO(r) = ∞, r < σbR, (3.1)

ωAO(r) = −ρ res
lip kBT∆Vex(r), r > σbR, (3.2)

where ρ res
lip is the number density of lipid molecules in the reservoir, kB is Boltzmann

constant, T is the absolute temperature, ∆Vex is the overlap area of excluded volumes,
r is the distance between the centers of bRs, and σbR is the diameter for bR. ∆Vex is
expressed analytically as follows,

∆Vex(r) =
1
2

σ2
bR(1+q)2arccos

[
r

σbR(1+q)

]
−1

4
σ2

bR(1+q)2sin
[

2arccos
[

r
σbR(1+q)

]]
,

(3.3)

where q is the diameter ratio between the lipid molecule and bR (σlip/σbR). ρ res
lip kBT is

regarded as the pressure of ideal gas in the reservoir. Therefore, the AO interaction is the
pressure-area work for the two-dimensional ideal gas, and the area is ∆Vex [24]. Thus,
ωAO also can be written as follows:

ωAO(r) = ∞, r < σbR, (3.4)

ωAO(r) = −pres∆Vex(r), r > σbR. (3.5)

In the conventional AO theory, the repulsive interactions between depletants are ig-
nored, and the lipid molecules overlap. In other words, the pressure in the reservoir is
that of the ideal gas. On the other hand, I replaced the pressure of the ideal gas reservoir
with that estimated using the two-dimensional scaled particle theory (2D–SPT) [24,46],
taking account of the repulsive interactions between depletants. Thus, the pressure in
the reservoir was expressed as follows:

pres =
ρ res

lip(
1−η res

lip

)2 kBT, (3.6)

where η res
lip is the reservoir’s packing fraction of lipid molecules. Here, I call this the

modified AO model. The modified AO potential ωMod, therefore, is written as
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ωMod(r) = ∞, r < σbR, (3.7)

ωMod(r) = −
ρ res

lip(
1−η res

lip

)2 kBT∆Vex(r), r > σbR. (3.8)

In this model, there are only two bRs in the lipid condensed system. That is, a very low
bR packing fraction was assumed in the system. As the bR packing fraction increases,
the lipid packing fraction in the system decreases. Therefore, the effective interaction
depends on the bR packing fraction. Here, I adopted an approximation that ωMod is
independent of the bR packing fraction [70, 71].

(a)

Monomer

r (nm)

βω
 (r
)

Trimer

(b)

r (nm)

βω
 (r
)

Figure 3.1: The effective potential between bR monomers (a) and trimers (b) at η res
lip =

0.5. The lipid―bR diameter ratios, qs, are 0.16667 and 0.08065, respectively. The
dashed curves show the AO potential. The solid curves show the modified AO potential.

FIG.3.1 shows the effective potentials at η res
lip = 0.5. The stability at the contact

distance, (a) r = 3.0 nm and (b) r = 6.2 nm, for the modified AO potential is much
larger than that for the AO potential. The ratio is larger than three in the case of the bR
monomers (FIG. 3.1(a)), and larger than four in the case of the bR trimer (FIG. 3.1(b)).
That is, the effective attraction for the modified AO potential is much stronger than that
for the AO potential.

Here, I mention the difference between the AO and the modified AO potentials.
I prepared the pressure in calculating the quasistatic PV-work to change the excluded
volume of bRs for the lipid fluid. In the case of the AO potential, the pressure of the
ideal gas was used. On the other hand, 2D–SPT was adopted in the case of the modified
AO potential. The latter pressure is higher than the former because of the packing effect
of the lipid hard disks. Therefore, the stability of the contact bR dimer for the modified
AO potential is much larger than that for the AO potential.

To obtain the phase diagrams, the thermodynamic perturbation theory was adopted.
In the perturbation theory, the Helmholtz free energy for the effective one-component
system with ωAO or ωMod , F(NbR,V,T ), was expressed as follows:

βF (NbR,V,T )vbR

V
=

βF0 (NbR,V,T )vbR

V
+4βη2

bR

∫ ∞

0
g0

(
r

σbR

)
ω
(

r
σbR

)
r

σbR
d
(

r
σbR

)
,

(3.9)
where V is the area of the system, vbR is the area of one bR, F0 is the Helmholtz free
energy for the pure bR system, ηbR is the packing fraction of the bRs, ω( r

σbR
) is the
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effective potential between bRs, and g0(
r

σbR
) is the radial distribution function for the

pure bR system scaled by σbR.
In the previous paragraph, the calculation of the perturbation part needed the radial

distribution function. The radial distribution functions were obtained using the event
chain Monte Carlo simulation [37]. The simulation box has 1282 hard disks, and the
sampling was carried out over 1.2× 1011 steps after equilibration. The radial distribu-
tion functions were calculated within the ranging from ηbR = 0.001 to ηbR = 0.905 in
the interval of ηbR = 0.001. The AO or the modified AO potential were substituted in
ω( r

σbR
).

F0 was obtained by the same method in the chapter 2. F0 is:

βF0vbR

V
= βηbRµ0

bR −β p0vbR, (3.10)

where µ0
bR and p0 are the chemical potential and the pressure for the pure bR system.

The chemical potential and the pressure for the pure bR fluid phase, µ0
f and p0

f , were
obtained by 2D-Carnahan-Staring like equation of state (2D–CSE) [1, 46], as follows:

β µ0
f = ln

[
Λ2

vbR

]
+ ln [ηbR]−

7
8

ln [1−ηbR]+
7

8(1−ηbR)
+

9

8(1−ηbR)
2 −2, (3.11)

β p0
f vbR =

ηbR + (ηbR)
2

8

(1−ηbR)
2 , (3.12)

where Λ = h(2πmbRkBT)−1/2 is the thermal de Broglie wavelength in the 2D space.
h and mbR are the Planck constant and the mass for a bR, respectively. The chemical
potential and the pressure for the pure bR ordered phase, µ0

ord and p0
ord, were obtained

by cell theory [46, 65] as follows:

β µ0
ord = ln

[
Λ2

vbR

]
−2ln

[
ηcp

ηbR
−1
]
+

2ηcp

ηcp −ηbR
, (3.13)

β p0
ordvbR =

2ηbR

1− ηbR
ηcp

, (3.14)

where ηcp = π/(2
√

3) ≈ 0.907 is the packing fraction at close packing. The first term

on the right-hand side, ln
[

Λ2

vbR

]
, in eq. (3.11), and eq. (3.13) does not affect the phase

diagram, because the term is common in the fluid and ordered phases. The common
tangent method was adopted to obtain the phase diagrams using free energy curves. The
common tangent was drawn on the calculated free energy curves for the fluid and ordered
phase.

3.3 Phase diagrams obtained by using thermodynamic perturbation the-
ory with AO or modified AO potential

The Helmholtz free energy curves were calculated using the thermodynamic perturba-
tion theory with the effective potential. The phase diagrams were obtained using the
common tangent construction on the free energy curves. The phase diagrams are shown
in FIG. 3.2 for bR (a) monomers and (b) trimers calculated using the AO or the modified
AO potentials as the effective potential.

The coexistence region for the modified AO potential expands at a lower lipid pack-
ing fraction than the AO potential. Here, I checked the diagram for the monomers with
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Figure 3.2: Phase diagrams for (a) bR monomer (q = 0.16667) and (b) trimer (q =
0.08065). The dotted curves show the phase diagram calculated by the thermodynamic
perturbation theory(TPT) with the AO potential. The solid curves show the phase dia-
gram calculated by the thermodynamic perturbation theory with the modified AO poten-
tial.

ηlip
res

ηbR

Figure 3.3: Phase diagrams for bR monomer and trimer calculated using the modified
AO–TPT approach. The solid curves show the phase diagrams for the trimer. The dashed
curves show the phase diagrams for the monomer.

the lipids (see FIG. 3.2 (a)). The broadening for the modified AO potential (solid curve)
started at about η res

lip = 0.35, although that for the AO potential (dashed curve) started at
about η res

lip = 0.7. I focused on the phase diagrams around η res
lip = 0.5 because I estimated

the lipid packing fraction of a cell membrane as 0.5 (see the chapter 2). The broadenings
of the coexistence regions for the modified AO potential started lower than η res

lip = 0.5.
On the other hand, those for the AO potential started higher than η res

lip = 0.5 (see FIG.
3.2 (a) and (b)). Therefore, effective potential dependence is critical.

The critical concentration, CC(η res
lip ), was defined as the concentration for the small-

est packing fraction for the fluid–ordered phase coexistence state at η res
lip . Thus, the

CC(η res
lip ) gives the boundary curve between the fluid and fluid–ordered states [46]. Un-

fortunately, I could not obtain the phase diagrams for the modified AO potential systems
in the region η res

lip > 0.4 (see solid curves in FIG.3.2), because the phase diagram cannot
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be calculated by modified AO–TPT approach when the CC is very low. This is because
that the common tangent cannot be drawn on the free energy. However, the CC is al-
most 0 even when η res

lip = 0.4. Therefore, it is expected that the CC is very low when
η res

lip = 0.5. This suggests that the depletion effect can be dominant in the driving force
for the bR ordering.

The phase diagrams calculated using modified AO potential for monomer and trimer
are compared in FIG. 3.3. FIG. 3.3 shows that the the coexistence region for the trmer
is wider than that for the monomer. That is, the CC for trimer is lower than that for the
monomer. This result indicates that the depletion effect for the trimer is stronger than
that for the monomer.

3.4 Second virial coefficients for AO and modified AO potential

The second virial coefficient (B2) is useful for discussing whether the particles are at-
tractive or repulsive. I explain the B2. The pressure is expanded by number density, ρ ,
as follows:

β p = ρ +B2ρ2 +O(ρ3), (3.15)

where the coefficient of ρ2 is the B2. The B2 is an index for the attraction or the repulsion
of the interaction. The equation of state for an ideal gas is

β p = ρ. (3.16)

Thus, the B2 is zero.
When the B2 is positive, the pressure is higher than that for the ideal gas. That is, the

effective interaction between particles is more repulsive than the ideal gas. On the other
hand, when the B2 is negative, the pressure is lower than that for ideal gas. That is, the
effective interaction is more attractive than the ideal gas. Here, the B2 for the 2D case is
calculated as follows:

B2 =−π
∫

r(exp[−βu(r)]−1)dr, (3.17)

where u(r) is the pairwise potential and r is the distance between the centers of the
particles. In this study, the effective interaction w(r) was substituted into the potential
u(r). Therefore, the B2 is the effective second virial coefficient. This B2 was scaled by
the B2 for hard–disks, B2

HD. B2/B2
HD is the reduced (effective) second virial coefficient.

Two effective potentials between two large hard–disks (proteins) were examined.
One is the conventional AO potential [7]. The other is a modified AO potential. In the
AO theory, the depletants (lipid molecules, small disks) do not interact with each other.
In other words, the depletants are ideal gas molecules. By contrast, for the modified AO
potential, the attraction between two large disks at the contact distance is stronger than
that for the conventional AO potential, because the pressure exerted by the depletants to
the large disks is calculated by using the 2D–SPT. This is because the repulsion between
depletants is not ignored in the 2D–SPT and the pressure becomes larger than that of an
ideal gas.

FIG. 3.4 indicates the q-dependence of the coefficient B2/BHD
2 (a) for modified AO

and (b) for AO. The negative values appear at around η res
lip = 0.35 in the plot for modified

AO (FIG. 3.4 (a)). In the plot for η res
lip = 0.35, the coefficient B2/BHD

2 is almost zero. In
addition, the negative value appears when q is below 0.11. This suggests that the parti-
cles are attractive and the wide coexistence region can appear. This result is consistent
with the phase diagrams with the modified AO potential. However, the absolute value is
still small when η res

lip = 0.35.
As the packing fraction η res

lip becomes larger, the value B2/BHD
2 decreases. The

B2/BHD
2 for modified AO is smaller than 0 for any q when the η res

lip is larger than 0.36.
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Figure 3.4: The reduced second virial coefficient of large disks (bRs) for modified AO
(a) and for AO (b) when the small disks (lipid molecules) packing fraction is 0.30 (dotted
curve), 0.35 (dashed curve), and 0.45(solid curve).

When the η res
lip is 0.45, the absolute value of B2/BHD

2 for modified AO becomes very
large because of the effective attraction. It is about -7.4 at q = 0.1, and the appearance
of a condensation phase is expected. In addition, FIG. 3.4 (a) shows that the B2/BHD

2 for
η res

lip = 0.45 increases monotonically as the q increases. As I mentioned in the section
3.3, the depletion attraction between bR trimers is stronger than that between monomers.
Thus, these results for the B2/BHD

2 are consistent with the phase diagrams shown in the
section 3.3.

By contrast, the plots for AO do not have negative values even when η res
lip = 0.45

(FIG. 3.4 (b)). This means that the particles in the system are repulsive. If η res
lip becomes

larger, the coefficient B2/BHD
2 becomes negative. However, the value η res

lip becomes un-
physical. The Phase diagrams with AO potential does not show the expansion of the
coexistence region at ηrmres

lip = 0.5, and this result is consistent with the B2/BHD
2 . In ad-

dition, a comparison between the B2/BHD
2 values for modified AO and AO indicates that

the repulsive forces between lipid molecules are important for the association of bRs.

3.5 Comparison of phase diagrams between thermodynamic approach and
free volume approach

Here, I compared the phase diagrams obtained using the modified AO–TPT approach
with that obtained using the 2D–FVT approach. In the chapter 2, the chemical potentials
for the fluid and ordered phases were described using the two-dimensional Carnahan-
Starling-like equation of state (2D–CSE) and the cell theory in the case of the pure bR
system (η res

lip = 0). Thus, the reference systems in both approaches are common. Addi-
tionally, I adopted the pressure of the two-dimensional scaled particle theory (2D–SPT)
as the reservoir pressure. This means that the repulsive cores of the lipids in the reservoir
are common between the two approach. However, the framework of 2D–FVT did not
explicitly contain the effective interaction between two bRs [46]. On the other hand, the
modified AO potential was adopted as the effective interaction and the phase diagrams
were calculated using the thermodynamic perturbation theory with the effective interac-
tion (modified AO–TPT) in the present study. The results are compared in FIG.3.5.

Because the theories of the reference systems, namely the pure bR system (η res
lip = 0),

are common, the coexistence region appears in the same region (see FIG. 3.5). Even
when η res

lip increases, the phase diagrams of the 2D–FVT approach are in good agreement
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Figure 3.5: Phase diagrams for (a) bR monomer (q = 0.16667) and (b) trimer (q =
0.08065). The solid curves show the phase diagrams calculated by the modified AO–
TPT approach. The dotted curves show the phase diagrams calculated by the 2D– FVT
approach [46].

with the results given by the modified AO–TPT study. In particular, the boundaries
between the fluid and the fluid–ordered coexistence phases in the modified AO–TPT
approach agree very well with the results of 2D–FVT approach. In the chapter 2, I
showed that the 2D–FVT approach explains the experimental results semi-quantitatively
[46]. Therefore, it is expected that the modified AO–TPT approach is also valid.

On the other hand, there is a difference between phase diagrams for the bR trimer
calculated by modified AO–TPT and 2D–FVT approaches. The coexistence region cal-
culated by the modified AO–TPT approach is slightly wider than that calculated by the
2D–FVT approach. This difference increases as the size ratio q approaches 0 (data is
not shown). I cannot deny the problem in the modified AO–TPT approach. However,
the results of the 2D–FVT approach are more suspicious because the q-dependence on
the phase diagram disappears at the small q as shown in the chapter 2. The CC for the
trimer seems to be higher than the real CC because of the existence of lower limit of CC
at small q in the 2D–FVT approach.

However, the CC for the bR trimer ordering is lower than for the monomer ordering
in both theories. For example, when η res

lip = 0.4, the CCs for bR monomer ordering and
trimer ordering calculated by the 2D–FVT approach are 0.100 and 0.042, respectively
[46]. On the other hand, the CCs for the bR monomer ordering and the trimer ordering
calculated by the modified AO–TPT approach are 0.097 and 0.013, respectively. The CC
for the bR trimer ordering is lower than that for the monomer ordering in each theory.
These results correspond to experimental results [45] qualitatively. As with the 2D–FVT
approach [46], the modified AO–TPT approach also explains the experimental results for
bR crystallization [45] qualitatively.

3.6 Comparison of CCRs between thermodynamic perturbation theory
approach and free volume theory approach

FIG. 3.6 (a) shows the critical concentration ratios (CCRs) between bR monomer and
trimer (CC monomer/ CC trimer) obtained from the phase diagrams calculated using
the modified AO–TPT approach (symbol). The curves are drawn by sixth-order poly-
nomial approximation when σlip = 0.5 and 0.6 nm. On the other hand, the polynomial
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Figure 3.6: (a) The CCRs were calculated by the modified AO–TPT approach. The
triangles, squares, and asterisks show the CCR for σlip = 0.4, 0.5, and 0.6, respectively.
A dashed line shows the CCR for σlip = 0.4. A solid and dotted lines show the sixth-
order polynomial approximation curves of CCR for σlip = 0.5 and 0.6, respectively. The
experimental value of the CCR, 10.2, is shown as a thin solid line parallel to the x–axis.
(b) The CCRs were calculated by the 2D–FVT approach. The dotted line, a solid line,
and a dashed line show the CCR for σlip = 0.4, 0.5, and 0.6, respectively [46].

approximation for σlip = 0.4 nm is not drawn because the data are across the line for the
CCR=10.2. FIG.3.6 (b) has the CCR plots calculated by the 2D–FVT approach in the
chapter 2 for comparison. The diameter of the lipid molecule is 0.5 nm as a standard.
However, this model has arbitrariness. The three lipid diameters σlip = 0.4, 0.5, and 0.6
nm, were examined to remove the arbitrariness. The experimental value of the CCR,
10.2, is shown as a solid line parallel to the x–axis. When the CC is too low, the phase
diagram cannot be obtained using the TPT approach with the modified AO interaction
because the common tangent cannot be drawn on the free energy curves. Therefore, the
CCR cannot be calculated up to 10.2. Thus, the extrapolated plots were drawn when
σlip = 0.5 and 0.6 nm. The CCR increases in each theory as η res

lip increases.
The CCRs obtained by the modified AO–TPT approach and the 2D–FVT approach

were compared. In the modified AO–TPT approach, the maximum η res
lip where CC can be

calculated for all lipid diameters was 0.40. At η res
lip =0.40, the CCRs obtained by the two

approaches were compared. When the σlip is 0.4 nm, the CCR obtained by the modified
AO–TPT approach was 12.4. On the other hand, the CCR obtained by the 2D–FVT
approach was 1.60. When the σlip is 0.5 nm, the CCR obtained by the modified AO–TPT
approach was 7.46. On the other hand, the CCR obtained by the 2D–FVT approach was
2.43. When the σlip is 0.6 nm, the CCR obtained by the modified AO–TPT approach
was 4.96. On the other hand, the CCR obtained by the 2D–FVT approach was 3.18.
The CCR obtained by the modified AO–TPT approach was larger than that obtained by
the 2D–FVT approach for all σlip. This is because the CC for trimer calculated by the
modified AO–TPT approach is smaller than that calculated by the 2D–FVT approach,
while the CC for monomer is almost the same between the two theories. The difference
of the trimer CC is more significant as the σlip is smaller, i.e. q is smaller. The reason
seems to be that the CC at smaller q is more affected by the lower limit of CC in the
2D–FVT approach.

The extrapolated CCR plots obtained by the modified AO–TPT approach agree with
experimental CCR value 10.2 at η res

lip = 0.393, 0.414, 0.443 for σlip = 0.4, 0.5, 0.6
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nm, respectively. η res
lip s correspond to the lipid number densities 3.13, 2.11, and 1.57

×106µm−2, respectively. On the other hand, the lipid number density in the single layer
of a cell membrane was about 2.5 ×106µm−2 [30]. Therefore, the CCRs obtained using
modified AO–TPT approach also show the good agreement with experimental results
semi-quantitatively.

A qualitative difference of CCRs between the 2D–FVT and modified AO–TPT ap-
proaches are found. Comparing FIG. 3.6 (a) and (b), the CCRs order of the dependence
on the lipid diameter for the modified AO–TPT approach is the inverse of that for the
2D–FVT approach. The CCRs obtained by the 2D–FVT approach increase as the lipid
diameter increases. In contrast, the CCRs obtained by the modified AO–TPT approach
decrease as the lipid diameter increases. This discrepancy seems to be caused by a prob-
lem in the 2D–FVT approach: namely, the calculation of CC for the trimer. The order
for the 2D–FVT approach seems to be incorrect because of the disappearance of the q-
dependence at small q. The CC for the trimer decreases as q decreases. However, in the
2D–FVT approach, the decrease is braked due to the lower limit of CC at small q. On
the other hand, the CC for the monomer is not braked because the q is not small. Thus,
the CC decline for the trimer with the q decline is smaller than that for the monomer. On
the other hand, in the modified AO–TPT approach, the CC decline for the trimer is larger
than that for the monomer because there is no lower limit of CC. Therefore, the CCR
order obtained using the 2D–FVT approach is inverse of that obtained using modified
AO–TPT approach, and incorrect.

3.7 Discussion

The calculated results indicate that the experimental results are explained by using the
modified AO potential. However, the modified AO potential is based on very simple idea,
and has incompleteness. The modified AO potential does not have a local maximum.
On the other hand, a real effective potential has local maximum at around r = (σbR +
σlip)/2. This is because that, the lipid molecules around the bR prevent the contact
between bRs. That is, the modified AO potential does not contain the liquid structure of
lipid molecules. The ignorance of the liquid structure of solvents may change the phase
diagram. Therefore, the phase diagrams should be confirmed by simulation.

3.8 Summary

The phase diagrams of binary hard-disk systems were calculated to discuss the driving
force of bR crystallization. To study the effects of the core repulsive force between lipid
molecules as depletants, I calculated the phase diagram and CCR using the thermody-
namic perturbation theory with two effective interactions between bRs [70–72]. The
approach was entirely different from the study in section 2 based on the 2D–FVT ap-
proach [46]. The 2D–FVT approach has problem when q is very small. However, the
CCR obtained using the modified AO–TPT approach also showed good agreement with
the experimental results semi-quantitatively as with the 2D–FVT approach. Therefore,
the present results also support that the depletion effect arising from the lipid molecules
plays an essential role in the driving force of crystallization. In the future, I think that
verification by simulation should be necessary.
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Chapter 4

Conclusion

I assumed the driving force for the bR ordering as the depletion force of lipid molecules
and examined the validity of that assumption. Experiments conducted by M. P. Krebs
et. al. showed that bR monomers start to crystalize in 10.2 times higher bR packing
fraction than trimers. I explained this result by the depletion force theoretically. The bR
phase diagrams were calculated and the critical concentration ratio (CCR) was obtained
from the phase diagrams. The calculated CCRs were compared with experimental CCR.
The CCRs were obtained by two approaches, namely the two-dimensional free volume
theory (2D–FVT) and the thermodynamic perturbation theory with effective potential.
The results are summarized as follows, respectively.

First, I calculated the phase diagrams for the bR monomers and trimers by using 2D
―FVT approach. When the lipid molecules in the reservoir are modeled as ideal gas,
the fluid–ordered phase coexistence region does not expand and the critical concentra-
tion (CC) for the ordering stays high at the lipid packing fraction of the biomembrane,
namely 0.5. On the other hand, when the repulsive interaction between lipid molecules is
considered, the coexistence region expands, and the CC is very small at the lipid packing
fraction = 0.5. Therefore, it is indicated that the depletion force is strong enough to drive
the bR ordering when the repulsive interaction between lipid molecules is considered.
In addition, the CC for the monomer is higher than that for the trimer and the calculated
CCR agrees with the experimental CCR. These results indicate that the depletion force
of lipid molecules is the driving force for the bR ordering.

I adopted AO potential or modified AO potential as the effective potential, and phase
diagrams were obtained by using thermodynamic perturbation theory (TPT). The model
is the same as that adopted in the 2D―FVT approach. When I adopted the AO poten-
tial, which did not contain the repulsion between lipid molecules, the coexistence region
did not expand, and the CC did not decrease. On the other hand, When I adopted the
modified AO potential, which contain the repulsion between lipid molecules, the coex-
istence region expanded, and the CC was very small. As with the 2D―FVT approach,
it is indicated that the depletion force is strong enough to drive the bR ordering when
the repulsive interaction between lipid molecules is considered. In addition, the phase
diagrams shows that the CC for monomer is higher than that for the trimer, and the CCR
shows good agreement with experimental CCR. The results calculated by modified AO
―TPT approach also indicate that the depletion force of lipid molecules is the driving
force for the ordering.

I showed that the depletion force seems to be dominant for the bR ordering. However,
the model and the theory are very simple, and I ignore some aspects of bR crystalliza-
tion. First, I model the biomembrane as a lipid monolayer, although the biomembrane
is a lipid bilayer. Thus, the lipid number density is half of the real biomembrane, and
the depletion force seems to be half of the actual effective force. Second, I modeled
the bR as the disk which has a smooth surface, although the bR has a bumpy surface.
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Lipid molecules are in gap between the bumpy surfaces of two bRs [73]. Therefore, the
actual bR crystal has more lipid molecules than calculation in this thesis. According
to experimental research [74], the lipid molecules in the bR crystal may be important
for the crystallization. To examine the effect of these aspects on the bR crystallization,
further research must be done.
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Appendix A

Derivation of Semi-grand potential by free volume
theory

Here, I derive the semi-grand potential Ω
(
NbR,V,T,µlip

)
in eq. (). The 2D binary

hard disk system with the reservoir of lipid molecules is considered. Ω is obtained by
Legendre transformation of Helmholtz free energy F

(
NbR,V,T,Nlip

)
as follows

Ω
(
NbR,V,T,µlip

)
= F

(
NbR,V,T,Nlip

)
−µlipNlip (A.1)

where NbR is the number of bRs, V is the area of binary hard disk system, T is the
temperature, µlip is the chemical potential for the lipid molecules, and Nlip is the number
of lipid molecules. On the other hand, by differentiating Ω by µlip, the Nlip is obtained
as follows: (

∂Ω
∂ µlip

)
NbR,T,V

=−Nlip. (A.2)

Thus, Ω is also written as

Ω
(
NbR,V,T,µlip

)
= Ω0

(
NbR,V,T,µ0

lip

)
−
∫ µlip

µ0
lip

Nlipdµ ′
lip, (A.3)

where Ω0 and µ0
lip are the semi-grand potential and the chemical potential for the lipid

molecules in reference system. The bR pure system, i.e. Nlip = 0, is adopted as the

reference system. Here, Ω0

(
NbR,V,T,µ0

lip

)
= F (NbR,V,T ). I define the Helmholtz free

energy for the bR pure system as F0 (NbR,V,T ) Thus, the Ω is

Ω
(
NbR,V,T,µlip

)
= F0 (NbR,V,T )−

∫ µlip

−∞
Nlipdµ ′

lip. (A.4)

To calculate the integral, Widom insertion Theorem is adopted. The chemical potential
for hard disk is calculated by the theorem as follows:

µlip =C+kBTln
Nlip

⟨Vfree⟩
, (A.5)

where C is a constant, kB is the Boltzmann constant, and Vfree is the free volume for
one lipid molecule in the binary hard disk system. Here, the chemical potential for lipid
molecules in the reservoir,µ res

lip , is also written as follows:

µ res
lip =C+kBTln

Nres
lip⟨

V res
free

⟩ , (A.6)

where Nres
lip is the lipid number in the reservoir and V res

free is the free volume in the reservoir.
From the eqs. (A.5) and (A.6), an equation is obtained as follows:

Nlip = ⟨Vfree⟩ρ res
lip , (A.7)
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where ρ res
lip is the lipid number density in the reservoir. Substituting the eq. (A.7), the

eq.(A.4) is

Ω
(
NbR,V,T,µlip

)
= F0 (NbR,V,T )−

∫ µlip

−∞
⟨Vfree⟩ρ res

lip dµ ′
lip. (A.8)

To calculate the integral, the Gibbs-Duhem relation,

ρ res
lip dµlip = d pres (A.9)

is adopted. The eq. (A.8) is

Ω
(
NbR,V,T,µlip

)
= F0 (NbR,V,T )−⟨Vfree⟩ pres. (A.10)
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Appendix B

Derivation of free volume fraction, pressure and
chemical potential for bR pure system

B.1 Derivation of free volume fraction by scaled particle theory

Free volume fraction α is calculated by using scaled particle theory (SPT). The 2D
binary hard disk system with the reservoir of lipid molecules is considered. Adopting the
Widom insertion theorem, the chemical potential for the lipid molecule,µlip, is written
as follows

µlip =C+kBTln
Nlip

⟨Vfree⟩0
, (B.1)

where C is constant, kB is the Boltzmann constant, T is the temperature, Nlip is the
number of lipid, and ⟨Vfree⟩0 is the free volume for one lipid molecule in the bR pure
system. Here, I adopted an approximation that replace ⟨Vfree⟩ to ⟨Vfree⟩0. The µlip is also
written by using work, W , to insert one lipid molecule to the bR pure system as follows:

µlip =C+kBTln
Nlip

V
+W, (B.2)

where V is the area of binary hard disk system. Comparing the eqs. (B.1) and (B.2), an
equation is obtained as follows:

⟨Vfree⟩0
V

= exp [−βW] . (B.3)

W depends on the diameters of lipid molecule and bR. Here, the diameter of the lipid is
σ and that of the bR is 2R. To adopt the SPT, σ is scaled by an parameter λ . When λ
is small, the diameter of lipid is small. On the other hand, when λ is large, the diameter
of lipid is large. In the case of λ << 1, the overlap area of excluded volume can be
ignored, and the free volume fraction is

⟨Vfree⟩0
V

=
V − π

4 (2R+λσ)2 NbR

V
. (B.4)

Therefore, W is
W =−kBTln

[
1−ρbR

π
4
(2R+λσ)

]
, (B.5)

where ρbR is the number density of bR. In the case of λ >> 1, W is p-V work to create
a vacuum space for one lipid molecule. Thus, W is

W = p
π
4
(λσ)2 , (B.6)

wherw p is the pressure. The SPT assume that W (λ ) is the sum of W for λ << 1 and
λ >> 1 as follows:

W (λ ) =W (0)+
(

∂W
∂λ

)
λ=0

λ + p
π
4
(λσ)2 . (B.7)
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The first and second term in the right side are the Maclaurin expansion of W for λ << 1.
The third term is the W for λ >> 1. Substituting the p calculated by SPT, p = ρbRkBT

(1−ηbR)
2 ,

and λ = 1, W is

βW =−ln [1−ηbR]+
2ηbRq

1−ηbR
+

ηbRq2

(1−ηbR)
2 , (B.8)

where q is the diameter ratio σ/2R and ηbR is the packing fraction of bR. Thus, the free
volume fraction is as follows

⟨Vfree⟩0
V

= (1−ηbR)exp

[
− 2ηbRq

1−ηbR
− ηbRq2

(1−ηbR)
2

]
. (B.9)

B.2 Derivation of pressure and chemical potential for bR pure system in
fluid phase by scaled particle theory

Pressure for the bR pure system in the fluid phase is obtained by using scaled particle
theory. W to insert one bR to bR pure system is obtained by substituting q = 1 to eq.
(B.7) as follows:

βW =−ln [1−ηbR]+
2ηbR

1−ηbR
+βv0p0

f , (B.10)

where v0 is the area of one bR and p0
f is the pressure for bR pure system in the fluid

phase. Chemical potential for bR pure system in the fluid phase is as follows:

µ0
f = kBTlnΛ2 +kBTln

NbR

V
+W, (B.11)

where Λ is the thermal de Broglie wavelength in the 2D space, NbR is the number of bR.
Here, the Gibbs-Duhem relation,

ρbR

(
∂ µ0

f
∂ηbR

)
=

(
∂ p0

f
∂ηbR

)
, (B.12)

is adopted to eq.(B.11). The eq. (B.11) is(
∂β µ0

f
∂ηbR

)
=

∂
∂ηbR

(
ln

NbR

V

)
− ∂

∂ηbR

(
−ln [1−ηbR]+

2ηbR

1−ηbR

)
+v0

(
∂β p0

∂ηbR

)
=

1
ρbR

(
∂β p0

f
∂ηbR

)
.

(B.13)
Thus,

(
∂ p0

f v0
∂ηbR

)
is as follows:

(1−ηbR)

(
∂β p0

f v0

∂ηbR

)
=

1
1−ηbR

+
2ηbR

(1−ηbR)2 . (B.14)

Therefore, p0
f is

β p0
f v0 =

ηbR

(1−ηbR)2 . (B.15)

Substituting the eq. (B.15) to the eq. (B.10), W is

βW =−ln [1−ηbR]+
2ηbR

1−ηbR
+

ηbR

(1−ηbR)2 . (B.16)

The eq. (B.16) is substituted to the eq. (B.11), the chemical potential is

β µ0
f = ln

[
Λ2

vbR

]
+kBTln

[
ηbR

1−ηbR

]
+

2−ηbR

(1−ηbR)2 −2. (B.17)
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B.3 Derivation of pressure and chemical potential for bR pure system in
ordered phase

A partition function Q for bR ordered phase is calcluted by cell theory as follows:

Q =
⟨v∗⟩NbR

Λ2NbR
(B.18)

Here, v∗ is area where one bR center can move in the hexagonal lattice shown as red
zone in FIG. ??. The area of v∗ is

⟨v∗⟩= π(r−2R)2, (B.19)

where r is distance between bR centers and R is the radius of bR. The Helmholtz free
energy F is

F =−kBTlnQ =−NbRkBTln
[
π(r−2R)2]+NbRkBTlnΛ2. (B.20)

The eq.(B.20) is rewritten by packing fraction ηbR and close packing ηcp. When the bRs
construct hexagonal lattice, there are three bRs in the hexagon (FIG. ??). The area of the
hexagon is 3

√
3r2

2 . The area of bRs in the hexagon is 3vbR. Thus,

ηbR =
2vbR√

3r2
. (B.21)

At the close packing, r = 2R. Therefore,

ηcp =
π

2
√

3
≈ 0.907. (B.22)

Thus,
r

2R
=

√
ηcp

ηbR
. (B.23)

Here, I calculate the eq.(B.20) as follows:

F =−NbRkBTln
[

π(2R)2
( r

2R
−1
)2
]
+NbRkBTlnΛ2. (B.24)

Substituting the eq.(B.23) to eq. (B.24),

F =−NbRkBTln

[(√
ηcp

ηbR
−1
)2
]
+NbRkBTln

Λ2

4vbR
. (B.25)

Here, adopting the approximation,√
ηcp

ηbR
−1 ≈ 1

2

(
ηcp

ηbR
−1
)
, (B.26)

the eq. (B.25) is

F =−2NbRkBTln
[

ηcp

ηbR
−1
]
+NbRkBTln

Λ2

vbR
. (B.27)

Thus, pressure and chemical potential for bR pure system in ordered phase are obtained
by differentiating F as follows:

β p0
ordvbR =

2ηbR

1−ηbR/ηcp
, (B.28)

β µ0
ord = ln

[
Λ2

vbR

]
−2ln

[
ηcp

ηbR
−1
]
+

2ηcp

ηcp −ηbR
. (B.29)
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