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Chapter 1.  

General introduction 

Molecules containing heavy elements are utilized in various fields, such as catalysis, anti-

cancer agents, material for luminescence, and nuclear fuels. Nowadays, the importance of 

relativistic effects on these molecules is well recognized. Relativistic effects can be classified 

into spin-free and spin-dependent effects. Spin-free effects are also called scalar relativistic 

effects and mainly contribute to orbital contraction and expansion. An example of where these 

effects are essential role is in the trend of bond lengths in coinage element monohydrides. On 

the other hand, spin-dependent effects, which include spin-orbital coupling, are essential role in 

mainly molecular properties. For example, the absorption in the near-infrared region originating 

from the spin-forbidden transition of osmium complexes cannot be qualitatively reproduced 

without this effect. Therefore, in today's quantum chemical calculations, relativistic effects must 

be treated appropriately.  

Relativistic effects have added a new dimension to the concept of theoretical model 

chemistries originally was proposed by People and are introduced through the choice for 

Hamiltonian. These relativistic effects are most fundamentally described by the Dirac equation, 

which is the basic equation of relativistic quantum mechanics:[1] 

[
 
 
 
 

𝑉̂ 0 𝑝̂𝑧 𝑝̂𝑥 − 𝑖𝑝̂𝑦

0 𝑉̂ 𝑝̂𝑥 + 𝑖𝑝̂𝑦 −𝑝̂𝑧

𝑝̂𝑧 𝑝̂𝑥 − 𝑖𝑝̂𝑦 𝑉̂ − 2𝑐2 0

𝑝̂𝑥 + 𝑖𝑝̂𝑦 −𝑝̂𝑧 0 𝑉̂ − 2𝑐2 ]
 
 
 
 

[
 
 
 
 
Ψα
L

Ψβ
L

Ψα
S

Ψ𝛽
S
]
 
 
 
 

= 𝐸

[
 
 
 
 
Ψα
L

Ψβ
L

Ψα
S

Ψ𝛽
S
]
 
 
 
 

. (1. 1) 

This equation gives a wavefunction with four components as its solution. Among several 

relativistic methods, the method that treats all four components explicitly is called “four-

component method”. Alternative methods treating relativistic effects are so-called “two-

component method”. The two-component method is also widely used in quantum chemical 

calculations due to less computational demanding compare with four-component method. The 

four-component spinor in Eq(1.1) can be classified into large and small components. The large 

component is a large contribution to an electronic solution of Eq(1.1). On the other hand, the 

small component is a small contribution to an electronic solution but large contribution to a 

positronic solution. The two-component method uses only the degree of freedom of electrons 

decoupled from that of positrons. The two-component spinors used in this method are 
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transformed spinors that are decoupled from the degrees of freedom of positrons and thus are 

not identical to any parts of the original four components. Decoupling degree of freedom is 

accomplished by block diagonalization (approximately or exactly) of Dirac equation using 

transformation: 

𝐔𝐇D𝐔
† = [𝐇

+ 0
0 𝐇−

] . (1. 2)

A unitary transformation even satisfy exactly Eq(1.2) cannot be determined uniquely. There are 

many versions of two-component depending on the transformation matrix 𝐔. In two-component 

method, an inherit error which is called “picture-change error” (PCE) exists. PCE is caused by 

inconsistency of basis, and thus an artificial error. PCE affect molecular electron density 

especially near nuclear region. Nuclear shielding tensor is representative of a property for which 

the electron density near nucleus region is important. To calculate such a molecular property in 

solution phase accurately, picture-change correction can be regarded as one of key issues. 

To date, various electronic structure methods used in nonrelativistic quantum chemistry 

have been extended to relativistic four- and two-component Hamiltonian. For accurate 

description in solution phase, solvent effects must be treated. In modern quantum chemical 

calculation, development of method including relativistic effects, electron correlation, and 

solvent effects simultaneous is desired for accurately description of chemical phenomena of 

heavy element containing molecules.  Thus, development of a method that can handle both 

relativistic and solvent effects simultaneously can be regarded as an important issue in 

computational chemistry. In this thesis, two methods are proposed to develop a method that can 

handle both relativistic and solvent effects simultaneously: a hybrid method of four-component 

relativistic method and integral equation theory of molecular liquid and two-component method 

based on quasi-degenerate perturbation theory. In chapter 2, a hybrid method of four-component 

Dirac-Hartree-Fock and reference interaction site model self-consistent field (DHF/RISM-SCF) 

is presented as treating relativistic and solvent effects simultaneous. In chapter 3, application of 

DHF/RISM-SCF to chemical reaction is presented. In chapter 4, a two-component method 

based on QDPT was formulated.  
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Chapter 2.  

Solvent effects in four-component relativistic electronic 

structure theory based on the reference interaction-site 

model 

 

2.1 Introduction 
The relativistic molecular orbital theory is now one of the essential pieces in quantum chemical 

theory. Currently, it is well recognized that the relativistic effects have an important role in the 

electronic structure of molecules containing heavy elements. In particular, the scalar and spin–

orbit effects, which are classes of relativistic effects, affect the geometries, properties, and 

reactions of molecules through their effects on the shape of molecular orbitals and splitting of 

energy levels. Such relativistic effects are most naturally taken into account via the Dirac 

equation, which is the basic equation of relativistic quantum mechanics.[1] The Dirac equation 

gives four-component spinors as solutions describing the electrons and their anti-particles, the 

positrons. The methods based on the Dirac equation are called four-component methods, and are 

now widely used in quantum chemistry, along with the two-component methods. Nowadays, the 

relativistic Hartree–Fock (HF)[2–5], the density functional theory (DFT)[6,7], Møller–Preset 

perturbation[8–10], configuration interaction (CI)[11,12], and coupled-cluster (CC)[13] 

methods have been developed and standardly used. In addition to the HF, DFT, and HF-based 

single reference methods, multiconfiguration methods, such as the multiconfiguration self-

consistent field (MCSCF) method[14,15], multireference (MR) CI[16], MR perturbation[17–19], 

and MR CC[20] methods, were developed and are being used. Recently, the four-component 

full CI Monte Carlo[21] and density matrix renormalization group[22] were formulated. 

When considering chemical reactions in solution of molecules containing heavy atoms, 

solvent effects must be considered simultaneously with relativistic effects. The methods for 

incorporating the solvent effects on the four-component relativistic methods have been fairly 

limited to date, and a methods combined with the polarizable continuum model (PCM) has 

recently been proposed by Di Remigio et al.[23] They formulated a four-component relativistic 

self-consistent field (SCF) theory for a molecular solute described with the PCM for solvation. 

In their study, the four-component Dirac–Hartree–Fock and Kohn–Sham DFT methods were 
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combined with the integral equation formalism (IEF) PCM[24] to successfully determine the 

electronic structure of the solute and the continuum model of the solvent in a self-consistent 

manner. After being proposed, this method has been applied to the calculations of electron 

paramagnetic resonance and nuclear magnetic resonance (NMR) parameters, etc.[25] The four-

component relativistic polarizable embedding was also presented by Hedegård et al. in 

2017.[26] 

In the present article, we present the four-component Dirac–Hartree–Fock reference 

interaction-site model self-consistent field (DHF/RISM-SCF) method, which combines the 

relativistic four-component method with the reference interaction-site model (RISM), and its 

geometrical derivative have been formulated and implemented. RISM[27,28] is a statistical-

mechanical integral equation theory for molecular liquids, which is derived from the functional 

derivative of the grand potential for solute–solvent molecular pair interactions with respect to 

the density function. Features different from the PCM are that the RISM theory can account for 

intermolecular interactions such as hydrogen bond and that it can provide a solvation structure 

around the solute molecule. Furthermore, an analytical solvation free energy expression is 

known and can be evaluated based on a first-principles approach. These advantages have led to 

its use in the analysis of various chemical processes in solution.[28] A hybrid method of 

quantum chemical electronic structure and the RISM theories, called RISM-SCF method, was 

proposed by Ten-no et al., in 1993.[29,30] The coupled equations of the Hartree–Fock and 

RISM equations derived by them are solved self-consistently, and the electronic wave function 

of the solute molecule and the solvent distribution can be determined simultaneously. Following 

their study, the combination of the theories has been variously extended both in the electronic 

structure and integral equation theories.[31,32] Therefore, the RISM theory is also effective in 

introducing solvent effects into the relativistic electronic structure theory. The DHF/RISM-SCF 

method presented here, enables the simultaneous description of the detailed solute electronic 

structure based on the relativistic electronic structure theory and the solvation structure based on 

molecular theory. 

This chapter is structured as follows. The DHF/RISM-SCF method based on variational 

formalism as well as its analytical energy gradient method is presented in Section 2.2; the 

computational details are given in Section 2.3; the applications to several systems (the iodine 

ion I−, methyl iodide CH3I, and hydrogen chalcogenides H2X (O–Po) are discussed in Section 

2.4; and conclusions are drawn in Section 2.5. 
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2.2 Theory 

The RISM-SCF method is formulated as a variational problem for free energy, which was 

initially proposed by Sato et al.[31] for an MCSCF wave function. Here, we consider a system 

in which a quantum mechanical solute molecule is immersed in a solvent composed of classical 

molecules at infinite dilution. In this formulation, the basic equations are derived from the 

stationary conditions for the Helmholtz energy Lagrangian: 

𝐿(𝐂, 𝛇U, 𝑐, ℎ, 𝑡) = 𝐸U(𝐂) + Δ𝜇(𝐂, 𝑐, ℎ, 𝑡) + 𝛇U ⋅ 𝒆U(𝐂). (2. 1) 

The first term of the right-hand side in Eq. (1) represents the electronic energy of the solute 

molecule and 𝐂 is the set of the variational parameters in the wave function. The second term 

represents the excess chemical potential of solvation, and 𝑐, ℎ, and 𝑡 are the direct, total, and 

indirect correlation functions describing the solvent structure around the solute molecule, 

respectively. The third term corresponds to constrains on the parameters (𝐂) in the solute wave 

function; i.e., the orthonormality of orbitals and/or the normalization of the wave function. The 

symbols 𝒆U and 𝛇U are the sets of constrains and multipliers, respectively. 

The solute energy 𝐸U(𝐂) depends on the electronic structure method used, which will be 

discussed later. The form of the excess chemical potential Δ𝜇 depends on the closure employed. 

Several closures have been proposed and used, and each has its own advantages. Here, we use 

hypernetted chain (HNC) closures and its nth order partial series expansion. Then, the excess 

chemical potential is rewritten in Eqs. (2.2) and (2.3), as follows: 

Δ𝜇(𝐂, 𝑐, ℎ) =∑(Δ𝜇𝛼𝑠
HNC − 𝛽−1𝑛𝑠∫d𝐫𝛩(ℎ𝛼𝑠(𝑟))

(𝑡𝛼𝑠(𝑟) − 𝛽𝑢𝛼𝑠(𝐶, 𝜁, 𝑟))
𝑛+1

(𝑛 + 1)!
)

𝛼𝑠

= 𝛽−1∑𝑛𝑠
𝛼𝑠

∫d𝐫 [(1 − Θ(𝑡𝛼𝑠(𝑟) − 𝛽𝑢𝛼𝑠(𝑟)) )(exp(𝑡𝛼𝑠(𝑟) − 𝛽𝑢𝛼𝑠(𝑟)))

+Θ(𝑡𝛼𝑠(𝑟, 𝜆) − 𝛽𝜆𝑢𝛼𝑠(𝑟))(∑
1

𝑖!
(𝑡𝛼𝑠(𝑟) − 𝛽𝑢𝛼𝑠(𝑟))

𝑖
𝑛

𝑖=0

)

−𝑡𝛼𝑠(𝑟) − ℎ𝛼𝑠(𝑟)𝑡𝛼𝑠(𝑟) +
1

2
ℎ𝛼𝑠
2 (𝑟)]

−
𝛽−1

(2𝜋)3
∫d𝐤 [

1

2
∑ 𝑐̂𝛼𝑠(𝑘)𝑐̂𝛾𝑡(𝑘)𝜔̂𝛼𝛾(𝑘)Χ̂𝑠𝑡(𝑘) −∑𝑐̂𝛼𝑠(𝑘)𝜌𝑠ℎ̂𝛼𝑠(𝑘)

𝛼,𝑠𝛼,𝑠,𝛾,𝑡

] (2. 2)

 

Δ𝜇𝛼𝑠
HNC = 𝛽−1𝑛𝑠∫d𝐫 (

1

2
ℎ𝛼𝑠
2 (𝑟) − 𝑐𝛼𝑠(𝑟) −

1

2
ℎ𝛼𝑠(𝑟)𝑐𝛼𝑠(𝑟) ) , (2. 3) 

where Θ is the Heaviside function, 𝛽 is the inverse temperature, 𝑛𝑠 is the number density of site 

𝑠, and Δ𝜇𝛼𝑠
HNC is the excess chemical potential using the HNC closure. When 𝑛 is set to 1 in Eq. 

(2.2), Δ𝜇 corresponds to the Kovalenko–Hirata (KH) closure. 𝑐̂, ℎ̂, 𝜔̂, and Χ̂ denote the direct, 
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total, intramolecular correlation functions and solvent susceptibility in Fourier space. 𝑢𝛼𝑠 is an 

interaction potential between solute site 𝛼 and solvent site 𝑠 given as 

𝑢𝛼𝑠(𝑟) = 4𝜀𝛼𝑠 [(
𝜎𝛼𝑠
𝑟
)
12

− (
𝜎𝛼𝑠
𝑟
)
6

] +
𝑞𝛼𝑞𝑠
𝑟

, (2. 4) 

where 𝜀 and 𝜎 are the Lennard-Jones potential parameters with conventional meanings and 𝑞𝛼 

and 𝑞𝑠 are the effective point charge on solute site 𝛼 and solvent site 𝑠, respectively. 

Let us assume the HF method as the electronic structure method used in the RISM-SCF. In 

the HF method, the molecular orbital (MO) coefficients are the variational parameters, and the 

orthonormality of MOs is imposed as a constrain. The solute energy 𝐸U and the constrains with 

the multipliers are 

𝐸U = tr[(𝐡core + 𝐅)𝐂𝐂†]

= tr[(𝐡core + 𝐅)𝐃] (2. 5)
 

𝛇U ⋅ 𝒆U =∑𝜖𝑝𝑞(𝐶
†𝑆𝐶 − 𝐼)

𝑝𝑞
𝑝𝑞

, (2. 6) 

which are common regardless of the relativistic and nonrelativistic cases. Here, matrix 𝐂 stores 

the occupied MO coefficients, 𝐃 is the density matrix, and 𝐡core and 𝐅 are the core Hamiltonian 

and Fock matrices, respectively. Thus, the total Lagrangian of DHF/RISM-SCF can be rewritten 

as the sum of these terms, as follows. 

𝐿(𝐂, 𝛇𝑈, 𝑐, ℎ, 𝑡) = tr[(𝐡
core + 𝐅)𝐃] −∑𝜖𝑝𝑞(𝐶

†𝑆𝐶 − 𝐼)
𝑝𝑞

𝑝𝑞

+𝛽−1∑𝑛𝑠
𝛼𝑠

∫d𝐫 [(1 − Θ(𝑡𝛼𝑠(𝑟) − 𝛽𝑢𝛼𝑠(𝑟)) )(exp(𝑡𝛼𝑠(𝑟) − 𝛽𝑢𝛼𝑠(𝑟)))

+Θ(𝑡𝛼𝑠(𝑟, 𝜆) − 𝛽𝜆𝑢𝛼𝑠(𝑟)) (∑
1

𝑖!
(𝑡𝛼𝑠(𝑟) − 𝛽𝑢𝛼𝑠(𝑟))

𝑖
𝑛

𝑖=0

)

−𝑡𝛼𝑠(𝑟) − ℎ𝛼𝑠(𝑟)𝑡𝛼𝑠(𝑟) +
1

2
ℎ𝛼𝑠
2 (𝑟)]

−
𝛽−1

(2𝜋)3
∫d𝐤 [

1

2
∑ 𝑐̂𝛼𝑠(𝑘)𝑐̂𝛾𝑡(𝑘)𝜔̂𝛼𝛾(𝑘)Χ̂𝑠𝑡(𝑘) −∑𝑐̂𝛼𝑠(𝑘)𝜌𝑠ℎ̂𝛼𝑠(𝑘)

𝛼,𝑠𝛼,𝑠,𝛾,𝑡

] (2. 7)

 

Taking variations of the Lagrangian with respect to the correlation functions 𝑐𝛼𝑠, ℎ𝛼𝑠, and 𝑡𝛼𝑠 

and MO coefficients 𝐂, the stationary conditions for RISM-SCF can be obtained. The resulting 

equations obtained from the variations with respect to 𝑐𝛼𝑠, ℎ𝛼𝑠, and 𝑡𝛼𝑠 are the RISM equations: 

the relational equation between the total, direct, and indirect correlation functions, and the 

closure equation. The equation obtained from the variation with respect to 𝐂 is the RISM-SCF 

equation describing the electronic structure of the solute molecule surrounded by solvent: 
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𝜕𝐿

𝜕𝐂†
= (

δ𝐸U

δ𝐃
+
δΔ𝜇

δ𝐃
)
𝛿𝐃

𝛿𝐂†
 − 𝐒𝐂𝛜 = (

δ𝐸U

δ𝐃
+
δΔ𝜇

δ𝐃
)𝐂 − 𝐒𝐂𝛜 = 𝟎 , (2. 8) 

where, for later convenience, the variation is taken with respect to 𝐂† instead of 𝐂. The variation 

of 𝐸U with respect to the density matrix gives the Fock matrix in gas phase: 

δ𝐸U

δ𝐃
= 𝐅gas = 𝐡core + 𝐉 − 𝐊 (2. 9) 

𝐽𝜇𝜈 =∑𝐷𝜎𝜆(𝜇𝜈|𝜆𝜎) 

𝑙𝑘

(2. 10) 

𝐾𝜇𝜈 =∑𝐷𝜎𝜆(𝜇𝜎|𝜆𝜈) 

𝜎𝜆

, (2. 11) 

where 𝐉 and 𝐊 are the Coulomb and exchange integral matrices, respectively. The variation of 

Δ𝜇 with respect to the density matrix 𝐃 can be rewritten via the potential 𝑢𝛼𝑠 and the charges on 

the solute site, 𝛼, 𝑞𝛼: 

δΔ𝜇

δ𝐂†
=∑

δΔ𝜇

δ𝑢𝛼𝑠

𝜕𝑢𝛼𝑠
𝜕𝑞𝛼

δ𝑞𝛼
δ𝐃

𝜕𝐃

𝜕𝐂†
𝛼𝑠

=∑𝑞𝑠∫d𝐫
ℎ𝛼𝑠(𝑟) + 1

𝑟
𝜇𝛼𝑠

𝑏𝜈𝜇,𝛼𝐶𝜇𝑖 =∑𝑉𝛼𝑏𝜈𝜇,𝛼𝐶𝜇𝑖
𝛼𝜇

(2. 12) 

𝑉𝛼 =∑
δΔ𝜇

δ𝑢𝛼𝑠

𝜕𝑢𝛼𝑠
𝜕𝑞𝛼

𝑠

=∑𝑞𝑠∫d𝐫
ℎ𝛼𝑠(𝑟) + 1

𝑟
𝑠

 , (2. 13) 

where 𝑏𝜇𝜈,𝛼 is the matrix representation of the population operator for the solute site 𝛼. 

In the following, we use the relativistic four-component function as the HF wave function 

and derive the specific RISM-SCF equation. In the four-component method, MOs are expressed 

by large and small component spinors: 

𝜙𝑖 = (
𝜙𝑖
L

𝜙𝑖
S) , (2. 14) 

where each component is expanded by the 𝜒 basis spinors for each component: 

𝜙L =∑𝑐𝜇𝑖
L 𝜒𝜇

L

𝜇

,  𝜙S =∑𝑐𝜇𝑖
S 𝜒𝜇

S

𝜇

. (2. 15) 

The four-component matrices can be expressed as 

𝐃 = [𝐃
LL 𝐃LS

𝐃SL 𝐃SS
] (2. 16) 

𝐷𝜇𝜈
XY =∑𝐶𝜇𝑖

X (𝐶𝜈𝑖
Y )

∗

𝑖

(2. 17) 

𝐡core = [𝐕
LL 𝚷LS

𝚷SL 𝐕SS − 2𝑐2𝐒SS
] (2. 18) 

𝑉𝜇𝜈
XX = ⟨𝜒𝜇

X|𝑉|𝜒𝜈
X⟩ (2. 19) 

Π𝜇𝜈
XY = ⟨𝜒𝜇

X|𝑐𝛔 ⋅ 𝐩|𝜒𝜈
Y⟩ (2. 20) 
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𝑆𝜇𝜈
XX = ⟨𝜒𝜇

X|𝜒𝜈
X⟩ (2. 21) 

𝐉 = [
𝐉LL 0

0 𝐉SS
] (2. 22) 

𝐽𝜇𝜈 
XX =∑𝐷𝜎𝜆

LL(𝜒𝜇
X𝜒𝜈

X|𝜒𝜆
L𝜒𝜎

L) + 𝐷𝜎𝜆
SS(𝜒𝜇

X𝜒𝜈
X|𝜒𝜆

S𝜒𝜎
S)

𝜎𝜆

(2. 23) 

𝐊 = [𝐊
LL 𝐊LS

𝐊SL 𝐊SS
] (2. 24) 

𝐾𝜇𝜈 
XY =∑𝐷𝜎𝜆

XY(𝜒𝜇
X𝜒𝜎

X |𝜒𝜎
Y𝜒𝜆

Y)

𝜎𝜆

. (2. 25) 

The charge 𝑞𝛼 on solute site 𝛼 in Eq. (11) is determined by the electrostatic potential (ESP) 

method[33,34], so as to reproduce the electrostatic potential due to the solute electron and nuclei. 

The vector 𝐪 storing the point charges 𝑞𝛼 as elements is then given by 

𝐪 = Tr [𝐃LL (𝐚−1𝐁LL −
(𝟏t𝐚−1𝐁LL − 𝐒LL)

𝟏t𝐚−1𝟏
𝐚−1𝟏)]

+Tr [𝐃SS (𝐚−1𝐁SS −
(𝟏t𝐚−1𝐁SS − 𝐒SS)

𝟏t𝐚−1𝟏
𝐚−1𝟏)] (2. 26)

 

𝑎𝛼𝛽 = ∫d𝐫
1

|𝐫 − 𝐑𝛼||𝐫 − 𝐑𝛽|
(2. 27) 

𝐵𝜇𝜈
𝑋𝑋 = ∫d𝐫

1

|𝐫 − 𝐑𝛼|
∫d𝐫′𝜒𝜇

X∗(𝐫′)
1

|𝐫 − 𝐫′|
 𝜒𝜈
𝑋(𝐫′) . (2. 28) 

The variation of the site charge, Eq. (25), with respect to the density matrix gives the solvation 

potential matrix for solute site 𝛼: 

δ𝑞𝛼
δ𝐃

= [
𝐛𝛼
LL 𝟎

𝟎 𝐛𝛼
SS] , (2. 29) 

where 

𝐛XX = 𝐚−1𝐁XX −
(𝟏t𝐚−1𝐁XX − 𝐒XX)

𝟏ta−1𝟏
𝐚−1𝟏. (2. 30) 

The solvation Fock matrix is defined as the sum of the gas-phase Fock matrix and solvation 

potential matrix: 

𝐅solv = [𝐅
LL,gas + 𝐕LL,solv 𝐅LS,gas

𝐅SL,gas 𝐅SS,gas + 𝐕SS,solv
] , (2. 31) 

where 

𝐕XX,solv =∑𝑉𝛼𝐛𝛼
XX

𝛼

. (2. 32) 

Thus, we finally obtain the DHF/RISM-SCF equation as an eigenvalue problem: 

𝐅solv𝐂 = 𝐒𝐂𝛜. (2. 33) 
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Due to the variational formalism, energy derivatives, in particular first-order derivatives, 

can be concise, as shown by Sato et al.[31] The first-order derivative of the Helmholtz energy 

with respect to the solute molecular coordinates 𝐑𝑎 is expressed simply as 

𝜕𝐴

𝜕𝐑𝑎
=
𝜕𝐸U

𝜕𝐑𝑎
+

1

2𝛽(2𝜋)3
∑∫d𝐤 𝑐̂𝛼𝑠(𝑘)𝑐̂𝛾𝑡(𝑘)

𝜕𝜔̂𝛼𝛾(𝑘)

𝜕𝐑𝐴
Χ̂𝑠𝑡(𝑘)

𝛼𝛾𝑠𝑡

+∑𝑉𝛼tr (𝐃
𝜕𝐛𝛼
𝜕𝐑𝐴

)

𝛼

. (2. 34) 

The first term of the right-hand side of Eq. (2.34) corresponds to the change in the solute 

electronic energy; the second term corresponds to the change in the solute–solvent distribution 

function due to the modification of the intramolecular correlation; and the last term corresponds 

to the change in partial charge on solute sites. The analytical energy gradients for the four-

component relativistic DHF/RISM-SCF are obtained by replacing the nonrelativistic molecular 

integral with four-component ones. 

 

2.3 Computational details 
To demonstrate the present method, we applied it to the ground states of the I− ion, to methyl 

iodide CH3I, and to hydrogen chalcogenides H2X (X = O, S, Se, Te, and Po) in aqueous solution. 

The basis sets used in the DHF calculations were the uncontracted correlation-consistent 

valence triple zeta (cc-pVTZ) basis set for C, H, O, and S[35,36], and the uncontracted Dyall’s 

triple zeta plus polarization (TZP) basis set for Se, Te, I, and Po.[37] The geometries of CH3I 

and H2X in the solution were optimized at the DHF/RISM-SCF level. 

The parameters used in the RISM-SCF method were as follows. The temperature and 

density of solvent water were 298 K and 0.03334 molecules Å–3, respectively. The LJ 

parameters   and  for the solute and solvent sites are listed in Table 1.[38] For H2Po, the LJ 

parameters for the H of silane (H4Si) were used[39] to ensure proper charge polarization 

between H and Po. The transferable intermolecular potential with three points (TIP3P) 

parameter set[40] for the geometrical and potential parameters for solvent water was used with 

modified H parameters. There were 2048 grid points with a spacing of 0.05 Å for pair 

correlation functions in the RISM calculations. PCM-SCF calculations were performed by 

DIRAC19.[41],[42] 

2.4 Applications 

2.4.1 The iodine ion (I−) and methyl iodide (CH3I) 

The electronic structure and solvation structure of the iodine ion (I−) and methyl iodide (CH3I) 

were evaluated by the relativistic and nonrelativistic HF/RISM-SCF methods. In Table 2, the 

Helmholtz energy and its components obtained by relativistic and nonrelativistic methods for I− 

and CH3I are compared. 
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The solvation free energy (SFE) 𝐴slv in the RISM-SCF method is defined as the difference 

between the Helmholtz energy in solution phase 𝐴 and the energy in the gas phase 𝐸gas: 

𝐴slv = 𝐴 − 𝐸gas = 𝐸U − 𝐸gas + Δ𝜇. (2. 35) 

The energy difference, 𝐸U − 𝐸gas, in the right-hand side can be regarded as the electronic 

reorganization energy 𝐸reorg due to the solvation, and the excess chemical potential Δ𝜇 can be 

divided into the electrostatic Δ𝜇ES and the nonelectrostatic Δ𝜇NES components; hence, 𝐴slv is 

further rewritten as 

𝐴slv = 𝐸reorg + Δ𝜇ES + Δ𝜇NES. (2. 36) 

As shown in Table 2.2, I− is strongly stabilized due to the solvation because of its ionic 

nature. The major contribution to this stabilization is the electrostatic interaction with the 

solvent water. Since I− consists of only one site, all the electron charges are assigned to the 

single site. As a result, the solute–solvent interaction potential for the RISM calculation is the 

same in both relativistic and nonrelativistic calculations. Therefore, the SFE values are identical 

in both cases. By contrast, the SFE of CH3I, a polyatomic molecule, is affected by the 

relativistic effects. In the DHF/RISM-SCF framework, the relativistic effects on electronic states 

of the solute molecule influence the solute–solvent interactions through effective charges on 

solute atoms. Moreover, the solvation structure changed by relativistic effects also affects the 

electron reorganization energy of the solute molecule. In the present calculation, the relativistic 

effects seem to suppress the electrostatic interaction between solute and solvent molecules and 

therefore the magnitude of all the SFE components becomes smaller than those of 

nonrelativistic results. Consequently, the total SFE of the relativistic calculation, 11.96 kcal mol–

1, was slightly lower than the nonrelativistic one, 12.00 kcal mol–1. The optimized molecular 

structure and electrical properties of solute CH3I are summarized in Table 2.3. As can be seen in 

the table, the C–I distance and the dipole moment of the solute CH3I become smaller due to the 

relativistic effects. Such structural and electrostatic character weakens the solute–solvent 

interactions. 

The radial distribution functions (RDFs)[43] between the I ion/atom of the solute and the O 

and H atoms of the solvent by DHF/RISM-SCF are shown in Figure 1. For I−, the RDF for I–O 

has a sharp high peak at r = 3.4 Å and the RDF for I–H has a sharp high peak at r = 2.15 Å and 

a relatively low peak at r = 4.15 Å. In CH3I, the RDF for I–O has a high peak at r = 3.50 Å, and 

the RDF for I–H has a shoulder around r = 2.70 Å and a peak at r = 4.20 Å. These peaks and the 

shoulder correspond to water molecules in the first solvation shell. The peaks of CH3I are 

featured to be lower and broader than those of I−. These results indicate tight hydration around 

the charged I− ion and loose hydration around I of the neutral molecule CH3I. 
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The difference between the RDFs of CH3I by the relativistic and nonrelativistic RISM-SCF 

is shown in Figure 2.2. The RDFs of I− are not shown because they are identical for relativistic 

and nonrelativistic, as discussed above. From the figure, the first peak height of the RDF in the 

relativistic case is slightly lower than in the nonrelativistic case. This feature corresponds to the 

SFE behavior discussed above; i.e., the introduction of the relativistic effects weakens the 

solute–solvent interaction. 

In contrast to the solvation structures, which differ little between the relativistic and 

nonrelativistic cases, the electronic structures of I− and CH3I are naturally different due to the 

relatively large spin–orbit interaction. Figure 2.3(A) and (B) present the energy levels of the 

four highest energy orbitals (including degeneracy) of I− and CH3I, respectively. In the charged 

system I−, the 5p3/2, 5p1/2 and 5s orbitals are significantly stabilized by −0.2989. The MOs of 

CH3I corresponding to these orbitals of I− are the highest occupied MO (HOMO) (9e; 

characterized as 5πI), HOMO−1 (9e′; 5𝜋I
′), HOMO−2 (13a1; CH), and HOMO−5 (12a1; 5sI). 

The stabilizations of these energy levels are relatively small, namely: −0.0346, −0.0338, z, and 

−0.0290 a.u., respectively, as expected for a neutral molecule. 

2.4.2 Hydrogen chalcogenide H2X (X = O, S, Se, Te, and Po) 

Another example is the series of hydrogen chalcogenides. The structural parameters of the H2X 

molecules in the gas phase and in water, which were optimized using the DHF/RISM-SCF and 

DHF/PCM-SCF methods, are shown in Table 4. These molecules have also been examined in 

the relativistic PCM-SCF study.[23] This study reported that bond lengths increase 

monotonically with increasing chalcogen atomic number in correlation with the size of the 

central atom, and that there is no deviation from this trend even when relativity is included and 

the solvent effect is considered. The DHF/RISM-SCF method provides similar results. The 

structures by DHF/RISM-SCF and DHF/PCM-SCF methods in the table are quite close to each 

other, with a maximum difference of 0.04 Å in bond distance and 2.5 in bond angle. For the 

bond distance, the DHF/RISM-SCF method tends to have a slightly larger distance, and for the 

bond angle, the DHF/RISM-SCF method tends to have a slightly smaller angle. The solvent 

effect on the solute structure was smaller with the DHF/RISM-SCF method than with 

DHF/PCM-SCF. In fact, even for H2O, where the change in electric dipole moment due to 

solvation, as will be shown later, is large: the changes are +0.005 Å for bond distance and −0.3 

for bond angle. This is much the same for the DHF/PCM-SCF method. 

The Helmholtz energies, as well as the SFEs and their components, for H2X (X = O, S, Se, 

Te, and Po) are shown in Table 2.5. The Helmholtz energies and SFEs by the DHF/PCM-SCF 

method are also listed. The nonelectrostatic contributions to the SFEs were not included because 
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the nonelectrostatic energy is not handled in the current PCM implementation of the program 

package (DIRAC). Hence, the SFEs by the DHF/PCM-SCF method are the sum of 𝐸reorg and 

Δ𝜇ES. For this reason, direct comparison between the total SFEs 𝐴slv by the DHF/PCM-SCF 

and DHF/RISM-SCF methods is not appropriate, and only the electrostatic and electronic 

reorganization energies are compared below. Table 2.6 lists the z components of the electric 

dipole moments and the electrostatic potential (ESP) charge on the X atom of the solute 

molecule. The H2X molecules have a C2v symmetry, and thus only the z component of the dipole 

moment has a value. 

The SFE by the DHF/RISM-SCF method is negative (−5.31 kcal/mol) for H2O and 

positive (6.95–14.94 kcal/mol) for the other molecules, increasing with the atomic number of 

chalcogen. The electrostatic and nonelectrostatic components of the SFE increase from H2O to 

H2Po: the electrostatic component increases from −18.17 kcal/mol for H2O to −0.22 for H2Po, 

and the nonelectrostatic component increases from 6.82 kcal/mol for H2O to 15.07 for H2Po. By 

contrast, the reorganization energy, is smaller than these two energies, decreasing from 6.04 to 

0.99 kcal/mol. According to Table 6, the magnitude of the electric dipole moment and ESP 

charge decrease with increasing chalcogen atomic number, indicating that the polarity of the 

molecules reduces with increasing chalcogen atomic number. The SFE results correspond to the 

magnitude of the molecular polarity. That is, the larger the polarity of the molecule, the larger 

the magnitude of the electrostatic component and the reorganization energy, and the smaller the 

magnitude of the nonelectrostatic component. For H2O, the most polar molecule, the 

electrostatic component of –18.17 kcal/mol is dominant, and the nonelectrostatic component 

and reorganization energy are of similar magnitude, 6.82 and 6.04 kcal/mol, respectively. By 

contrast, for H2Po, the least polar molecule, the nonelectrostatic energy of 15.07 kcal/mol is 

dominant, and the electrostatic component and reorganization energy are very small, −0.22 and 

0.09 kcal/mol, respectively. Both the electrostatic component and reorganization energy are 

rather smaller by the DHF/PCM-SCF method than by the DHF/RISM-SCF method. Even for 

H2O, which has the largest magnitude, the electrostatic component and reorganization energy 

are −6.28 and 0.67 kcal/mol, respectively. Note that comparing the dipole moments of RISM 

and PCM in Table 6, the DHF/RISM-SCF values are larger than those of DHF/PCM-SCF. The 

maximum difference is 0.306 a.u. for H2Se, while the difference is relatively small for H2Po 

with different polarity, 0.015 a.u. The overestimation may be attributed to the fact that the 

RISM-SCF method overestimates the polarization of solute molecules in polar solvents when 

using the point-charge representation.[44] 

The RDFs by the DHF/RISM-SCF method are shown in Figure 4(A)–(D). The RDFs of 
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H2S, H2Se, and H2Te were similar, indicating that the RDF features can be classified into three 

groups: H2O, H2S–H2Te, and H2Po. In all the RDFs, the peak heights decrease with increasing 

chalcogen atomic number. This reflects the fact that the solute–solvent interaction weakens with 

increasing chalcogen atomic number, as can be seen from the polarity of the solute molecules in 

Table 6. 

The RDF, 𝑔X−H, between X of the solute and H of the solvent (Figure 4(A)) shows a 

conspicuous peak at 1.80 Å for H2O, but there are no corresponding peaks for the other 

molecules; the second peak for H2O corresponds to the first peaks of the other molecules. These 

first peaks are at shorter distances than the first RDF peak between X of the solute and O of the 

solvent (Figure 4(B)) in the case of H2O–H2Te, and at about the same distance for H2Po. This 

indicated that for H2O, there is distinct hydrogen bond formation between O of the solute and H 

of the solvent; for H2Po, the solvent waters take a nearly random orientation with respect to Po; 

and for H2S, H2Se, and H2Te, the solvent waters are roughly oriented with H toward the X of the 

solute. 

For the four molecules H2O–H2Te the RDFs, 𝑔H−O, between H of the solutes and O of the 

solvent in Figure 4(D) have a peak at about 2 Å, and the RDFs, 𝑔H−H, between H of the solute 

and H of the solvent in Figure 4(C) have a peak or shoulder at about 2.5 Å. These indicate the 

hydrogen bond formation between solute H and solvent O for the three molecules. In contrast, 

there is no peak at a similar position in H2Po, and 𝑔H−O has a small peak around 𝑟 = 3.1 Å, 

indicating that H of the solute and O of solvent are loosely bound without forming an obvious 

hydrogen bond. 

 

2.5 Conclusions 
We have presented the DHF/RISM-SCF method, which is the initial implementation of a 

combined method of a four-component relativistic theory and an integral equation theory of 

molecular liquid to consider both the relativistic and the solvent effects on the electronic 

structure of solvated molecules. The method was formulated as a variational form of the 

Helmholtz energy, and the analytic energy gradients were also derived using the variational 

property. 

We have applied the DHF/RISM-SCF method to iodine ion I−, methyl iodide CH3I, and 

hydrogen chalcogenide H2X (X = O–Po) in aqueous solutions. For I− and CH3I, the SFEs and 

their components, and the RDFs of solvent around the I atoms were shown and discussed. For 

species with no or small charge bias, the absolute reorganization energy was very small, and the 

signs of the SFEs were determined by the electrostatic energy in  for I− and by the 
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nonelectrostatic energy in  for CH3I. The solvation structures for I− and CH3I around the I 

atom were similar for the peak and shoulder positions, whereas the peak heights were different 

due to the charge differences. The comparison with the nonrelativistic HF/RISM-SCF results 

indicated that changes in solvation structure due to relativistic effects were relatively small. In 

contrast, for the electronic structures of solute, such as the orbital energy levels, the relativistic 

description using the DHF/RISM-SCF method was essential. For H2X, the molecular structures, 

SFE and their components, the electric dipole moment and ESP charges of the solute, and the 

RDF of solvent around the X and H atoms were computed and discussed focusing mainly on the 

differences due to the heavy atom X. As shown by the dipole moment results, the polarity of 

molecule decreased with increasing chalcogen atomic number. Consequently, the SFE increased, 

and the electrostatic energy decreased in its absolute value. The solvation structures of H2X 

were classified into three groups: H2O, H2S–H2Te, and H2Po. In H2O, both the O and H atoms 

formed hydrogen bonds with solvent water. In H2Po, by contrast, the solvent water took nearly 

random orientations around the Po atom of the solute. The H atom of the solute and the O atom 

of the solvent were loosely bound without forming an obvious hydrogen bond. In other 

molecules, hydrogen bond formation was observed between the H of the solute and the O atom 

of the solvent, and the solvent waters were roughly oriented with the H atom toward the heavy 

element of the solute. Overall, it can be said that the DHF/RISM-SCF method appropriately 

introduces solvent effects to the four-components relativistic electronic structure theory. 

The present DHF/RISM-SCF method can be extended in both the four-component 

relativistic electronic structure theory of solute molecules and the solvent model. Though the 

electron correlation effect is not so large for the molecular systems treated in the present article, 

the combination with electron correlation methods is crucial, especially for the precise 

description of the electronic structure of solute molecules, the quantitative description of 

chemical reactions, and their application to quasidegenerate systems. For full variational 

electronic structure methods, such as the four-component KS-DFT and MCSCF methods, the 

variational approach to the Helmholtz energy is applicable, as described in the Methods section. 

Additionally, for nonvariational electron correlation methods, such as the four-component 

perturbation and coupled-cluster methods, the formulation procedure using a Lagrangian in the 

RISM-SCF method is now well established. For solvent models, more accurate models such as 

three-dimensional (3D) RISM[45,46] and the molecular Orenstein–Zernike (MOZ)[47,48] 

model that are compatible with the four-component relativistic method describing fine 

electronic structures of solutes, are desired. The 3D-RISM theory explicitly incorporates the 

orientation of one molecule in the two-body interaction between molecules, and the MOZ 
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theory explicitly incorporates the orientations of both molecules, resulting in the 3D-RISM-

SCF[49],[50] and MOZ-SCF[51],[32] methods using these models to refine the description of 

solute–solvent intermolecular interactions. Those developments are currently in progress. 
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Table 2.1 LJ parameters of solute and solvent sites used in the RISM-SCF calculations  

 σ / Å ε / kcal mol−1 q / ea 

I– and CH3I    

C 3.3997 0.1094 – 

H 2.4714 0.0157 – 

I 3.8309 0.5 – 

H2X (X=O–Po)    

H (expect for H2Po) 1.0000 0.056 – 

H (for H2Po) 2.886 0.325 – 

O 3.166 0.1554 – 

S 4.035 0.274 – 

Se 4.205 0.291 – 

Te 4.009 0.339 – 

Po 4.709 0.325 – 

Solvent water    

O 3.166 0.1554 −0.8476 

H 1.0000 0.056 0.4238 

a The partial charges on solute sites are determined as a result of the RISM-SCF calculation. 
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Table 2.2 Helmholtz energy and solvation free energy for I− and CH3I, and their component 

decomposition 

 I− CH3I 

 Relativistic Nonrelativistic Relativistic Nonrelativistic 

A / Hartree −7116.25060 −6918.21333 −7155.65459 −6957.60014 

EU −7116.11102 −6918.07374 −7155.67243 −6957.61794 

 −0.13959 −0.13959 0.01784 0.01780 

Aslv / kcal mol−1 –87.59 –87.59 11.96 12.00 

μNES 7.30 7.30 14.40 14.41 

μES –94.89 –94.89 –3.21 –3.24 

Erorg < 10-3 <10–3 0.76 0.83 
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Table 2.3 Optimized geometrical parameters, z component of electric dipole moment, and ESP 

charge for CH3I 

 Relativistic Nonrelativistic 

 GAS RISM GAS RISM 

r(C–I) / Å 2.143 2.155 2.144 2.157 

r(C–H) / Å 1.075 1.073 1.075 1.073 

∠ICH / degree 107.5 106.6 107.7 106.7 

DM(z) / a.u. −0.763 −1.080 −0.821 −1.155 

qI / e −0.128 −0.185 −0.146 −0.210 

qC / e −0.402 −0.495 −0.344 −0.378 

qH / e 0.177 0.226 0.164 0.196 
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Table 2.4 Optimized geometrical parameters for H2X (X = O–Po) 

 GAS RISM PCM 

X r / Å / degree r / Å  / degree r / Å   / degree 

O 0.940 105.9 0.945 105.6 0.944 104.9 

S 1.329 94.1 1.330 96.1 1.331 94.9 

Se 1.451 92.9 1.449 95.2 1.452 93.7 

Te 1.649 92.1 1.645 93.9 1.649 92.6 

Po 1.742 90.7 1.742 90.3 1.746 90.0 
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Table 2.5 Helmholtz energy and solvation free energy for H2X (X = O–Po), and their component decomposition 

 H2O H2S H2Se H2Te H2Po 

 RISM PCM RISM PCM RISM PCM RISM PCM RISM PCM 

A / Hartree –76.1209 –76.1218 –399.8201 –399.8352 –2429.7964 –2429.8143 –6795.0666 –6795.0840 –22238.6862 –22238.7121 

EU –76.1041 –76.1118 –399.8269 –399.8306 –2429.8077 –2429.8106 –6795.0794 –6795.0813 –22238.7099 –22238.7093 

Δμ –0.0167 –0.0100 0.0068 –0.0046 0.0113 –0.0037 0.0127 –0.0027 0.0237 –0.0028 

Aslv / kcal mol−1 –5.31 –5.61 6.95 –2.53 9.13 –2.06 8.78 –1.59 14.94 –1.61 

NES 6.82 - 10.48 - 11.27 - 9.46 - 15.07 - 

ES –18.17 –6.28 –6.36 –2.90 –4.38 –2.32 –1.67 –1.72 –0.22 –1.75 

Erorg 6.04 0.67 2.83 0.37 2.24 0.25 0.99 0.13 0.09 0.14 
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Table 2.6 z Component of electric dipole moment and ESP charge on X for H2X (X = O–Po) 

 H2O H2S H2Se H2Te H2Po 

GAS      

DM(z) / a.u. 0.781 0.449 0.307 0.115 –0.229 

q / e –0.741 –0.319 –0.226 –0.116 0.033 

RISM      

DM(z) / a.u. 1.137 0.861 0.732 0.464 –-0.342 

q / e –1.056 –0.553 –0.446 –0.268 0.080 

PCMa      

DM(z) / a.u. 0.903 0.584 0.426 0.191 –0.327 

a Reference 23. 
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Figure 2.1 Radial distribution functions between the I atom and solvent water 
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Figure 2.2 Difference between the relativistic and nonrelativistic radial distribution 

functions for CH3I 
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Figure 2.3 Energy levels of (A) 5p orbitals of I− and (B) 5p orbitals of I in CH3I 
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Figure 2.4 Radial distribution functions between H2X and solvent water 
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Chapter 3.  

Application of reference interaction site model self-

consistent field method based on Dirac–Hartree–Fock 

wave function to chemical reaction 

 

3.1 Introduction 

For the electronic structure of molecules containing heavy elements, relativistic effects 

play an important role. Nowadays it is widely known that both the scalar and spin-orbit effects 

are important for the geometries and properties of molecules. There are several methods to treat 

these relativistic effects theoretically. Among them, the four-component method[52] based on 

the Dirac equation is one of the most suitable methods for treating relativistic effects because it 

is based on the basic equation of relativistic quantum mechanics. Therefore, many methods for 

describing electronic structure, including the electron correlation methods, have been transferred 

to the relativistic four-component level. 

For molecules in the solution phase, solvent effects also play an important role. Among the 

various solvation models, the polarizable continuum model (PCM)[53,54] is one of the most 

widely used approaches. In the PCM approach, the solvent molecules are considered as a 

continuum medium. In 2015, Di Remigio et al.[23] presented a formulation of four-component 

relativistic self-consistent field (SCF) theory for a molecular solute described within the PCM 

for solvation, and successfully applied to systems heavy-element containing. However, the PCM 

approach lacks microscopic solute–solvent interactions such as hydrogen bonds. A method that 

can handle such microscopic interactions is the reference interaction site model self-consistent 

field (RISM-SCF) method[29,30], which combines the electronic structure theory with the 

reference interaction site model[28,43], an integral equation theory of molecular liquids.  

In chapter 2, we have proposed the RISM-SCF based on the Dirac–Hartree–Fock (DHF) 

method, one of the four-component relativistic molecular orbital methods. This method can 

simultaneously calculate the precise electronic structure of molecules, including relativistic 

effects, with the DHF method and the solvent structure with the RISM theory. In this chapter, 

we present the application of this method to a chemical reaction involving heavy atoms, namely, 

a Menshutkin reaction NH3 + CH3I → NH3CH3
+ + I− in aqueous solution. 
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3.2 Computational detail 

Reaction coordinate 𝑑 of this reaction was defined as the difference between internuclear 

distance between carbon and iodide 𝑟C−I and internuclear distance between carbon and nitrogen 

𝑟C−N: 

𝑑 = 𝑟C−I − 𝑟C−N (3. 1) 

To construct free energy surface along the reaction coordinate, constrained geometry 

optimization was performed at non-relativistic HF/cc-PVDZ-PP level with fixed reaction 

coordinate. Then, single point energy calculation was performed at each geometry by 

DHF/PCM-SCF and DHF/RISM-SCF. To including solvent effects in reaction coordinate, 

solvation model based on density (SMD) [55] was employed in constrained geometry 

optimization. Lennerd-Jones parameters are shown in Table 3.1. The basis sets used in the DHF 

calculations were the uncontracted Dyall’s double zeta basis for iodide and uncontracted 

correlation-consistent valence double zeta (cc-pVDZ) for other elements.  

 

3.3 Results and discussion 

Figure 3.1(A) shows the Helmholtz energies 𝐴  along the reaction coordinate 𝑑  by the 

DHF/RISM-SCF and DHF/PCM-SCF methods, where 𝐴 is shifted so that the energy of the 

reactant NH3 + CH3I in gas phase is zero. RISM-SCF gives a larger Helmholtz energy than 

PCM-SCF on the reactant side, while giving a smaller Helmholtz energy on the product side. 

The reaction is exergonic, and the reaction free energies are 47.37 kcal mol−1 and 33.42 kcal 

mol−1 for RSIM-SCF and PCM-SCF, respectively. Solvent effects decrease activation free 

energy and TS more reactant side. This is because the solutes are ionized in the product state 

due to charge separation, which enhances the solute-solvent interaction and stabilizes the 

product state. RISM describes hydrogen bonds between solutes and solvents well, however 

PCM underestimates them, therefore RISM has a greater stabilization of the product state 

compared with the PCM case. Due to the larger reaction free energy, the transition state (TS) of 

RISM-SCF is located more on the reactant side than that of PCM-SCF, at 𝑑 = 0.0 Å for RISM-

SCF and at 0.3 Å for PCM-SCF. The activation free energies are 7.23 and 12.94 kcal amol−1 for 

RISM- and PCM-SCF, respectively. Note that the activation energy, 23.5 kcal mol−1, 

determined by kinetic analysis, was reported for this reaction by Okamoto et al.[56,57] although 

it is different from the activation free energy and therefore cannot be directly compared.  

Figure 3.1(B) shows the components of A by RISM-SCF, where 𝑬𝐠𝐚𝐬 is shifted so that 𝑬𝐠𝐚𝐬 

of the reactant is zero. 𝑬𝐠𝐚𝐬  has a very shallow first minimum and a second minimum, 

corresponding to the dipole-bound complex and ion pair, respectively, as usual Menshutkin 

reaction profiles in the gas phase show. The very shallow first minimum is due to the very small 

dipole moment of CH3I. This energy is destabilized by the nearly constant 𝜟𝝁𝐍𝐄𝐒 and by 𝑬𝐫𝐞𝐨𝐫𝐠 
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while stabilized by 𝜟𝝁𝐄𝐒. The stabilization by 𝜟𝝁𝐄𝐒 is particularly pronounced after TS, where 

the charges are separated. Table 3.2 shows the Helmholtz energies A by RISM-SCF and their 

components at the reactant, TS (d = 0.0 Å), and the product. In the reactant, which is a pair of 

neutral molecules, 𝑬𝐫𝐞𝐨𝐫𝐠  and 𝜟𝝁𝐄𝐒  are relatively small (3,88 and −13.55 kcal mol−1, 

respectively) and 𝜟𝝁𝐍𝐄𝐒 is dominant (21.93 kcal mol−1). In the TS, 𝑬𝐠𝐚𝐬 increases relative to the 

reactant (11.17 kcal mol−1) and 𝑬𝐫𝐞𝐨𝐫𝐠 also increases in response to the increase in charge bias 

(8.89 kcal mol−1). 𝜟𝝁𝐄𝐒  also becomes large (−21.90 kcal mol−1) as in 𝑬𝐫𝐞𝐨𝐫𝐠 , but is still 

comparable to 𝜟𝝁𝐍𝐄𝐒 (21.33 kcal mol−1) because the charges are not sufficiently well separated. 

This may be due to the fact that the TS is on the reactant side in the Helmholtz energy profile. In 

contrast, in the product, 𝑬𝐠𝐚𝐬 increases significantly (95.27 kcal mol−1) due to charge separation, 

while  𝑬𝐫𝐞𝐨𝐫𝐠 is relatively small (0.87 kcal mol−1) because the system has already been separated 

into ions. In the product, which is a pair of ions, 𝜟𝝁𝐄𝐒 is very large (−152.50 kcal mol−1) and 

greatly stabilizes the system, outweighing the destabilization of 𝑬𝐠𝐚𝐬. 

The data in the figures and the table as a whole well illustrate the characteristics of the 

Menshutkin reaction, which is endergonic due to the charge separation and shows a late TS in 

the gas phase, but results in an early TS due to the large stabilization of the ionic product by the 

solvent. 

 

3.4 Conclusion 

We have presented an application of the RISM-SCF method, based on four-component 

relativistic electronic structure theory, to a chemical reaction. We constructed Helmholtz energy 

profiles of a Menshutkin reaction NH3 + CH3I → NH3CH3
+ + I− and conducted component 

analysis. The reaction profile by the RISM-SCF method well described the characteristics of the 

Menshutkin reaction, and the component analysis revealed the contributions of the effects of 

electron reorganization and electrostatic and non-electrostatic interactions. The DHF/RISM-

SCF method has proven to be one of the effective methods for analyzing chemical reactions of 

systems containing heavy atoms such as iodine. Although the current method does not include 

the electron correlation effect in molecules, the development of RISM-SCF based on four-

component electron correlation methods is in progress. 
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Table 3.1 LJ parameters of solute and solvent sites used in the RISM-SCF calculations  

 σ / Å ε / kcal mol−1 q / ea 

NH3 and CH3I    

C 3.3997 0.1094 – 

H(CH3) 2.4714 0.0157 – 

I 3.8309 0.5000 – 

N 3.2500 0.1700 – 

H(NH3) 1.0691 0.0157 – 

Solvent water    

O 3.166 0.1554 −0.8476 

H 1.0000 0.056 0.4238 

a The partial charges on solute sites are determined as a result of the RISM-SCF calculation. 
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Table 3.2  Helmholtz energies and their components at the reactant, TS, and product (kcal mol−1) 

      

 Reactant    TS    Product 
 Total NH3 + CH3I  NH3–CH3–I    Total NH3CH3

+ + I− 

A a 12.26    −0.34 +12.60     19.49        −35.11     

Component       

Egas  a 0.00      11.17        95.27     

Ereorg 3.88    3.15 +0.73     8.89        0.87    0.87 +0.00   

ΔμNES 21.93    7.46 +14.47     21.33        21.25    13.95 +7.30   

ΔμES −13.55    −10.95 −2.60     −21.90        −152.50    −57.60  −94.89   
a The values of A and Egas are shifted so that the energy of the reactant in the gas phase Egas(R) is 

zero. Egas(R) = −7211.8716 a.u. 
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Figure 3.1 (A)Helmholtz energy profiles of RISM- and PCM-SCF and (B) energy components 

of RISM-SCF 
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Chapter 4.  

Relativistic two-component method based on quasi-

degenerate perturbation theory 

 

4.1 Introduction 

The relativistic effects are most naturally incorporated by the four-component methods 

based on the Dirac equation. However, in many quantum chemical calculation today, the 

relativistic two-component methods are also often used due to high computational cost of four-

component method. The concept of two-component method is separation of electronic and 

positronic states. The Dirac equation gives four-component spinors as solutions describing the 

electrons and their anti-particles, the positrons. The components of the four-component spinors 

can be classified into large and small parts, each of which is characterized by a large and a small 

contribution to the electronic solution. Treating all the four components is highly expensive in 

computational cost. Comparing with four-component method, two-component method treat 

explicitly only two-component which is half of four-component. The two-component spinors 

used in this method are transformed spinors that are decoupled from the degrees of freedom of 

positrons and thus are not identical to any parts of the original four components. 

The decoupling transformation of the one-electron Hamiltonian, on which the two-

component method is based, has extra degrees of freedom and tis not determined uniquely. 

Therefore, various versions of the two-component method has been proposed until now: the 

Breit–Pauli approximation (BPA) , the zeroth-order and infinite-order regular approximation 

(ZORA, IORA) [58,59], the relativistic scheme for eliminating small components (RESC) [60], 

the Douglas–Kroll (DK) method[61–66], the infinite-order two-component (IOTC) method[67], 

and the exact-two-component (X2C) method[68,69]. These methods are now equipped in 

several program packages and are commonly used in the studies in this field. Transforming 

four-component Hamiltonian to two-component Hamiltonian cause inherit error called the 

picture-change error or effects (PCE). PCE is an artificial error in the two-component method 

originating from the inconsistency of the basis between operators. PCE significantly affects 

molecular properties relevant to inner-shell region electron density, such as the nuclear magnetic 

shielding tensor used in chemical shift calculations.  

The Douglas–Kroll (DK) method is a method based on a multistep transformation. This 

method is an effective method, but the conventional DK scheme has a problem of computational 
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cost. A main source of the computational cost is the total unitary transformation, which is 

expressed as a product of unitary matrices. An alternative DK scheme with polynomial cost was 

proposed by Peng and Hirao[70]. In this scheme, unitary decoupling transformation is expressed 

as a sum of matrices. From the viewpoint of perturbation theory, this scheme is regarded as an 

application of quasi-degenerate perturbation theory (QDPT) to the relativistic Dirac 

Hamiltonian. Thus, by using QPDT, we may find more efficient transformations than the 

Douglas–Kroll transformation.  

In this chapter, we propose a formulation of two-component methods based on QPDT. We 

numerically examine the convergence of the QDPT-based perturbation expansions at lower and 

higher orders. We also examine the PCE effects of the exactly decoupled one-electron Dirac 

Hamiltonian by applying the transformation to both one- and many-electron systems. 

 

4.2 Theory 

4.2.1 Brief review of conventional two-component methods 

In the two-component methods, the one-electron Dirac Hamiltonian is (approximately or 

exactly) block-diagonalized by a unitary transformation to construct an effective Hamiltonian 

for the electron part. 

𝐔𝐇𝐔† = (𝐇
+ 𝟎
𝟎 𝐇−

) (4. 1) 

where 𝐇+  and 𝐇−  are the effective Hamiltonian of positive and negative energy space, 

respectively. Here, 𝐇+  is regarded as the effective Hamiltonian for electrons. Since the 

decoupling of an operator by a unitary transformation is not unique, there are serval possibilities 

for the unitary transformation. The Douglas–Kroll (DK) method is one of the most widely 

known two-component methods. The starting point of the DK method is the free-particle Foldy–

Wouthysen transformation 𝐔fpFW, which is defined as a unitary transformation that diagonalizes 

the free-particle Dirac equation, and is expressed as: 

𝐔fpFW = (
𝐀 𝐀𝐑

−𝐀𝐑 𝐀
) , (4. 2) 

whrere 𝐀 and 𝐑 are diagonal matrices. The diagonal elements of these matrices are given by 

𝐴𝑖 = (
𝐸0,𝑖 + 𝑐

2

2𝐸0
)
𝑖

1
2

, (4. 3) 

and 

𝑅𝑖 =
𝑐𝛔𝑖 ⋅ 𝐩𝑖
𝐸0,𝑖 + 𝑐

2
(4. 4) 

with 
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𝐸0,𝑖 = (𝑝𝑖
2𝑐2 +𝑚𝑐4)

1
2. (4. 5) 

Then, transformed Dirac Hamiltonian is thus expressed as: 

𝐔fpFW𝐇𝑈fpFW = 𝐄0 + 𝐄1 +𝐎1 (4. 6) 

with 

𝐄1 = [
𝐀𝐕𝐀 + 𝐀𝐑𝐕𝐑𝐀 0

0 𝐀𝐕𝐀 + 𝐀𝐑𝐕𝐑𝐀
] (4. 7) 

𝐎1 = [
0 𝐀𝐑𝐕𝐀 − 𝐀𝐕𝐑𝐀

𝐀𝐕𝐑𝐀 − 𝐀𝐑𝐕𝐀 0
] (4. 8) 

where 𝐄𝑘 is the even term, which is block-diagonal, and 𝐎𝑘 is the odd-term, which is block-off-

diagonal, and subscript 𝑘 denotes the order of the term in potential operator 𝑉̂. Following the 

Foldy–Wouthysen transformation, multiple unitary transformations are applied in the DK 

method. The k-th unitary transformation 𝐔𝑘 is expressed as a series of matrix variable 𝐖𝑘: 

𝐔𝑘 = 𝟏 +𝐖𝑘 +
1

2
𝐖𝑘

2 +⋯ (4. 9) 

The matrix 𝐖𝑘 is determined so as to cancel the k-th order odd-term 𝐎𝑘. Thus, the matrix 𝐖𝑘 is 

determined by the equation: 

[𝐄0,𝐖𝑖] = −𝐎𝑖 (4. 10) 

In the conventional DK transformation, successive unitary transformations act as a product 

resulting in a single unitary transformation: 

𝐔DK = 𝐔fpFW∏𝐔𝑘.

𝑘=1

(4. 11) 

The n-th order DK Hamiltonian is determined as LL block of sum of even terms up to the n-th 

order: 

𝐇+,DK𝑛 = (∑𝐄𝑘
𝑖

)

LL

(4. 12) 

Another widely known two-component method is the infinite-order two-component (IOTC) 

method. The starting point of IOTC is the free-particle FW transformation, as in the DK 

transformation. Following the FW transformation, a single unitary transformation is determined 

by the block-diagonalizing condition for the Dirac Hamiltonian.  

𝐔IOTC = 𝐔1𝐔
fpFW (4. 13) 

𝐔1 =
1

√1 + 𝐘†𝐘
[
𝟏 𝐘
−𝐘 𝟏

] (4. 14) 

The matrix 𝐘 is determined so that the off-diagonal block of transformed Hamiltonian is null: 

(𝐄0 + 𝐄1)𝐘 + 𝐘𝐎1𝐘 + 𝐎1 − 𝐘(−𝐄0 + 𝐄1). (4. 15) 



36 

 

This equation (4.14) is not a linear matrix equation, and hence it must be is solved iteratively. 

 

4.2.2 Two-component method based on quasi-degenerate perturbation theory 

QDPT is a multi-states perturbation theory, and has been traditionally used in electron 

correlation problems. In QDPT, the Hamiltonian is partitioned into the zeroth order and 

perturbation terms, as in the single-state perturbation theory. The eigenfunctions of the zeroth 

order Hamiltonian are divided into the functions in the model space (P-space) and its 

complement space (Q-space). The Hamiltonian is then block-diagonalized to obtain and 

effective Hamiltonian in only the model (P) space: 

(
𝐇0
PP + 𝐕PP 𝐕PQ

𝐕QP 𝐇0
QQ + 𝐕QQ

)(𝐖
PP 𝐖PQ

𝐖QP 𝐖QQ) = (
𝐖PP 𝐖PQ

𝐖QP 𝐖QQ) (
𝐊PP 0
0 𝐊QQ

) (4. 16) 

The transformation matrix 𝑊  is expressed as a sum of matrices. By comparing QP and PP 

blocks of the both sides of the equation, we obtain the basic equations of QDPT: 

{
𝐊PP = (𝐇0

PP + 𝐕PP)𝐖PP + 𝐕PQ𝐖QP − (𝐖PP − 1)𝐊PP

(𝐕PQ)
†
𝐖PP + (𝐇𝟎

QQ
+ 𝐕QQ)𝐖QP −𝐖QP𝐇PP = 0

(4. 17) 

Expanding the effective Hamiltonian 𝐊PP  and the QP and PP parts of the similarity 

transformation matrix 𝐖 by the order of the perturbation: 

𝐊PP = 𝐇0 + 𝐊1
PP + 𝐊2

PP⋯ (4. 18) 

𝐖QP = 𝐖1
QP +𝐖2

QP⋯ (4. 19) 

𝐖PP = 𝐈 +𝐖1
PP +𝐖2

PP⋯ (4. 20) 

yields the QDPT working equations: 

{
 
 

 
 [𝐖𝑛

QP, 𝐇0] = −𝐕
QP𝐖𝑛−1

PP − 𝐕QQ𝐖𝑛−1
QP +∑𝐖𝑖

QP𝐊𝑛−𝑖
PP

𝑛−1

𝑖=1

𝐊𝑛
PP = 𝐇0

PP𝐖𝑛
PP + 𝐕PQ𝐖𝑛−1

QP + 𝐕PP𝐖𝑛−1
PP −∑𝐖𝑖

PP𝐊𝑛−𝑖
PP

𝑛

𝑖=1

(4. 21) 

In the two-component method based on QDPT, we partition the one-electron Dirac Hamiltonian 

into the kinetic operator as the zero-th order Hamiltonian and the potential operator as the 

perturbation. The space of the electronic solutions is defined as the model space.  

Due to the arbitrariness of 𝐖PP, there have been serval versions of QDPT. The condition that 

removes this arbitrariness is called the normalization condition. In this chapter, three QDPT 

versions, i.e., the canonical van-Vleck (CVV), Kirtman–Certain–Hirchfelder (KCH), and RS 

PTs are examined. In CVV-PT, the transformation 𝐖 is defined by the exponential of an anti-

Hermitian matrix 𝐆: 

𝐖CVV = exp(𝐆) (4. 22) 

𝐆† = −𝐆. (4. 23) 
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Then, working equation for CVV-PT is rewritten as an equation for 𝐆  . In KCH-PT, the 

transformation matrix 𝐖 is defined to be unitary. To ensure unitarity of 𝐖 at each order, an 

explicit unitary constrain is imposed: 

∑𝐖𝑖
KCH𝐖𝑛−𝑖

KCH

𝑛

𝒊=0

= 𝐈. (4. 24) 

In RS-PT, the diagonal block of transformation 𝐖PP,RS is set to be unity. Thus, 𝐖𝑖
PP,RS

 is zero 

matrix with excepted for zero-th order: 

𝐖𝒊
PP,RS = 𝟎, 𝑖 > 0. (4. 25) 

This normalization dose not ensure Hermicity of the effective Hamiltonian. In order to obtain a 

Hermitian effective Hamiltonian, processing is necessary on the transformation: 

𝐔Herm =
1

√1 +𝐖QP†𝐖QP
. (4. 26) 

As a results of this Hermitization, the results of RS-PT coincide with that of the IOTC method at 

infinite order. Note that it was shown by Shavit and Redmon that the effective Hamiltonians of 

CVV-PT and Hermitized RS-PT are equivalent at each order[71]. An alternative way of 

Hermitization is to redefine the effective Hamiltonian by unitary transformation up to the n-th 

order: 

𝐇𝑛
eff = (𝐖†𝐇D𝐖)

LL
= [(∑𝐖𝑖

†

𝑛

𝑖=0

)𝐇D (∑𝐖𝑖

𝑛

𝑖=0

)]

LL

(4. 27) 

 This transformation multiplies the Hamiltonian 𝐇D by the transformation matrix 𝐖 and does 

not truncate the perturbation order. Therefore, the effective Hamiltonian 𝐇eff partially includes 

corrections up to (2n+1)-th order. This Hermitization scheme can also be applied to the KCH-PT. 

Hereafter, we refer to the effective Hamiltonian obtained through this Hermitization as the full-

space transformed Hamiltonian. 

 

4.2.3 Picture-change error in two-component method 

As stated in Sec. 4.1 (Introduction), PCE is caused by inconsistency of basis and thus is an 

artificial error in the two-component method. As an example of PCE, consider one-electron 

properties such as electric dipole moment. The one-electron property is expressed as the trace of 

a product matrix: 

⟨𝑂̂⟩ = Tr(𝐎𝐃), (4. 28) 

where 𝐎 is the matrix representation of operator 𝑂̂ and 𝐃 is the density matrix. It is often the 

case that in this equation, the density matrix is expressed using the transformed basis set and the 

matrix 𝐎 using only the large component basis set. In such a case, the PCE occurs due to the 
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mismatch of the basis sets between 𝐎 and 𝐃. In the case of one-electron properties expressed as 

Eq. (4.21), the PCE can be corrected by evaluating the operator with the transformed basis set. 

That is, the PCE corrected expectation value is expressed as 

⟨𝑂̂⟩ = Tr [(𝐔†𝐎𝐔)
LL
𝐃] , (4. 29) 

where 𝐔 is unitary matrix.  

The two-electron PCE occurs not only in computing two-electron properties but also in 

determining wavefunction parameters because the molecular Hamiltonian is a many-electron 

Hamiltonian and thus contains the two-electron operator. In such cases, the PCE may occur 

through the two-electron operator. In two-component methods, combination of the one-electron 

two component Hamiltonian and the non-relativistic two-electron Coulomb operator is 

commonly used as a many-electron two-component Hamiltonian. However, in this combination, 

the PCE occurs due to the basis inconsistency between the one- and two-electron operators. 

More specifically, the one-electron Hamiltonian is expressed in the transformed basis, while the 

two-electron operator is expressed in the untransformed basis. To avoid this two-electron PCE, 

the use of the transformed two-electron operator is necessary, and thus it is used in this chapter. 

The formula of the transformed two-electron integral, which is also called picture-change 

corrected (PCC) two-electron integral, for two-component method is written as 

(𝜇𝜈|𝜆𝜎)2𝑐 = 𝑊𝜇𝑝
PP𝑊𝜈𝑞

PP(𝑝𝑞|𝑟𝑠)LLLL𝑊𝜆𝑟
PP𝑊𝜎𝑠

PP

+𝑊𝜇𝑝
PP𝑊𝜈𝑞

PP(𝑝𝑞|𝑟𝑠)LLSS𝑊𝜆𝑟
QP
𝑊𝜎𝑠

QP

+𝑊𝜇𝑝
QP𝑊𝜈𝑞

QP(𝑝𝑞|𝑟𝑠)SSLL𝑊𝜆𝑟
PP𝑊𝜎𝑠

PP

+𝑊𝜇𝑝
QP𝑊𝜈𝑞

QP(𝑝𝑞|𝑟𝑠)SSSS𝑊𝜆𝑟
QP𝑊𝜎𝑠

QP (4. 30)

 

with 

(𝑝𝑞|𝑟𝑠)𝑋𝑋𝑌𝑌 = ∫𝑑𝐫1𝑑𝐫2 𝜒𝑝
𝑋(𝐫1)𝜒𝑞

𝑋(𝐫1)
1

|𝐫1 − 𝐫2|
𝜒𝑟
𝑌(𝐫2)𝜒𝑠

𝑌(𝐫2) (4. 31) 

and 

𝜒𝑝
S(𝐫1) =

𝛔 ⋅ 𝐩̂

2𝑐
𝜒𝑝
L(𝐫1), (4. 32) 

where  𝐖  is the transformation matrix dependent on the two-component methods and 

(𝑝𝑞|𝑟𝑠)𝑋𝑋𝑌𝑌 are two-electron integrals in large and small component basis sets in the Muliken 

notation. 𝜒𝑝
L and 𝜒𝑝

S are the large- and small-component basis functions. The kinetic balance is 

employed for the small-component basis functions. The explicit formulas of the two-electron 

integrals were reported in the BP, IOTC[72], NESC[73], and up to third order DK[74][75][64] 

methods. Though the two-electron operator is desired to be consistent with one-electron 

Hamiltonian at each order, we do not employ such a two-electron operator, but the operator 

multiplied by the sum of the matrices up to the n-th order 𝐖. 



39 

 

𝐖 =∑𝐖𝑖

𝑛

𝑖=0

(4. 33) 

In this case, the two-electron term operator partially includes the higher order corrections. The 

maximum order included is 2n+1.  

We now consider picture-change corrected single reference methods. First, consider the 

picture-change corrected Hartree–Fock method, which is a starting point of single reference 

methods. The Fock matrix is the sum of the one-electron core-Hamiltonian matrix and the two-

electron Fock part, namely, the sum of the Coulomb and exchange matrices: 

𝐅 = 𝐇+ +𝐆2c (4. 34) 

with 

𝐆2c = 𝐉2c − 𝐊2c (4. 35) 

𝐽𝜇𝜈
2c = 𝐷𝜎𝜆(𝜇𝜈|𝜆𝜎)

2c (4. 36) 

𝐾𝜇𝜈
2c = 𝐷𝜎𝜆(𝜇𝜎|𝜆𝜈)

2c. (4. 37) 

This formula is formally identical to the nonrelativistic Fock matrix but is different molecular 

integrals. The electron correlation methods such as MP2 or CCSD can be performed in the same 

procedure as the usual non-PCC correlation methods, using the PCC two-electron integrals. In 

the MP2 case, correlation energy is given using the PC-corrected two-electron integrals and 

orbital energies 𝜖 as 

𝐸corr
MP2 =

1

4
∑

[(𝑖𝑎|𝑗𝑏)2c − (𝑖𝑏|𝑗𝑎)2c]2

𝜖𝑖 + 𝜖𝑗 − 𝜖𝑎 − 𝜖𝑏
𝑖𝑗𝑎𝑏

(4. 38) 

where the orbitals and their energies are determined by the PCC-HF equation. The PC-corrected 

coupled-cluster theories is also obtained by replacing the two-electron integrals in the 

correlation energy and the amplitude equations. 

 

 

4.3 Results and discussion 

To examine the accuracy of the two-component method based on the quasi-degenerate 

perturbation theory, we performed numerical calculations on several systems: the hydrogen-like 

atom (Z=80) and radon atom.  

4.3.1 One-electron system: hydrogen-like atom with Z=80 

In perturbation theory, both convergence of energy spectra at higher and infinite orders and 

accuracy when truncated at lower orders are important. As a first test system, we examined the 

convergence property and accuracy using a one-electron system, which does not include a two-

electron operator, namely, the hydrogen-like atom with Z=80. The basis set used was an even-

tempered s-type gaussian functions with their exponents given by {𝜁 = exp(−4.56 +
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0.72𝑛) , 𝑛 = 1,2, …50}. CVV-, KCH-, and RS-PT were examined using the original and full-

space transformed Hamiltonians. 

Figure 1 shows the energy differences of the CVV, KCH, RS, KCH(FT), and RS(FT) 

energies from the IOTC energy, where FT denotes full-space transformation. Note that the 

IOTC energy is identical to that of the infinite order perturbation theory. For one-electron 

systems, the exact decoupled Hamiltonian such as the IOTC Hamiltonian is available, which 

gives identical energy to that of the Dirac equation. As seen from Fig. 4.1, all QDPT versions 

show no energy divergence and converge smoothly to the IOTC energy. The convergence 

behavior differs significantly between the full-space transformed Hamiltonian and the original 

QDPTs. The full-space transformed Hamiltonian QDPTs converge faster than the original 

QDPTs at all perturbation orders. This results from the inclusion of higher-order corrections in 

the full-space transformed Hamiltonian. The two full-space transformed Hamiltonian QDPTs 

show very similar behavior between KCH-PT and RS-PT. In the original QDPTs, KCH-PT 

shows slightly smaller errors at all perturbation orders than RS-PT and CVV-PT. RS-PT and 

CVV-PT give almost identical values. Based on these results, KCH-PT and RS-PT will be used 

in the subsequent discussion. 

Then, compare the accuracies of the QDPTs at lowest several (up to the 5th) orders. Table 

4.1 shows the energy difference from IOTC up to the 5th order. The original QDPT energies 

oscillate positively and negatively in error from the IOTC energy, while the errors in the full-

space transformed Hamiltonian QDPT are always negative. The errors of the second-order 

energies of the full-space Hamiltonian QDPT are −0.282068 and −0.353861 a.u. for KCH- and 

RS-PT, respectively, which roughly correspond to the errors of the 5th order values of the 

conventional QDPT (−0.261182 and − 0.610218 a.u. for KCH- and RS-PT, respectively). These 

results are consistent with the fact that the full-space Hamiltonian QDPT partially includes 

corrections up to the (2n+1) order. 

For one-electron systems, the energy values given by exact decoupling of the Dirac 

Hamiltonian are necessarily identical regardless of the two-component methods. However, 

molecular properties are generally dependent on the two-component methods due to the picture 

change effects (PCE). To examine the PCE of various two-component methods, we calculated 

the expected values of 𝑟2 and 𝑟−1 and their picture change corrections. The results are shown in 

Table 4.2. Values calculated conventional two-component methods (DK, IOTC, and X2C) and 

the Dirac Hamiltonian diagonalization method, , as well as the exact values by the Dirac 

equation (DEQ), are also shown in the table 4.2. All the two-component methods give the same 

energy value as DEQ, but different expectation values of 𝑟2 and 𝑟−1 from DEQ when PCE is 

uncorrected. The Dirac Hamiltonian diagonalization method with large PCE shows very large 

error for 〈𝑟2〉 and 〈𝑟−1〉. All the other two-components methods give close values each other 
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(〈𝑟2〉 =3.3839119, 3.3837647, and 3.4015151 a. u. for KCH, RS, and X2C, respectively and 

〈𝑟−1〉 = 1.1119670, 1.1127953, and 1.1016912 for KCH, RS, and X2C, respectively). 

Expectation values of KCH-PT are close to the expectation values of DK(3.3839118 and 

1.1119687 for 〈𝑟2〉 and 〈𝑟−1〉, respectively) , while RS-PT gives the same values as the IOTC 

value, namely: 3.3837647 and 1.1127953 for 〈𝑟2〉 and 〈𝑟−1〉, respectively. X2C gives different 

values from either RS or KCH. These results come from the fact that the Hermitized RS 

transformation matrix is same as that of IOTC and that KCH is equivalent to the DK method of 

Peng and Hirao. The picture-change corrected expectation values in the table naturally all agree 

with the DEQ value, including the Dirac Hamiltonian diagonalization method.  

 

4.3.2 Many-electron system: radon atom 

In many-electron systems, total energy does not agree with that of the four-component 

method even using the transformation matrix block-diagonalizing the one-electron Dirac 

Hamiltonian due to the two-electron PCE. Thus, the converged values are not identical to the 

values of four-component method and depend on the QDPT versions.  

To examine the convergence behavior for many electron systems, we performed Hartree–

Fock calculations for the radon atom with and without the picture-change correction. The basis 

set used was Dyall’s triple zeta basis set. The results are shown in Fig. 4.2.   

All QDPTs with and without the picture-change correction give converged energies. The 

convergence behaviors of original QDPTs are similar to the case of the one-electron system. In 

full-space transformed Hamiltonian QDPT, the errors are always smaller than the original 

QDPTs at each order as in the one-electron system case. However, the convergence speed is not 

as fast as the one-electron system case. For the one-electron system, the difference in 

normalization (i.e., the difference in QDPT version) little affected to total energy in the case of 

full-space transformed Hamiltonian method. In contrast, for the many-electron system, the 

differences in normalization are pronounced, especially when using the PCC two-electron 

operator. KCH-PT converges oscillatively and RS-PT n converges monotonically. These are the 

opposite of the original QDPTs, where KCH converges monotonically and RS converges 

oscillatively. In Fig. 4.3, the convergence behaviors of one- and two-electron energies in the 

total energy are shown. The original QDPT graphs in Figs. 4.3(a) and 4.3(b) indicate that the 

error in one-electron energy is two digits larger than the error in two-electron energy. Thus, the 

one-electron energy error is dominant in the total error. On the other hand, the graphs of the full-

space transformed Hamiltonian QDPTs in Figs. 4.3(c) and 4.3(d) indicate that the errors in two-

electron energy are not as small as the original QDPTs. The full-space transformed RS-PT 

shows interesting results that differ from the others: at lower orders, the slope of the graph is 

close to that of the one-electron system, but at higher orders, the slope becomes more gentle 
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than at lower orders. 

Then, we performed electron correlation calculations, namely, the second-order Møller–

Plesset (MP2) and coupled cluster singles and doubles (CCSD) calculations using the same 

basis set as the HF calculations. The convergence behaviors of the correlation energy are shown 

in Fig. 4.4. The errors in correlation energy are small because the correlation energy is generally 

smaller than the HF energy. The convergence behavior of the conventional QDPTs without 

using the PCC two-electron operator are similar to that of the HF energy in Fig. 4.3. The 

convergence of the full-space transformed Hamiltonian QDPTs is faster than the conventional 

QDPTs. The converged energy values are shown in Table 4.3. In the picture-change uncorrected 

Dirac Hamiltonian diagonalization method, SCF had not converged. The combination with the 

nonrelativistic two-electron operator gives different converged values, while the combination 

with the picture-change corrected tow-electron operator gives same converged values, namely: –

23574.0913, –3.136497, and –2.902747 a. u. for Hartree-Fock energy, MP2 and CCSD 

correlation energy. In combination with nonrelativistic two-electron operator, the error form 

two-electron PCE at infinity order in the HF energy are 10.667, 10.9019, and 9.6501 a. u. for 

KCH-PT, RS-PT, and X2C, respectively. The magnitude of two-electron PCE was almost 

independent on the QDPT versions. For the correlation energy, the QDPT versions also little 

affect magnitude of two-electron PCE. The picture-change corrected methods give identical 

correlation energy. When nonrelativistic two-electron integrals are employed, the converged 

values depend on the QDPT versions. In contrast, the picture-change corrected methods give the 

values that were identical to each other and almost identical to the four-component correlation 

energy. The energy derivation from four-component method arise unitary transformation 

determined by one-electron Dirac Hamiltonian. In two-component methods based on QDPT, the 

normalization little affect the correlation energy rather than two-electron PCE.  

Expectation value of  𝑟2 and 𝑟−1 at infinity order using Hartree–Fock wavefunction are 

shown in table 4.3. The expectation values of 𝑟2 and 𝑟−1 are the quantities that mainly reflect 

electron densities in the far from the nuclear and near the nuclear, respectively. In molecular 

property, there are two sources of PCE, namely: determination of wavefunction and property 

operator. In PC-uncorrected property, PCC Dirac Hamiltonian diagonalization method give far 

form values(58.37039 and 90368.05849 a. u. for ⟨𝑟⟩ and ⟨𝑟⟩, respectively) other two-component 

methods. For the expectation value of 𝑟2, PC-uncorrected values are about 76.21 and 76.18 a. u. 

for two-electron PC-uncorrected or -corrected method. PCE from property operator was 0.002 a. 

u.. In this case, two-electron PCE form determination wavefunction is larger than PCE from 

property operator. In contrast, for the expectation value of 𝑟−1, PCE from property operator is 

main source of PCE. 

The errors in HF, MP2, CCSD energies are shown in Tables 4.4–4.6. At the lowest several, 
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orders, the errors originate from PC and incomplete block diagonalization. In the Hartree–Fock 

method, the error coming from the PC is around 10 Hartree, while in the correlated methods, the 

errors in correlation energy mainly come from the PC even at the second order, and the 

increasing perturbation order dose not improved accuracy so much.  

 

4.4 Conclusion 

In Chapter 4, we formulated the two-component method based on QDPT. Both the 

convergence of energy spectra at higher and infinite orders and accuracy when truncated at 

lower orders were discussed. For the one-electron system, all QDPTs converge smoothly to the 

IOTC energy with no energy divergence. The convergence behavior differed significantly 

between the full-space transformed Hamiltonian and original QDPTs. The full-space 

transformed Hamiltonian QDPTs converge faster than the original QDPTs at all perturbation 

orders. This results from the partial inclusion of higher-order corrections in the full-space 

transformed Hamiltonian. In the original QDPTs, KCH-PT showed slightly smaller errors than 

RS-PT and CVV-PT at all perturbation orders.  RS-PT and CVV-PT gave almost identical 

values. For the converged values of expectation value of 𝑟2  and 𝑟−1 , the PC-uncorrected 

exception values depended on two-component methods. The Dirac Hamiltonian diagonalizing 

method showed large PCE. In contrast, the PC-corrected exception values were identical in all 

the two-component method including the diagonalizing method.  

In the many-electron radon atom, all QDPTs converged both with and without PC-

corrected two-electron operator. The convergence behavior of the full-space transformed 

Hamiltonian QDPT differed from that of the one-electron system because the errors in two-

electron energy were not small enough to neglect compared with those in one-electron energy. 

Although the convergence speed was not faster than the one-electron system, the full-space 

transformed Hamiltonian QDPT gave smaller error than the original QDPTs. In PC-uncorrected 

method, the converged values depended on the two-component methods were not identical due 

to the two-electron PCE. In contrast, the PC-corrected methods gave identical values for not 

only one-electron properties, Hartree–Fock energy, and MP2 correlation energy dependent on 

only the one-electron density matrix, but also for the CCSD correlation energy dependent on the 

two-electron density matrix.  
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Table 4.1 Energy difference from IOTC energy (−3532.192128 a.u.) up to the 5th order. 

Perturbation 

order 
KCH RS KCH(FT) RS(FT) 

2 8.867242 9.050460 −0.282068 −0.353861 

3 −0.927488 −5.091089 −0.036225 −0.049806 

4 0.483514 0.878599 −0.008365 −0.011130 

5 −0.261182 −0.610218 −0.001840 −0.002401 
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Table 4.2  1s orbital energy and exception values of 𝒓𝟐 and 𝒓−𝟏 (𝐢𝐧 𝐚. 𝐮. ).  

 
Energy ⟨𝑟2⟩ × 10−4 ⟨𝐔†𝑟2𝐔⟩ × 10−4 ⟨𝑟−1⟩ × 102 ⟨𝐔†𝑟−1𝐔⟩ × 102 

KCH −3532.192128 3.3839119 3.7141427 1.1119670 0.9853358 

RS −3532.192128 3.3837647 3.7141427 1.1127953 0.9853358 

X2C −3532.192128 3.4015151 3.7141427 1.1016912 0.9853358 

Diagonalizing −3532.192128 744299.6572006 3.7141427 0.0013065 0.9853358 

DK35(EXP) −3532.192128 3.3839118 
 

1.1119687  

IOTC −3532.192128 3.3837647 
 

1.1127953  

DEQ −3532.192128 3.7141427 
 

0.9853358  
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Table 4.3 Hartree–Fock and correlation (MP2 and CCSD) energies for the radon atom obtained 

from the exact decoupling transformation of Dirac Hamiltonian (in a.u.) 

 HF MP2 CCSD 

picture-change uncorrected     

KCH –23563.3914 –3.2055394 –2.9715317 

RS –23563.3782 –3.2055925 –2.9715850 

X2C –23564.4300 –3.2040225 –2.9700177 

Diagonalizing not converge NA NA 

picture-change corrected    

KCH –23574.0913 –3.136497 –2.902747 

RS –23574.0913 –3.136497 –2.902747 

X2C –23574.0913 –3.136497 –2.902747 

Diagonalizing –23574.0913 –3.136497 –2.902747 

Four-Component  −23574.0801 −3.136543 −2.902765 
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Table 4.4 Converged value of properties 𝒓𝟐 and 𝒓−𝟏 for the radon atom (in a.u.) 

 
⟨𝑟2⟩ ⟨𝐔†𝑟2𝐔⟩ ⟨𝑟−1⟩ ⟨𝐔†𝑟−1𝐔⟩ 

KCH/NR 
76.216958 76.214950 734.307860 696.396205 

RS/NR 
76.216971 76.214962 734.604309 696.395416 

X2C/NR 
76.21334 76.21130 731.77369 696.43990 

KCH/KCH 
76.186359 76.184350 734.858977 696.865769 

RS/RS 
76.186359 76.184350 735.157071 696.865769 

X2C/X2C 
76.186385 76.184350 732.273350 696.865769 

Diag /Diag 
58.37039 76.184350 90368.05849 696.865769 
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Table 4.5 Energy deviation from the four-component Hartree–Fock energy (−23574.08005 a.u.) 

for the radon atom 

 

 

 

Table 4.6 Energy derivation from four-component MP2 correlation energy (–3.136542918 a.u.) 

for radon atom. 

 

 

Table 4.7 Energy derivation from four-component CCSD correlation energy (−2.902765141 

a.u.) for the radon atom 

 KCH RS KCH(FT) RS(FT) KCH RS KCH(FT) RS(FT) 

2 −0.068319 −0.068307 -0.068837 −0.068842 0.000223 0.000171 −0.000021 −0.000082 

3 −0.068837 −0.069188 -0.068767 −0.068818 −0.000109 −0.000180 −0.000068 0.000000 

4 −0.068738 −0.068761 -0.068771 −0.068820 0.000031 0.000035 0.000015 0.000007 

5 −0.068785 −0.068866 -0.068766 −0.068819 −0.000003 −0.000007 0.000006 0.000015 

 

 No two-electron PCC Two-electron PCC 

 KCH RS KCH(FT) RS(FT) KCH RS KCH(FT) RS(FT) 

2 40.7703 41.4431 9.6105 9.3274 29.9989 30.8213 −1.2216 -1.3563 

3 7.3782 −8.5812 10.5456 10.5111 −3.1794 −19.3266 −0.0057 −0.1951 

4 12.4704 14.0281 10.6598 10.6632 1.7583 3.3253 −0.0560 −0.0463 

5 9.6778 8.1996 10.6827 10.6943 −1.0039 −2.5174 0.0030 −0.0175 

 No two-electron PCC Two-electron PCC 

 KCH RS KCH(FT) RS(FT) KCH RS KCH(FT) RS(FT) 

2 
−0.06842 −0.06840 −0.06907 −0.06908 0.00038 0.00033 0.00000 −0.00006 

3 
−0.06909 −0.06950 −0.06900 −0.06905 −0.00010 −0.00024 −0.00004 0.00003 

4 −0.06896 −0.06898 −0.06900 −0.06905 0.00007 0.00008 0.00004 0.00004 

5 
−0.06902 −0.06911 −0.06900 −0.06905 0.00002 0.00001 0.00003 0.00004 
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Figure 4.1 Convergence of 1s orbital energy of the hydrogen-like atom (Z=80). 
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Figure 4.2 Convergence of SCF energy of radon atom (A) without two-electron picture-change 

correction and (B) with two-electron picture-change correction  
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Figure 4.3 Convergence of one- and two-electron energies for (A)KCH/KCH, (B) RS/RS, 

(C)KCH(FT)/KCH, and (D)RS(FT)/RS 
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Figure 4.4 Convergence of correlation energy (A) MP2 with uncorrected-PCE two-electron 

integral (B) CCSD with uncorrected-PCE two-electron integral (C) MP2 with PCC two-electron 

integral (D) CCSD with PCC two-electron integral 
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Chapter 5.  

General conclusions 

In this thesis, relativistic electronic structure theories for solvated molecules have been 

presented. In Chapter 2, we proposed the hybrid method of DHF and RISM. This method was 

formulated as a variational problem of the Helmholtz energy, and the analytic energy gradients 

were also derived using the variational property. We applied the DHF/RISM-SCF method to 

various systems in aqueous solutions: iodine ion I−, methyl iodide CH3I, and hydrogen 

chalcogenide H2X. For I− and CH3I, the SFEs and their components, and the RDFs of solvent 

around the I atoms were shown and discussed. DHF/RISM-SCF give reasonable results for 

these in term of the nature of the compounds. The relativistic effects on solvation structure for 

CH3I were relatively small. In contrast, for the electronic structures of solute molecule, the 

relativistic description using the DHF/RISM-SCF method was essential. For H2X, the molecular 

structures, SFE and their components, the electric dipole moment and ESP charges of the solute, 

and the RDF of solvent around the X and H atoms were computed and discussed focusing 

mainly on the differences due to the heavy atom X. As shown by the dipole moment results, the 

polarity of molecule decreased with increasing chalcogen atomic number. DHF/RISM-SCF 

gives results consistent with molecular polarity in both SEF and RDF.  

In Chapter 3, we have applied the DHF/RISM-SCF method to a chemical reaction We 

made Helmholtz energy profiles of a Menshutkin reaction NH3 + CH3I → NH3CH3
+ + I− and 

conducted component analysis. The reaction profile by the RISM-SCF method well described 

the characteristics of the Menshutkin reaction, and the component analysis revealed the 

contributions of the effects of electron reorganization and electrostatic and non-electrostatic 

interactions.  

In Chapter 4, we have proposed a new two-component method based on QDPT. Both 

convergence of energy spectra at higher and infinite orders and accuracy when truncated at 

lower orders, expectation values were discussed. We applied the method to hydrogen like atom 

with Z=80 and the radon atom. All two-component methods based on QDPT converged in both 

one- and many-electron systems. Full-space transformed Hamiltonian show faster convergence 

than its original QDPTs both one- and many-electron systems. The convergence behavior of the 

full-space transformed Hamiltonian QDPTs in many-electron system differed from the one-

electron system. In the full-space transformed Hamiltonian QDPTs, the errors in two-electron 

energy were not as small as the errors in one-electron energy. Although the convergence was not 

faster than the one-electron system, the full-space transformed Hamiltonian QDPT gave smaller 
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error than the original QDPTs. In PC-uncorrected method, the converged values depended on 

the two-component method and were not identical due to the two-electron PCE. On the other 

hand, the PC-corrected methods gave identical values not only one-electron properties, Hartree-

Fock energy, and MP2 correlation energy which are related only one-electron density matrix but 

also CCSD correlation energy which depends on two-electron density matrix.  

The method developed this thesis allow us more precious description of solvated heavy 

element containing molecules used in various field. For further development for theoretical 

treatment of such molecules, two issues need to be resolved: including electron correlation 

effects to four-component RISM-SCF and solvent effects to picture-change corrected electronic 

structure theory. The former is necessary for quantitative description of chemical reaction and 

molecular properties and can be solved by extension of the method developed by chapter 2 and 

3. The latter is necessary for development of less computational demanding method and 

extension to the method developed by chapter 4. 
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