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Abstract

In the standard framework of the early universe, quantum states of graviton generated during

inflation become squeezed states. Since such gravitons tend to enhance their observables,

it is expected that gravitons may be detectable by observations in the future. However, if

they interact with environmental matter fields, such as primordial magnetic fields generated

during inflation, the gravitons may lose their quantum coherence. Thus, it is important to

investigate whether the primordial magnetic field affects the squeezed state of graviton or

not. As a first step for analyzing the decoherence of the gravitons, we assume two models

of the magnetic field. One of the models assumes the case of minimal coupling between

gravitons and photons (Model-1). In this case, the primordial magnetic field decays with

the negative square of the scale factor, ∝ a−2, during inflation. Through the analysis of

this model, it turns out that the gravitons are robust against the decoherence caused by

the cosmological magnetic fields. We also find that the conversion rate of gravitons into

photons is at a few percent at most. The other model assumes magnetic fields sustained

by a gauge kinetic coupling. In this model, the primordial magnetic field decays with the

negative power of the scale factor, ∝ a−1, during inflation. Not only gravitons as excitations

of PGWs, but also photons as excitations of electromagnetic fields are highly squeezed in

this model. They become entangled with each other through graviton to photon conversion

and vice versa. We derive the reduced density matrix for the gravitons and calculate their

entanglement entropy. It turns out that the state of the gravitons is not a squeezed state but

a mixed state. These results may provide some hints for future observations of primordial

gravitational waves and their quantum nature.
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Part I

Introduction
The inflation theory, which assumes that there was a rapid expansion in the early universe,

was introduced in the early 1980s as a mechanism to solve problems in the big bang cosmol-

ogy, such as the horizon problem, the flatness problem, and so on. According to the inflation

theory, the origin of the large-scale structure of the present universe is thought to be quan-

tum fluctuations of the inflaton field that caused inflation. The prediction is supported by

precise observations of temperature fluctuations in the cosmic microwave background and

the distribution of galaxies. Thus, inflation theory is successful in the sense of phenomenol-

ogy. However, it has not been proved whether the primordial scalar fluctuations in the early

universe have a quantum origin or not. Inflation theory predicts the existence of primordial

gravitational waves originating from quantum fluctuations of the spacetime as well as scalar

fluctuations that seeded the formation of the structure of the universe. After the discovery

of gravitational waves from a binary black hole system in 2015, the detection of primordial

gravitational waves has become the most important research topic. If future observations

find primordial gravitational waves, it will strongly support the inflation theory. In par-

ticular, if we can observe the quantum properties of primordial gravitational waves, it will

imply the discovery of gravitons. These motivation encouraging scientist to establish several

future experimental projects to detect primordial gravitational waves [1, 2]. Theoretically, it

is believed that the quantum states of gravitons become squeezed due to particle production

during inflation. Therefore, if we can find evidence of the squeezed state of gravitons, it

would be evidence of the quantum nature of primordial gravitational waves. Several ideas

have been proposed to detect non-classical primordial gravitational waves using squeezed

states. For instance, authors of [3] used the Hanbury Brown-Twiss interferometer to predict

the intensity-intensity correlation to distinguish non-classical particles from classical parti-

cles. Gravitons that have undergone inflation are thought to remain squeezed state until now

if there are no environmental influences. However, if the graviton interacts with the matter

field during inflation, the squeezed state may not be maintained. Therefore, considering
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the influence of the environment of the Graviton during inflation is an important issue to

understand the quantum nature of primordial gravitational waves.

The cosmic magnetic field is an important factor to consider in the environment around

the graviton during inflation. It is known that there are magnetic fields of the order of

micro-Gauss scale in the Galaxy. Several observations imply that there is a small cosmic

background magnetic field between galaxies. In fact, it is difficult to explain the data of

some of the TeV gamma-ray observations without the presence of cosmic magnetic fields

in the very early time of the universe. The size of the current background magnetic field

ranges from about 10−17 Gauss to 10−9 Gauss, and its coherence length is said to exceed

mega-parsecs. If the coherence length is greater than mega-parsecs, astronomical scale, the

origin of the magnetic field with such a coherence length should be the inflation. In other

words, the origin of the current background magnetic field is considered to be the primordial

magnetic field generated during inflation. If a primordial magnetic field is produced during

inflation, it would cause the conversion of gravitons to photons and vice versa [4].

We, therefore, study the squeezing process of gravitons in the presence of a primordial

magnetic field that decays slowly during inflation, to see whether gravitons can remain

squeezed to this day or not. As a result, we found that the primordial magnetic field produces

the maximum quantum entanglement between gravitons and photons, and the quantum state

of gravitons is not a squeezed (pure) state but a mixed state of gravitons and photons. This

can be interpreted as the quantum entanglement between gravitons and photons partially

destroying the squeezed state of gravitons. These results may provide some hints to future

observations of primordial gravitational waves and their quantum nature.

This thesis consists of three parts, Part 1: Introduction, Part 2: the analysis of the

magnetic field model-1, Part 3: the analysis of the magnetic field model-2, and Part 4:

conclusion.

In this part, we briefly review fundamental topics of cosmology somehow related to the

main argument of the thesis and observational clue of the existence of the cosmic magnetic

field.
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1 the inflationary scenario

Cosmological principles insist that there is no specific place in the universe. That is the

assumption that our universe is spatially homogeneous and isotropic when we see it on a

large scale. This assumption is supported by the observational evidence,

1. The galaxy distribution on large scale is almost homogeneous.

2. The cosmic microwave background is almost isotropic.

There are three kinds of the geometry of the space which satisfy the cosmological principle,

dℓ2 =


dχ2 +

(
sin

√
Kχ√
K

)2

(dθ2 + sin2 θdϕ2) (K > 0)

dχ2 + χ2(dθ2 + sin2 θdϕ2) (K = 0)

dχ2 +

(
sinh

√
−Kχ√

−K

)2

χ2(dθ2 + sin2 θdϕ2) (K < 0)

= dχ2 + fK(χ)
2(dθ2 + sin2 θdϕ2), (1.1)

where dℓ2 is a part of the background metric:

ds2 = −dt2 + a(t)2dℓ2, (1.2)

and K is the spatial curvature, Note that dℓ2 (K > 0) corresponds to the three dimensional

spherical space, dℓ2 (K = 0) is flat space, and dℓ2 (K < 0) corresponds to the three dimen-

sional hyperbolic space. The time evolution of the scale factor a is written by the Einstein

equation,

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (1.3)

where Tµν is the energy-momentum tensor. In the case of a perfect fluid, it takes the form

of

T µ
ν =

−ρ 0

0 P δij

 , (1.4)
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where ρ is the density and P is the pressure. (0, 0) component and (i, j) yields

(
1

a

da

dt

)2

+
K

a2
− Λ

3
=

8πG

3
ρ, (1.5)(

1

a

d2a

dt2

)
+

1

2

(
1

a

da

dt

)2

+
K

2a2
− Λ

2
= −4πGP, (1.6)

respectively. By taking into account these relations, one can derive the acceleration of the

cosmic expansion,

1

a

d2a

dt2
=

Λ

3
− 4πG

3
(ρ+ 3P ). (1.7)

Observations of the supernovae indicate the acceleration of the cosmic expansion takes some

positive value [5, 6]. Nobel Prize in Physics in 2011 was for the discovery of accelerating

cosmic expansion. If the cosmological principle stands in every scale and every time, the

wealth structure of the current universe, galaxies, stars, filament structure, and so on for

instance, cannot be generated by the gravitational time evolution. Thus, there should be

some kind of initial density fluctuations. If there are density fluctuations in the early universe,

they can behave as a seed of the structure, grow up due to the gravitational interaction, and

finally construct the current large-scale structure. Though, the origin of the initial density

fluctuations, or how it generated still remain shrouded in mystery. Inflationary scenario gives

one candidate of its answer. Then scenario introduces the initial density fluctuation as a

quantum fluctuation of the field which triggered the inflation. In this thesis, we investigate

the nature of the quantum state of the graviton which would be produced at the inflation

era to get some hint of the quantumness of the initial density fluctuations. Inflation theory

is introduced to solve several problems of the big bang cosmology in 1980s. Big bang theory

well explain the current observational universe, but it doesn’t well explain how our universe

began. According to the big bang theory, the time evolution of the scale factor is given by

a(t) ∝ tα. In the case of 0 < α < 1, the universe undergoes the decelerate expansion. In

radiation dominated era, we have α = 1/2, and we have α = 2/3 in matter dominated era.

The horizon scale is in proportional to t1−α. Thus, the horizon scale can be small as much as

we want. But it cannot explain the observation of the CMB temperature fluctuation which
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is very tiny, ∆T/T ∼ 10−5. It is called horizon problem.

As is shown in the freedman equation,

H2 =

(
ȧ

a

)2

=
8πG

3
(ρm + ρr)−

K

a2
+

Λ

3

= H2
0

(
Ωm

a3
+

Ωr

a4
+

ΩK

a2
+ ΩΛ

)
, (1.8)

the energy density of the radiation decreases in the fourth power of the scale factor, and the

energy density of the matter decreases in the third power of the scale factor. Meanwhile, the

curvature term decreases in the square of the scale factor. When we assume the reheating

temperature is Treheat ∼ 1014GeV, and the redshift is about z ∼ 1027, the ratio of the

contribution of the curvature term in the Friedman equation is very small than the present

value,

ΩK/a
2

Ωr/a4
∝ a2 ∼ 10−54. (1.9)

Even now, more than 10 billion years later from the beginning of the universe, the contri-

bution of the curvature term is less than the other energy density. It indicates that the

curvature radius is significantly smaller than the horizon scale. In other words, the universe

is unnaturally flat. It is called flatness problem. These problems of the big bang theory stem

from the assumption that the universe keeps its decelerated expansion. With this assump-

tion, the particle horizon can take infinitely small at the beginning. The inflation scenario

solves the problem by assuming the accelerated expansion at the beginning of the universe.

The time of the accelerated expansion is represented by the e-folding number N(t) which is

defined as

N(t) ≡ log
af
a(t)

=

∫ tf

t

Hdt, (1.10)

where H is the Hubble parameter defined as H = ȧ/a, and af denotes the scale factor at

the end of inflation.
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2 time development of the scale factor

In FIG 1, the time evolution of the typical physical scale is depicted. In the inflation era,

the value of the vertical axis in FIG 1 is proportional to

log [horizon] = log
[ c
H

]
= const, (2.1)

while the horizontal axis is proportional to

log [a] = log [eHt] = Ht. (2.2)

In radiation dominated era, the value of the vertical axis in FIG1 is proportional to

log [horizon] = log [ct] = log [t] + const, (2.3)

while the horizontal axis is proportional to

log [a] = log [t1/2] =
1

2
log [t]. (2.4)

In the matter-dominated era, the value of the vertical axis in FIG1 is written as the same

form as 2.3, while the horizontal axis is proportional to

log [a] = log [t2/3] =
2

3
log [t]. (2.5)

After taking account of these relations, one can easily draw a graph like FIG. 1 that describe

the time evolution of the physical scale. Simple estimation gives some condition N > 60 to

solve the horizon problem with the inflationary scenario. But the detail of the mechanism of

how inflation begins is not determined yet, there are many candidates like slow role inflation,

Chaotic inflation, and so on.
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FIG 1. Outline of the time evolution of the physical scale in the inflation era (region 1), radiation-dominated
era(region 2), and matter-dominated era(region 3). The blue solid line denotes the horizon scale, and the
red dotted line denotes the physical scale of the wavelength.

Inflation theory has claimed that the origin of the large-scale structure of the universe

and temperature fluctuations in the cosmic microwave background radiations is quantum

fluctuations. Remarkably, the inflation theory also predicts the existence of primordial grav-

itational waves stemming from the quantum fluctuations of the spacetime (relic gravitons).

After the discovery of gravitational waves from a black hole binary system [7], the detection

of primordial gravitational waves has been the most important research objective [1, 2].

The notable nature of primordial gravitational waves is their quantum origin. If the relic

gravitons were found, it would strongly support the inflationary universe. The finding of the

relic gravitons would also give a hint of quantum gravity. Hence, it is extremely important

to explore the quantum nature of the primordial gravitational waves.

In the next section, we review the foundation of cosmological perturbation.

3 cosmological perturbation

The background metric of the expanding universe is written as

ds2 = a2(η)
[
−dη2 + δijdx

idxj
]
, (3.1)
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where a(η) is the scale factor, and η is the conformal time. The components of the connection

are summarized as

Γ0
00 =

a(η)

a′(η)
, Γ0

ij =
a′(η)

a(η)
δij , Γi

0j =
a′(η)

a(η)
δij, (3.2)

R00 = −3

(
a′(η)

a(η)

)′

, Rij =

[
a′′(η)

a(η)
+

(
a′(η)

a(η)

)2
]
δij, (3.3)

R =
6

a2(η)

a′′(η)

a(η)
, G0

0 = − 3

a2(η)

(
a′(η)

a(η)

)2

, (3.4)

Gi
j = − 2

a2(η)

[
a′′(η)

a(η)
− 1

2

(
a′(η)

a(η)

)2
]
δij, (3.5)

where prime ′ denotes the derivative with respect to the conformal time. When the matter

is perfect fluid, the energy-momentum tensor is expressed as

T µ
ν = (ρ+ p)uµuν + pδµν , (3.6)

where uµ is four velocity defined as uµ ≡ dxµ/dτ . The Einstein equation, Gµ
ν = 8πGT µ

ν , is

described as

H2 =
8πG

3
ρa2 (3.7)

2H ′ +H2 = −8πGpa2. (3.8)

When the matter is a scalar field, we have

T µ
ν = ∂µϕ∂νϕ− δµν

[
1

2
∂αϕ ∂

ϕ
α + V (ϕ)

]
, (3.9)

and thus, the density and pressure is given as

ρ =
1

2a2
ϕ′ 2 + V (ϕ), (3.10)

p =
1

2a2
ϕ′ 2 − V (ϕ) (3.11)
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The background spacetime with the perturbation is described as

ds2 = a2(η)
[
−dη2 + δijdx

idxj + a2(η) hµν(η, x
i) dxµdxν

]
. (3.12)

Based on the symmetry of the metric tensor, ten components are distinguished as follows

h00 = −2A, (3.13)

h0i = B;i + Vi (3.14)

hij = 2(E;i;j − ψδij) + χi;j + χj;i + hTT
ij . (3.15)

There are four components of the scalar perturbation −2A, B;i, 2(E;i;j − ψδij), the vector

perturbation Vi, χi;j + χj;i, and the tensor perturbation hTT
ij . The degree of freedom is

restricted by constraints due to the gauge condition;

V ;i
i = χ;i

i = 0, (3.16)

h;jTT
ij = hiTT

i = 0. (3.17)

Each component is completely decoupled from the other,

∫
d4x a4B;i V

i = −
∫
d4x a4B V i

;i = 0 (3.18)∫
d4x a4 (E;ij − ψ δij)h

ij
TT = 0. (3.19)

The vector component decays due to cosmic expansion. As is described later, the tensor

perturbation follows

h′′ij
TT + 2H ′

ij − δ2hTT
ij = 0. (3.20)

The background metric is rewritten as

ds2 = a2(η)
[
−(1 + 2A)dη2 + 2B;idx

idη + {(1− 2ψ)δij2E;ij}dxidxj
]
, (3.21)
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which remains the gauge degree of freedom ξµ = (ξ0, ξ;i) corresponding to the coordinate

transformation: xµ = xµ − ξµ. When we choose

ξ = E, (3.22)

ξ0 = xi′ −B. (3.23)

corresponding to the gauge transformation

δE = E − E = ξ (3.24)

δB = B −B = ξ0 + ξ′, (3.25)

that is equivalent to

E = 0 , B = 0. (3.26)

Then, the metric is reduced to

ds2 = a2(η)
[
−(1 + 2A)dη2 + (1− 2Ψ)δijdx

idxj
]
, (3.27)

which is called longitudinal gauge or Newtonian gauge. At this time, gauge invariant quan-

tities are Φ = A and Ψ = ψ.

4 Quantum field theory in curved spacetime

Generally, the action of the U(1) gauge field is written as

SA = − 1

4µ0

∫
d4xF µν Fµν . (4.1)
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When we take a variation of the gauge field Aµ → Aµ + δAµ, we have

δASA =− 1

4µ0

∫
d4x 2 · (∂µδAν − ∂νδAµ)F

µν (4.2)

=
1

µ0

∫
d4x ∂ν δAν F

µν (4.3)

= − 1

µ0

∫
d4x δAµ ∂νF

µν + (surface term). (4.4)

Thus, we have the Maxwell equation with the tensor form

∂ν F
µν + µ0j

µ = 0, (4.5)

and the Bianchi identity,

∂ρ Fµν + ∂µ Fνρ + ∂ν Fρµ = 0. (4.6)

4.1 Covariant Electromagnetism

The Maxwell equation is described by the forms:

∇ ·E = ρ , ∇×B − ∂E

∂t
= J , (4.7)

where E(t,x) denotes the electric field, B(t,x) denotes the magnetic field, ρ(t,x) denotes

the electric charge density, and J(t,x) denotes the electric current. Here we introduce the

scalar potential and the vector potential as

E = −∇ϕ− ∂A

∂t
, B = ∇×A, (4.8)

respectively. This definition results

∇ ·B = 0 , ∇×E +
∂B

∂t
= 0. (4.9)
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Then Eq. (4.7) is shown as

∆ϕ+ ∂
∂t
∇ ·A = −ρ (4.10)

∆A− ∂2A
∂t2

−∇
(
∂ϕ
∂t

+∇ ·A
)

= −J (4.11)

The Lorentz gauge condition:

∂ϕ

∂t
+∇ ·A = 0 (4.12)

simplifies the above relation as

∂2ϕ

∂t2
−∆ϕ = ρ ,

∂2A

∂t2
−∆A = J (4.13)

Now we introduce the electromagnetic four-potential (Aµ) = (ϕ,A) and four-vector(Jµ) =

(ρ,J) to unify the Maxwell equations as

2Aµ − ∂µ∂νA
ν = −Jµ. (4.14)

The charge conservation law is expressed as

∂µj
µ = 0. (4.15)

The gauge transformation is expressed as

Aµ(x) → Ãµ(x) = Aµ(x) + ∂µθ(x), (4.16)

and the Lorentz gauge condition is described as

∂µA
µ = 0. (4.17)
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The Lorentz gauge condition is a scalar equation, and thus it is relativistically invariant.

Under the Lorentz gauge, the equation of motion is given as

2Aµ = −Jµ. (4.18)

Here, we introduce the electromagnetic field tensor as Fµν = ∂µAν − ∂νAµ. Explicitly, we

have

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 , F µν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 . (4.19)

Note the Fµν is invariant under the gauge transformation Eq.(4.16).

In the conformal coordinate, the Maxwell action is denoted as

SA =

∫
d4x

√−g
[
−1

4
Fµν F

µν

]
, (4.20)

and the variation of the gauge field is

δASA =

∫
d4x

√−g
[
−1

2
F µν δFµν

]
=

∫
d4x

√−g
[
−1

2
F µν (∂µδAν − ∂νδAµ)

]
=

∫
d4x

√−g
[
−F µν ∂µδAν

]
=

∫
d4xδAν

[
∂µ(

√−gF µν)

]
= 0. (4.21)

Thus, we have the following forms of the equation of motion,

∂µ(
√−gF µν) = 0, i.e. ∂µF

µν +
1√−g (

√−g),µ F µν = 0, i.e. ∇µ F
µν = 0. (4.22)
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The Christoffel symbol that appears here is simplified as follows,

Γµ
µα =

1

2
gµβ(gβµ,α + gβα,µ − gµα,β)

=
1√−g (

√−g),α (4.23)

One can also use the following pedagogical relations,

gµν =
1

g

δg

δgµν
, δg = ggµνδgµν ,

δg

g
= gµνδgµν , ∴

∂αg

g
= gµν∂αgµν (4.24)

In the case of the gauge field is coupled to the scalar field, the case is corresponding to the

Model-2 discussed in the later part of this thesis, we have the action like

SA =

∫
d4x

√−g
[
−1

4
f(ϕ)2FµνF

µν

]
. (4.25)

Since the valuable of the coupling function is ϕ or its time evolution, the variation of the

gauge field is performed in the same way,

δASA =

∫
d4x

√−g f 2(ϕ)

[
−1

2
F µν δFµν

]
=

∫
d4x

√−g f 2(ϕ)

[
−1

2
F µν (∂µδAν − ∂νδAµ)

]
=

∫
d4x

√−g f 2(ϕ)

[
−F µν ∂µδAν

]
=

∫
d4x δAν

[
∂µ(

√−g f 2(ϕ)F µν)

]
= 0, (4.26)

resulting the covariant form of the Maxwell equation

∇µ(f
2(ϕ)F µν) = 0. (4.27)
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4.2 Equation of motion of the gravitational wave

The equation of motion of the gravitational wave can be derived by the metric perturbation.

The Einstein-Hilbert action is

Sg =
1

2κ2

∫
d4x

√−gR. (4.28)

The metric perturbation gives

δgSg =
1

2κ2

∫
d4x

(
(δ
√−g)R +

√−g (δgµν)Rµν

)
(4.29)

=
1

2κ2

∫
d4x

√−g δgµν
(
−1

2
gµν R +Rµν

)
(4.30)

Here, we have

δ
√−g = 1

2
· −δg√−g =

1

2
· −g√−g g

µν δgµν =
1

2

√−g gµν δgµν = −1

2

√−g gµνδ gµν , (4.31)

where we use relations

gµν =
1

g

δg

δgµν
, δg = ggµνδgµν , (4.32)

gµαgαν = δµν , δgµαgαν = −gµαδgαν . (4.33)

The metric perturbation of the action of U(1) gauge field is

δgSA =

∫
d4x

(
(δ
√−g)

(
−1

4
gµρ gνρFµνFρσ

)
+
√−g

(
−1

4
gνσ FµνFρσ

)
δgµρ

+
√−g

(
−1

4
gµρ FµνFρσ

)
δgνσ

)

=

∫
d4x

√−g δgµν
(
−1

2
gµν

(
− 1

4
gαρgβσFαβFρσ

)
−1

4
gασFµαFνσ −

1

4
gαρFαµFρν

)

=

∫
d4x

√−g δgµν
(
−1

2
gαβ Fµα Fνβ +

1

8
gµν Fαβ F

αβ

)
. (4.34)
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Therefore, the variation with respect to the metric perturbation derives:

δg(SA + Sg) =
1

2κ2

∫
d4x

√−g δgµν
(
Gµν − 2κ2

(
1

2
gαβ Fµα Fνβ −

1

8
gµν Fαβ F

αβ

))
= 0,

(4.35)

it gives the Einstein equation

Gµν = κ2
(
gαβ Fµα Fνβ −

1

4
gµν Fαβ F

αβ

)
. (4.36)

When we take into account the perturbative approach to solve the field equation, Green’s

function is necessary. In the next subsection, the way to derive Green’s function is mentioned.

4.3 Green’s function

Before deriving the Green’s function in the de Sitter space, let us briefly review the foundation

of the Green’s function clearly written in the textbook [8]. Mos of the field equation including

that of gravitational wave take the form of second order differential equation such as

d2y

dx2
+ f1(x)

dy

dx
+ f2(x)y = f3(x). (4.37)

The above equation reduces to the form of

d

dx

{
p(x)

dy

dx

}
+ q(x)y = 0, (4.38)

when we assume

p(x) = exp

[∫
f1(x)dx

]
, (4.39)

q(x) = f2(x) exp

[∫
f1(x)dx

]
, (4.40)

f3(x) = 0. (4.41)
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When we introduce functions of x, u = u(x) and v = v(x), one can easily have

d

dx

(
pu
dv

dx

)
+ quv = p

du

dx

dv

dx
+ uL[v], (4.42)

here we introduced the notation

L[v] ≡ d

dx

{
p(x)

dy

dx

}
+ q(x)v. (4.43)

After integrating Eq. (4.42),

∫ b

a

(
p
du

dx

dv

dx
− quv

)
dx =

[
pu
dv

dx

]a
b

−
∫ b

a

uL(v)dx. (4.44)

When we replace u and v, we have

∫ b

a

(
p
dv

dx

du

dx
− qvu

)
dx =

[
pv
du

dx

]a
b

−
∫ b

a

vL(u)dx. (4.45)

Eqs.(4.44) and (4.45) result

∫ b

a

[
vL(u)− uL(v)

]
dx =

[
p

{
v
du

dx
− u

dv

dx

}]a
b

, (4.46)

which corresponds to Green’s theorem. Green’s function is often introduced to solve the

boundary value problem like

L(y) = 0,

y(a) = 0 , y(b) = 0, (4.47)

in the case of ∣∣∣∣∣∣y1(a) y2(a)

y1(b) y2(b)

∣∣∣∣∣∣ ̸= 0, (4.48)
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where y1(x) and y2(x) are fundamental solutions of Eq.(4.47). Green’s function G(x, ξ) of

the boundary value problem Eq.(4.47) is supposed to satisfy

(
dG

dx

)
x=ξ+0

−
(
dG

dx

)
x=ξ−0

= − 1

p(ξ)
, (4.49)

where p(ξ) ̸= 0, and its derivative and itself are continues at the area except x = ξ. Let us

suppose that the two independent solutions are chosen to satisfy y1(a) = 0 and y2(b) = 0.

Then the Green function at a ≦ x < ξ can be taken as C1 y1(x), while Green function at

ξ < x ≦ b can be taken as C2 y2(x), where C1 and C2 are coefficients. At the boundary of

the two areas, we have C1 y1(ξ) = C2 y2(ξ). The first-order derivative satisfy

C1y
′
1(ξ)− C2y

′
2(ξ) =

1

p(ξ)
. (4.50)

The condition L(y) = 0 gives L(y1) = L(y2) = 0 and it results we can take the integral

constant to make Eq. (4.46) takes the form

y2(x)y
′
1(x)− y1(x)y

′
2(x) =

1

p(x)
. (4.51)

The comparison between above relation Eq. (4.51) and Eq. (4.50) allows us to chose C1 =

y2(ξ) and C2 = y1(ξ). Thus, Green’s function is given as

G(x, ξ) =

 y1(x) y2(ξ) (x ≦ ξ)

y1(ξ) y2(x) (x ≧ ξ)
, (4.52)

and one can easily find G(ξ1, ξ2) = G(ξ2, ξ1). Here, we derive Green’s function of the gravita-

tional wave in de-Sitter spacetime. We consider the degree of the freedom of the gravitational

wave h(η) which follow the equation of motion

h′′ + 2
a′

a
h′ + k2 = 0. (4.53)

The derivation is described in the later part of this thesis. a is the scale factor which is

related to the conformal time and Hubble constant with the relation a = −1/Hη. Using the
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conformal time, the equation of motion is written as

h′′ − 2

η
h′ + k2h = 0, (4.54)

and the solution is written as h = (1 + ikη)e−ikη. When we have some source term on the

right-hand side of the above equation at η = η′ as is shown in FIG 2, the Green’s function

satisfy

(
d2

dη2
− 2

η

d

dη
+ k2

)
G(η, η′) = −δ(η − η′). (4.55)

The boundary condition is given as GI(η) = 0 while junction conditions at η = η′ is given as

GII(η′) = 0, (4.56)

G ′ II(η′) = −1

2
, (4.57)

where we take the ansatz of the Green’s function in each region as

GI(η) = Ah(η) +B h∗(η), (4.58)

GII(η) = C h(η) +Dh∗(η). (4.59)
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GI(⌘) = A h(⌘) + B h⇤(⌘)
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FIG 2. Configuration of the Green’s function. We assume that the source term appears at η = η′. Note that
the prime on η denotes some specific value of the time, not a derivative.

The condition Eq. (4.56) gives

C(1 + ikη′)e−ikη′ +D(1− ikη′)eikη
′
= 0. (4.60)
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The condition Eq. (4.57) results

Ce−ikη′ +Deikη
′
= − 1

2k2η′
. (4.61)

Eq.(4.60) and Eq.(4.61) gives

C = − 1

4k2η
eikη

′
(
1− 1

ikη′

)
, (4.62)

D = − 1

4k2η
e−ikη′

(
1 +

1

ikη′

)
. (4.63)

Thus the Green’s function is written as

G(η − η′) = θ(η − η′)

{
1

4ik3η′ 2
(1− ikη′)(1 + ikη)e−ik(η−η′) − 1

4ik3η′ 2
(1 + ikη′)(1− ikη)eik(η−η′)

}
.

(4.64)

When we use the variable y = a(η)h(η) in the same procedure, we have

GdS(η, η
′) =

1

2ik

(
1 +

i

kη′

)(
1− i

kη

)
e−ik(η−η′) − 1

2ik

(
1− i

kη′

)(
1 +

i

kη

)
eik(η−η′) . (4.65)

5 quantumness of the gravitational wave

The focus of this thesis is the quantumness of the pGWs, especially the two mode squeezed

state of the graviton. As a brief introduction to the squeezed state, let us mention the

squeezed state. The squeezed state is known as a quantum state that is given by operating

the squeezing operator to some vacuum states. The squeezing operator is defined as

S(ζ) = eA , A = (ζ∗â2 − ζ(â†)2)/2, (5.1)

where ζ is defined by the phase factor θ and the squeezing parameter r ζ = reiθ. The operator

A satisfies the commutation relation [A, â] = ζâ† , [A, â†] = ζ∗â. Using the Campbell-Baker-
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Hausdorf formula:

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + ... (5.2)

the following Bogoliubov transformation is derived,

b̂ = S(ζ)âS†(ζ) = â cosh r + â†eiθ sinh r (5.3)

b̂† = S(ζ)â†S†(ζ) = â† cosh r + âe−iθ sinh r (5.4)

When we have to discuss the classical case in a quantum context, we often use the coherent

state. The coherent state is known as a eigenstate respect to the annihilation operator,

â|α⟩ = α|α⟩, (5.5)

where α is the complex amplitude of the coherent state defined as α = |α|eiϕ. The distribu-

tion of the number operator is set to be the Poisson distribution,

Pn = |⟨n|α⟩|2 = (|α|2)n
n!

exp

[
−|α|2

]
, (5.6)

and this is why we use it to mimic the classical state in the context of quantum theory. In

this sense, the coherent state is also written as

|α⟩ =
∑
n

√
P (n) (eiϕ)n|n⟩

= exp

[
−1

2
|α|2
]∑

n

αn

√
n!
|n⟩ (5.7)

The coherent state is also given after operating the displacement operatorD(α) = exp (αâ† − α∗â)

onto the vacuum state,

|α⟩ = D(α)|0⟩ = exp (αâ† − α∗â)|0⟩. (5.8)
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The distribution of the number operator is often expected as some index to check the quan-

tumness of the state. For example, the sub-Poissonian distribution represented by the Fano

factor F < 1 corresponds to some non-classical fields, as is mentioned in [9]. Fano fac-

tor is defined as F = (∆n)2/⟨n⟩, where ∆n denotes the variance of the particle number

while ⟨n⟩ denotes the mean value. The Poissonian distribution corresponds to F = 1, the

super-Poissonian distribution corresponds to F > 1, and the sub-Poissonian distribution

corresponds to F < 1.

The Bogoliubov transformation of two mode squeezed state is often used to describe

particle production due to the difference of the normal basis of the quantum state like the

Unruh effect Hawking effect and so on. To show an example, we review a part of the

discussion of a Fourier mode in the reference [10]. The Fourier mode in the expanding

universe is described by two different bases in the Heisenberg picture,

ψ̂k(η) = uk(η) âk + u∗k(η) â
†
−k

= vk(η) b̂k + v∗k(η) b̂
†
−k.

The first term in each line denotes the positive frequency mode, while the second term in

each line denotes the negative frequency mode. The commutation relations of each basis,

[âk1 , â
†
k2
] = δk1,k2 , [b̂k1 , b̂

†
k2
] = δk1,k2 are satisfied when the field operator is a scalar field. This

corresponds to the orthonormality of the Klein-Gordon inner product of the mode functions

[11]. When the field is the Dirac field, the commutation relations are replaced with the

anti-commutation relations. The two different vacua are defined by annihilation operators,

âk|0k⟩ = 0, b̂k|0k⟩ = 0. In the context of cosmology, especially the squeezing process of the

initial fluctuation, |0k⟩ and |0k⟩ correspond to the initial time, known as the Bunch-Davies

vacuum, and the vacuum in the late time. The orthonormality of the mode functions or the

operators guarantees the Bogoliubov transformation,

âk = e−iθk cosh rkb̂k + eiθk+2iφk sinh rkb̂
†
−k, (5.9)

where rk is the squeezing parameter and θk and φk is the phase factor taking real number.
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The derivation of the two mode squeezed state is referred in [12]. The definition of the

vacuum âk|0k⟩ = 0k results

(
cosh rkb̂k + ei(θk+φk) sinh rkb̂

†
−k

)
|0k⟩ = 0. (5.10)

Taking into account the commutation relation [b̂k1 , b̂
†
k2
] = δk1,k2 , the above equation can be

regarded as a differential equation that solution is written as

|0k⟩ ∝ exp

[
ei(θk+φk) tanh rk b̂

†
k b̂

†
−k

]
|0k⟩ ⊗ |0−k⟩. (5.11)

Taylor series of the above equation gives a two-mode squeezed state that consists of an

infinite number of entangled particles,

|0k⟩ ∝
∑
n

ein(θk+φk)(tanh rk)
n|nk⟩ ⊗ |n−k⟩. (5.12)

The state reduces to the maximal entangled state when the squeezing parameter goes to

infinity, rk → ∞, and the non-classicality is remarkable at that time.

The inflationary cosmology predicts the existence of primordial gravitational waves (PGWs)

that stems from quantum fluctuations. Hence, the detection of PGWs gives strong evidence

of inflationary cosmology. In particular, if we could observe the quantum nature of PGWs,

it would imply a discovery of gravitons. This point motivates several experimental projects

for detecting PGWs [13, 14, 1, 2]. Remarkably, the quantum state of gravitons gets squeezed

during inflation [15, 12, 16, 17, 10]. Hence, one way to prove the quantum nature of PGWs

would be to find evidence of the squeezed state of gravitons. However, it has still been a

challenge to detect PGWs by laser interferometers through the statistical property of the

squeezed state [18, 19]. Some other ideas for detecting non-classical PGWs using their

squeezed state are proposed. One is to use the Hanbury Brown-Twiss interferometry, which

can distinguish non-classical particles from classical ones by measuring intensity-intensity

correlations [20, 3]. Another idea is to detect primordial gravitons indirectly by measuring

their noise in the interferometers [21, 22, 23, 24] or by measuring the decoherence time of a

quantum object caused by the surrounding primordial gravitons [25].
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If we capture some evidence of the quantumness of the gravitational wave, it means the

existence of the graviton, at the same time, it supports the quantumness of the primor-

dial fluctuation because the origin of pGWs and initial fluctuation is the same, the tensor

component and the scalar component of the quantum fluctuation, respectively.

Here, let us review one of the ideas to detect the quantumness of the pGWs. The system

is illustrated in FIG.3. The procedure of the experiment supposed in Ref.[25] is the following.

At first, a photon is shot into the beam splitter from the left side of the picture (See FIG.3).

Then, the photon goes x-direction or y-direction with an equal probability. The photon hits

mirror 1 when the photon goes to the x-direction, while the photon hits mirror 2 when the

photon goes to the y-direction. Mirrors are connected to springs, and thus when a photon

hits mirrors, oscillation state ξ1 and ξ2 are generated. We define the time when the photon

hits the mirror as ti. We assume that pGWs go through mirrors continuously. We describe

the quantum state of the system at the initial time ti as

|ψ(ti)⟩ =
[

1√
2
|ξ1⟩ ⊗ |0⟩+ 1√

2
|0⟩ ⊗ |ξ2⟩

]
mirror

⊗ |0⟩graviton, (5.13)

where the state in the bracket on the right-hand side is the superposition state, while the

state |0⟩graviton represents the vacuum state of gravitons. The reduced density operator of

the mirror is obtained when we trace out the states of gravitons as

ρ(ti) = Trg

[
|ψ(ti)⟩⟨ψ(ti)|

]
=

1

2
|ξ1⟩⟨ξ1| ⊗ |0⟩⟨0|+ 1

2
|0⟩⟨ξ1| ⊗ |ξ2⟩⟨0|+

1

2
|ξ1⟩⟨0| ⊗ |0⟩⟨ξ2|+

1

2
|0⟩⟨0| ⊗ |ξ2⟩⟨ξ2|

= ρ11(ti) + ρ21(ti) + ρ12(ti) + ρ22(ti), (5.14)

where we defined ρ11(ti) = 1
2
|ξ1⟩⟨ξ1| ⊗ |0⟩⟨0|, ρ21(ti) = 1

2
|0⟩⟨ξ1| ⊗ |ξ2⟩⟨0|, ρ12(ti) = 1

2
|ξ1⟩⟨0| ⊗

|0⟩⟨ξ2|, and ρ22(ti) = 1
2
|0⟩⟨0| ⊗ |ξ2⟩⟨ξ2|. ρ12 and ρ21 is the interference term representing the

initial entangled state between mirror 1 and mirror 2.
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FIG 3. The schematic picture of the interferometer. The picture is taken from Ref [25].

Because mirror 1 and mirror 2 interact with the surrounding gravitons, the vacuum state

of the gravitons are changed as |h; ξ1⟩ and |h; ξ2⟩, respectively. The state of the total system

after the interaction can be expressed as

|ψ(tf )⟩ =
1√
2
|ξ1⟩|0⟩ ⊗ |h; ξ1⟩+

1√
2
|0⟩|ξ2⟩ ⊗ |h; ξ2⟩. (5.15)

The mirrors get entangled with gravitons due to the interaction, and the superposition state

of mirrors is decohered due to the interaction. Then, the reduced density operator of the

total system takes the form

ρ(tf ) = Trg

[
|ψ(tf )⟩⟨ψ(tf )|

]
= ρ11(ti) + eImΦ∗

ρ21(ti) + e−ImΦρ12(ti) + ρ22(ti). (5.16)

The influence of the gravitons appears as Φ, which is called decoherence functional. The

decoherence time of the entangled state of mirror 1 and mirror 2 is derived from the decoher-

ence function, and it depends on the state of the environmental gravitons. In the case that

the graviton is squeezed during conventional inflation, the decoherence time is estimated as

about 20 seconds. Other parameters are set as follows, the angular frequency of mirrors

∼ 1kHz, the arm length ∼ 40 km, the mass of the mirror ∼ 40 kg. In the case that the

29



graviton is a coherent state, the decoherence time gets greater. When we regard the coherent

state as a classical state, we can say that the decoherence time when the graviton is quan-

tum is greater than the decoherence time when the graviton is classical. In other words, the

quantumness of the background graviton would be detected by measuring the decoherence

time of the mirror system.

We can expect that the gravitons that went through inflation keep their squeezed states

until today unless the environmental effects on them are considered. It is well known that

the generation of relic gravitons can be interpreted as the squeezing process of a quantum

state during inflation [15, 12, 16, 17]. Since the degree of squeezing is extremely high, the

quantum state is highly entangled between two modes with opposite wave number vectors due

to the conservation of momentum. Therefore, whether the background graviton is squeezed

state or not is very important to test the quantumness of the pGWs in the way proposed

in Ref [25]. In fact, the squeezed gravitons can significantly enhance the quantum noise in

interferometers [21, 22, 23, 24, 25]. Hence, we need to show the degree of the squeezing

generated during inflation survives under the decoherence processes in the evolution of the

universe. So far, the decoherence process due to short wavelength modes of a field has been

investigated [26, 27, 28, 29]. However, it is argued that the decoherence obtained by tracing

out the short wavelength modes is false decoherence [30]. Thus, it is worth studying different

decoherence processes.

If the gravitons were surrounded by matter fields during inflation, they may not be

able to keep their squeezed states anymore. If the squeezed state is broken due to some

environmental effect, the detection of the quantumness with the approaches mentioned above

would be difficult. We can think of a scalar field (inflaton field) and a vector field as the

matter field during inflation. Since the inflaton field couples with PGWs in the form of the

gradient, the coupling with the vector field would be more effective.

In the next section, we see some observational background of the cosmic magnetic field.
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6 Observational background of the cosmic magnetic field

From the point of view of observations, primordial magnetic fields may have existed during

inflation. In fact, there are observations that cannot be explained without the presence of

primordial magnetic fields [31, 32, 33, 34, 35, 36]. Several observation gives us the range of

current value of the cosmic magnetic field. The expected area of cosmic magnetic field is

about 10−16Gauss < B0 < 10−9Gauss.

The upper bound B0 < 10−9Gauss is given by several kinds of observations. For instance,

there is a very tiny anisotropy of the CMB temperature fluctuation, and it gives the value

of the upper bound since the existence of the background magnetic field gives rise to the

anisotropy of the CMB temperature fluctuation [37, 38]. Another example is the Faraday

rotation. If there is a background magnetic field, the angle of the polarization plane of the

photon rotates, it is known as Faraday rotation. Since the Faraday rotation of the photon

traveled a far distance due to the background magnetic field is not observed, we can get

the upper bound of the magnetic field [39]. These ways to get the upper bound are quite

intuitive and clear. Then, the next concern is the lower bound, and some consideration is

required. The next figure is adapted from Ref. [40].

FIG 4. Schematic picture of the mechanism of the emission of TeV gamma-ray and GeV gamma-ray from
blazar in a distant galaxy. The picture is taken from Ref [40].

Several paths of the TeV photon in the picture FIG.Tanmayn. At first, a blazar in a

distant galaxy emits the TeV gamma-ray. The created lepton pair proceeds the distance in

kpc order and is terminated by an inverse Compton IC scattering. The mean free path of

the electron is the scale of ∼ kpc. The GeV photon that is created by the Inverse Compton
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(IC) scattering propagates to the detector, perhaps on board a satellite. The path of the

lepton pair is much smaller than the pass of the GeV photon ∼ 100 Mpc and the pass of TeV

photon ∼ Gpc. Here, only the lepton pair probes the intergalactic magnetic field. When

there are inter-galactic magnetic fields with enough strength, the Lorentz force bent the pass

of the lepton pair. In that case, the GeV gamma rays are no longer directed toward the

observer. Then, the GeV gamma-ray will not be observed. In, Ref [33] the observational

data of the lower bound of the strength of intergalactic magnetic fields is elaborated. The

following figure is adapted from Ref.[33].

FIG 5. Thick solid black curves show the expected cascade emission from TeV blazars, grey curves show the
Fermi upper limits, and grey data points show the data of the High Energy Stereoscopic System (HESS).
This figure is taken from Ref [33].

The dashed curves in each panel show the source spectra. Dotted curves show the elec-

tromagnetic cascade spectra originated by pair creation on extra-galactic background light.

If there are no intergalactic magnetic fields, some data points will be observed between the
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Fermi upper limits and the solid line of the expected cascade emission from TeV blazars.

Since the GeV gamma-ray emission from the electromagnetic cascade initiated by the TeV

gamma-ray in the intergalactic medium is not observed, one can obtain the lower bound

of the intergalactic magnetic field. Furthermore, if a coherence length of magnetic fields in

mega-parsec scales were found, we need to consider magnetic fields generated during infla-

tion [41, 42].

The presence of background magnetic fields causes the conversion of gravitons into pho-

tons and vice versa [4, 43]. These photons could be the dark photon [44]. The graviton

photon conversion would affect the squeezed state of gravitons. Therefore, we need to inves-

tigate the effect of the conversion process on the squeezed state of gravitons.

Thus, as a source of the decoherence, we assume the presence of a sizable magnetic field

at the beginning of inflation. The squeezed state of gravitons may turn into the squeezed

state of photons due to the graviton-photon conversion. Hence, it is important to clarify to

what extent the squeezing of the relic gravitons survives at present.

In this thesis, we investigate whether gravitons surrounded by primordial magnetic fields

can keep their squeezed states. The purpose of this paper is to compute the degree of

squeezing parameters of graviton and photon and cross squeezing parameter between gravi-

tons and photons during inflation. We then consider the conversion process of the squeezed

gravitons into photons during inflation in the case of minimal coupling between gravitons

and photons [4, 43, 45, 46].
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Part II

Background magnetic field Model-1
This part is organized as follows: In section 1, we derive basic equations for analyzing

the conversion process of gravitons into photons during inflation. In section 2, we explain

the perturbative formalism for solving a coupled system between gravitons and photons in

order to obtain the time evolution of mode functions. In section 3, we derive Bogoliubov

transformations due to the squeezing process in the presence of primordial magnetic fields.

In section 4, we deduce formulae for the squeezing parameters and reveal the time evolution

of the squeezing parameters numerically and analytically. We also discuss the implications

of our results. The final section is devoted to the conclusion.

1 Graviton-photon conversion during inflation

We represent the graviton in a spatially flat expanding background by the tensor mode

perturbation in the three-dimensional metric,

ds2 = a2(η)
[
−dη2 + (δij + hij) dx

idxj
]
, (1.1)

where η is the conformal time and the metric perturbation hij satisfies the transverse traceless

conditions hij ,j = hii = 0. The spatial indices i, j, k, · · · are raised and lowered by δij and

δkℓ.

The Einstein-Hilbert action and the action for the electromagnetic field is given by

S = Sg + SA =
M2

pl

2

∫
d4x

√−g R− 1

4

∫
d4x

√−g F µνFµν , (1.2)

where Mpl = 1/
√
8πG is the Planck mass. The gauge field Aµ represents the photon and

the field strength is defined by Fµν = ∂µAν − ∂νAµ. Expanding the Einstein-Hilbert action
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up to the second order in perturbations hij, we find

δSg =
M2

pl

8

∫
d4x a2

[
hij′ h′ij − hij,khij,k

]
. (1.3)

Here, a prime denotes the derivative with respect to the conformal time. The action for the

photon up to second order in perturbations Ai reads

δSA =
1

2

∫
d4x

[
A′ 2

i − A2
k,i

]
, (1.4)

where the photon field satisfies the Coulomb gauge A0 = 0 and Ai
,i = 0. The action for the

interaction between the graviton and the photon up to second order in perturbations hij, Ai

is found to be

δSI =

∫
d4x

[
εiℓmBmh

ij (∂jAℓ − ∂ℓAj)
]
. (1.5)

Note that we assumed Bm = εmjℓ ∂jAℓ is a constant background magnetic field that existed

at the beginning of inflation.

At quadratic order, it is convenient to expand hij(η, x
i) and Ai(η, x

i) in the Fourier

modes,

hij(η, x
i) =

2

Mpl

∑
P

1

(2π)3/2

∫
d3k hPk (η) e

P
ij(k) e

ik·x , (1.6)

Ai(η, x
i) =

∑
P

±i
(2π)3/2

∫
d3k AP

k (η) e
P
i (k) e

ik·x, (1.7)

where three-vectors are denoted by bold math type and ePij(k) and ePi (k) are the polarization

tensors and vectors for the k mode respectively normalized as eijP (k)eQij(k) = δPQ and

eiP (k)eQi (k) = δPQ with P,Q = +,×. Using the canonical variable yPk (η) = a(η)hPk (η), we
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can rewrite the quadratic actions (2.4), (2.7) and (2.10) as

δSg =
1

2

∑
P

∫
d3k dη

[
|yP ′

k |2 − k2|yPk |2 −
a′

a
yPk y

P ′
−k −

a′

a
yP−ky

P ′
k +

(
a′

a

)2

|yPk |2
]
,(1.8)

δSA =
1

2

∑
P

∫
d3k dη

[
|AP ′

k |2 − k2|AP
k |2
]
, (1.9)

δSI =
2

Mpl

∑
P,Q

∫
d3k dη

1

a

[
εiℓmBm y

P
kA

Q
−k e

P
ij(k)

{
ikℓ e

Q
j (−k)− ikj e

Q
ℓ (−k)

}]
,(1.10)

where k = |k|. Polarization vectors ei+, ei× and a vector ki/k constitute an orthnormal

basis. Without loss of generality, we assume the constant background magnetic field is in

the (ki, ei×)-plane.

Direction 
of 

propagation
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FIG 6. Configuration of the polarization vector eP (k), wave number k, and background magnetic field B.

The polarization tensors can be written in terms of polarization vectors ei+ and ei× as

e+ij(k) =
1√
2

{
e+i (k)e

+
j (k)− e×i (k)e

×
j (k)

}
, (1.11)

e×ij(k) =
1√
2

{
e+i (k)e

×
j (k) + e×i (k)e

+
j (k)

}
. (1.12)

In the following, we assume

e×i (−k) = −e×i (k) . (1.13)
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The action (2.11) is then reduced into

δSI =

√
2

Mpl

∫
d3k dη

1

a

[
λ(k) y+k (η)A

+
−k(η) + λ(k) y×k (η)A

×
−k(η)

]
, (1.14)

where we defined the coupling between graviton and photon as

λ(k) ≡
√
2

Mpl

εiℓm e+i kℓBm . (1.15)

Here, the conditions for the graviton and photon to be real read, h+,×
−k (η) = h∗+,×

k (η) and

A+,×
−k (η) = −A∗+,×

k (η) . Below, we focus on the plus polarization and omit the index P unless

there may be any confusion.

In the case of de Sitter space, the scale factor is given by a(η) = −1/(Hη) where −∞ <

η < 0. The variation of the actions (1.8), (1.9) and (2.14) with respect to the graviton and

the photon fields gives

y′′k +

(
k2 − 2

η2

)
yk = λHηAk , (1.16)

A′′
k + k2Ak = λHη yk . (1.17)

If we define the Lagrangian in the actions (1.8) and (1.9) by δSg =
∫
dη Lg and δSA =∫

dη LA, the conjugate momenta of graviton pk and photon πk are respectively given by

pk(η) =
∂Lg

∂y′−k

= y′k(η) +
1

η
yk(η) , (1.18)

πk(η) =
∂LA

∂A′
−k

= A′
k(η) . (1.19)

Now we promote variables yk(η), Ak(η) and their momenta pk(η), πk(η) into operators. The

annihilation operator for the graviton is expressed by canonical variables as

ây(η,k) =

√
k

2
ŷk(η) +

i√
2k
p̂k(η) . (1.20)
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In the same way, the annihilation operator for the photon is given by

âA(η,k) =

√
k

2
Âk(η) +

i√
2k
π̂k(η) . (1.21)

The commutation relations [ây(η,k), â
†
y(η,−k′)] = δ(k + k′) and [âA(η,k), â

†
A(η,−k′)] =

δ(k + k′) guarantee the canonical commutation relations [yk(η), pk′(η)] = iδ(k − k′) and

[Ak(η), πk′(η)] = iδ(k − k′). Notice that the annihilation operator becomes time-dependent

through the time dependence of canonical variables. Thus, the vacuum defined by â(η,k)|0⟩ =
0 is time dependent as well and the vacuum in this formalism turns out to be defined at

every moment.

In this paper, we suppose Bm/Mpl ≪ 1 so that the coupling between graviton and

photon (2.15) is weak. Then we solve the Eqs. (2.17) and (2.18) iteratively up to the second

order in yk and Ak in the next section.

2 Time evolution of mode functions

Using the basic equations presented in the previous section, we perturbatively derive mode

functions in this section.

2.1 Zeroth order

By letting λ = 0 in Eqs. (2.17) and (2.18), the equations of the zeroth order approximation

become

ŷ
(0)′′
k +

(
k2 − 2

η2

)
ŷ
(0)
k = 0 , (2.1)

Â
(0)′′
k + k2Â

(0)
k = 0 , (2.2)

where the superscript (0) denotes the zeroth order. The solutions to the above equations are

ŷ
(0)
k (η) = u

(0)
k (η) ĉ+ u

(0)∗
k (η) ĉ† , (2.3)

Â
(0)
k (η) = v

(0)
k (η) d̂+ v

(0)∗
k (η) d̂†, (2.4)
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where ĉ (d̂) and its conjugate ĉ†(d̂†) are constant operators of integration. We choose the

properly normalized positive frequency mode in the remote past as a basis, which is expressed

as

u
(0)
k (η) =

1√
2k

(
1− i

kη

)
e−ikη , v

(0)
k (η) =

1√
2k
e−ikη. (2.5)

2.2 First order

Inserting the solutions of zeroth order approximation (3.7) and (3.8) into the r.h.s of Eqs. (2.17)

and (2.18) as the source terms, the equations of the first order approximation are written as

ŷ
(1)′′
k +

(
k2 − 2

η2

)
ŷ
(1)
k = λHηÂ

(0)
k , (2.6)

Â
(1)′′
k + k2Â

(1)
k = λHηŷ

(0)
k . (2.7)

The effect of photon comes in Eq. (2.6). Using the Green function

GdS(η, η
′) =

1

2ik

(
1 +

i

kη′

)(
1− i

kη

)
e−ik(η−η′) − 1

2ik

(
1− i

kη′

)(
1 +

i

kη

)
eik(η−η′) , (2.8)

we obtain the solution as

ŷ
(1)
k (η) = −

∫ η

ηi

dη′GdS(η, η
′)λHη′Â

(0)
k (η′)

= −
∫ η

ηi

dη′GdS(η, η
′)λHη′v

(0)
k (η′) d̂−

∫ η

ηi

dη′GdS(η, η
′)λHη′v

(0)∗
k (η′) d̂†

≡ u
(1)
k (η) d̂+ u

(1)∗
k (η) d̂† , (2.9)

where ηi is an initial time. From the first line to the second line, we used Eq. (3.8). In the

last line, we defined the first-order correction due to the source of the photon to the positive

frequency mode of graviton by

u
(1)
k (η) ≡ −

∫ η

ηi

dη′GdS(η, η
′)λHη′v

(0)
k (η′) . (2.10)
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After integration, we have

u
(1)
k (η) =

λH

8
√
2ηk9/2

[
e−ikη

{
2iη3k3 + ηk

(
2ηik(2− iηik) + 3i

)
− 2ηik(ηik + 2i) + 3

}
−eik(η−2ηi)(ηk + i)(2ηik − 3i)

]
. (2.11)

Similarly, the effect of graviton comes in Eq. (2.7). By using the Green function

GM(η, η
′) = −1

k
sin k(η − η′) , (2.12)

we have

Â
(1)
k (η) = −

∫ η

ηi

dη′GM(η, η
′)λHη′ŷ

(0)
k (η′)

= −
∫ η

ηi

dη′GM(η, η
′)λHη′u

(0)
k (η) ĉ−

∫ η

ηi

dη′GM(η, η
′)λHη′u

(0)∗
k (η) ĉ†

≡ v
(1)
k (η) ĉ+ v

(1)∗
k (η) ĉ† , (2.13)

where we used Eq. (3.7) from the first line to the second line. We also defined the first-order

correction due to the source of graviton to the positive frequency mode of the photon in the

third line by

v
(1)
k (η) ≡ −

∫ η

ηi

dη′GM(η, η
′)λHη′u

(0)
k (η′) . (2.14)

More explicitly, the above is written as

v
(1)
k (η) =

λH

8
√
2k7/2

[
e−ikη

{
2ik2(η2 − η2i ) + k(6η − 4ηi)− 3i

}
+ eik(η−2ηi)(−2ηik + 3i)

]
.

(2.15)

2.3 Second order

By plugging the solution of the first order approximation (2.9) and (2.13) into the r.h.s of

Eqs. (2.17) and (2.18) as the source terms, the equations of the second order approximation
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are

y
(2)′′
k +

(
k2 − 2

η2

)
y
(2)
k = λHηA

(1)
k , (2.16)

A
(2)′′
k + k2A

(2)
k = λHη y

(1)
k . (2.17)

At this order, the effect of graviton itself comes in Eq. (2.16). The solution is written by the

Green function GdS such as

ŷ
(2)
k (η) = −

∫ η

ηi

dη′GdS(η, η
′)λHη′Â

(1)
k (η′)

= −
∫ η

ηi

dη′GdS(η, η
′)λHη′v

(1)
k (η′) ĉ−

∫ η

ηi

dη′GdS(η, η
′)λHη′v

(1)∗
k (η′) ĉ†

= −
∫ η

ηi

dη′GdS(η, η
′)λHη′

(
−
∫ η′

ηi

dη′′GM(η
′, η′′)λHη′′u

(0)
k (η′′)

)
ĉ

−
∫ η

ηi

dη′GdS(η, η
′)λHη′

(
−
∫ η′

ηi

dη′′GM(η
′, η′′)λHη′′u

(0)∗
k (η′′)

)
ĉ†

≡ u
(2)
k (η) ĉ+ u

(2)∗
k (η) ĉ†, (2.18)

where we used Eqs. (2.13) and (2.14) in the second and the third lines respectively. In the

last line, we defined

u
(2)
k (η) ≡ −

∫ η

ηi

dη′GdS(η, η
′)λHη′v

(1)
k (η′)

=

∫ η

ηi

dη′GdS(η, η
′)λHη′

∫ η′

ηi

dη′′GM(η
′, η′′)λHη′′u

(0)
k (η′′). (2.19)
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By performing the integration, the explicit form of the u(2)k (η) is found to be

u
(2)
k (η) = − λ2H2

192
√
2ηk15/2

×
[
3eik(η−2ηi)

{
2η3k3(−3− 2iηik) + ηk

(
−35 + 2ηik(ηik(11 + 2iηik)− 23i)

)
+2ηik(23 + ηik(−2ηik + 11i))− 35i

}
+e−ikη

{
k
(
−105η + 72ηi + 6ηk4

(
η2 − η2i

)2 − 2ik3
(
17η4 − 12η3ηi − 8ηη3i + 3η4i

)
+k2

(
16η3i − 52η3

)
+ 72iηηik

)
+ 105i

}]
. (2.20)

Similarly, the effect of photon itself comes in Eq. (2.17) and the solution is given by

Â
(2)
k (η) = −

∫ η

ηi

dη′GM(η, η
′)λHη′ ŷ

(1)
k (η′)

= −
∫ η

ηi

dη′GM(η, η
′)λHη′u

(1)
k (η′) d̂−

∫ η

ηi

dη′GM(η, η
′)λHη′ u

(1)∗
k (η′) d̂†

= −
∫ η

ηi

dη′GM(η, η
′)λHη′

(
−
∫ η′

ηi

dη′′GdS(η
′, η′′)λHη′′v

(0)
k (η′′)

)
d̂

−
∫ η

ηi

dη′GM(η, η
′)λHη′

(
−
∫ η′

ηi

dη′′GdS(η
′, η′′)λHη′′v

(0)∗
k (η′′)

)
d̂†

= v
(2)
k (η) d̂+ v

(2)∗
k (η) d̂†, (2.21)

where we used Eqs. (2.9) in the second line and (2.10) in the third line and in the last line.

We defined

v
(2)
k (η) ≡ −

∫ η

ηi

dη′GM(η, η
′)λHη′u

(1)
k (η′)

=

∫ η

ηi

dη′GM(η, η
′)λHη′

∫ η′

ηi

dη′′GdS(η
′, η′′)λHη′′v

(0)
k (η′′) . (2.22)
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The integral of the above reduces to

v
(2)
k (η) = − λ2H2

64
√
2k13/2

×
[
e−ikη

(
2k4

(
η2 − η2i

)2 − 4iηk3(η − ηi)(η + 3ηi)

+12ηik
2(ηi − 2η)− 12ik(η − 2ηi)− 15

)

+eik(η−2ηi)
(
2k(3 + 2iηik)

(
η2i k − η(ηk + 3i)

)
+ 6iηik + 15

)]
. (2.23)

3 Bogoliubov transformations

By solving Eqs.(2.17) and (2.18) iteratively up to the second order, we can take into account

the backreaction of graviton and photon respectively. For the graviton, the field and its

conjugate momentum are now given by

ŷk(η) =
(
u
(0)
k + u

(2)
k

)
ĉ+ u

(1)
k d̂+ h.c. , (3.1)

p̂k(η) =
(
u
(0) ′
k + u

(2) ′
k

)
ĉ+ u

(1) ′
k d̂+

1

η

{(
u
(0)
k + u

(2)
k

)
ĉ+ u

(1)
k d̂

}
+ h.c. , (3.2)

where we used Eq. (3.1) and h.c. represents Hermitian conjugate. For the photon, the field

and its conjugate momentum become

Âk(η) =
(
v
(0)
k + v

(2)
k

)
d̂+ v

(1)
k ĉ+ h.c. , (3.3)

π̂k(η) =
(
v
(0) ′
k + v

(2) ′
k

)
d̂+ v

(1) ′
k ĉ+ h.c. , (3.4)

where we used Eq. (3.2). Then the annihilation operators for the graviton and photon are

obtained by using Eqs. (3.3) and (3.4) such as

ây(η,k) =
(
ψ(0)
p + ψ(2)

p

)
ĉ+

(
ψ(0)∗
m + ψ(2)∗

m

)
ĉ† + ψ(1)

p d̂+ ψ(1)∗
m d̂† , (3.5)

âA(η,k) =
(
ϕ(0)
p + ϕ(2)

p

)
d̂+

(
ϕ(0)∗
m + ϕ(2)∗

m

)
d̂† + ϕ(1)

p ĉ+ ϕ(1)∗
m ĉ† . (3.6)

43



Here, we defined new variables

ψ(j)
p =

√
k

2
u
(j)
k (η) +

i√
2k

(
u
(j)′
k (η) +

1

η
u
(j)
k (η)

)
, (3.7)

ψ(j)
m =

√
k

2
u
(j)
k (η)− i√

2k

(
u
(j)′
k (η) +

1

η
u
(j)
k (η)

)
, (3.8)

ϕ(j)
p =

√
k

2
v
(j)
k (η) +

i√
2k
v
(j)′
k (η), (3.9)

ϕ(j)
m =

√
k

2
v
(j)
k (η)− i√

2k
v
(j)′
k (η), (3.10)

where j = 0, 1, 2 denotes the order of perturbations.

We see that all mode functions other than the zeroth order given in Eqs. (2.10), (2.14)

(2.19) and (2.22) vanish at the initial time ηi. Thus only the zeroth order of the above

Eqs. (3.30) ∼ (3.10) remains at the initial time. This means that annihilation operators in

Eqs.(3.28) and (3.29) at the initial time are expressed by the zeroth order variables

ây(ηi,k) =

(
1− i

2kηi

)
e−ikηi ĉ+

i

2kηi
eikηi ĉ†, (3.11)

âA(ηi,k) = e−ikηi d̂. (3.12)

Combining Eqs. (3.10) and (3.11) with their complex conjugate, we can express the ĉ and d̂

by the initial creation and annihilation operators as

ĉ =

(
1 +

i

2kηi

)
eikηi ây(ηi,k)−

i

2kηi
eikηi â†y(ηi,−k) , (3.13)

d̂ = eikηi âA(ηi,k) . (3.14)

Plugging the above back into Eqs.(3.28) and (3.29), the time evolution of the annihilation
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operator of the graviton is described by the Bogoliubov transformation in the form

ây(η,k) =

[(
ψ(0)
p + ψ(2)

p

)(
1 +

i

2kηi

)
eikηi +

(
ψ(0)∗
m + ψ(2)∗

m

)
i

2kηi
e−ikηi

]
ây(ηi,k)

+

[(
ψ(0)
p + ψ(2)

p

)(
− i

2kηi

)
eikηi +

(
ψ(0)∗
m + ψ(2)∗

m

)(
1− i

2kηi

)
e−ikηi

]
â†y(ηi,−k)

+ ψ(1)
p eikηi âA(ηi,k) + ψ(1)∗

m e−ikηi â†A(ηi,−k), (3.15)

and the time evolution of the annihilation operator of the photon is expressed by the Bo-

goliubov transformation such as

âA(η,k) =

(
ϕ(1)
p

(
1 +

i

2kηi

)
eikηi + ϕ(1)∗

m

i

2kηi
e−ikηi

)
ây(ηi,k)

+

(
−ϕ(1)

p

i

2kηi
eikηi + ϕ(1)∗

m

(
1− i

2kηi

)
e−ikηi

)
â†y(ηi,−k)

+
(
ϕ(0)
p + ϕ(2)

p

)
eikηi âA(ηi,k) +

(
ϕ(0)∗
m + ϕ(2)∗

m

)
e−ikηi â†A(ηi,−k). (3.16)

These Bogoliubov transformations show the particle production during inflation and the

mixing between graviton and photon.

It is useful to use a matrix form for later calculations. In fact, the Bogoliubov transfor-

mation (3.32) and (3.33) and their conjugate can be accommodated into the simple 4 × 4

matrix form M
ay(η)

a†y(η)

aA(η)

a†A(η)

 =M


ay(ηi)

a†y(ηi)

aA(ηi)

a†A(ηi)

 =


A0 0

0 D0

+

 0 B1

C1 0

+

A2 0

0 D2



ay(ηi)

a†y(ηi)

aA(ηi)

a†A(ηi)

 .

(3.17)

Here, the zeroth order Bogoliubov transformation consists of 2×2 matrices A0 and D0 given
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by

A0 =

K∗ −L∗

−L K

 , D0 =

eik (η−ηi) 0

0 e−ik (η−ηi)

 , (3.18)

where we defined

K =

(
1 +

i

2kη

)(
1− i

2kηi

)
eik(η−ηi) − 1

4k2ηηi
e−ik(η−ηi) , (3.19)

L = − i

2kηi

(
1 +

i

2kη

)
eik(η−ηi) +

i

2kη

(
1 +

i

2kηi

)
e−ik(η−ηi) . (3.20)

The first order Bogoliubov transformation is written by 2× 2 matrices B1 and C1 such as

B1 =

eikηiψ(1)
p e−ikηiψ

(1)∗
m

eikηiψ
(1)
m e−ikηiψ

(1)∗
p

 (3.21)

and

C1 =

(1 + i
2kηi

)
eikηiϕ

(1)
p + i

2kηi
e−ikηiϕ

(1)∗
m

(
1− i

2kηi

)
e−ikηiϕ

(1)∗
m − i

2kηi
eikηiϕ

(1)
p(

1 + i
2kηi

)
eikηiϕ

(1)
m + i

2kηi
e−ikηiϕ

(1)∗
p

(
1− i

2kηi

)
e−ikηiϕ

(1)∗
p − i

2kηi
eikηiϕ

(1)
m

 . (3.22)

Finally, the second-order Bogoliubov transformation A2 and D2 are

A2 =

(1 + i
2kηi

)
eikηiψ

(2)
p + i

2kηi
e−ikηiψ

(2)∗
m

(
1− i

2kηi

)
e−ikηiψ

(2)∗
m − i

2kηi
eikηiψ

(2)
p(

1 + i
2kηi

)
eikηiψ

(2)
m + i

2kηi
e−ikηiψ

(2)∗
p

(
1− i

2kηi

)
e−ikηiψ

(2)∗
p − i

2kηi
eikηiψ

(2)
m

 (3.23)

and

D2 =

eikηiϕ(2)
p e−ikηiϕ

(2)∗
m

eikηiϕ
(2)
m e−ikηiϕ

(2)∗
p

 . (3.24)

4 Time evolution of squeezing parameters

In the previous section, we obtained the Bogoliubov transformation that mixes the operators

ây(η), âA(η) and their Hermitian conjugates â†y(η), â
†
A(η). Note that the initial Bunch-Davies
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state is defined by

ây(ηi,k)|BD⟩ = âA(ηi,k)|BD⟩ = 0 . (4.1)

Note that the initial quantum state could be taken as the different state from the Bunchi-

Davies vacuum. For instance, we can take alpha vacua as the initial state, which can be

interpreted as excited states. In this case, we would obtain a different result depending on

the parameters of the alpha vacua. In order to impose these conditions, we need to invert

the Bogoliubov transformations (3.32) and (3.33) into the form

ây(ηi,k) = αy ây(η,k) + βy â
†
y(η,−k) + γA âA(η,k) + δA â

†
A(η,−k) , (4.2)

âA(ηi,k) = γy ây(η,k) + δy â
†
y(η,−k) + αA âA(η,k) + βA â

†
A(η,−k) , (4.3)

where αy, βy, γA, δA, γy, δy, αA and βA are the Bogoliubov coefficients and we will find these

coefficients in the next subsection.

4.1 Inversion of the Bogoliubov transformation

The matrix M in Eq. (3.34) can be expanded perturbatively as

M =M (0) +M (1) +M (2) =M (0)
[
1 +M (0)−1M (1) +M (0)−1M (2)

]
, (4.4)

where

M (0) =

A0 0

0 D0

 , M (1) =

 0 B1

C1 0

 , M (2) =

A2 0

0 D2

 . (4.5)

Then the inverse of the M is given by

M−1 =
[
1−M (0)−1M (1) −M (0)−1M (2) +M (0)−1M (1)M (0)−1M (1)

]
M (0)−1 . (4.6)
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Using the above general formula, the inverse of the M is obtained in the form

M−1 =

A−1
0 − A−1

0 A2A
−1
0 + A−1

0 B1D
−1
0 C1A

−1
0 −A−1

0 B1D
−1
0

−D−1
0 C1A

−1
0 D−1

0 −D−1
0 D2D

−1
0 +D−1

0 C1A
−1
0 B1D

−1
0

 .

(4.7)

We see that A−1
0 and D−1

0 are necessary to calculate the elements of the M−1. They are

given by

A−1
0 =

K L∗

L K∗

 , D−1
0 =

e−ik (η−ηi) 0

0 eik (η−ηi)

 . (4.8)

From Eqs. (3.42) and (3.43), the M−1 is also written as

M−1 =


αy βy γA δA

β∗
y α∗

y δ∗A γ∗A

γy δy αA βA

δ∗y γ∗y β∗
A α∗

A

 , (4.9)

where

αy = α(0)
y + α(2)

y , βy = β(0)
y + β(2)

y , γA = γ
(1)
A , δA = δ

(1)
A , (4.10)

αA = α
(0)
A + α

(2)
A , βA = β

(2)
A , γy = γ(1)y , δy = δ(1)y . (4.11)

The zeroth order elements are given by

α(0)
y =

(
1 +

i

2kη

)(
1− i

2kηi

)
eik(η−ηi) − 1

4k2ηηi
e−ik(η−ηi) , (4.12)

β(0)
y =

i

2kηi

(
1− i

2kη

)
e−ik(η−ηi) − i

2kη

(
1− i

2kηi

)
eik(η−ηi) , (4.13)

α
(0)
A = eik(η−ηi) , β

(0)
A = 0 . (4.14)
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The first-order elements are written as

γ
(1)
A = −

(
Kψ(1)

p + L∗ψ(1)
m

)
eikη , (4.15)

δ
(1)
A = −

(
Kψ(1)∗

m + L∗ψ(1)∗
p

)
e−ikη , (4.16)

γ(1)y = −K
[(

1 +
i

2kηi

)
eikηϕ(1)

p +
i

2kηi
eik(η−2ηi)ϕ(1)∗

m

]
−L

[(
1− i

2kηi

)
eik(η−2ηi)ϕ(1)∗

m − i

2kηi
eikηϕ(1)

p

]
, (4.17)

δ(1)y = −L∗
[(

1 +
i

2kηi

)
eikηϕ(1)

p +
i

2kηi
eik(η−2η1)ϕ(1)∗

m

]
−K∗

[(
1− i

2kηi

)
eik(η−2ηi)ϕ(1)∗

m − i

2kηi
eikηϕ(1)

p

]
. (4.18)

The second order is

α(2)
y = −K (KA11 + L∗A21)− L (KA12 + L∗A22)

+(C11K + C12L)
(
Kψ(1)

p + L∗ψ(1)
m

)
eikη

+(C21K + C22L)
(
Kψ(1)∗

m + L∗ψ(1)∗
p

)
e−ikη , (4.19)

β(2)
y = −L∗ (KA11 + L∗A21)−K∗ (KA12 + L∗A22)

+(C11L
∗ + C12K

∗)
(
Kψ(1)

p + L∗ψ(1)
m

)
eikη

+(C21L
∗ + C22K

∗)
(
Kψ(1)∗

m + L∗ψ(1)∗
p

)
e−ikη , (4.20)

α
(2)
A = −eik(2η−ηi)ϕ(2)

p

+(C11K + C12L)e
ik(2η−ηi)ψ(1)

p + (C11L
∗ + C12K

∗)eik(2η−ηi)ψ(1)
m , (4.21)

β
(2)
A = −e−ikηiϕ(2)∗

m

+(C11K + C12L)e
−ikηiψ(1)∗

m + (C11L
∗ + C12K

∗)e−ikηiψ(1)∗
p , (4.22)
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where we have defined

A11 = ψ(2)
p

(
1 +

i

2kηi

)
eikηi + ψ(2)∗

m

i

2kηi
e−ikηi , (4.23)

A12 = −ψ(2)
p

i

2kηi
eikηi + ψ(2)∗

m

(
1− i

2kηi

)
e−ikηi , (4.24)

A21 = ψ(2)∗
p

i

2kηi
e−ikηi + ψ(2)

m

(
1 +

i

2kηi

)
eikηi , (4.25)

A22 = ψ(2)∗
p

(
1− i

2kηi

)
e−ikηi − ψ(2)

m

i

2kηi
eikηi , (4.26)

and

C11 = ϕ(1)
p

(
1 +

i

2kηi

)
eikηi + ϕ(1)∗

m

i

2kηi
e−ikηi , (4.27)

C12 = ϕ(1)∗
m

(
1− i

2kηi

)
e−ikηi − ϕ(1)

p

i

2kηi
eikηi , (4.28)

C21 = ϕ(1)∗
p

i

2kηi
e−ikηi + ϕ(1)

m

(
1 +

i

2kηi

)
eikηi , (4.29)

C22 = ϕ(1)∗
p

(
1− i

2kηi

)
e−ikηi − ϕ(1)

m

i

2kηi
eikηi . (4.30)

4.2 Squeezing operator

In the previous subsection, we obtained the Bogoliubov coefficients of Eqs. (3.42) and

(3.43) up to the second order. If we apply the Eqs. (3.42) and (3.43) to the definition

of the Bunch-Davies vacuum (3.41) and use the relations [ây(η,k), â
†
y(η,−k′)] = δ(k + k′) ,

[âA(η,k), â
†
A(η,−k′)] = δ(k + k′) and [ây(η,k), âA(η,−k′)] = 0, the Bunch-Davies vacuum

can be written by using squeezing parameters Λ,Ξ and Ω such as

|BD⟩ =
∞∏

k=−∞

exp

[
Λ

2
â†y(η,k)â

†
y(η,−k) + Ξ â†y(η,k)â

†
A(η,−k) +

Ω

2
â†A(η,k)â

†
A(η,−k)

]
|0⟩,

(4.31)

where |0⟩ is the instantaneous vacuum defined by

ây(η,k)|0⟩ = âA(η,k)|0⟩ = 0 . (4.32)
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This describes a four-mode squeezed state of pairs of graviton y and photon A. In a different

context, a four-mode squeezed state of two free massive scalar fields is discussed in [47, 48].

If we expand the exponential function in the Taylor series, we find

|BD⟩ =
∏
k

∞∑
p ,q ,r=0

Λp Ξq Ωr

2p+rp! q! r!
|p+ q⟩y,k ⊗ |p⟩y,−k ⊗ |r⟩A,k ⊗ |q + r⟩A,−k . (4.33)

This is a four-mode squeezed state which consists of an infinite number of entangled particles

in the Hy,k ⊗ Hy,−k ⊗ HA,k ⊗ HA,−k space. In particular, in the highly squeezing limit

Λ ,Ξ ,Ω → 1, the Bunch-Davies vacuum becomes the maximally entangled state from the

point of view of the instantaneous vacuum.

Now we find the squeezing parameters. The condition ây(ηi,k)|BD⟩ = 0 of Eq. (3.41)

yields

αyΛ + βy + γAΞ = 0 , αyΞ + γAΩ + δA = 0 , (4.34)

and another condition âA(ηi,k)|BD⟩ = 0 of Eq. (3.41) gives

αAΞ + γyΛ + δy = 0 , αAΩ + βA + γyΞ = 0 . (4.35)

Then, we obtain the three squeezing parameters Λ,Ξ and Ω of the form

Λ =
γAδy − βyαA

αyαA − γyγA
, Ξ =

βyγy − αyδy
αyαA − γyγA

, Ω =
γyδA − βAαy

αyαA − γyγA
. (4.36)

We have four relations for three parameters Λ,Ξ, and Ω. The remaining relation is turned

out to be guaranteed by the commutation relation:

[ây(η,k) , âA(η,k)] = −αAδA + βAγA − γyβy + αyδy = 0 . (4.37)

Thus, we find that Eq. (3.50) is the unique solution. Since the Bogoliubov coefficients are

given up to the second order as in Eqs. (4.10) and (4.11), the squeezing parameters can be
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expanded up to the second order such as

Λ = −β
(0)
y

α
(0)
y

[
1− α

(2)
y

α
(0)
y

+
β
(2)
y

β
(0)
y

+
γ
(1)
y γ

(1)
A

α
(0)
y α

(0)
A

− γ
(1)
A δ

(1)
y

β
(0)
y α

(0)
A

]
, (4.38)

Ξ =
β
(0)
y γ

(1)
y

α
(0)
y α

(0)
A

− δ
(1)
y

α
(0)
A

, (4.39)

Ω =
δ
(1)
A γ

(1)
y

α
(0)
y α

(0)
A

− β
(2)
A

α
(0)
A

. (4.40)

In this way, we obtained the squeezing parameters perturbatively up to the second order.

We will discuss the behavior of the squeezing of graviton Λ, the squeezing of mixing between

graviton and photon Ξ, and the squeezing of photon Ω in the next section.

4.3 Numerical and analytical results

The results of numerical calculations for the amplitude and the phase of the squeezing

parameters Λ, Ξ, and Ω are plotted in FIGs. 7, 8, 9, 10, 11, and 12, respectively, where

we normalized the scale factor at the end of inflation as a(ηf ) = 1. The evolution of the

amplitude of Λ in FIG. 7 shows graviton is squeezed, that is, graviton pair production occurs

during inflation (η < 0). We see that sub-horizon modes oscillate rapidly and no graviton

pair production seems to occur before horizon exit. In the presence of coupling with magnetic

fields (λ ̸= 0), the amplitude of oscillation is relatively small as represented by the blue line.

After horizon exit, the oscillation ceases and graviton pair production starts to occur and

eventually Λ becomes one. This means that almost the maximum entangled pair of the

graviton is produced. This behavior does not change even for λ ̸= 0. The evolution of phase

of Λ is plotted in FIG. 8, in which we see the phase converge to zero. This is consistent with

the result in [17]. The time evolution of the amplitude of Ξ in FIG. 9 shows that one of

the pair of gravitons is converted to a photon and graviton-photon pair production occurs.

We see that some amount of pair production occurs when the mode leaves the horizon but

the graviton-photon pair production decreases rapidly by the end of inflation. The evolution

of the phase of Ξ is plotted in FIG. 10 is found to oscillate rapidly but eventually becomes

constant after horizon exit. A similar behavior appears in the evolution of phase of Λ in
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FIG. 8. However, the final phase is found to depend on the initial condition in this case. The

time evolution of the amplitude of Ω in FIG. 11 tells us that the photon is squeezed, that is,

graviton pair production is converged to photon pair production. Interestingly, photon pair

production occurs rapidly only at the initial time and no more production occurs after that.

The behavior of the phase evolution of Ω in FIG.12 is similar to that of Ξ.
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FIG 7. Squeezing parameter of graviton pair Λ during inflation as a function of the scale factor a(η). We
set λ = 5 × 10−13GeV2(blue line) and λ = 0 GeV2(yellow line). Other parameters are set as k = 102GeV,
H = 1014GeV, ηi = −2GeV−1, ηf = −10−14GeV−1, a(ηi) = (2× 1014)−1, and a(ηf ) = 1. The red grid line
shows the scale factor a = 1.59...× 10−13 at the time of horizon exit η = −2π/k.
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FIG 8. The phase of the squeezing parameter of graviton pair Λ(a) during inflation as function of the scale
factor a(η). We set λ = 5 × 10−13GeV2(blue line) and λ = 0 GeV2(yellow line). Other parameters are set
as k = 102GeV, H = 1014GeV, ηi = −2GeV−1, ηf = −10−14GeV−1, a(ηi) = (2× 1014)−1, and a(ηf ) = 1.

Now, we investigate the behavior of those squeezing parameters for kη ≪ 1 and kηi ≫ 1
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analytically. The leading and sub-leading terms of Λ and Ξ can be calculated as

Λ = 1 +O
(
λ2H2η2i
k4

)
, Ξ = 0 +O

(
λHη

k2

)
. (4.41)

We find that sub-leading terms of Λ and Ξ are negligibly small near the end of inflation and

which is consistent with the numerical results in FIGs. 7 and 9. This result tells us that

the conversion from graviton pair production to graviton-photon pair production is hard to

occur. For the squeezing parameter Ω, we find

Ω = ie2ikηi
5λ2H2η3i
32k3

. (4.42)

If we use the numerical values λ = 5 × 10−13GeV2, k = 102GeV, H = 1014GeV, and

ηi = −2GeV−1 , we find |Ω| ∼ 0.003 and which agrees with the numerical result in FIG.

11. Thus only a small amount of conversion from graviton pair production to photon pair

production occurs at the end of inflation. These results support the validity of our iterative

method to derive squeezing parameters.
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FIG 9. Squeezing parameter of graviton-photon pair Ξ during inflation as a function of the scale factor a. We
set λ = 5×10−13GeV2 (blue line). Other parameters are set as k = 102GeV, H = 1014GeV, ηi = −2GeV−1,
ηf = −10−14GeV−1, a(ηi) = (2× 1014)−1, and a(ηf ) = 1.

54



10-11 10-7 0.001

-3

-2

-1

0

1

2

3

�

ar
g[
�
(�
)]

5.0×10-15 5.0×10-14 5.0×10-13
-3

-2

-1

0

1

2

3

�

ar
g[
�
(�
)]

Horizon Exit

Horizon Exit

<latexit sha1_base64="XzVImmZ7TkxHPVnXmp+dd+4uhgY="></latexit>

1

<latexit sha1_base64="2F0z40ULVd/wsQ9zuxsGETI04Mc="></latexit>

GeV2

FIG 10. The phase of the squeezing parameter of photon pair Ξ(a) during inflation as a function of the scale
factor a(η). We set λ = 5× 10−13GeV2, k = 102GeV, H = 1014GeV, ηi = −2GeV−1, ηf = −10−14GeV−1,
a(ηi) = (2× 1014)−1, and a(ηf ) = 1.
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FIG 11. Squeezing parameter of photon pair Ω during inflation as a function of the scale factor a(η). We set
λ = 5× 10−13GeV2, k = 102GeV, H = 1014GeV, ηi = −2GeV−1, ηf = −10−14GeV−1, a(ηi) = (2× 1014)−1,
and a(ηf ) = 1.
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FIG 12. The phase of the squeezing parameter of photon pair Ω during inflation as a function of the scale
factor a(η). We set λ = 5× 10−13GeV2, k = 102GeV, H = 1014GeV, ηi = −2GeV−1, ηf = −10−14GeV−1,
a(ηi) = (2× 1014)−1, and a(ηf ) = 1.

Let us discuss the implications of our numerical and analytical results. If the squeezing

of graviton decreases as time evolves, it implies that the decoherence of graviton occurs.

However, we found that the squeezing parameter of the graviton pair increases and becomes

Λ → 1, so it seems that the decoherence is hard to occur. This behavior can be understood

as follows. Since the effective coupling λHη between graviton and photon in Eqs. (2.17)

and (2.18) decreases and eventually becomes negligible as η → 0 during inflation, practically

graviton-photon conversion stops. Even after the graviton-photon conversion stops, the

squeezing process of the graviton pair continues as time evolves during inflation, so the

squeezing of graviton pair Λ continues to grow irrespective of the presence of the magnetic

field as shown in FIG. 7. Next, from FIG. 9, we see the squeezing parameter of the graviton-

photon pair vanishes Ξ → 0 as time evolves. This is consistent with Eq. (4.41). This is

because graviton-photon pair production is possible only in the presence of magnetic fields

due to spin conservation. In our setup, however, the energy density of the background

magnetic field decreases proportional to a(η)−4 as the universe expands. Hence, the rapid

decay of magnetic fields leads to the rapid decay of Ξ. Finally, we consider the evolution of

the squeezing parameter of photon pair Ω. By using the coupling constant λ ≃ Bk/Mpl in
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Eq. (2.15) and the scale factor at the initial time ai ≡ −1/(Hηi), the Ω reads

Ω ≃ B2

a4iM
2
plH

2

1

kηi
. (4.43)

The first factor is the ratio of the energy density of the background magnetic field at the

time ηi to that of the inflaton field. The second factor is the ratio of the mode of graviton

to the Hubble radius. In order to have inflation, the energy density of the magnetic field has

to be smaller than that of inflaton fields, that is, B2/a4i ≪ M2
plH

2. And all modes of the

graviton are inside the horizon initially, that is, 1/k ≪ ηi. Hence, the Ω never exceeds unity

after time evolution, which is consistent with FIG. 11. Moreover, since graviton-photon

conversion stops, the squeezing of photon pair Ω converges to a constant value as shown in

FIG. 11.

4.4 Schmidt decomposition

In the previous section, we found that the squeezing of the graviton-photon pair is produced

but eventually disappears during inflation. In this subsection, we reveal the entanglement

between the graviton-photon pairs. We compute the entanglement entropy between gravitons

and photons by tracing over the photons using the method developed in [49, 50].

The initial state is expressed in Eq. (3.46) and it is difficult to trace over the photon

degree of freedom. Thus, we perform the following Bogoliubov transformation

Ĉy,k = Φ ây,k +Ψ â†y,−k , ĈA,k = Υ âA,k +Θ â†A,−k , (4.44)

where |Φ|2 − |Ψ|2 = 1, |Υ|2 − |Θ|2 = 1 so that the state |BD⟩ becomes in the Schmidt form

|BD⟩ =
∞∏

k=−∞

exp
[
ρ Ĉ†

y,k Ĉ
†
A,−k

]
|0′⟩y,k|0′⟩A,−k . (4.45)

Note that we consider different Bogoliubov coefficients between (Φ ,Ψ) and (Υ ,Θ) because
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the Λ and Ξ in Eq. (3.46) are complex parameters. Here new vacuum states are defined by

Ĉy,k |0′⟩y,k = 0 , ĈA,k |0′⟩A,k = 0 . (4.46)

Performing the new operators Ĉy,k and Ĉx,k on Eq. (4.2), we obtain the following relations,

Ĉy,k |BD⟩ = ρ Ĉ†
A,−k |BD⟩, (4.47)

ĈA,k |BD⟩ = ρ Ĉ†
y,−k |BD⟩ . (4.48)

By using Eq. (4.1), the above relations lead to the equations for the Bogoliubov coefficients

as 
Λ 1 0 −ρΞ
Ξ 0 −ρ −ρΩ

−ρ∗ −ρ∗Λ∗ Ξ∗ 0

0 −ρ∗Ξ∗ Ω∗ 1




Φ

Ψ

Υ∗

Θ∗

 = 0. (4.49)

In order to find a nontrivial solution, the determinant of the above 4 by 4 matrix has to be

zero. That is, |ρ|2 satisfies

|ρ|2 = Q−
√
Q2 − 1 , (4.50)

where we have defined

Q =
(|Λ|2 − 1) (|Ω|2 − 1) + |Ξ|4 − 2Re(Ξ2Λ∗Ω∗)

2|Ξ|2 .

(4.51)
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FIG 13. Plots of the parameter |ρ(a)|2 as a function of a(η).

In FIG. 13, we plotted |ρ|2 versus a(η) for the value of k = 102GeV2 under a fixed value

of |B|. Here, λ is automatically determined once k is fixed because of Eq. (3.51) where we

take θ = π/2. We see that |ρ|2 reduces to the small value after the horizon exit. Hence, the

squeezing of graviton-photon pair in the basis |0′⟩y,k|0′⟩A,−k turns out to be not a maximum

entangled state. This can be understood as the result of the Ω reduced to a small value. Since

the particle creation of the photon is stopped after the horizon exit, the number of gravitons

get larger than the number of photons. Thus, the number of photons which entangle with

graviton run out after the horizon exit. This is a specific characteristic result of Model-1.

We have a different result with Model-2, as is shown in Part III.

4.5 Entanglement entropy

Since gravitons and photons are coupled to each other through λ as in Eqs. (2.17) and

(2.18), they are expected to get entangled eventually. In the previous subsection, we find the

squeezing of the graviton-photon pair don’t becomes maximum in the basis of |0′⟩y,k|0′⟩A,−k.

In order to clarify whether they get entangled or not, we compute the entanglement entropy

as a measure of entanglement, since the entanglement entropy is basis independent.
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We define the density operator of the vacuum |BD⟩ in Eq. (4.2) by

σ = |BD⟩⟨BD|

=
(
1− |ρ|2

) ∏
k,−k

∞∑
n′,m′=0

ρn
′
ρ∗m

′ |n′⟩y,k |n′⟩A,−k y,k ⟨m′| A,−k⟨m′| . (4.52)

The reduced density operator for the gravitons is obtained by tracing over the degree of

freedom of photons such as

σy = TrA |BD⟩⟨BD| =
∑
i

A,k′⟨ i |BD⟩⟨BD| i ⟩A,k′

=
(
1− |ρ|2

) ∞∑
n′=0

|ρ|2n |n′ ⟩y,k y,k⟨n′ | . (4.53)

The entanglement entropy between the graviton and photon can be characterized by

S = −Try σy log σy = −
∞∑

n′=0

(
1− |ρ|2

)
|ρ|2n′

(
log
(
1− |ρ|2

)
+ n′ log |ρ|2

)
= − log

(
1− |ρ|2

)
− |ρ|2

1− |ρ|2 log |ρ|
2 . (4.54)

FIG 14. Entanglement entropy between graviton and photon as a function of a(η).

In FIG. 14, we plotted the entanglement entropy for the value of k = 102GeV2 under a fixed
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value of |B|, which clearly shows that the graviton and photon are poorly entangled during

inflation.
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Part III

Background magnetic field Model-2
In the previous part, we assumed the presence of primordial magnetic fields at the begin-

ning of inflation and examined the evolution of the squeezing parameters of gravitons and

photons in the process of graviton to photon conversion mediated by the background mag-

netic field [51]. There, it turned out that the squeezing of gravitons was robust against

the conversion process. It is because the background magnetic field rapidly decays due to

inflation. Then we concluded that gravitons keep their squeezed states even in the presence

of the background magnetic fields. However, if magnetic fields decay slowly during inflation,

gravitons may lose their squeezed states. In this case, graviton to photon conversion never

ends as long as magnetic fields survive during inflation. Hence, in this paper, we study the

conversion process of gravitons in the presence of magnetic fields that decays slowly during

inflation and see if the gravitons can keep their squeezed states until today. Remarkably,

we find that the magnetic fields generate the maximal entanglement between gravitons and

photons. As a consequence, the quantum state of gravitons becomes a mixed state instead

of the squeezed (pure) state. Namely, the quantum entanglement between gravitons and

photons partially destroys the squeezed state of gravitons.

The organization of this part is as follows. In section 1, we introduce a model describ-

ing the situation where magnetic fields are persistently generated. Then, we review the

graviton-photon conversion during inflation. In section 2, we solve the dynamics and calcu-

late Bogoliubov coefficients describing the time evolution of the quantum state. We obtain

a four-mode squeezed state as a consequence of graviton to photon conversion. In section 3,

we calculate entanglement entropy between gravitons and photons. We discuss the quantum

state at present in the presence of the entanglement. In particular, we reveal the effects of

quantum entanglement on the power spectrum of PGWs.
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1 Graviton-photon conversion

We begin with the Einstein-Hilbert action and the action for a U(1) gauge field coupled to

a scalar field:

S = Sg + Sϕ + SA =

∫
d4x

√−g
[
M2

pl

2
R− 1

2
(∂µϕ)(∂

µϕ)− V (ϕ)− 1

4
f 2(ϕ)F µνFµν

]
, (1.1)

where Mpl = 1/
√
8πG is the Planck mass. The gauge field Aµ represents photons and the

field strength is defined by Fµν = ∂µAν − ∂νAµ.

The background inflationary dynamics are determined by the metric

ds2 = a2(η)
[
−dη2 + δijdx

idxj
]
, (1.2)

and the inflaton ϕ(η). Once the background is given, the coupling function can be regarded

as a function of the conformal time η; f = f(η) . We also assume the presence of constant

magnetic fields Bi = constant . It should be emphasized that the physical magnetic fields are

not Bi but fBi. In the next section, we consider the quantum evolution of gravitons and

photons in the above background.

1.1 Primordial gravitational waves

We consider gravitons in a spatially flat expanding background represented by tensor mode

perturbations in the three-dimensional metric hij,

ds2 = a2(η)
[
−dη2 + (δij + hij) dx

idxj
]
, (1.3)

where hij satisfies the transverse traceless conditions hij ,j = hii = 0. The spatial indices

i, j, k, · · · are raised and lowered by δij and δkℓ. In the case of de Sitter space, the scale

factor is given by a(η) = −1/(Hη) where −∞ < η < 0.

Expanding the Einstein-Hilbert action up to the second order in perturbations hij, we
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have

δSg =
M2

pl

8

∫
d4x a2

[
hij′ h′ij − hij,khij,k

]
, (1.4)

where a prime denotes the derivative with respect to the conformal time. At this quadratic

order of the action, it is convenient to expand hij(η, xi) in Fourier modes,

hij(η, x
i) =

2

Mpl

∑
P

1

(2π)3/2

∫
d3k hPk (η) e

P
ij(k) e

ik·x , (1.5)

where three-vectors are denoted by bold math type and ePij(k) are the polarization tensors

for the k mode normalized as eijP (k)eQij(k) = δPQ with P,Q = +,×. Then the action (2.4)

in the Fourier modes becomes

δSg =
1

2

∑
P

∫
d3k dη a2

[
|hP ′

k |2 − k2|hPk |2
]
. (1.6)

1.2 Primordial magnetic fields

Next, we consider the action for the photon up to the second order in perturbations Ai,

which is given by

δSA =
1

2

∫
d4x f 2

[
A′ 2

i − A2
k,i

]
, (1.7)

where the photon field satisfies the Coulomb gauge A0 = 0 and Ai
,i = 0.

If we expand the Ai(η, x
i) in the Fourier modes, we find

Ai(η, x
i) =

∑
P

±i
(2π)3/2

∫
d3k AP

k (η) e
P
i (k) e

ik·x , (1.8)

where ePi (k) are the polarization vectors for the k mode normalized as eiP (k)eQi (k) = δPQ

with P,Q = +,×. The sign of ±i corresponds to the P,Q = +,×. The action (2.7) in the
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Fourier modes is

δSA =
1

2

∑
P

∫
d3k dη f 2

[
|AP ′

k |2 − k2|AP
k |2
]
. (1.9)

1.3 Graviton-photon interaction

The action for the interaction between the graviton and the photon up to second order in

perturbations hij, Ai is found to be

δSI =

∫
d4x

[
εiℓmf

2Bmh
ij (∂jAℓ − ∂ℓAj)

]
. (1.10)

Note that we assumed the existence of the background magnetic field Bm = εmjℓ ∂jAℓ at the

beginning of inflation.

In the Fourier mode defined in Eqs. (2.5) and (2.8),

δSI =
2

Mpl

∑
P,Q

∫
d3k dη f 2

[
εiℓmBm h

P
kA

Q
−k e

P
ij(k)

{
ikℓ e

Q
j (−k)− ikj e

Q
ℓ (−k)

}]
, (1.11)

where k = |k|. Polarization vectors ei+, ei× and a vector ki/k constitute an orthonormal

basis. Without loss of generality, we assume the constant background magnetic field is in

the (ki, ei×)-plane as depicted in FIG. 15. The polarization tensors can be written in terms

of polarization vectors ei+ and ei× as

e+ij(k) =
1√
2

{
e+i (k)e

+
j (k)− e×i (k)e

×
j (k)

}
, (1.12)

e×ij(k) =
1√
2

{
e+i (k)e

×
j (k) + e×i (k)e

+
j (k)

}
. (1.13)

Below, we assume e×i (−k) = −e×i (k). The action (2.11) is then written as

δSI =

∫
d3k dη f 2 λ(k)

[
h+k (η)A

+
−k(η) + h×k (η)A

×
−k(η)

]
, (1.14)
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where we defined the coupling between graviton and photon as

λ(k) ≡
√
2

Mpl

εiℓm e+i kℓBm . (1.15)

Here, the conditions for the graviton and photon to be real read, h+,×
−k (η) = h∗+,×

k (η) and

A+,×
−k (η) = −A∗+,×

k (η) . In the following, we focus on the plus polarization and omit the

index P unless there may be any confusion.

1.4 Total action in canonical variables

If we use the canonical variable yPk (η) = a hPk (η) and xPk (η) = f AP
k (η), the total action of

Eqs. (2.6), (2.9) and (2.14) are written as

δS = δSy + δSx + δSI

=
1

2

∫
d3k dη

[
|y′k|2 −

(
k2 −

(
a′

a

)2
)
|yk|2 −

a′

a

(
yk y

′
−k + y−k y

′
k

)]

+
1

2

∫
d3k dη

[
|x′k|2 −

(
k2 −

(
f ′

f

)2
)
|xk|2 −

f ′

f

(
xk x

′
−k + x−k x

′
k

)]

+

∫
d3k dη

[
f

a
λ(k) yk x−k

]
. (1.16)

The variation of the actions (2.16) with respect to the graviton and the photon fields gives

y′′k +

(
k2 − a′′

a

)
yk = −λf xk

a(η)
, (1.17)

x′′k +

(
k2 − a′′

a

)
xk = −λf yk

a(η)
. (1.18)

In this paper, we suppose Bm/Mpl ≪ 1 so that the coupling between graviton and pho-

ton (2.15) is weak. Then we solve the Eqs. (2.17) and (2.18) iteratively up to the second

order in yk and xk in the next section.

We assume the gauge kinetic function in the form

f(η) = a(η)−2c, (1.19)
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where c is a constant parameter. We take c = −1/2 to make the analysis easier. For this

parameter, the power spectrum of the electromagnetic fields Aµ is scale-invariant [52]. On

the other hand, the spectrum of magnetic fields becomes P (B) ∝ k2. We have a choice of

taking c = −1 in order to have a scale-invariant primordial magnetic field. However, we will

see c = −1/2 is sufficient to get a significant modification of the quantum state of gravitons.

2 Graviton-photon conversion

We begin with the Einstein-Hilbert action and the action for a U(1) gauge field coupled to

a scalar field:

S = Sg + Sϕ + SA =

∫
d4x

√−g
[
M2

pl

2
R− 1

2
(∂µϕ)(∂

µϕ)− V (ϕ)− 1

4
f 2(ϕ)F µνFµν

]
, (2.1)

where Mpl = 1/
√
8πG is the Planck mass. The gauge field Aµ represents photons and the

field strength is defined by Fµν = ∂µAν − ∂νAµ.

The background inflationary dynamics is determined by the metric

ds2 = a2(η)
[
−dη2 + δijdx

idxj
]
, (2.2)

and the inflaton ϕ(η). Once the background is given, the coupling function can be regarded

as a function of the conformal time η; f = f(η) . We also assume the presence of constant

magnetic fields Bi = constant . It should be emphasized that the physical magnetic fields are

not Bi but fBi. In the next section, we consider the quantum evolution of gravitons and

photons in the above background.

2.1 Primordial gravitational waves

We consider gravitons in a spatially flat expanding background represented by tensor mode

perturbations in the three-dimensional metric hij,

ds2 = a2(η)
[
−dη2 + (δij + hij) dx

idxj
]
, (2.3)
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where hij satisfies the transverse traceless conditions hij ,j = hii = 0. The spatial indices

i, j, k, · · · are raised and lowered by δij and δkℓ. In the case of de Sitter space, the scale

factor is given by a(η) = −1/(Hη) where −∞ < η < 0.

Expanding the Einstein-Hilbert action up to the second order in perturbations hij, we

have

δSg =
M2

pl

8

∫
d4x a2

[
hij′ h′ij − hij,khij,k

]
, (2.4)

where a prime denotes the derivative with respect to the conformal time. At this quadratic

order of the action, it is convenient to expand hij(η, xi) in Fourier modes,

hij(η, x
i) =

2

Mpl

∑
P

1

(2π)3/2

∫
d3k hPk (η) e

P
ij(k) e

ik·x , (2.5)

where three-vectors are denoted by bold math type and ePij(k) are the polarization tensors

for the k mode normalized as eijP (k)eQij(k) = δPQ with P,Q = +,×. Then the action (2.4)

in the Fourier modes becomes

δSg =
1

2

∑
P

∫
d3k dη a2

[
|hP ′

k |2 − k2|hPk |2
]
. (2.6)

2.2 Primordial magnetic fields

Next, we consider the action for the photon up to the second order in perturbations Ai,

which is given by

δSA =
1

2

∫
d4x f 2

[
A′ 2

i − A2
k,i

]
, (2.7)

where the photon field satisfies the Coulomb gauge A0 = 0 and Ai
,i = 0.

If we expand the Ai(η, x
i) in the Fourier modes, we find

Ai(η, x
i) =

∑
P

±i
(2π)3/2

∫
d3k AP

k (η) e
P
i (k) e

ik·x , (2.8)

where ePi (k) are the polarization vectors for the k mode normalized as eiP (k)eQi (k) = δPQ
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with P,Q = +,×. The sign of ±i corresponds to the P,Q = +,×. The action (2.7) in the

Fourier modes is

δSA =
1

2

∑
P

∫
d3k dη f 2

[
|AP ′

k |2 − k2|AP
k |2
]
. (2.9)

2.3 Graviton-photon interaction

The action for the interaction between the graviton and the photon up to second order in

perturbations hij, Ai is found to be

δSI =

∫
d4x

[
εiℓmf

2Bmh
ij (∂jAℓ − ∂ℓAj)

]
. (2.10)

Note that Bm = εmjℓ ∂jAℓ is a constant background magnetic field that we assumed the

presence at the beginning of inflation.

In the Fourier mode defined in Eqs. (2.5) and (2.8),

δSI =
2

Mpl

∑
P,Q

∫
d3k dη f 2

[
εiℓmBm h

P
kA

Q
−k e

P
ij(k)

{
ikℓ e

Q
j (−k)− ikj e

Q
ℓ (−k)

}]
, (2.11)

where k = |k|. Polarization vectors ei+, ei× and a vector ki/k constitute an orthonormal

basis. Without loss of generality, we assume the constant background magnetic field is in

the (ki, ei×)-plane as depicted in FIG. 15.
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FIG 15. Configuration of the polarization vector eP (k), wave number k, and background magnetic field B.
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The polarization tensors can be written in terms of polarization vectors ei+ and ei× as

e+ij(k) =
1√
2

{
e+i (k)e

+
j (k)− e×i (k)e

×
j (k)

}
, (2.12)

e×ij(k) =
1√
2

{
e+i (k)e

×
j (k) + e×i (k)e

+
j (k)

}
. (2.13)

Below, we assume e×i (−k) = −e×i (k). The action (2.11) is then written as

δSI =

∫
d3k dη f 2 λ(k)

[
h+k (η)A

+
−k(η) + h×k (η)A

×
−k(η)

]
, (2.14)

where we defined the coupling between graviton and photon as

λ(k) ≡
√
2

Mpl

εiℓm e+i kℓBm . (2.15)

Here, the conditions for the graviton and photon to be real read, h+,×
−k (η) = h∗+,×

k (η) and

A+,×
−k (η) = −A∗+,×

k (η) . In the following, we focus on the plus polarization and omit the

index P unless there may be any confusion.

2.4 Total action in canonical variables

If we use the canonical variable yPk (η) = a hPk (η) and xPk (η) = f AP
k (η), the total action of

Eqs. (2.6), (2.9) and (2.14) are written as

δS = δSy + δSx + δSI

=
1

2

∫
d3k dη

[
|y′k|2 −

(
k2 −

(
a′

a

)2
)
|yk|2 −

a′

a

(
yk y

′
−k + y−k y

′
k

)]

+
1

2

∫
d3k dη

[
|x′k|2 −

(
k2 −

(
f ′

f

)2
)
|xk|2 −

f ′

f

(
xk x

′
−k + x−k x

′
k

)]

+

∫
d3k dη

[
f

a
λ(k) yk x−k

]
. (2.16)
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The variation of the actions (2.16) with respect to the graviton and the photon fields gives

y′′k +

(
k2 − a′′

a

)
yk = −λf xk

a
, (2.17)

x′′k +

(
k2 − a′′

a

)
xk = −λf yk

a
. (2.18)

We assume the gauge kinetic function in the form

f(η) = a(η)−2c, (2.19)

where c is a constant parameter. We take c = −1/2 to make the analysis easier. For this

parameter, the power spectrum of the electromagnetic fields Aµ is scale-invariant [52]. We

have a choice of taking c = −1 in order to have a scale-invariant primordial magnetic field.

However, we will see c = −1/2 is sufficient to get a significant modification of the quantum

state of gravitons.

3 Time evolution of quantum state

Using the basic equations presented in the previous section, we solve the time evolution of

the quantum state in de Sitter space in this section. We assume the effect of the coupling λ

instantaneously appears at ηi, namely, λ (η) = λ θ(η − ηi).

When we define the Lagrangian in the actions (2.16) by δS =
∫
dη L, the conjugate

momenta of graviton pk and photon πk are respectively given by

pk(η) =
∂L

∂y′−k

= y′k(η) +
1

η
yk(η) , (3.1)

πk(η) =
∂L

∂x′−k

= x′k(η) +
1

η
xk(η) . (3.2)

Now we promote variables yk(η) , xk(η) and their momenta pk(η), πk(η) into operators. An-

nihilation operators for the graviton and photon are respectively expressed by canonical
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variables as

ây(η,k) =

√
k

2
ŷk(η) +

i√
2k
p̂k(η) , (3.3)

âx(η,k) =

√
k

2
x̂k(η) +

i√
2k
π̂k(η) . (3.4)

The commutation relations [ây(η,k), â
†
y(η,−k′)] = δ(k + k′) and [âx(η,k), â

†
x(η,−k′)] =

δ(k + k′) guarantee the canonical commutation relations [ŷk(η), p̂k′(η)] = iδ(k − k′) and

[x̂k(η), π̂k′(η)] = iδ(k − k′). Note that the annihilation operator becomes time-dependent

through the time dependence of canonical variables. Thus, the vacuum defined by â(η,k)|0⟩ =
0 is time dependent as well, and the vacuum in this formalism turns out to be defined at every

moment. Our aim is to find the formula for Bogoliubov coefficients relating ây(η,k), âx(η,k)

and ây(ηi,k), âx(ηi,k).

3.1 Boundary conditions

In this subsection, we specify boundary conditions of solutions of Eqs. (2.17) and (2.18).

Notice that λ = 0 before the initial time ηi.

Let us first consider Eqs. (2.17) and (2.18) of the form

ŷ
(0)′′
k +

(
k2 − 2

η2

)
ŷ
(0)
k = 0 , (3.5)

x̂
(0)′′
k +

(
k2 − 2

η2

)
x̂
(0)
k = 0 , (3.6)

where the superscript (0) denotes λ = 0. Since Eqs. (3.5) and (3.6) are the same form, the

mode function for the graviton and the photon at the zeroth order becomes identical. Then

the solutions of the above equations can be written as

ŷ
(0)
k (η) = uk(η) ĉ+ u∗k(η) ĉ

† , (3.7)

x̂
(0)
k (η) = uk(η) d̂+ u∗k(η) d̂

†, (3.8)

where ĉ (d̂) and its conjugate ĉ†(d̂†) are constant operators of integration. We choose the
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properly normalized positive frequency mode in the remote past as a basis, which is expressed

as

uk(η) =
1√
2k

(
1− i

kη

)
e−ikη. (3.9)

Thus, annihilation operators at the initial time are expressed by the zeroth order variables

ây(ηi,k) =

(
1− i

2kηi

)
e−ikηi ĉ+

i

2kηi
eikηi ĉ†, (3.10)

âx(ηi,k) =

(
1− i

2kηi

)
e−ikηi d̂+

i

2kηi
eikηi d̂†. (3.11)

Combining Eqs. (3.10) and (3.11) with their complex conjugate, we can express the ĉ and

the d̂ by the initial creation and annihilation operators as

ĉ =

(
1 +

i

2kηi

)
eikηi ây(ηi,k)−

i

2kηi
eikηi â†y(ηi,−k) , (3.12)

d̂ =

(
1 +

i

2kηi

)
eikηi âx(ηi,k)−

i

2kηi
eikηi â†x(ηi,−k) . (3.13)

Thus, we have obtained the boundary conditions. By solving Eqs. (2.17) and (2.18) with

f = a analytically, we will take into account the effect of interaction between gravitons and

photons in the next subsection.

3.2 Bogoliubov coefficients

To properly take into account the boundary conditions at ηi, it is convenient to diagonalize

equations of motion (2.17), (2.18) as

Y ′′
k +

(
k2 − 2

η2
+ λ

)
Yk = 0, (3.14)

X ′′
k +

(
k2 − 2

η2
− λ

)
Xk = 0, (3.15)
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where we defined Yk = (xk + yk)/2 and Xk = (xk − yk)/2. The solutions of Eqs.(3.14) and

(3.15) are written as

Ỹk(η, λ) = c1 Yk(η, λ) + c2 Y
∗
k (η, λ) , (3.16)

X̃k(η, λ) = c1Xk(η, λ) + c2X
∗
k(η, λ) , (3.17)

where c1 and c2 are constants of integration. We defined

Yk(η, λ) =
1√

2
√
k2 + λ

(
1− i√

k2 + λ η

)
e−i

√
k2+λ η , (3.18)

Xk(η, λ) =
1√

2
√
k2 − λ

(
1− i√

k2 − λ η

)
e−i

√
k2−λ η . (3.19)

Note that we take the same constants of integration for Ỹk and X̃k so that Ỹk(η, λ) and

X̃k(η, λ) are interchanged by switching λ to −λ. Then we can construct the odd and even

solution with respect to λ as

F
(odd)
k (η, λ) =

1

2

(
Ỹk(η, λ)− X̃k(η, λ)

)
, (3.20)

F
(even)
k (η, λ) =

1

2

(
Ỹk(η, λ) + X̃k(η, λ)

)
, (3.21)

respectively. Here, we call Eq. (3.20) odd solution because a minus sign comes out by

switching λ to −λ. The coefficients c1 and c2 are given by the junction condition at η = ηi.

Let us solve the dynamics with the boundary conditions

ŷk(η, λ)|η<ηi = uk(η) , (3.22)

x̂k(η, λ)|η<ηi = uk(η) . (3.23)

where we assumed that the positive frequency mode of de Sitter space is realized before

the time ηi. After the time ηi, the gravitons and photons start to interact with each other.

Taking into account the relations Yk = (xk + yk)/2 and Xk = (xk − yk)/2, we can deduce
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the graviton field and its conjugate momentum as

ŷk(η, λ) = F
(even)
k (η, λ) ĉ+ F

(odd)
k (η, λ) d̂+H.c. , (3.24)

p̂k(η, λ) = F
(even)′
k (η, λ) ĉ+ F

(odd)′
k (η, λ) d̂

+
1

η

(
F

(even)
k (η, λ) ĉ+ F

(odd)
k (η, λ) d̂

)
+H.c. , (3.25)

where we used Eq. (3.1) and H.c. represents Hermitian conjugate. We see that the operator

of photon d̂ comes into the graviton ŷk and p̂k together with F
(odd)
k . For the photon, the

field and its conjugate momentum become

x̂k(η) = F
(even)
k (η, λ) d̂+ F

(odd)
k (η, λ) ĉ+H.c. , (3.26)

π̂k(η) = F
(even)′
k (η, λ) d̂+ F

(odd)′
k (η, λ) ĉ

+
1

η

(
F

(even)
k (η, λ) d̂+ F

(odd)
k (η, λ) ĉ

)
+H.c. , (3.27)

where we used Eq. (3.2). We see that the operator of graviton ĉ comes into the photon x̂k

and π̂k together with F
(odd)
k . Then the annihilation operators for the graviton and photon

are obtained by using Eqs. (3.3) and (3.4) such as

ây(η,k) = ψ(even)
p ĉ+ ψ(even)∗

m ĉ† + ψ(odd)
p d̂+ ψ(odd)∗

m d̂† , (3.28)

âx(η,k) = ψ(even)
p d̂+ ψ(even)∗

m d̂† + ψ(odd)
p ĉ+ ψ(odd)∗

m ĉ† . (3.29)

Here, we defined new variables

ψ(j)
p =

√
k

2
F

(j)
k (η, λ) +

i√
2k

(
F

(j)′
k (η, λ) +

1

η
F

(j)
k (η, λ)

)
, (3.30)

ψ(j)
m =

√
k

2
F

(j)
k (η, λ)− i√

2k

(
F

(j)′
k (η, λ) +

1

η
F

(j)
k (η, λ)

)
, (3.31)

where (j) = (even), (odd) denotes the even mode and odd mode with respect to the coupling

λ, respectively.

Inserting the above back into Eqs. (3.28) and (3.29), the time evolution of the annihilation
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operator of the graviton is described by the Bogoliubov transformation in the form

ây(η,k) =

[
ψ(even)
p

(
1 +

i

2kηi

)
eikηi + ψ(even)∗

m

i

2kηi
e−ikηi

]
ây(ηi,k)

+

[
ψ(even)
p

(
− i

2kηi

)
eikηi + ψ(even)∗

m

(
1− i

2kηi

)
e−ikηi

]
â†y(ηi,−k)

+

[
ψ(odd)
p

(
1 +

i

2kηi

)
eikηi + ψ(odd)∗

m

i

2kηi
e−ikηi

]
âx(ηi,k)

+

[
ψ(odd)
p

(
− i

2kηi

)
eikηi + ψ(odd)∗

m

(
1− i

2kηi

)
e−ikηi

]
â†x(ηi,−k), (3.32)

and the time evolution of the annihilation operator of a photon is expressed by the Bogoliubov

transformation such as

âx(η,k) =

[
ψ(even)
p

(
1 +

i

2kηi

)
eikηi + ψ(even)∗

m

i

2kηi
e−ikηi

]
âx(ηi,k)

+

[
ψ(even)
p

(
− i

2kηi

)
eikηi + ψ(even)∗

m

(
1− i

2kηi

)
e−ikηi

]
â†x(ηi,−k)

+

[
ψ(odd)
p

(
1 +

i

2kηi

)
eikηi + ψ(odd)∗

m

i

2kηi
e−ikηi

]
ây(ηi,k)

+

[
ψ(odd)
p

(
− i

2kηi

)
eikηi + ψ(odd)∗

m

(
1− i

2kηi

)
e−ikηi

]
â†y(ηi,−k). (3.33)

We see that the Bogoliubov transformations for graviton and photon are symmetric. The

Bogoliubov transformations show the particle production during inflation and the mixing

between graviton and photon.

Let us introduce a matrix form of the Bogoliubov transformations for the calculations

below. The Bogoliubov transformation (3.32) and (3.33) and their conjugate can be accom-
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modated into the simple 4× 4 matrix form M
ay(η)

a†y(η)

ax(η)

a†x(η)

 =M


ay(ηi)

a†y(ηi)

ax(ηi)

a†x(ηi)

 =

A B

B A



ay(ηi)

a†y(ηi)

ax(ηi)

a†x(ηi)

 . (3.34)

Here, the M consists of 2×2 matrices A and B. The A is written by the even-order solutions,

Aeven =

 K∗
even −L∗

even

−Leven Keven

 , (3.35)

where we defined

Keven = ψ(even)∗
p

(
1− i

2kηi

)
e−ikηi − ψ(even)

m

i

2kηi
eikηi , (3.36)

Leven = −ψ(even)∗
p

i

2kηi
e−ikηi − ψ(even)

m

(
1 +

i

2kηi

)
eikηi . (3.37)

The B comes from the first-order solution expressed as

B =

 K∗
odd −L∗

odd

−Lodd Kodd

 , (3.38)

where we defined

Kodd = ψ(odd)∗
p

(
1− i

2kηi

)
e−ikηi − ψ(odd)

m

i

2kηi
eikηi , (3.39)

Lodd = −ψ(odd)∗
p

i

2kηi
e−ikηi − ψ(odd)

m

(
1 +

i

2kηi

)
eikηi . (3.40)

3.3 Inversion of the Bogoliubov transformation

In the previous subsection, we obtained the Bogoliubov transformation that mixes the oper-

ators ây(η,k), âx(η,k) and their Hermitian conjugates â†y(η,−k), â†x(η,−k). Then the initial
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state is defined by

ây(ηi,k)|BD⟩ = âx(ηi,k)|BD⟩ = 0 . (3.41)

Here, |BD⟩ is a vacuum deviated from the Bunch-Davies vacuum due to the presence of the

constant background magnetic field. In order to impose these conditions, we need to invert

the Bogoliubov transformations (3.32) and (3.33) into the form

ây(ηi,k) = α ây(η,k) + β â†y(η,−k) + γ âx(η,k) + δ â†x(η,−k) , (3.42)

âx(ηi,k) = γ ây(η,k) + δ â†y(η,−k) + α âx(η,k) + β â†x(η,−k) , (3.43)

where α, β, γ, δ are the Bogoliubov coefficients. In order to find these coefficients, we need

the inverse of the matrix M , which is calculated as

M−1 =

 (A−BA−1B)
−1 − (AB−1A−B)

−1

− (AB−1A−B)
−1

(A−BA−1B)
−1

 . (3.44)

From Eqs. (3.42) and (3.43), the M−1 is also written as

M−1 =


α β γ δ

β∗ α∗ δ∗ γ∗

γ δ α β

δ∗ γ∗ β∗ α∗

 . (3.45)

By comparing Eq.(3.44) with (3.45), we can obtain the Bogoliubov coefficients α, β, γ, δ

numerically.

3.4 Squeezed state

In the previous subsection, we obtained the Bogoliubov coefficients of Eqs. (3.42) and (3.43).

If we apply the Eqs. (3.42) and (3.43) to the definition of the initial state (3.41) and

use the relations [ây(η,k), â
†
y(η,−k′)] = δ(k + k′) , [âx(η,k), â

†
x(η,−k′)] = δ(k + k′) and
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[ây(η,k), âx(η,−k′)] = 0, the initial state can be written by using squeezing parameters Λ

and Ξ of the form

|BD⟩ =
∞∏

k=−∞

exp

[
Λ

2
â†y(η,k)â

†
y(η,−k) + Ξ â†y(η,k)â

†
x(η,−k) +

Λ

2
â†x(η,k)â

†
x(η,−k)

]
|0⟩,

(3.46)

where |0⟩ is the instantaneous vacuum defined by

ây(η,k)|0⟩ = âx(η,k)|0⟩ = 0 . (3.47)

Note that Λ and Ξ are complex parameters. The squeezing parameter of a graviton-graviton

pair and a photon-photon pair is written by the same Λ. This is because the Bogoliubov

transformations (3.32) and (3.33) are symmetric. The squeezing of the graviton-photon pair

is expressed by the Ξ. This describes a four-mode squeezed state of pairs of graviton y and

photon x. In a different context, a four-mode squeezed state of two free massive scalar fields

is discussed in [47, 48]. If we expand the exponential function in the Taylor series, we find

|BD⟩ =
∏
k

∞∑
p ,q ,r=0

Λp+r Ξq

2p+rp! q! r!
|p+ q⟩y,k ⊗ |p⟩y,−k ⊗ |r⟩x,k ⊗ |q + r⟩x,−k . (3.48)

This is a four-mode squeezed state which consists of an infinite number of entangled particles

in the Hy,k⊗Hy,−k⊗Hx,k⊗Hx,−k space. In particular, in the highly squeezing limit Λ ,Ξ → 1,

the Bunch-Davies vacuum becomes the maximally entangled state from the point of view of

the instantaneous vacuum.

Now we find the squeezing parameters Ξ and Λ. The condition ây(ηi,k)|BD⟩ = 0 of

Eq. (3.41) yields

αΛ + β + γΞ = 0 , αΞ + γΛ + δ = 0 , (3.49)

and another condition âx(ηi,k)|BD⟩ = 0 gives the same equations. Then, we obtain the two
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squeezing parameters Λ and Ξ of the form

Λ =
γδ − βα

α2 − γ2
, Ξ =

βγ − αδ

α2 − γ2
. (3.50)

The results of numerical calculations for the squeezing parameters Λ and Ξ versus a(η)

with different values of k are plotted in FIGs. 16 and 17, respectively, where we normalized

the scale factor at the end of the inflation as a(ηf ) = 1. We note that the coupling Eq. 2.15

is expressed as

λ(k) ≡
√
2

Mpl

k |B| sin θ , (3.51)

where θ is the angle between the magnetic field and the wave number vectors depicted in

FIG. 15. Apparently, the magnitude of the λ(k) depends on the θ. Therefore, the squeezing

parameters depend on the direction of the wave-number vector of gravitons for the fixed

magnetic field. For simplicity, we take θ = π/2 in the following. But we consider the effects

of the angle in Section 4.3.

In FIG. 16, we plotted the squeezing parameter Λ as a function of the scale factor a(η).

We see that the amplitude of Λ goes to unity after the horizon exit and graviton and photon

pair production become maximum during inflation. That is, the maximum entangled pairs

of graviton and photon are produced. FIG. 17 shows that graviton-photon pair production

occurs but the production keeps decreasing after the horizon exit.
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FIG 16. The squeezing parameter of gravitons or photons as a function of the scale factor of a(η). Other
parameters are set as H = 1014 GeV, ηi = −1GeV−1, ηf = −10−14 GeV−1, a(ηi) = 10−14, a(ηf ) = 1.
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FIG 17. The squeezing parameter of graviton and photon pair as a function of a(η). Other parameters are
set as H = 1014 GeV, ηi = −1GeV−1, ηf = −10−14 GeV−1, a(ηi) = 10−14, a(ηf ) = 1.
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4 Graviton state at present

The standard lore about PGWs is that the quantum state of PGWs (gravitons) becomes

squeezed during inflation due to the mechanism we discussed in the previous section. Hence,

it is believed that finding the squeezed gravitons turns out to prove inflation. In this section,

we see the quantum state of gravitons can be a mixed state in the presence of magnetic

fields. This result tells us that we have to reconsider how to estimate the non-classicality of

the primordial gravitational waves.

4.1 Schmidt decomposition

In the previous section, we found that the squeezing of the graviton-photon pair is produced

but eventually disappears during inflation. In this subsection, we reveal the entanglement

between the graviton-photon pairs. We compute the entanglement entropy between gravitons

and photons by tracing over the photons using the method developed in [49, 50].

The initial state is expressed in Eq. (3.46) and it is difficult to trace over the photon

degree of freedom. Thus, we perform the following Bogoliubov transformation

Ĉy,k = Φ ây,k +Ψ â†y,−k , Ĉx,k = Υ âx,k + Ω â†x,−k , (4.1)

where |Φ|2 − |Ψ|2 = 1, |Υ|2 − |Ω|2 = 1 so that the state |BD⟩ becomes in the Schmidt form

|BD⟩ =
∞∏

k=−∞

exp
[
ρ Ĉ†

y,k Ĉ
†
x,−k

]
|0′⟩y,k|0′⟩x,−k . (4.2)

Note that we consider different Bogoliubov coefficients between (Φ ,Ψ) and (Υ ,Ω) because

the Λ and Ξ in Eq. (3.46) are complex parameters. Here new vacuum states are defined by

Ĉy,k |0′⟩y,k = 0 , Ĉx,k |0′⟩x,k = 0 . (4.3)
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Performing the new operators Ĉy,k and Ĉx,k on Eq. (4.2), we obtain the following relations,

Ĉy,k |BD⟩ = ρ Ĉ†
x,−k |BD⟩, (4.4)

Ĉx,k |BD⟩ = ρ Ĉ†
y,−k |BD⟩ . (4.5)

By using Eq. (4.1), the above relations lead to the equations for the Bogoliubov coefficients

as 
Λ 1 0 −ρΞ
Ξ 0 −ρ −ρΛ

−ρ∗ −ρ∗Λ∗ Ξ∗ 0

0 −ρ∗Ξ∗ Λ∗ 1




Φ

Ψ

Υ∗

Ω∗

 = 0. (4.6)

In order to find a nontrivial solution, the determinant of the above 4 by 4 matrix has to be

zero. That is, |ρ|2 satisfies

|ρ|2 = Q−
√
Q2 − 1 , (4.7)

where we have defined

Q =
(|Λ|2 − 1)

2
+ |Ξ|4 − 2Re(Ξ2Λ∗2)

2|Ξ|2 .

(4.8)
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FIG 18. Plots of the parameter |ρ(a)|2 as a function of a(η). Other parameters are set as H = 1014 GeV, ηi =
−1GeV−1, ηf = −10−14 GeV−1, λ = 10GeV2, a(ηi) = 10−14, a(ηf ) = 1.

In FIG. 18, we plotted |ρ|2 versus a(η) for various values of k under a fixed value of |B|. Here,

λ is automatically determined once k is fixed because of Eq. (3.51) where we take θ = π/2.

We see that |ρ|2 goes to unity irrespective of the value of k after the horizon exit if the

value of |B| is fixed. Hence, the squeezing of graviton-photon pair in the basis |0′⟩y,k|0′⟩x,−k

turns out to be almost maximum, while Ξ in the basis of |0⟩ eventually vanishes as shown

in FIG. 17.

4.2 Entanglement entropy

Since gravitons and photons are coupled to each other through λ as in Eqs. (2.17) and

(2.18), they are expected to get entangled eventually. In the previous subsection, we find the

squeezing of the graviton-photon pair becomes almost maximum in the basis of |0′⟩y,k|0′⟩x,−k

but eventually vanish in the basis of |0⟩. In order to clarify whether they get entangled or

not, we compute the entanglement entropy as a measure of entanglement. The entanglement

entropy is basis independent.
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We define the density operator of the vacuum |BD⟩ in Eq. (4.2) by

σ = |BD⟩⟨BD|

=
(
1− |ρ|2

) ∏
k,−k

∞∑
n′,m′=0

ρn
′
ρ∗m

′ |n′⟩y,k |n′⟩x,−k y,k ⟨m′| x,−k⟨m′| . (4.9)

The reduced density operator for the gravitons is obtained by tracing over the degree of

freedom of photons such as

σy = Trx |BD⟩⟨BD| =
∑
i

x,k′⟨ i |BD⟩⟨BD| i ⟩x,k′

=
(
1− |ρ|2

) ∞∑
n′=0

|ρ|2n |n′ ⟩y,k y,k⟨n′ | . (4.10)

The entanglement entropy between the graviton and photon can be characterized by

S = −Try σy log σy = −
∞∑

n′=0

(
1− |ρ|2

)
|ρ|2n′

(
log
(
1− |ρ|2

)
+ n′ log |ρ|2

)
= − log

(
1− |ρ|2

)
− |ρ|2

1− |ρ|2 log |ρ|
2 . (4.11)
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FIG 19. Entanglement entropy between graviton and photon as a function of a(η). Other parameters are
set as H = 1014GeV, ηi = −1GeV−1, ηf = −10−14GeV−1, a(ηi) = 10−14, and a(ηf ) = 1.

In FIG. 19, we plotted the entanglement entropy for various values of k under a fixed value of

|B|, which clearly shows that the graviton and photon are highly entangled during inflation.

As well as the result of FIG. 18, the asymptotic value of S(a) becomes the same irrespective

of the value of k.
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Horizon exit for each ! Inflation end
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FIG 20. The entanglement entropy of graviton and photon field induced by the coupling of background
magnetic field with a different magnetic field. Each line with a different color represents a different magnetic
field. Other parameters are set as H = 1014 GeV, ηi = −1GeV−1, and ηf = −10−14 GeV−1, a(ηi) = 10−14,
and a(ηf ) = 1.

In FIG. 20, the entanglement entropy for various values of λ under a fixed value of k is

plotted. In this case, the different λ corresponds to different |B| because of Eq. (3.51) where

θ = π/2.
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Part IV

Conclusion
As mentioned in the introduction part, we need to properly take into account the decoherence

of the relic gravitons during cosmic history. As a first modest step in this direction, we

assumed the presence of a sizable magnetic field at the beginning of inflation [51, 53]. If the

squeezing of graviton decreases as time evolves, it implies that the decoherence of graviton

occurs. In this thesis, we investigated the squeezed state of graviton during inflation under

the effects of graviton-photon conversion induced by primordial magnetic fields. In particular,

we study how the squeezed state of gravitons changes when the magnetic field decays rapidly

fB ∝ 1/a2 (Model-1) and when the magnetic field decays slowly due to the interaction of

gauge field and scalar field fB ∝ 1/a (Model-2). We solved the dynamical evolution of a

coupled system of graviton and photon with the perturbative approach for Model-1 as is

mentioned in part II, and with the analytical approach for Model-2 as is mentioned in part

III. In terms of the coupling function of the gauge field and scalar field, Model-1 corresponds

to the coupling parameter c = 0 while Model-2 corresponds to the scale-invariant parameter

c = −1/2. When the primordial magnetic field decays rapidly due to inflation, only gravitons

are strongly squeezed, whereas when the magnetic field decays slowly, photons are similarly

strongly squeezed. Quantum states in such cases were non-trivial before this study. The

difference in the squeezing parameter of a photon in these models brings out the difference

in the entanglement between photons and gravitons.

Through the analysis in part II, we found that the effects of graviton-photon conversion

on the squeezed state of gravitons are limited in the case of the magnetic field that decays

rapidly during inflation. This is because the physical value of the primordial magnetic field

damps rapidly due to the expansion of the background space. We derived an analytic formula

for the squeezing parameter of photons and found that the degree of squeezing is at a few

percent at most.

Through the analysis in part III, we studied primordial gravitational waves (PGWs) in

the presence of magnetic fields that survive during inflation. In contrast to conventional
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inflation, where only PGWs are highly squeezed, electromagnetic fields in such system are

highly squeezed as well. We showed that graviton to photon conversion and vice versa never

end as long as inflation lasts, and then gravitons and photons get highly entangled. We

derived a reduced density matrix of the gravitons and calculated their entanglement entropy

by using the reduced density matrix. We revealed that the quantum states of the primordial

gravitons observed today are almost squeezed states and mixed states. The relic gravitons

are expected to be squeezed during inflation. In that case, quantum noise induced by them

can be significantly enhanced in current interferometers.

In both cases, we numerically plotted the squeezing parameters for the system of graviton

and photon. It is shown that magnetic fields do not affect the graviton squeezing parameter.

Also, we numerically checked the parameter of squeezed graviton-photon pair Ξ and found

that the Ξ rapidly decays at the end of inflation. This fact was confirmed also analytically, in

Eq. (4.41) for instance. We also depicted the squeezing parameter of the photon. It turned

out that the amount of squeezed photon produced by the conversion was tiny in the case

of Model-1, while it converges to 1 which is the completely same behavior of the graviton’s

squeezing parameter in the case of Model-2.

Since we found that gravitons are robust against the decoherence caused by the cosmolog-

ical magnetic field, we could expect to find squeezed relic gravitons through quantum noise

induced by them in interferometers [21, 22, 23, 24, 25]. We should note that the analysis in

our paper can also be applicable to the dark magnetic field models [44] based on the dark

photon scenario [54].

There could be classical gravitational waves initially as in Ref. [52]. Quantum mechani-

cally, the initial condition can be represented by coherent states |Υ⟩, such as

ây(ηi,k)|Υ⟩ = Υ|Υ⟩ , âA(ηi,k)|Υ⟩ = 0 ,

where Υ denotes a complex number. In such cases, we just replace (5.1) in Part II with

the above conditions and follow the same calculation. As is mentioned in Eq. (A5) of the

appendix in Ref. [55], the squeezed state is unchanged even when we replace the state with

the coherent state. Thus, we conclude that the squeezing parameter is unchanged when we
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take some classical initial conditions for GWs.

There are several directions to be pursued. It would be intriguing to follow up on the evo-

lution of the squeezed relic gravitons up to the radiation-dominated and matter-dominated

eras. If we could show the absence of decoherence of the squeezed relic gravitons, their

robustness would be proven. It would also be interesting to study the case that the pri-

mordial magnetic fields persist against the cosmic no-hair theorem during inflation [52]. On

top of gravitons, the squeezing occurs for the light axion dark matter fields [55, 10]. The

decoherence of axion fields due to magnetic fields can be discussed in a similar way.

In addition, even when the photon has a mass, there could be a conversion from gravi-

tons into massive photons. In this case, graviton-photon conversion can give rise to a new

mechanism for massive photon production. In particular, the converted massive vector of

the extra U(1) sector could be vector dark matter. The possibility is worth studying further.

We leave these issues for future work. Also, in the case of c = −1, the physical magnetic

fields fB do not decay during inflation. Hence, we would be able to expect more drastic

effects on the quantum state of gravitons. We leave the analysis of this case for future work.

Our findings have important implications for the quantum state of primordial gravitons.

So far, states of primordial gravitons are regarded as squeezed pure states. However, if

magnetic fields had coupled with gravitons during inflation, the primordial gravitons observed

today would be mixed states. Then the estimation of observables has to be changed.

Refining the model of the magnetic field would be another direction to be pursued since

the mechanism of the production of the primordial magnetic field is still controversial, and

both of the models we discussed in this thesis still include some bold assumptions. For

instance, we assume the uniform background magnetic field though the metric is homoge-

neous and isotropic. It would be better to consider some anisotropic background, such as

the background metric derived from anisotropic inflation[56]. If the relations of the physical

quantity such as the power spectrum and the primordial magnetic field is clarified, it would

be possible to get some constrain the model of the primordial magnetic field and inflationary

scenarios. Various inflation scenarios which include the mechanism to generate the primor-

dial magnetic field is proposed [57, 60, 61, 62, 63, 64, 65, 66, 67, 58, 59]. If we can describe

the squeezed graviton under the influence of the more precise description of the background
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magnetic field such as described in [68], the effect of the conversion process on the graviton

would become more concrete.

Our results also open up the possibility of probing primordial magnetic fields through

the observations of the non-classicality of primordial gravitational waves.
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