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Abstract

Modern cosmology can effectively explain the development of spacetime from
just after the creation of the universe to the present day, in a manner con-
sistent with many observations. On the other hand, the standard model of
elementary particle theory describes some of the fundamental interactions
of nature, including the strong, weak, and electromagnetic forces, and can
successfully explain the high-energy phenomena observed in accelerator ex-
periments. Although modern physics has succeeded in describing things from
the microscopic scale of subatomic particles to the macroscopic scale of the
current universe, there are still unsolved problems and interesting theoretical
predictions.

One of these unsolved problems is the theory of quantum gravity. This has
not yet been established within the framework of modern physics, although
“Superstring Theory” and “Loop Quantum Gravity” have been discussed as
candidates. Quantum gravity is important when considering the inflation
theory, which claims that our universe was created by quantum fluctuations
that produced a finite and very small spacetime, and this created spacetime
was immediately expanded exponentially and rapidly. To discuss the very
begging of the universe, quantum gravity is necessary because the spacetime
itself is quantum in nature.

Superstring theory has been actively studied as the most promising can-
didate for quantum gravity theory. However, the vacuum structure of the
theory is complicated, and it is difficult to construct an accelerating expand-
ing four-dimensional (4D) de Sitter spacetime supported by observations.
As one of the solutions, a method called a “bubble universe” was proposed
to effectively construct a 4D de Sitter spacetime based on the vacuum de-
cay (phase transition) of a five-dimensional (5D) spacetime. A metastable
5D anti-de Sitter (AdS) spacetime (AdS5) is required to construct this bub-
ble universe. In this thesis, we theoretically investigate the possibility of a
metastable 5D AdS spacetime from two viewpoints: a classical analysis using
quasi-normal modes and quantum analysis of the catalytic effects of vacuum
decay.

We analyzed the scalar perturbations of the Kerr-AdS5 as quasi-normal
modes in a wider range using the Heun’s equation. Previous study showed
in the limited parameter range that there are unstable modes (amplitude of



perturbation diverge in time evolution) when the black hole mass is small.
The analysis using quasi-normal modes revealed that the instability against
perturbations increases when the spin parameters are asymmetric. In ad-
dition, the asymptotic behavior of the discretely distributed quasi-normal
modes reveals the existence of two new types of quasi-normal modes, one
of which is a resonance between the black hole horizon and AdS boundary,
corresponding to the instability of the system. The other has imaginary
parts aligned at intervals proportional to the temperature of the black hole,
reflecting its thermodynamic properties.

In relation to the catalytic effects of vacuum decay, the presence of an ob-
ject such as a black hole in a metastable vacuum promotes the vacuum decay.
In this thesis we investigate the catalytic effect of the Kerr-AdS5 and find that
the vacuum decay is enhanced by rotation. By comparing these results with
those of the above-mentioned instability studied using quasi-normal modes,
it is possible to compare two time scales: the divergence time scale of the
perturbation, which is a classical instability, and the lifetime of spacetime in
the vacuum decay, which is a quantum phenomenon. We show that for the
example parameter sets, quantum instability is larger and “bubble universe”
scenario is possible even though there is a classical instability.
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Chapter 1

Introduction

Gravity, as one of the fundamental interactions of nature, is described by
the general theory of relativity, which enables us to deal with the physics of
spacetime. Modern cosmology, which has been developed based on general
relativity, has been able to effectively explain the development of spacetime
from the early universe to the present day, in a manner that is consistent with
many observations. On the other hand, the standard model of elementary
particles describes some of the fundamental interactions of nature, including
the strong, weak, and electromagnetic forces, and can successfully explain
the high-energy phenomena observed in accelerator experiments. Among the
elementary particles proposed in the standard model, the Higgs boson was
finally discovered in 2012, validating the standard model as an established
theory. However, despite the successes in modern physics in terms of ex-
periments, observations, and theories, there are still unsolved problems and
interesting theoretical predictions.

The cosmic microwave background (CMB) observations by the Planck
satellite1 and other observations show us that the universe is uniformly
isotropic and very flat on a macroscopic scale. To explain these observed
facts, inflation is thought to have occurred[3, 4, 5, 6]. Inflation is the theory
that the universe was created as a finite, very small spacetime as a result of
quantum fluctuations, which exponentially expanded immediately after the
creation of the universe. Although a new type of inflation has been proposed
[7, 8, 9], and various models have been suggested, e.g., [10, 11, 12, 13], no one
has yet reached a conclusion, which is one of the open questions of modern

1The paper [2] is the final result of the Planck satellite’s observations.
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Chapter 1. Introduction

physics. Furthermore, at the moment that the seed of the spacetime that
caused the inflation to emerge, it is believed that the spacetime itself had
a quantum characteristic. Thus, this spacetime is inevitably treated with
a theory beyond general relativity, i.e., quantum gravity. Therefore, it is
necessary to discuss the very beginning of the universe based on the quan-
tum gravity theory, but it has not yet been established within the framework
of modern physics. “Superstring theory” and “loop quantum gravity” are
discussed as candidates.

Superstring theory has been actively studied as the most promising candi-
date for the quantum gravity theory, but the vacuum structure of the theory
is complicated and difficult to use in constructing an accelerated expanding
four-dimensional (4D) de Sitter spacetime that is supported by observations
[14, 15]. In addition, some studies suggest the existence of a tremendous num-
ber of vacuua [16, 17]. Therefore, it is believed that “something” is needed to
connect string theory and our universe. Several models such as KKLT [18]
and large volume scenarios (LVS) [19] have been considered, and recently
there has been much discussion on the topics of the “Swampland program,”
e.g., the distance conjecture, weak gravity conjecture, de Sitter conjecture,
and trans-Planckian censorship conjecture [20, 21, 22, 23, 24], but the issue
has not yet been settled. As “something” is needed to connect string theory
and our universe, a proposal was made to construct a 4D deSitter spacetime
starting with a 5D metastable anti-de Sitter (AdS5) spacetime through the
vacuum decay (i.e., pjase transition) of this 5D spacetime, instead of creating
a 4D de Sitter spacetime from the beginning [25]. The vacuum decay begins
with the appearance of a bubble filled with a true vacuum in a metastable
spacetime, and the decay proceeds as the bubble expands.

The surface of the bubble in 5D spacetime has four dimensional, and
the equation explaining how this bubble expands is determined by the Israel
junction conditions [26], which successfully connect spacetime before and af-
ter the decay. The “bubble spacetime” was proposed because the equation
of motion that this bubble follows has the same form as the Friedman equa-
tion for the de sitter spacetime, and the spacetime that is an accelerated
expansion in four dimensions can be created effectively on the surface of the
bubble in this way.

A metastable AdS5 is required to construct this bubble spacetime, and
the original setup of this bubble spacetime [25] assumes the existence of black
holes and a cloud of strings. In addition, a pure AdS spacetime is known
to be non-linearly unstable and is eventually believed to form a black hole

3



Chapter 1. Introduction

[27, 28], so the vacuum decay with black hole is a realistic situation and also
in general, black hole can be rotating. For these reasons, we theoretically
investigate the possibility of the AdS5 spacetime, which is the premise of the
bubble spacetime setup, with a rotating black hole from two viewpoints: a
classical analysis using quasi-normal modes and a quantum analysis of the
catalytic effect of vacuum decay.

1.1 Quasi-Normal Modes of Black Holes

Because the AdS spacetime has a potential barrier at infinity, a black hole
in it can be regarded as being trapped inside a box. On the other hand, it is
known that a rotating black hole has the property of superradiance [29, 30,
31, 32], in which an incident wave is amplified by the black hole. Therefore,
if we consider a perturbation of a rotating black hole in AdS spacetime, the
perturbation is amplified by the black hole. It is then reflected at the AdS
boundary (the surface of the box), amplified again by the black hole, and
so on. It is known that this process will eventually cause the amplitude
of the wave produced by the perturbation to diverge, and spacetime itself
will become unstable to the perturbation [33]. In particular, we introduce
a rotating black hole in a 5D AdS spacetime (Kerr-AdS5) and investigate
the perturbation of a scalar field with respect to this spacetime using the
method of quasi-normal modes. In the case of a black hole with a small
mass and limited parameter range, the quasi-normal modes of Kerr-AdS5

are known to have unstable modes (modes that grows indefinitely in time)
[34, 35, 36, 37, 38], but we have analyzed them in a wider region using the
Heun equation method [39]. Quasi-normal modes have an infinite number of
discrete eigenfrequencies and satisfy the boundary conditions. Whether or
not the spacetime is stable against perturbation can be determined by the
sign of the imaginary part of the complex quasi-normal frequency.

As a theoretical feature of quasi-eigenfrequencies, it is known that the
real part of the quasi-eigenfrequencies of 4D black holes asymptotically ap-
proaches a certain value [40, 41]. It has been suggested that this value is
related to the area quantization of the black hole [42]. Furthermore, the re-
lationship between this value and loop quantum gravity has been discussed
[43, 44]. Regarding the ADS/CFT correspondence [45, 46], it has also been
shown that there is a correspondence between the periodicity of the quasi-
normal modes of a BTZ black hole, a rotating black hole solution in a three-

4



Chapter 1. Introduction

dimensional (3D) AdS spacetime, and the pole of Green’s function of the dual
CFT [47]. Thus, various studies have suggested that quasi-normal modes are
not only an aspect of simple perturbation solutions, but are also related to
modern physics problems such as the quantum gravity theory. In this the-
sis, we discuss not only the stability of spacetime, but also these theoretical
features.

1.2 Catalysis Effect of the Vacuum Decay

A metastable vacuum, which is a local minimum of potential, is known to
decay into a true vacuum in finite time [48, 49, 50], and the existence of an
object such as a black hole in this metastable vacuum enhances the vacuum
decay, which is the so-called catalytic effect of the vacuum decay. This phe-
nomenon was first discussed for a non-rotating Schwarzschild black hole in
4D spacetime [51, 52, 53, 54], and has been extended to the case of a rotat-
ing black hole in four dimensions [55, 56] and rotating black hole in three
dimensions [57]. In relation to the 4D aspects of catalysis, the instability of a
Higgs vacuum has been discussed in some papers [58, 59, 60]. In this thesis,
we first extend the analysis of the catalytic effects of the vacuum decay to
a 5D case and investigate the catalytic effects of black holes and a cloud of
strings [61], the existence of which were assumed in the bubble spacetime
setup [25]. We also discuss the catalysis by quintessence in five dimensions
[62]. Then, we investigate the catalytic effect of a rotating black hole in the
AdS5 spacetime, which is used in the bubble spacetime setup, and find that
the rotation enhances the vacuum decay [63].

1.3 Organization of This Thesis

The thesis is organized as follows. In Chap. 2, we provide a review of the
vacuum decay and catalysis effect, showing the Schwarzschild catalysis in four
dimensions. We also briefly review the bubble universe setup. In Chap. 3, we
also provide a review of the quasi-normal modes and use of Heun’s equation
method to solve the perturbation. Then, Chap. 4 shows how we investigated
the catalysis of black holes, including a Kerr-AdS5 black hole, cloud of strings,
and a time-varying scalar field. Chap. 5 shows how we studied the quasi-
normal modes of Kerr-AdS5, instability due to superradiance, and thermal
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Chapter 1. Introduction

and other properties of quasi-normal modes. Finally, we conclude this thesis
in Chap. 6.
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Chapter 2

Catalytic Effect of Vacuum
Decay

This chapter reviews vacuum decay and catalytic effect. We start with the
decay in one-dimensional quantum mechanics, which is extended to field
theory and finally to the case with gravity. The rate of a vacuum decay
can be estimated by the WKB method, i.e., through the Euclidean on-shell
action. Then, we include a black hole and evaluate the catalytic effect of the
black hole and reproduce the known results [51, 52, 53, 54]. Then, we consider
the case in five dimensions. We simply consider the junction surface of five-
dimensional decay and derive the equation of motion of a bubble universe
from the junction conditions. We also confirm that the effective cosmological
constant for the bubble universe can be positive, and the equation has terms
that correspond to those for the radiation and matter contributions in the
Friedmann equation.

2.1 Tunneling in One-dimensional Quantum

Mechanics

As a first step to explain the vacuum decay, it is useful to start with the
tunneling from a false vacuum to a true vacuum in one-dimensional quantum
mechanics. Here we assume that the Hamiltonian is give by:

H =
p2

2m
+ V (q), (2.1.1)

8



Chapter 2. Catalytic Effect of Vacuum Decay

where the potential is assumed to have the shape shown in Fig. 2.1, and par-
ticle energy E is lower than the maximum point of the potential. In classical
mechanics, a particle never penetrates the potential when the energy is lower
than maximum value of the potential. However, a particle can penetrate the
potential in quantum mechanics. The transition rate of this penetration is
computed using a semi-classical approximation called the WKB approxima-
tion, where the rate Γ can be expressed as follows:

Γ = Ae−B/2, B = 2

∫ q2

q1

√
2m (V (q)− E), (2.1.2)

where q1 and q2 are the classical turning points that satisfy the relation
V (q1) = V (q2) = E, and pre-factor A has the dimension of the inverse time
and is not determined by a semi-classical approximation. Loop corrections
and zero modes contribute to this factor.
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Figure 2.1: Plot of one-dimensional potential with potential barrier, where
q1 and q2 are points V (q1) = V (q2) = E.

2.2 Tunneling in Many Degrees of Freedom

This subsection extends the one-dimensional case to a case with many degrees
of freedom. When the system has N degrees of freedom and the coordinates

9



Chapter 2. Catalytic Effect of Vacuum Decay

are expressed as q1, q2 · · · , qN , the Lagrangian is given by:

L =
1

2

N∑
i=1

(
dqi

dt

)2

− V (q1, q2, · · · , qN)

=
1

2

(
dq

dt

)2

− V (q). (2.2.1)

In the one-dimensional case, a unique tunneling path is determined. How-
ever, in the case with many degrees of freedom, a path that maximizes the
tunneling rate is selected from a tremendous number of candidate paths that
connect the initial and final points [64, 65]. To investigate this path, we here
introduce a parameter s for the path q(s), with the definition:

ds2 =
N∑
i=1

(dqi)2 ≡ dq2. (2.2.2)

The initial and final tunneling points are expressed as qi = q(0) and qf =
q(sf ), respectively, and the path dependent tunneling factor is found as fol-
lows:

Bpath = 2

∫ sf

0

ds
√

2 (V (q(s))− E). (2.2.3)

It is difficult to find the path that minimizes this factor for the N variables
case, but Coleman showed that the Euclidean action is useful for solving this
problem [48]. The Euclidean action is derived by replacing time variable t
with imaginary time τ ,

t→ iτ. (2.2.4)

Then, under this coordinate change, the action is transformed to:

SE =

∫ τf

τ0

dτ

(
1

2

(
dq

dτ

)2

+ V (q)

)
, (2.2.5)

where subscript E denotes that it is Euclidean. The equation of motion for
this Euclidean action is as follows:

d2qi
dτ 2

=
∂V

∂qi
. (2.2.6)
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Chapter 2. Catalytic Effect of Vacuum Decay

This equation can be used to obtain the following:

d

dτ

(
dq̄i
dτ

)2

= 2
∂V

∂τ
(2.2.7)(

dq̄i
dτ

)2

= 2 (V (q̄i)− V (q0)) = 2 (V (q̄i)− E) (2.2.8)

where E = V (q0), (dqi/dτ)|τ=τ0 = 0 and q̄(s) is the solution of the equation,
which we call a bounce solution. Then, we substitute the solution (2.2.8)
into the Euclidean action (2.2.5) and obtain the on-shell action:

SE|q=q̄ =

∫ τf

τ0

dτ (V (q̄)− V (q0)) + V (q)

=

∫ τf

τ0

dτ2 (V (q̄)− V (q0)) +

∫ τf

τ0

dτV (q0)

=

∫ τf

τ0

dτ

√(
dq̄

dτ

)2√
2 (V (q̄)− V (q0)) +

∫ τf

τ0

dτV (q0)

=

∫ sf

0

ds
√

2 (V (q̄)− V (q0)) +

∫ τf

τ0

dτV (q0). (2.2.9)

Based on the principle of least action, the first term in (2.2.9) is the integra-
tion of the path that minimizes it, and this is the desired path for (2.2.3).
Based on this, we denote the minimum tunneling factor, Bmin = B, as the
bounce action:

B = SE|q=q̄ −
∫ τf

τ0

dτV (q0), (2.2.10)

In this way, using the Euclidean action, we can easily find the desired path,
and the tunneling factor is derived by evaluating the Euclidean on-shell ac-
tion.

2.3 Decay in Field Theory

The last two sections reviewed the decay in quantum mechanics. This section
will consider the decay in the field theory. Here, weconsider a 4D scalar theory
with the Lagrangian:

L =
1

2
∂µφ∂

µφ− V (φ), (2.3.1)

11



Chapter 2. Catalytic Effect of Vacuum Decay

where the potential has two minima, as seen in Fig. 2.2, with the lower one
called the true vacuum and the other called the false vacuum. The false
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Figure 2.2: Plot of potential V (φ) with two minima. The lower minimum is
called the true vacuum and the other the false vacuum. The false vacuum
decays to the true vacuum via a tunneling process.

vacuum decays into the true vacuum via a tunneling process, and we can
discuss the tunneling phenomena using an analogy to the previous quantum
mechanics case. In particular, in the field theory, the decay rate is evaluated
using the Euclidean on-shell action:

Γ = Ae−B, B = SE(φ)− SE(φfv), SE =

∫
d4x

1

2
(∂µφ)2 + V (φ),

(2.3.2)

where SE(φ) is the on-shell Euclidean action and

SE(φfv) =

∫
dx4V (φfv). (2.3.3)

These formulas correspond to those derived in the last section, (2.2.10). The
equation of motion of the scalar field is written as follows:(

∂2

∂τ 2
+∇2

)
φ− dV

dφ
= 0. (2.3.4)

The classical solution for this equation which satisfies the boundary condi-
tions:

lim
τ→±∞

φ(τ,x) = φfv, lim
|x|→∞

φ(τ,x) = φfv, (2.3.5)
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Chapter 2. Catalytic Effect of Vacuum Decay

is called the bounce solution. The first condition corresponds that the initial
and final state of the solution is φfv, and the second condition is used to make
the potential energy finite at all the tunneling paths measured from the false
vacuum. In addition, the kinetic energy of the field is zero at the initial and
final points, and at turning point τ̃ :

∂φ

∂τ
|τi,τf ,τ̃ = 0. (2.3.6)

Based on the conditions (2.3.5), the bounce solution has O(4) invariance, and
we imposes the O(4) symmetry on the solution1. The action can be express
using one parameter, ρ:

SE = 2π2

∫ ∞
0

dρρ3 1

2
(φ′)2 + V (φ), ρ =

√
r2 + x2. (2.3.7)

Fig. 2.3 shows a schematic representation of the O(4) symmetric bounce
solution. The boundary condition (2.3.5) and field constraint (2.3.6) are
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Figure 2.3: A schematic picture of O(4) symmetric bounce. It may be viwed
as a ball in EUcledean spacetime.

reduced to:

φ(∞) = φfv, φ′(0) = 0, (2.3.8)

where prime denotes the derivative with respect to ρ. Then, the equation of
motion is shown as follows:

φ′′ +
3

ρ
φ′ − dV

dφ
= 0. (2.3.9)

1Indeed the bounce solution is shown to always be O(4) symmetric [66].
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Fig. 2.4 shows the classical solution of this Euclidean equation of motion.
Here, we assume that the potential is derived from even function V0(φ), plus
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Figure 2.4: Plot of −V (φ) and the motion of the classical solution of Eu-
clidean equation of motion. It starts at the true vacuum. At a certain instant,
it begins to move along the potential slope and stops at the false vacuum.

the small energy difference, ε, between the true and false vacua:

V (φ) = V0(φ) +O(ε), (2.3.10)

where ε is the energy difference, as seen in Fig. 2.5:

V (φfv)− V (φtv) = ε. (2.3.11)

If the potential barrier between the false and true vacua is sharp enough
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Figure 2.5: Plot of the double well potential (2.3.11), where the difference
between two local minima is ε.

for the field to move quickly, the time scale for the field transition is much
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shorter than the time that the field stays at the initial state. In this situation,
the second term 3φ′/ρ in (2.3.9) is negligible and the field is regarded to start
at true vacuum (φ(0) = φfv). Then, the equation of motion is obtained at
the 0-th order of ε,

φ′′ − dV0

dφ
= 0, (2.3.12)

and integrating this equation produces:(
1

2
φ′

2 − V0

)′
= 0. (2.3.13)

The boundary condition at the true and false vacua gives the integration
constant:

1

2
(φ′)2 − V0(φ) = −V0(φtv) = −V0(φfv), (2.3.14)

which can be used to obtain:

φ′ =
[
2 (V0(φ)− V0(φfv))

]1/2

. (2.3.15)

Integrating this we obtai:∫ φ

(φfv+φtv)/2

dφ
[
2 (V0(φ)− V0(φfv))

]−1/2

= ρ−R, (2.3.16)

where R is the point where the field seems to vary rapidly from the false
to true vacuum and satisfies the following condition: φ(R) = (φfv + φtv)/2.
Again the assumption just before (2.3.12) is interpreted as R being suffi-
ciently large compared to the length scale of the transition of φ. In the
Euclidean spacetime, this transition (bounce solution) is seen as a thin wall
that separates two regions, the false and true vacua. This assumption is
called the “thin-wall approximation.” Let us return to the bounce action,
(2.3.2) and (2.3.3), which can be divided into three parts, outside the wall,
inside the wall, and the wall itself:

Boutside = 0, (2.3.17)

Binside =
π2

2
R4(V (φtv)− V (φfv)) = −π

2

2
R4ε, (2.3.18)

Bwall = 2π2R3

∫
dρ
[1

2
φ′

2
+ V0(φ)− V0(φfv)

]
= 2π2R3σ, (2.3.19)
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where we define the wall tension σ as:

σ = 2

∫
dρ
[
V0(φ)− V0(φfv)

]
=

∫ φfv

φtv

dφ
[
2 (V0(φ)− V0(φfv))

]1/2

. (2.3.20)

The bounce action is derived by summing these three parts:

B = −π
2

2
R4ε+ 2π2R3σ. (2.3.21)

The minimum value of this action is obtained by solving:

dB

dR
= −2πR3ε+ 6π2R2σ = 0. (2.3.22)

Then, the bounce action takes the minimum value at

R = 3σ/ε, (2.3.23)

and the minimum value is derived as follows:

Bmin =
27π2σ4

2ε3
. (2.3.24)

This result indicates that when the energy difference, ε, is fixed at a small
value, the potential information in the bounce action can be expressed by
one parameter, σ. Here, we consider an example potential:

V (φ) = V0(φ) + ε
φ+ a

2a
(2.3.25)

V0(φ) =
λ

4
(φ2 − a2)2, (2.3.26)

where −a = φfv, a = φtv, V0(±a) = 0, and (2.3.15) is solved as follows:

dφ

dρ
= ±

√
λ

2

(
φ2 − a2

)
. (2.3.27)

On the basis of the boundary condition, the lower sign is the right choice.
Then, the solution is obtained as follows:

φ(ρ) = −a tanh

(√
λ

2
a(ρ−R)

)
, (2.3.28)

16



Chapter 2. Catalytic Effect of Vacuum Decay

where R is the integration constant determined by the condition φ(R) =
(φfv + φtv)/2. Thus, the solution behaves as follows:

φ(ρ) =


a (0 < ρ� R)

φ(ρ) ρ ≈ R .

−a R� ρ

(2.3.29)

Where the solution is constant except for a small region around ρ ≈ R. We
draw the potential and the solution for several values of parameters in Fig.
2.6. We see that when the potential has a sharp barrier, the solution rapidly
changes and the thin-wall approximation is good.
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Figure 2.6: Plot of the potential and the bounce solution for several values
of parameters. Parameters are set to a = 1, R = 10, and λ = 1, 5, 10. Note
that the selection of these values does not necessarily reflect the realistic
situations.
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2.3.1 Wall Dynamics after Tunneling

We discussed the tunneling rate based on the field theory, and here we look
at the tunneling from the viewpoint of Minkowski spacetime. The bounce
solution has O(4) symmetry in Euclidean space, and we assume that the
thin-wall bubble materializes in Minkowski spacetime at t = 0. We need to
analytically continue from Euclidean space to Minkowski spacetime and we
choose the point where the field satisfies the following conditions:

∂φ

∂τ
= 0,

∂φ

∂t
= 0. (2.3.30)

Then, after it materializes in Minkowski spacetime, the O(4) symmetry is
reduced to O(3,1), and the wall trajectory is hyperboloid as seen in Fig. 2.7,

R2 = −t2 + |x|2. (2.3.31)
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Figure 2.7: An Euclidean O(4) symmetric bounce solution of Fig. 2.3 is ana-
lytically continued to a Lorentzian one at the time where ∂φ/∂τ = ∂φ/∂t = 0.
The trajectory of the wall is hyperboloid after the continuation.

2.4 Decay with Gravity

So far we have discussed the vacuum decay using quantum mechanics and
field theory, and found that the Euclidean action method is useful for esti-
mating its decay rate. In this section, we focus on the decay with gravity.
The most significant difference that arises in the presence of gravity is related
to the vacuum energy. In a theory without gravity, the relative values of the
two vacua are meaningful, but in the case with gravity, the vacuum energy
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itself is coupled to gravity and thus important. The Lagrangian with gravity
is shown as follows:

S(φ, gµν) =
1

16πG

∫
dx4
√−g (R− 2Λ) +

∫
dx4
√−g

(
−1

2
gµν∂µφ∂

νφ− V (φ)

)
,

(2.4.1)

=
1

16πG

∫
dx4
√−g (R− 2Λ) +

∫
dx4
√−gLm(gµν , φ) (2.4.2)

where R is the Ricci scalar, gµν is the spacetime metric, g is the determinant
of the metric, and Lm is the Lagrangian of the matter field. The Einstein
equation for this action is derived as follows:

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (2.4.3)

where Λ is the cosmological constant. We consider the decay from the false
vacuum to the true vacuum, where the bubble wall that separates the two
vacua acts as a junction surface between the two geometries because the
vacuum energy is related to the spacetime geometry, and the inside and
outside geometries are quite different.

2.4.1 Junction of spacetime

Before evaluating the Euclidean action, we introduce the junction condition
of spacetimes [26]. Here, we assume that there are two spacetimes which are
spherically symmetric, xµ = {t, r, θ, φ},

ds2
± = gµν±dx

µ
±dx

ν
± = −f±(r±)dt2 +

dr2
±

f±(r±)
+ r2

±dΩ2
2±, (2.4.4)

where dΩ2
2± = dθ2

± + sin θ2
±dφ

2
±. The two different spacetimes are separated

by a thin wall, Σ:

Σ = {xµ : t = T (λ), r = R(λ)}, (2.4.5)

where the subscripts ± denote the two different spacetimes inside (−) and
outside (+) of wall respectively, and λ is the proper time on the wall. Then,
the induced metric γij on the wall is found as follows:

ds2
Σ = γijdy

idyj =
[
− f±(R)

(
dt±
dλ

)2

+
1

f±(R)

(
dr±
dλ

)2 ]
dλ2 +R2(λ)dΩ2

2.

(2.4.6)
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The junction condition known as the “Israel Junction condition” is derived
from the requirement that the Einstein equation be satisfied even on the wall:

γij+ = γij− = γij, (First junction condition),

(2.4.7)

Kij+ −Kij− = −8πG

(
Sij −

1

2
γijS

)
(Second junction condition),

(2.4.8)

where Kij± is the extrinsic curvature of each surface of the wall, and Sij is
the reduced energy momentum tensor defined on the wall,

lim
δ→0

∫ R+δ

R−δ
Tijdr = Sij. (2.4.9)

We normalize the induced metric,

f±(R)

(
dt±
dλ

)2

− 1

f±(R)

(
dr±
dλ

)2

= 1, (2.4.10)

and introduce the normal vector on the wall,

n±µ =

(
∓dR
dλ
,± dt

dλ
, 0, 0

)
= (∓Ṙ,±ṫ, 0, 0), (2.4.11)

where the extrinsic curvature is expressed using this nµ,

Kij± =
∂xα±
∂yi

∂xβ±
∂yj
∇αnβ± , (2.4.12)

with ∇ being a covariant derivative. Explicitly Kθθ is written as:

Kθθ± =
∂xα±
∂θ

∂xβ±
∂θ
∇αnβ± (2.4.13)

=
∂nθ±
∂θ
− Γληηnλ± (2.4.14)

= f±(R)Rṫ±. (2.4.15)

Next, we substitute this formula into the second junction condition (2.4.8),
and obtain:

1

R

(
f+(R)ṫ+ − f−(R)ṫ−

)
= −4πG4σ, (2.4.16)
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where we define the wall as having uniform tension,

Sij = −γijσ. (2.4.17)

Then, combining (2.4.10) and (2.4.16), we obtain:(
Ṙ

R

)2

= 4π2G2σ2 − f+(R) + f−(R)

2R2
+

(f+(R)− f−(R))2

32π2G2σ2R2
, (2.4.18)

where we used:

4π2G2σ2 =
1

4
(−4πGσ)2 =

1

4R2
(f+(R)ṫ+ − f−(R)ṫ−)2. (2.4.19)

Equation (2.4.18) can be regarded as an equation of motion of the bubble
wall:

Ṙ2 + Veff(R) = 0, (2.4.20)

where Veff(R) is the effective potential of the wall,

Veff(R) = −4π2G2σ2R2 +
f+(R) + f−(R)

2
+

(f+(R)− f−(R))2

32π2G2σ2
. (2.4.21)

Thus, we have obtained the equation of motion of the spherical symmetric
bubble that separates the two spacetimes, and the next step is to analyze
the wall dynamics in Euclidean spacetime.

2.4.2 Thin-wall Dynamics in Euclidean Spacetime

In the last section, we derived the equation of motion of the bubble wall in
the spherical symmetric spacetime, but the metric was not specified. That
is, f±(r±) was not specified. In this section, we specify the false and true
vacuum metric. Then, by performing a coordinate change from t → iτ , we
obtain the equation of motion for the Euclidean. Under this transformation,
other variables also change: Ṙ2 → −Ṙ2

E, ṫ → τ̇ . Thus, the equation of
motion, (2.4.20), is transformed as follows:

Ṙ2 − Veff(R) = 0. (2.4.22)
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We choose the vacuum metric:

f±(r) = 1− Λ±r
2

3
, (2.4.23)

where Λ± is the cosmological constant of each vacuum. It corresponds to the
potential energy of the scalar field, and satisfies the relation Λ− < Λ+. Note
that there is a cosmological horizon at r =

√
3/Λ±. Then, substituting the

metric into (2.4.21), we obtain the equation of motion:(
dR̃

dλ̃

)2

= 1− R̃2, (2.4.24)

where we introduce the following parameters for notational simplicity:

σ̄ = 2πGσ, l2 =
3

Λ+ − Λ−
, γ =

4σ̄l2

1 + 4σ̄2l2
, (2.4.25)

α2 = 1 +
3Λ−γ

2

3
, R̃ =

αR

γ
, λ̃ =

αλ

γ
, τ̃ =

ατ

γ
. (2.4.26)

We want to evaluate the Euclidean action, where the equation of the bubble
wall is (

dR̃E

dλ̃

)2

= R̃2
E − 1. (2.4.27)

The solution of (2.4.27) is R̃ = cos λ̃, which is the bounce solution for this
case. Once we obtain the bounce solution, we can evaluate the Euclidean
action and derive the bounce action. The action can be divided into four
parts: those near the horizon (H), at the wall itself (W), and inside and
outside the region (M+ and M−, respectively).

SE = SW + SH + SM+ + SM− , (2.4.28)

where

SM± = − 1

16πG5

∫
M±

dx4√gR−
∫
M±

dx4√gLm +
1

8πG

∫
W
dx3√γK±,

(2.4.29)

SW = −
∫
dx4√gLm = −

∫
W
dx3√γ

{
lim
δ→0

∫ R+δ

R−δ
Lmdr

}
=

∫
W
dx3√γσ.

(2.4.30)
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Here we added the Gibbons Hawking boundary terms. The action near the
horizon is difficult to treat in Euclidean spacetime, but Gregory et al. showed
that the contribution of the horizon is replaced by that of its area [53]:

SH = −
∑
i

Ai
4G

, (2.4.31)

where Ai is the area of the horizon. In de Sitter spacetime, there is only
one horizon, the cosmological horizon. Using Arnowitt-Deser-Misner (ADM)
decomposition [67] the bulk part of the action, (2.4.29), is reduced to:

SM± = − 1

16πG

∫
M
dx4√g(R + 16πGLm) +

1

8πG

∫
W
dx3K± (2.4.32)

= − 1

16πG

∫ β

0

dτ

∫
Στ

dx3√γ
(

(3)R−K2 +KijK
ij + 16πGLm

)
+

1

8πG

∫
W
dx3√γn±αuµ±∇µu

α
±u

ν +
1

8πG

∫
W
dx3√γK

(2.4.33)

=
1

8πG

∫
W
dx3√γn±αuµ±∇µu

α
± +

1

8πG

∫
W
dx3√γK±, (2.4.34)

where the first term in (2.4.33) vanishes as a result of the Hamiltonian con-
straint, n is the normal vector defined by (2.4.11), and u is the normal vector
on a constant τ surface,

u±µ = (f±, 0, 0, 0) . (2.4.35)

Then, summing all parts of the action (2.4.28),

SE =
1

8πG

∫
W
dx3√γn±αuµ±∇µu

α
± +

1

8πG

∫
W
dx3√γK

+

∫
W
dx3√γσ −

∑
i

Ai
4G

(2.4.36)

= − 1

16πG

∫
W
dx3√γ

(
f ′+τ̇+ − f ′−τ̇−

)
− 1

2

∫
W
dx3√γσ −

∑
i

Ai
4G

(2.4.37)

=
1

16πG

∫
W
dx3√γ

((
2f+

R
− f ′+

)
τ̇+ −

(
2f−
R
− f ′−

)
τ̇−

)
−
∑
i

Ai
4G

(2.4.38)
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where we use the following relations:

nα±u
µ
±∇µu

α
± = nα±u

τ
±Γαττu

τ
± = ∓ τ̇±f

′
±

2
, (2.4.39)

1

R

(
f+(R)ṫ+ − f−(R)ṫ−

)
= −4πG4σ. (2.4.40)

We want to calculate the bounce action,

B = SE(φ)− SE(φfv), (2.4.41)

where SE(φ) is given by (2.4.38), and SE(φfv) is the contribution of the
horizon alone:

SE(φfv) = −
∑
i

Afv
i

4G
. (2.4.42)

Then, the bounce action is derived as follows:

B =
1

16πG

∫
W
dx3√γ

((
2f+

R
− f ′+

)
τ̇+ −

(
2f−
R
− f ′−

)
τ̇−

)
+
∑
i

(Afv
i −Ai)
4G

. (2.4.43)

Next, we assume that the false vacuum is de Sitter spacetime (Λ+ > 0),
and the true vacuum is Minkowski spacetime (Λ− = 0), and we evaluate the
bounce action. In this case, there is only one cosmological horizon, thus the
contributions from the horizons cancel each other

∑
i(Afv

i − Ai) = 0. By
substituting the metric,

f+(r) = 1− Λ+r
2

3
, f−(r) = 1, (2.4.44)

into (2.4.43), we obtain

B =
1

8πG

∫
W
dx3√γ

(
1

R
τ̇+ −

1

R
τ̇−

)
(2.4.45)

=
γ2

2G

∫ π/2

−π/2
dλ̃R̃

(
˙̃τ+ − ˙̃τ−

)
(2.4.46)

=
π

2G
(2l2 − γ2 − 2l

√
l2 − γ2) (2.4.47)

=
πl2

G

16σ̄4l4

(1 + 4σ̄2l2)2
(2.4.48)
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where we use the following relations:

˙̃τ+ =

√
1

f+

−
˙̃R

f 2
+

=
1

f+

√
f+ − ˙̃R =

R̃

1− R̃2/l2

√
1− γ2

l2
(2.4.49)

˙̃τ+ =

√
1

f−
−

˙̃R

f 2
−

=
1

f−

√
f− − ˙̃R = R̃. (2.4.50)

The bounce action, (2.4.48), is called the “Coleman-de-Luccia (CDL) instan-
ton” [50], and gives the decay rate in the gravity case. To check this formula
is consistent with the no-gravity case, we take the limit G→ 0,

πl2

G

16σ̄4l4

(1 + 4σ̄2l2)2
=
πl2

G

16× 16π4G4σ4l4

(1 + 16π2G2σ2l2)2
(2.4.51)

≈ πl2

G
256π4G4σ4l4 (2.4.52)

= 256π5G3σ4

(
3

8πGε

)3

(2.4.53)

=
27π2σ4

2ε3
, (2.4.54)

where we use the following relations:

ε = V (φfv)− V (φtv),
Λ+

8πG
= ε. (2.4.55)

Equation (2.4.54) gives the same value as (2.3.24). Thus, we confirmed that
our result is consistent with the non-gravity case.

2.5 Decay Induced by Black Hole

Some studies have shown that a black hole in a false vacuum plays a role
as a nucleation site, which means the black hole enhances the decay rate
[51, 52, 53]. In the previous section, we focused on the decay from de Sitter
spacetime to Minkowski spacetime. In this section, we consider the decay
from Schwarzschild-de Sitter spacetime (de Sitter spacetime in the presence of
a Schwarzschild blackhole) to Schwarzschild-de Sitter spacetime. The pres-
ence of a black hole changes the shape of the effective potential, and the
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bounce solution no longer has O(4) symmetry but has O(3) symmetry only,
as seen in Fig. 2.9. In addition, Schwarzschild-de Sitter spacetime has two
horizons, an event horizon and a cosmological horizon. The bounce action
can be evaluated in a similar manner as in the previous section. We can use
the effective potential, (2.4.21), and bounce action, (2.4.43), which is derived
for a generic metric. We just substitute the preferable metric into these for-
mulas to obtain the effective potential and bounce solution. The metric of
Schwarzchild-de Sitter is given as follows:

ds2
± = gµν±dx

µ
±dx

ν
± = −f±(r±)dt2 +

dr2
±

f±(r±)
+ r2

±dΩ2
2±, (2.5.1)

f±(r) = 1− 2GM±
r
− Λ±r

2

3
. (2.5.2)

First, we substitute these into (2.4.21) and plot them. Fig. 2.8 shows
an effective potential plot for the decay from Schwarzschild-de Sitter (0 <
Λ+, 0 < M+) to Minkowski (Λ− = 0,M− = 0), where we consider vari-
ous values of the mass parameter M+. We normalize the mass using Nariai
mass MN = 1/3Λ+G, for which the event horizon and the cosmological hori-
zon match [68, 69]. Fig. 2.9 shows the Euclidean effective potential. As
seen in this figure, there are two types of bounce solutions: (b) shows an
oscillating solution between rmin and rmax, and (c) shows a stationary so-
lution that stays at rst. In addition to these solutions, for (d) there is no
classical solution. Here, rmin and rmax, (rmin < rmax) satisfy the relations
Veff(rmin) = Veff(rmax) = 0, and we define M+ in (b) as the critical value
Mcrit. If Mcrit < M+, there is no Euclidean solution (d).
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Figure 2.8: Plot of Veff(R), where parameters are set to M− = 0,Λ− = 0, σ̄l =
0.3, and M+ = 0.03, 0.1,Mcrit. Here, Mcrit = 0.359595 for this parameter
choice. This figure shows the effective potential changes under the variation
of M+.
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Figure 2.9: (a) Picture of an O(3) symmetric bounce solution, where solution
oscillates for the period of the solution. (b)(c)(d) Plots of −Veff(R), where
the parameters are set to M− = 0,Λ− = 0, σ̄l = 0.3, and M+ takes different
values for each plot. (b) M+/MN = 0.03 and classical Euclidean solution
oscillates between the points rmin, rmax. These points satisfy Veff(Rmin) =
Veff(Rmax) = 0 and Rmin < Rmax. (c) M+ = Mcrit and classical solution do
not oscillate but remain steady. (d) M+/MN = 0.03 no Euclidean solution
exists for this parameter.
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Next, we use the metric in (2.4.43),

B =
1

16πG

∫
W
dx3√γ

(
1

R

(
2− 6GM+

R

)
τ̇+ −

1

R

(
2− 6GM−

R

)
τ̇−

)
+
∑
i

(4πr2
h+ + 4πr2

c − 4πr2
h− − 4πr2

c )

4G
(2.5.3)

=
1

4G

[ ∫
W
dλ ((2R− 6GM+) τ̇+ − (2R− 6GM−) τ̇−) + 4π

(
r2
h+ − r2

h−
) ]
,

(2.5.4)

where r2
h± is the event horizon of the black hole, and r2

c is the cosmological
horizon. Note that the contribution of this black hole horizon is nothing
but the Beckenstein-Hawking entropy [70, 71, 72]. One can easily reproduce
the previous result, (2.4.45), by taking M± = 0. Now we get the bounce
solution from the effective potential, and evaluate the bounce action. Fig.
2.10 shows a plot of the bounce action for the decay from Schwarzschild-de
Sitter spacetime to Schwarzschild or Minkowski spacetime, where B/BCDL <
0 shows that the presence of the black hole enhances the decay. Because the
decay rate is estimated as Γ ∼ e−B and the ratio B/BCDL < 1 means the
presence of the black hole decrease the bounce action compared to the action
without the blackhole, this ratio indicates an enhancement of the decay rate.
In Fig. 2.10, each plot has a turning point where the bounce action changes
from a decrease to an increase. Before this point, M− = 0 is the dominant
process, whereas after this point, the process in which the bounce solution
becomes stationary is dominant, and M− is determined by this condition.
The results discussed in this section can be summarized as follows.

• The symmetry of the bounce solution is reduced from O(4) to O(3).

• A black hole plays a role as a bubble nucleation site, and the decay
rate around the black hole is enhanced.

• The process in which the Euclidean solution becomes stationary gives
the most probable solution.

2.6 Bubble Universe Derived from AdS5

In the previous section, we reviewed the vacuum decay in four dimensions and
showed that the Euclidean on-shell action is useful for evaluating the vacuum
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Figure 2.10: Plot of bounce action ratio B/BCDL < 1 for different σ̄. The
ratio that satisfies B/BCDL shows the catalysis. It can also be seen that each
plot has a minimum bounce action point, which corresponds to the maximum
decay rate and stationary bounce solution.

decay rate. In this section, we consider the decay in five dimensions and the
bubble wall dynamics, and briefly review the setup of a bubble universe.

This bubble universe was proposed in the context of string theory [25]. In
the string theory, vacuum structure is complicated and still not understood
well. Thus, it is difficult to construct a 4D de-Sitter spacetime (the difficulties
are explained in a review [73]). This empirical rule is known as the so-
called “de Sitter conjecture” [22, 23]. We need a novel way to connect the
string theory to our universe. In order to solve this problem, Danielsson
et al. suggested a bubble universe [25]. In the bubble universe formalism,
we start with metastable AdS5 spacetime. We saw that the vacuum decay
occurs as the bubble it is inside is a true vacuum and is nucleated in a false
vacuum. Then, the decay proceeds as the bubble expands. In the decay
in five dimensions, the bubble wall that separates the two vacua is four-
dimensional. Thus, we can effectively construct a 4D de Sitter universe on
this bubble wall. This is the idea of a bubble universe, which will be reviewed
in the following subsection.
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2.6.1 Formalism

A cloud of strings

Before constructing the bubble universe, we here introduce the cloud of
strings whose presence is assumed in the original setup [25]. The origin
of the cloud of strings is the uniform distributed strings extending to the
radial directions, and this has been known as one of the solutions of Einstein
equations [74, 75]. The solution of a cloud of strings in five dimensions was
studied by [76], and we here review this derivation. We start with the action
in the presence of N strings:

S =
1

16πG5

∫ √−gR + Sm, (2.6.1)

Sm = −1

2

N∑
i=1

Ti

∫
d2ξ
√
−hhαβ∂αXµ∂βX

νgµν , (2.6.2)

where Ti is the tension of the i-th string, gµν is the metric of five-dimensional
spacetime, and hαβ is the induced metric on the string world sheet. Einstein
equation for this action can be written as follows:

Rµν −
1

2
Rgµν + Λ(5)gµν = 8πG5Tµν (2.6.3)

T µν = −
N∑
i=1

Ti

∫
dξ2 1√

|g|
√
|h|hαβ∂αXµ∂βX

νδ
(5)
i (X − xi) (2.6.4)

Then, we choose the static gauge, ξ0 = t, ξ1 = r, and assume that the
number of strings, N , is large enough to regard the distribution as spherically
symmetric. With this assumption, the metric is written as:

ds2 = g00(r)dt2 + g11(r)dr2 + r2dΩ2
3. (2.6.5)

In addition, the induced metric on the world sheet of the string is shown as:

hαβ = gµν
∂xµ

∂ξα
∂xν

∂ξβ
. (2.6.6)

In the static gauge,

h00 = g00, h11 = g11. (2.6.7)
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Using these equations, the energy momentum tensor of (2.6.4) is found to
be:

T 00 = −ag
00

r3
, T 11 = −ag

11

r3
, (2.6.8)

where we assume that the string tension is uniform and we define the density
of the tension as follows:

a(x) = T
∑
i

δ
(3)
i (X− − xi) (2.6.9)

a =
1

V3

∫
dx3a(x) =

T

V3

N∑
i

∫
dx3δ(3)(X − xi) =

TN

V3

. (2.6.10)

Then, the solution of Einstein equation in the presence of the cloud of strings
is found as follows:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3 (2.6.11)

f(r) = 1− Λ(5)r2

6
− 2a

3r
. (2.6.12)

Next, the spherically symmetric 5D spacetime metric with a black hole and
a cloud of string is[76] shown as follows:

f±(r) = 1− Λ
(5)
± r

2

6
− 8G5M±

3πr2
− 2a±

3r
, (2.6.13)

and we consider the decay in this spacetime2.

Bubble spacetime

Here, we briefly review the bubble spacetime that Danielsson et al. proposed
[25, 77]. The method is the same as that in the 4D case, where we start with
the false and true vacuum metrics in the presence of a black hole and a cloud
of string:

f±(r) = 1− Λ
(5)
± r

2

6
− 8G5M±

3πr2
− 2a±

3r
. (2.6.14)

2The catalysis effect of a cloud of strings in four dimensions and its application to the
instability of a Higgs vacuum is presented in [60].
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The induced metric is the same as that in the 4D case:

ds2
Σ = γijdy

idyj = −dλ2 +R2(λ)dΩ2
3. (2.6.15)

Next, we substitute this metric into the equation derived from the junction
condition, (2.4.16), but the right hand side of this formula needs to be mod-
ified for the 5D case3:

1

R

(
f+(R)ṫ+ − f−(R)ṫ−

)
= −8πG5Rσ

3
, (2.6.16)(

Ṙ

R

)2

=

(
4πG5σ

3

)2

− f+(R) + f−(R)

2R2
+

(f+(R)− f−(R))2

16R4

(
3

4πG5σ

)2

.

(2.6.17)

Then, we get:

σ =
3

8πG5

(√
1

l2−
+

1 + Ṙ2

R2
− 8G5M−

3πR4
− 2a−

3R3

−
√

1

l2+
+

1 + Ṙ2

R2
− 8G5M+

3πR4
− 2a+

3R3

)
, (2.6.18)

where l± =

√
−6/Λ

(5)
± , and we consider the decay from a metastable AdS5

to more stable AdS5. This situation may be expressed as

Λ
(5)
− < Λ

(5)
+ < 0, l− < l+. (2.6.19)

Assuming that a sufficiently expanded bubble corresponds to the universe,
the square roots in (2.6.18) are expanded by using the following conditions:

l± � R, l± �
Ṙ

R
. (2.6.20)

Then, we get the following:

σ =
3

8πG5

[
1

l−

(
1 +

l2−
2R2

+
l2−Ṙ

2

2R2
− 8G5M−l

2
−

6πR4
− 2a−l

2
−

6R3

)

− 1

l+

(
1 +

l2+
2R2

+
l2+Ṙ

2

2R2
− 8G5M+l

2
+

6πR4
− 2a+l

2
+

6R3

)]
. (2.6.21)

32πG4σ is replaced by 4πG5/3 in the 5D case.

33



Chapter 2. Catalytic Effect of Vacuum Decay

Reorganizing the terms in (2.6.21), the equation of motion of the bubble is
derived as follows:

Ṙ2

R2
= − 1

R2
+

Λ(4)

3
+

8πG4

3

(
M+l+ −M−l−

2π2R4
+
a+l+ − a−l−

8πG5R3

)
, (2.6.22)

where we assume:

Λ(4) = 8πG4

(
3

8πG5

(
1

l−
− 1

l+

)
− σ

)
, G4 =

2G5

l+ − l−
. (2.6.23)

These formulas show the relations between the 4D cosmological constant and
gravitational constant derived in order to match (2.6.21) to the Friedmann
equation. Remembering the Friedmann equation in four dimensions,

ȧ2

a2
= − 1

a2
+

Λ(4)

3
+

8πG4

3

(ρrad
a4

+
ρmat
a3

)
, (2.6.24)

and comparing (2.6.22) and (2.6.24), we can regard the terms proportional
to 1/R4 and 1/R3 in (2.6.21) as the radiation and matter energy density,
respectively. These correspondences imply that on the bubble spacetime
nucleated between the spacetime with the metric (2.6.14), a black hole and
a cloud of strings may be viewed as the radiation and matter. In addition,
if the tension of bubble σ satisfies the following relation:

σ < σcrit, σcrit =
3

8πG5

(
1

l−
− 1

l+

)
=

3

4πG5

σ̄crit, (2.6.25)

the cosmological constant on the bubble universe becomes positive, and the
bubble spacetime can effectively be regarded as de Sitter spacetime.

In this setup, the bubble itself obeys the Friedmann-like equation, and on
the bubble surface, one can see that matter, radiation, and a positive cosmo-
logical constant are realized, although there are some problems we need to
resolve to identify this bubble spacetime as our universe. One of the problem
is the localization of matter on the bubble universe. Just thinking about the
bubble nucleated in AdS5 spacetime, matter is not localized on the bubble
surface and does not match our universe, unlike the well-known brane world
scenario of Randall-Sundrum [78, 79]. Danielsson et al. proposed that the
strings that spread in five dimensions and end at the bubble can be used
to resolve this problem [80]. They also discussed gravitational waves in the
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bubble cosmology [81]. The other problems are the realization of the in-
flation and reproduction of the thermal history of our universe. Although
these problems are very challenging and seem difficult to resolve, some direc-
tions have been proposed [82, 83, 84, 85]. This thesis does not discuss these
problems in detail, but focuses on the instability of AdS5 spacetime, which
is necessary for the setup of a bubble universe, from the classical as well as
quantum pointis of view.
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Chapter 3

Quasi-normal Modes of Black
hole

In this section, we review the quasi-normal modes of a black hole. The
quasi-normal modes are the black hole perturbation solutions with a infinite
numbers of complex frequencies, and are obtained as infinite discrete num-
bers. The following sections review some of the properties of quasi-normal
modes. Then, we focus on Heun’s equation method to derive quasi-normal
modes and show the result for a static 4D Schwarzschild black hole in de
Sitter spacetime.

3.1 Quasi-normal Modes as Perturbation

In this section, we review the black hole perturbation, known as quasi-normal
modes for the 4D Schwarzschild black hole case. We consider the perturba-
tion hµν with the following background metric:

ds2 = g0
µνdx

µdxν (3.1.1)

= −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (3.1.2)

The perturbed solution gµν is given by:

gµν = g0
µν + hµν . (3.1.3)

Then, we assume the following ansatz:

hµν ∼ e−iωtR`(r)Y`m(θ, φ), (3.1.4)
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where ω is the quasi-normal frequency. An infinite number of discrete fre-
quencies are obtained by solving the perturbation with appropriate bound-
ary conditions. From the ansatz formula, (3.1.4), the real part of the quasi-
normal frequency, Re(ω), corresponds to the normal frequency, and the imag-
inary part of quasi-normal frequency, Im(ω), corresponds to the damping of
the oscillation if Im(ω) < 0. The equation for the perturbation is reduced to
the Regge-Wheeler equation [86]:(

− d2

dr2
∗

+ V (r)

)
R(r, ω) = ω2R(r, ω), (3.1.5)

V (r) =

(
1− 2M

r

)(
l(l + 1)

r2
− 6M

r3

)
, (3.1.6)

where r∗ is the tortoise coordinate,

r∗ = r + 2M log(r − 2M)/2M. (3.1.7)

Fig. 3.1 shows a plot of the Regge-Wheeler potential of (3.1.6), where it can
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0.00

0.05
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0.15

r*

V
(r

*
)

Figure 3.1: Plot of Regge-Wheeler potential. The parameters are set to
M = 1, l = 2. The potential has a barrier and vanishes at each boundary
(r∗ = ±∞).

be seen that the potential barrier exists. Thus, solving (3.1.5) corresponds
to solving the scattering problem for this potential. Because the potential,
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(3.1.6), vanishes at the horizon (rh = 2M, r∗ = −∞) and at the infinity
(r =∞, r∗ =∞), (3.1.5) is reduced to,(

d2

dr2
∗
− ω2

)
R(r, ω) = 0, (3.1.8)

near the horizon and infinity, and the general solution of this asymptotic
equation is given by:

R(r, ω) = Ae−iωr∗ +Beiωr∗ . (3.1.9)

By combining this with the exponential term of the ansatz, (3.1.4), and
obtain the following:

e−iωtR(r, ω) ∼ Aeiω(r∗−t) +Be−iω(r∗+t), (3.1.10)

where the first term corresponds to the outgoing mode, and the second term
is the ingoing mode. Here, we consider the boundary condition at the event
horizon and at infinity:

R(r, ω) ∼ e−iωr∗ ∼ (r − 2M)−2iMω as r → rh, (3.1.11)

and

R(r, ω) ∼ eiωr∗ ∼ eiωrr2iMω as r →∞. (3.1.12)

These boundary conditions mean that there is nothing from the event horizon
and no energy coming from the infinity. Thus, there are only the ingoing
mode at the horizon and outgoing mode at the infinity. Then, the problem
is reduced to finding the ω that satisfies the boundary conditions.

From here we review the method of the continued fraction given by Leaver
[87]. The general solution of (3.1.5) that satisfies the boundary conditions is
given as a power series:

R(r, ω) = (r − 2M)2iMωr−4iMωe−iω(r−2M)

∞∑
n=0

an

(
r − 2M

r

)n
, (3.1.13)

where the convergence for r →∞ of this series is not clear, so we investigate
the coefficients for r → ∞. The coefficient of the series, an, obeys the
recurrence formula:

c0(n, ω)an + c1(n, ω)an−1 + c2(n, ω)an−2 = 0 (3.1.14)

a0 = 1, a−1 = 0, (3.1.15)
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where

c0(n, ω) = n2 + 2iω̃, (3.1.16)

c1(n, ω) = −2n2 − (8iω̃ − 2)n+ 8ω̃2 + 4iω̃ − l(l + 1) + 3, (3.1.17)

c2(n, ω) = n2 + (4iω̃ − 2)n+ 8ω̃2 + 4iω̃ − 3, (3.1.18)

ω̃ = 2ωM. (3.1.19)

We want to calculate the solution that converges at r = ∞, and Gautschi
showed that this kind of solution satisfies the following relation [88]:

an
an−1

=
− c2(n+ 1, ω)

c1(n+ 1, ω)− c0(n+ 1, ω)× c2(n+ 2, ω)

c1(n+ 1, ω)− c0(n+ 1, ω)× c2(n+ 3, ω)

c1(n+ 3, ω)− · · ·

. (3.1.20)

For n = 0, the left-hand side of (3.1.20) becomes infinite, so that the denom-
inator of the right-hand side is zero,

0 = c1(1, ω)− c0(1, ω)
c2(2, ω)

c1(2, ω)− c0(2, ω)
c2(3, ω)

c1(3, ω)− · · ·

. (3.1.21)

This is the equation that gives us the desired quasi-normal frequencies, ω.
Leaver numerically solved it for up to n = 60, where the parameters were
l = 2, 3 and M = 1/2, and showed the asymptotic value (large n)[87]:

ω = 0.15−
(

1

2
n+ 0.2

)
i for l = 2, (3.1.22)

ω = 0.16−
(

1

2
(n− 1) + 0.13

)
i for l = 3. (3.1.23)

From this result, the real parts of the quasi-normal modes seem to approach
a non-zero value for each l, and they are slightly different for l = 2 and
l = 3. However Nollert improved the behavior for large n and showed that
the asymptotic value is independent of l [40]:

ω = 0.0874247− i

2

(
1

2
n+ 0.5

)
+O[(n+ 1)−1/2]. (3.1.24)

In Appendix A we give an explanation of this asymptotic value.
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3.2 Quasi-normal Modes as Heun’s Equation

We introduced the quasi-normal modes in Sec. 3.1 and reviewed the con-
tinued fraction method for the Schwarzschild black hole. In this section,
we extend it to the Kerr-de Sitter black hole and review Heun’s equation
method to calculate the quasi-normal frequencies [89, 90]. We start with
Kerr-de Sitter metric:

ds2 = − ∆r

(1 + α)2ρ2

(
dt− a sin2 θdφ

)2
+

∆θ sin2 θ

(1 + α)2ρ2

[
adt−

(
r2 + a2

)
dφ
]2

+
ρ

∆r

dr2 +
ρ2

∆θ

dθ2,

(3.2.1)

where

α =
Λa2

3
, ρ =2 +a2 cos2 θ, (3.2.2)

∆r = (r2 + a2)

(
1− Λ

3
r2

)
− 2Mr

= −Λ

3
(r − r−)(r − r+)(r − r′−)(r − r′+), (3.2.3)

∆θ = 1 + α cos2 θ. (3.2.4)

The equation∆r = 0 has four roots, and r+ and r′+ correspond to the black
hole horizon and the cosmological horizon, respectively. We consider the
perturbation of a massless field with spin s on Kerr-de Sitter background.
We conside the following separation-of-variables ansatz:

Ψ = e−iωt+imφR(r)S(cos θ). (3.2.5)
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The perturbation equation is reduced to Tuekolsky equations for the angular
and the radial parts [91]:[

d

dx
(1 + αx2)(1− x2)

d

dx
+ λ− s(1− α)− 2αx2

+
(1 + α)2

1 + αx2

(
c2x2 − 2csx− c2

+ 2cm+
4α

1 + α
smx− (m+ sx)2

1− x2

)]
S(x) = 0, (3.2.6)[

∆−sr
d

dr
∆s+1
r

d

dr
+

(1 + α)2K2 − is(1 + α)K∆′r
∆r

+ 4is(1 + α)ωr

− 2α

a2
(s+ 1)(2s+ 1)r2 + 2s(1− α)− λ

]
R(r) = 0, (3.2.7)

where x = cos θ, c = aω, K(r) = ω(r2 + a2)− am, and λ is the separation
constant determined by the condition that S(x) is regular at x = −1 and x =
1. The equation is difficult to solve. However, by performing the following
transformations:

x→ u ≡ (1− i/√α)(x+ 1)

2(x− i/√α)
, (3.2.8)

S(x)→ S(u) ≡ uA1(u− 1)A2(u− ua)A3(u− u∞)ya(u), (3.2.9)

r → z ≡ (r′+ − r−)(r − r+)

(r′+ − r+)(r − r−)
, (3.2.10)

R(r)→ R(z) ≡ zB1(z − 1)B2(z − zr)B3(z − z∞)2s+1yr(z), (3.2.11)

(3.2.6) and (3.2.7) are reduced to Heun’s differential equations:

y′′a(u) +

(
2A1 + 1

u
+

2A2 + 1

u− 1

2A3 + 1

u− ua

)
y′a(u)

+
ρ+ρ−u+ u0

u(u− 1)(u− ua)
ya(u) = 0, (3.2.12)

y′′r (z) +

(
2B1 + s+ 1

z
+

2B2 + s+ 1

z − 1
+

2B3 + s+ 1

z − zr

)
y′r(z)

+
σ+σ−z + v

z(z − 1)(z − zr)
yr(z) = 0, (3.2.13)
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where we have introduced the following parameters:

ua ≡ −
(1− i/√α)2

4i/
√
α

, u∞ ≡
1− i/√α

2
, (3.2.14)

A1 =
m− s

2
, A2 = −m+ s

2
, A3 =

i

2

(
1 + α√
α
c−m√α− is

)
,

(3.2.15)

A∗3 = − i
2

(
1 + α√
α
c−m√α + is

)
, (3.2.16)

ρ+ = 1, ρ− = 1− s− im√α + ic

(√
α +

1√
α

)
, (3.2.17)

u0 = −
[
iλ

4
√
α

+
1

2
+ A1 +

(
m+

1

2

)
(A3 − A∗3)

]
, (3.2.18)

zr =
(r′+ − r−)(r′− − r+)

(r′+ − r+)(r′− − r−)
, z∞ =

r′+ − r−
r′+ − r+

, (3.2.19)

B1 =
i(1 + α)K(r+)

∆′r(r+)
, B2 =

i(1 + α)K(r′+)

∆′r(r
′
+)

, B3 =
i(1 + α)K(r′−)

∆′r(r
′
−)

.

(3.2.20)

The coordinate transformation, (3.2.8) and (3.2.10), maps the boundaries of
Fig .3.2:

x : (−1, 1)→ u : (0, 1), r : (r+, r
′
+)→ z : (0, 1). (3.2.21)

Thus, we consider the quasi-normal modes between 0 and 1. The general
form of Heun’s equation is

y′′(z) +

(
γ

z
+

δ

z − 1
+

ε

z − a

)
y′(z) +

αβz − q
z(z − 1)(z − a)

y(z) = 0, (3.2.22)

and the general solution is derived at each singular point, z = 0, 1, a,∞1. The
solutions we need are those at event horizon r = r+(z = 0) and cosmological
horizon r = r′+(z = 1) for the radial part, and at x = −1(u = 0) and
x = 1(u = 1) for the angular part. The general solutions for z = 0 and z = 1
are found to be:

y(z) =a1H`(a, q;α, β, γ, δ; z)

+ a2z
1−γH` (a, (aδ + ε)(1− γ) + q;α + 1− γ, β + 1− γ, 2− γ, δ; z) ,

(3.2.23)

1The solutions at the singular points can be found at https://dlmf.nist.gov/31.
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y(z) =a3H`(1− a, αβ − q;α, β, δ, γ; 1− z)

+ a4(1− z)1−δH`(1− a, ((1− a)γ + ε)(1− δ) + αβ − q;
α + 1− δ, β + 1− δ, 2− δ, γ; 1− z),

(3.2.24)

where a1, a2, a3, a4 are arbitrary constants, and H`(a, q;α, β, γ, δ; z) is the
local solution of Heun’s equation at z = 0, which can be normalized as:

H`(a, q;α, β, γ, δ; 0) = 1. (3.2.25)

In the following sections, we consider the solutions for the radial and angular
equations.
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Figure 3.2: Schematic picture showing the mapping of the radial coordinates
(3.2.10). In general 4! = 24 choices of mapping, although here we adopt the
mapping shown, especially mapping the boundaries, r = r+, r

′
+ to z = 0, 1.

3.2.1 Radial Part

There are solutions at each point, and the boundary conditions determine
the desired solution. The boundary conditions are the same as (3.1.11) and
(3.1.12), with only the ingoing mode at the event horizon and only outgoing
mode at the cosmological horizon. The solutions at the event horizon are
derived by identifying the parameters:

R1(z) ≡ zB1(z − 1)B2(z − zr)B3(z − z∞)2s+1H`(a, q;α, β, γ, δ; z)

∼ (r − r+)iωr+
2/∆′r(r+), (3.2.26)

R2(z) ≡ zB1(z − 1)B2(z − zr)B3(z − z∞)2s+1

× z1−γH` (a, (aδ + ε)(1− γ) + q;α + 1− γ, β + 1− γ, 2− γ, δ; z)

∼ (r − r+)−s−iωr+
2/∆′r(r+), (3.2.27)
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Chapter 3. Quasi-normal Modes of Black hole

where we take a = 0 for simplicity, and R2(z) satisfies the boundary condi-
tion. The solutions at the cosmological horizon are derived as follows:

R3(z) ≡ zB1(z − 1)B2(z − zr)B3(z − z∞)2s+1

×H`(1− a, αβ − q;α, β, δ, γ; 1− z)

∼ (r′+ − r)iωr
′
+

2/∆′r(r
′
+), (3.2.28)

R4(z) ≡ zB1(z − 1)B2(z − zr)B3(z − z∞)2s+1z1−γ

× (1− z)1−δH`(1− a, ((1− a)γ + ε)(1− δ) + αβ − q;
α + 1− δ, β + 1− δ, 2− δ, γ; 1− z)

∼ (r′+ − r)−s−iωr
′
+

2/∆′r(r
′
+). (3.2.29)

R3(z) satisfies the boundary condition. The radial solution at each boundary
is found as follows:

R(z) ∼
{
R2(z) (z ∼ 0)

R3(z) (z ∼ 1)
(3.2.30)

where these local solutions are valid for a 6= 0. Next, we derive the solution
of the angular part using the same procedure.

3.2.2 Angular Part

The angular Heun’s equation, (5.2.18), also has two solutions at each singular
point, and we need the solutions of u = 0, 1 for the regularity condition. Here,
we identify the parameters as follows:

a = ua, q = −u, α = ρ+, β = ρ−, (3.2.31)

γ = 2A1 + 1, δ = 2A2 + 1, ε = 2A3 + 1. (3.2.32)

Then, the solutions for z = 0 (x = 0) are found as follows:

S1(u) ≡ uA1(u− 1)A2(u− ua)A3(u− u∞)H`(a, q;α, β, γ, δ;u)

∼ (1 + x)(m−s)/2, (3.2.33)

S2(u) ≡ uA1(u− 1)A2(u− ua)A3(u− u∞)

× u1−γH` (a, (aδ + ε)(1− γ) + q;α + 1− γ, β + 1− γ, 2− γ, δ;u)

∼ (1 + x)−(m−s)/2, (3.2.34)
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we need to distinguish by the value of s,m. For s < m, S1(u), and for m < s,
S2(u) is preferable. The solutions for z = 1 (x = −1) are found as follows:

S3(u) ≡ uA1(u− 1)A2(u− ua)A3(u− u∞)H`(1− a, αβ − q;α, β, δ, γ; 1− u)

∼ (1− x)−(m+s)/2, (3.2.35)

S4(z) ≡ uA1(u− 1)A2(u− ua)A3(u− u∞)

× (1− u)1−δH`(1− a, ((1− a)γ + ε)(1− δ) + αβ − q;
α + 1− δ, β + 1− δ, 2− δ, γ; 1− u)

∼ (1− x)(m+s)/2, (3.2.36)

For s+m < 0, S3(u), and 0 < m+ s, S2(u) is preferable. Then, the angular
solutions are derived as follows:

S(u) ∼


S1(u) (z ∼ 0, s < m)

S2(u) (z ∼ 0,m < s)

S3(u) (z ∼ 1, 0 < s+m)

S4(u) (z ∼ 1, s+m < 0)

(3.2.37)

The solutions around the boundaries are derived, and the perturbation prob-
lem is reduced to finding the quasi-normal frequency, ω, and separation con-
stant, λ, while simultaneously ensuring that the solutions around the bound-
ary are linearly dependent. In the next section we calculate the quasi-normal
modes of Schwarzschild-de Sitter black hole as a simple example.

3.3 Quasi-normal Modes for Schwarzschild dS

In this section, we numerically calculate the quasi-normal modes for Schwartzschild-
de Sitter using the Mathematica function “HeunG[a, q, α, β, γ, δ, z]”2 and
finding quasi-normal frequency ω. The Schwarzschild metric is obtained from
the Kerr metric by setting the rotation parameter a = 0. In this case, the
angular equation become trivial, and the separation constant, λ, is derived
analytically:

λ = l(l + 1)− s(s+ 1). (3.3.1)

2The specifications of this function are found at https://reference.wolfram.com/langu
age/ref/HeunG.html
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Chapter 3. Quasi-normal Modes of Black hole

The boundary condition is used to derive the radial solutions, (3.2.30). How-
ever, these solutions are only regular either around z = 0 or z = 1. We
want to obtain the ω with which the solution is regular around both singular
points. This condition is reduced to a linear dependence problem, which is
addressed by the Wronskian of two solutions. The Wronskian tells us the
linear dependence of the functions, and in this case it is written as follows:

W [R2(z), R3(z)]z=1/2 = R2R
′
3 −R′2R3 = 0, (3.3.2)

where we choose the evaluation point as the midpoint between the two singu-
larities. See Fig. 3.3. Fig. 3.4 shows a contour plot of log10 |W [R2(z), R3(z)]|,
where the zeros of Wronskian correspond to the quasi-normal modes, and
there are some number of singular points are lined. Then, we use the func-
tion FindRoot to identify the location of the quasi-normal modes. The upper
part of Fig. 3.5 shows a plot of the first forty quasi-normal modes, and the
lower part shows a contour plot and identifies the quasi-normal modes. It can
be seen that the points in Fig. 3.5 correspond to the quasi-normal modes and
match the pole in Fig. 3.4. We list the first four quasi-normal frequencies
in Table 3.1, and these values agree with the results derived using the WKB
approximation and approximation by the Pöshl-Teller potential [1].
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Figure 3.3: Diagram of the overlap of the convergence area. The solutions
are regular near the singularities, and we assume that the midpoint of the
two singularities (z = 1/2) is a suitable point to consider the Wronskian.
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n Re(ω) Im(ω)

0 0.3383914276 −0.08175644548
1 0.3187586680 −0.2491966309
2 0.2827321809 −0.4294841197
3 0.2405415091 −0.6281919186

Table 3.1: First four quasi-normal modes. These values for n = 0, 1 agree
with those derived in a previous study using the WKB approximation and
approximation by the Pöshl-Teller potential [1].
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Figure 3.4: Contour plot of log10W [R2(z), R3(z)]z=1/2. Solutions that sat-
isfy the boundary conditions are given, (3.2.30), and we want the ω where
the two solutions are linearly dependent. This condition corresponds to
W [R2(z), R3(z)] = 0 at z = 1/2 (see Fig. 3.3). Thus, the singular points
of this figure corresponds to the desired quasi-normal frequencies. Although
this plot does not show the exact location of the singular points, the rough
location is useful for using the function FindRoot.
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Figure 3.5: Plot of the identified quasi-normal frequencies using the function
FindRoot. Overlaying this on the contour plot of Fig. 3.4 confirms that
the poles of the contour plot match the numerically calculated quasi-normal
frequencies.
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Chapter 4

Catalytic Effect in Five
Dimensions

In Sec. 2.6.1, we reviewed a bubble universe setup in which a bubble is
nucleated in AdS5 spacetime with a black hole and a cloud of strings, and
the radiation and the matter energy densities were determined for the bubble
spacetime. The study that proposed this setup [25] did not consider the
catalytic effects of the black hole and the cloud of strings. In Sec. 2.5, we
reviewed that the presence of a black hole enhances the decay rate of the
vacuum decay. In this chapter we examine the catalytic effect in AdS5.

4.1 Schwartzschild BH and Cloud of Strings

In this section, we will discuss the catalytic effect of a static black hole and
a cloud of strings in AdS5 [61]. The metric is (2.6.14), and the Euclidean
bubble equation of motion for this condition is derived by substituting the
metric into the following:

Veff(R̃) = −
(
dR̃

dλ̃

)2

= −1 + R̃2 +
k1 + 2k2

R̃2
+
k2

2

R̃6
+
k3 + 2k4

R̃
+
k2

4

R̃4
+

2k2k4

R̃5
,

(4.1.1)
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where we have introduced the following parameters,

k1 =
8G5

3π

(
α

γ

)2(
M− + (1− α)

M+ −M−
2σ̄γ

)
, k2 =

8G5

3π

(
α

γ

)3
M+ −M−

4σ̄
(4.1.2)

k3 =
2

3

(
α

γ

)(
a− +

(a+ − a−)(1− α)

2σ̄γ

)
, k4 =

a+ − a−
6σ̄

(
α

γ

)2

(4.1.3)

l2 =
6

Λ+ − Λ−
, γ =

4σ̄l2

1 + 4σ̄2l2
, α2 = 1 +

3Λ−γ
2

3
. (4.1.4)

Fig. 4.1 shows a plot of the effective potential, which can be used to derive
the period of the bounce solution. The bounce action formula (2.4.38) is
modified to consider five dimensions:

SE =
1

16πG5

∫
W
dx4√γ

((
2f+

R
− f ′+

)
τ̇+ −

(
2f−
R
− f ′−

)
τ̇−

)
−
∑
i

Ai
4G5

.

(4.1.5)

Remembering the bounce action formula, (2.4.41), and substituting the met-
ric into (4.1.5), we obtain the bounce action:

B =
π

4G5

∫
W
dλ
[ (
R2 − 4G5M+ − a+R

)
τ̇+ −

(
R2 − 4G5M− − a−R

)
τ̇−

]
+

π2

2G5

(
r3
h+
− r3

h−
)
. (4.1.6)

Before evaluating the bounce action, we fix the difference between the true
and false vacuum energy, l+/l− = 0.6. In this case, this combination is
derived from (2.6.25):

σ̄critl =
1

2

√
l+ − l−
l+ + l−

= 0.25. (4.1.7)

Our universe is observationally de Sitter [14, 15] and has a very small cosmo-
logical constant. Thus, σ̄l is close to the critical value that corresponds to an
observationally supported universe. In Figs. 4.2, 4.3, and 4.4, we numerically
calculate the bounce action and show that a black hole and a cloud of strings
also enhance the vacuum decay in AdS5, where each plot has a minimum
value when the bounce solution becomes stationary.
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Figure 4.1: Plot of the effective potential for the various values of the two
parameters: the black hole mass M̃+ and the tension of the cloud of strings
ã+. The other parameters are set to 4πG5σl/3 = 0.2, l−/l+ = 0.6. We can
construct an oscillating bounce solution based on the potential shape.

4.2 Catalysis of Quintessence in Five Dimen-

sions

The quintessence is the time varying scalar field that was first considered as
a candidate for dark energy in a 4D universe. Here, we quickly review the
4D case and then consider a 5D case. With a scalar field φ in a 4D FLRW
spacetime, whose potential is given by V (φ), the equation of state is derived
as follows:

w =
φ̇2/2− V (φ)

φ̇2/2 + V (φ)
. (4.2.1)

Equation of state parameter w can vary with the time evolution, and the
potential determines how it will change. Models for quintessence can be
divided into two major categories: freezing and thawing models. In a freezing
model, the field first moves quickly and then slows down. In such a case, w
changes from 0 to −1. On the other hand, in a thawing model, the field
stays calm at first and then at some time it starts to move quickly. In this
case, w starts at −1 and then changes to 0. If the quintessence contributes
to the dark energy, w must be very close to −1, which is realized for the late
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Figure 4.2: Plot of bounce action in the presence of a black hole and a
cloud of strings for η = 0.2 ∼ 0.245 with the black hole mass fixed M̃+ =
8G5M+/3πl

2 = 0.04. The smallest action is derived as η approaches ηcrit =
0.25.

time of the freezing model and the first time of thawing model. We do not
explain the details of the quintessence because the various applications and
derivations are provided by review papers [92, 93]. Instead, we extend this
quintessence to five dimensions.

The solution for the quintessence with a black hole was first studied by
Kiselev [94] and extended to five dimensions by [95, 96]. The solution for the
quintessence and cosmological constant in five dimensions is given by:

ds2 = −f(r)2dt2 +
dr2

f(r)2
+ r2dΩ2

3, (4.2.2)

f(r) = 1− Λr2

6
− α

r4w+2
, (4.2.3)

where α is a normalization parameter related to the energy density of
quintessence,

ρ = − 3αw

r4(w + 1)
. (4.2.4)

We consider the decay from Minkowski to AdS5 spacetime. For this case, the
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ã+

Figure 4.3: Plot of bounce the action in the presence of a black hole and
cloud of strings. We fixed η = 0.22 and varied the black hole mass, M̃+ =
0.01 ∼ 0.1. The minimum value of each bounce action decreases with the
black hole mass.

metric is as follows:

f+(r̃) = 1− q+

r̃4w+2
, f−(r̃) = 1−

(
γ

l−α

)2

− q−
r̃4w+2

, (4.2.5)

where the parameters are defined in (4.1.4). In addition to these, we also
define the following quintessence parameter:

Q
(w)
± = q±

(
α

γ

)(4w+2)

. (4.2.6)

Then, the equation of motion of the bubble is derived:

˙̃R2 = 1− R̃2 −
(
q̄ +

∆q

8η2

)
1

R̃4w+2
−
(

(1 + η2)α∆q

16η2

)2
1

R̃8w+6
, (4.2.7)

and we numerically calculate the bounce action for some values of the equa-
tion of state parameter w. Fig. 4.5 and Fig. 4.6 show plots of the bounce
action, and it can be seen that the quintessence also produces catalysis. in
this thesis we do not focus on the relation with the bubble universe, although
in [62] we discussed the realization of the inflation and cosmological constant
in the quintessence scenario in five dimensions.
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Figure 4.4: Plot of the bounce action in the presence of a black hole and a
cloud of strings as afunction of the black hole mass M+, where η = 0.22, 0.23,
ã+ = 0.1, 0.2.

4.3 Catalysis Effect of Kerr-AdS5

A black hole can have angular momentum and generally be rotating. The
catalysis effects of rotating black holes in four and three dimensions were
discussed in [55, 57, 56], but the rotating effect in AdS5 is unknown. There are
two orthogonal axes of rotation for a rotating black hole in five dimensions.
Because it is difficult to construct a junction surface for the two-axis case,
we assume that the values of angular momentum are the same for both axes
and consider the so called “Myers-Perry black hole” [97]. This black hole
was extended to the case with the cosmological constant [98, 99], and the
rotating junction surface was introduced in [100, 101]. This thesis uses this
construction and discusses the catalytic effect of a rotating black hole in five
dimensions [63]. In particular, this section sets 5D Newton constant G5 = 1.

4.3.1 Formalism

The line element of Kerr-AdS5 spacetime with the cosmological constant
Λ = −6l2 is expressed by the coordinates of xµ = (t, r, θ, ψ, φ) [99]:

ds2 = −f(r)2dt2 + g(r)2dr2 + r2ĝabdx
adxb

+ h(r)2
[
dψ + Aadx

a − Ω(r)dt
]2
, (4.3.1)
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Figure 4.5: Plot of the bounce action in the presence of quintessence of the
freezing model. The plot shows w = 0,−0.01, 0.1, 0.3 and η = 0.15, 0.2, 0.25,
where the horizontal axis corresponds to quintessence parameter Q

(w)
+ .

where

Aadx
a ≡ 1

2
cos θdφ, g(r)2 ≡

(
1 +

r2

l2
− 2MΞ

r2
+

2Ma2

r4

)−1

, (4.3.2)

h(r)2 ≡ r2

(
1 +

2Ma2

r4

)
, Ω(r) ≡ 2Ma

r2h(r)2
, f(r) ≡ r

g(r)h(r)
(4.3.3)

Ξ ≡ 1− a2

l2
, ĝabdx

adxb ≡ 1

4
(dθ2 + sin2 θdφ2). (4.3.4)

We then use the similar manner as in Sec.2.4.1, and set a junction surface Σ
as:

Σ = {xµ : t = T (λ), r = R(λ)}, (4.3.5)

where this surface separates two different AdS vacua, the false (Λ+ = −6l2+)
and true (Λ− = −6l2−) vacua. Then, we transform the coordinates to a
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Figure 4.6: Plot of the bounce action in the presence of quintessence of thaw-
ing model. The plot shows w = −0.6,−0.7,−0.8,−0.9 and η = 0.15, 0.2, 0.25,
where the horizontal axis corresponds to quintessence parameter Q

(w)
+ .

co-moving frame:

dψ → dψ′ + Ω±(R(t))dt, (4.3.6)

dt→ dT

dτ
dτ, (4.3.7)

dr → dR

dτ
dτ, (4.3.8)

then the metric (4.3.1) also changes:

ds2
± =− f±(r)2dt2 + g±(r)2dr2 + r2ĝabdx

adxb

+ h±(r)2
[
dψ + Aadx

a + (Ω±(R)− Ω±(r)) dt
]2
. (4.3.9)
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The induced metric for this metric on the junction surface is:

ds2
± = γ±ijdy

idyj = −
[
f 2
±

(
dT

dλ

)2

− g2
±

(
dR

dλ

)2
]
dλ2

+ r2ĝabdx
adxb + h2

± [dψ + Aadx
a]2 . (4.3.10)

Then, the first Israel junction condition (2.4.7) is used to derive the following
conditions:

f 2
±Ṫ±

2 − g2
±Ṙ

2 = 1, (4.3.11)

M+a
2
+ = M−a

2
− ≡Ma2, (4.3.12)

where the dot denotes the derivative with respect to the proper time on the
junction surface, λ. Formula (4.3.12) implies that the black hole must not
vanish after the vacuum decay (false vacuum). This is different from the
Schwartzschild black hole case. The extrinsic curvature is given as:

Kµν = (gµν − nµnσ) ∆σnν , (4.3.13)

where nµ is the unit normal vector to Σ,

n± = f±(r)g±(r)
(
−Ṙdt± + Ṫ±dr±

)
. (4.3.14)

The induced extrinsic curvature is obtained using a tangent vector to Σ
(eµi = dxµ/dyi):

Kij = eµi e
ν
jKµν . (4.3.15)

For the spherically symmetric 4D and 5D cases, we assumed that the reduced
energy momentum tensor Sij was uniform, but now we consider a junction
surface that is deformed from a spherical shape. Hence, the surface should
be expressed as an imperfect fluid with anisotropic and intrinsic momentum:

Sij = (σ + P )uiuj + Pqij + 2ϕu(iξj) + ∆PR2ĝij, (4.3.16)

where ξ = h−1(R)∂ψ, and ui is the unit tangent vector on Σ:

uµ = ṫ
∂xµ

∂t
+ ṙ

∂xµ

∂r
, uµuµ = −1. (4.3.17)
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Then, the second junction condition for this imperfect fluid is derived [100,
101, 102]:

σ = −(β+ − β−)(R2h)′

8πR3
, (4.3.18)

P =
h

8πR3
[R2(β+ − β−)]′, (4.3.19)

ϕ =
(Ω′+ − Ω′−)h2

16πR
, (4.3.20)

∆P =
(β+ − β−)

8π

[
h

R

]′
, (4.3.21)

where the prime denotes the derivative with R and

β± ≡ f 2
±Ṫ± = ε±f±(R)

√
1 + g2

±Ṙ
2. (4.3.22)

Here, ε± represent a sign ambiguity of Ṫ±, which corresponds to the bubble
wall orientation, and from (4.3.22) the sign of β tells us the orientation. We
expect the bubble to expand both inside and outside after the nucleation,
and this situation corresponds to the sign of Ṫ± being positive (ε± = +1)
at both sides, so we impose this sign. We assume the following equation of
state:

P = wσ, (4.3.23)

then we combine (4.3.18) and (4.3.19) to obtain the following formula:

[R2(β+ − β−)]′

R2(β+ − β−)
= −w [R2h]′

R2h
. (4.3.24)

Integrating this gives an equation that describes the bubble dynamics:

β+ − β− = − m
1+3w/2
0

R2(1+w)hw(R)
≡ −A(R), (4.3.25)

where m0 is an integration constant with the dimension of the mass. Then,
we obtain the equation of motion of the bubble:

Ṙ2 + V eff = 0, (4.3.26)

Veff =
1

g2
−

[
1−

(−f 2
+ + f 2

− + A2

2Af−

)2
]
. (4.3.27)
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From here, we assume that w = −1, in this assumption the equation of state
(4.3.23) satisfies the relation P = −σ. Then, we substitute the metrics and
equation (4.3.25) into the effective potential, and organizing the terms, we
obtain a Friedmann-like equation, (2.6.22), for the rotating junction surface:(

Ṙ

R

)2

+R−2 =− 1

4

(
−(l2+ −m0)2

l4+m0

− m0

l4−
+

2

l2−
+

2m0

l2−l
2
+

)
−M−a2

−
(
− 1

a2
−
− 1

a2
+

+
1

l2−
+

1

l2+
− 1

m0

)
R−4

− 2Ma2R−6 +
(Ma2)2

m0

R−8 +
(a2
− − a2

+)2M2
−m0

a2
+(2Ma2 +R4)2

− (a− − a+)(a− + a+)(l− − l+)(l− + l+)M−m0

a2
+l

2
−l

2
+(2Ma2 +R4)

. (4.3.28)

Note that this equation is an exact expression, unlike (2.6.22), which is an
expression of the large R approximation. As an example, Fig. 4.7 shows a
plot of the effective potential.
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Figure 4.7: Plot of the effective potential, (4.3.28), for several values of pa-
rameters. The parameters are set to M+ = 1, a+ = 0.6, l+ = 7, l= =
4, m0 = 500, and w = −1. Because of the junction condition (4.3.12), there
is always a remnant black hole, and we changed this remnant black hole mass
M− = 2, 7, 15
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4.3.2 Euclidean Action

We evaluate the Euclidean formalism and show the results. From (2.3.2), the
catalysis of the vacuum decay is estimated by the bounce action:

Γ = Ae−B, B = SE(φ)− SE(φfv), (4.3.29)

where the bounce action is derived from the Euclidean on-shell action. We
here perform the coordinate change:

t→ −itE, λ→ −iλE, (4.3.30)

which changes the sign of the potential, (4.3.26),

Ṙ2 − V eff = 0. (4.3.31)

Then, we calculate the bounce action similar way of Sec.2.4.2. The Euclidean
action can be divided into four parts: those around the BH horizon (SH),
inside the bubble (SM−), outside the bubble (SM+), and the wall itself (SW).

SE = SH + SM− + SM+ + SW (4.3.32)

SH = − 1

16πG

∫
M
dx5√gER +

1

8πG

∫
∂H
d4x
√
gEKE (4.3.33)

SM± = − 1

16πG

∫
M
dx5√gER +

1

8πG

∫
∂H
d4x
√
qEKE± −

∫
M±

dx5√gELm
(4.3.34)

SW = −
∫
W
dx5√gELm ≈

∫
W
dx4√gEσ (4.3.35)

where we asuumed the action of the wall Lagrangian is expressed as one
parameter σ. The action around the horizon can be expressed as the area of
the horizon [103]:

SH = − A
4G

= −π
2r+(r2

+ + a2)

2G(1− a2/l2)
. (4.3.36)

This formula also matches the entropy of the black hole [98]. Here, we
define n and u as the normal vectors on the wall and a constant tE surface,
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respectively:

n±µ = ±f(r)g(r)

(
−dRE

dτE
,
dTE
dτE

, 0, 0, 0

)
(4.3.37)

u±µ = (f±, 0, 0, 0, 0) (4.3.38)

u±µ = gµνu±ν =

(
1

f±
, 0, 0,− iΩ

f±
, 0

)
. (4.3.39)

Note that uµuµ = 1 for Euclidean spacetime. Then, using the ADM formal-
ism, we decompose the action and organize the terms. The action of the bulk
part is obtained as follows:

SM± =
1

8πG

∫
∂H
d4x
√
qEK̃E± +

1

8πG

∫
∂H
d4x
√
qEκ±, (4.3.40)

κ± = n±µu
ν
±u

µ
±;ν . (4.3.41)

Here, κ is the surface term, which is given as:

κ± = n±1u
0
±
(
u0
±Γ1
±00 + u3

±Γ1
±30

)
+ n±1u

3
±
(
u0
±Γ1
±30 + u3

±Γ1
±33

)
(4.3.42)

= ∓ ṪEf
′
±

g±
= ∓ f ′±

f±g±

√
1 + g2

±Veff. (4.3.43)

The Christoffel symbols are given:

Γ1
±00 =

f 3
±

g2
±r

(−4a2
±M

2
±g

3
±

r7
(rh′ + 2h) + hg′± +

g±
r

(rh′ − h)

)
(4.3.44)

Γ1
±30 =

2ia±M±
r3g2
±

, Γ1
±33 = −hh

′

g2
±
. (4.3.45)

Next, we take the trace of Sij:

S = Sijq
ij = −4σ + 2∆P =

3(β+ − β−)

4πG

(
h

R2
+
h′

R

)
(4.3.46)
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where we use the relations (4.3.18) and (4.3.21). Combining these formulas,
finaly we obtain the Euclidean action as:

S
(f)
E = −A−

4
+

1

8π

∫
W
dx4√qE(KE+ −KE−)

+

∫
W
dx4√qEσ +

1

8π

∫
W
dx4√qE(κ+ + κ−), (4.3.47)

= −A−
4

+

∫
W
dx4√qE

(
−1

3
σ +

2

3
∆P

)
+

1

8π

∫
W
dx4√qE(κ+ + κ−),

(4.3.48)

=

∫
dλE

∫
d3x

√
qE

8π

{(
h′f+

R
− f ′

f±g±

)√
1 + Veffg2

+ − (+↔ −)

}
− A−

4
(4.3.49)

=

∫
dλE

∫
d3x

√
qE

8π

{
h′f+ − hf ′

R

√
1 + Veffg2

+ − (+↔ −)

}
− A−

4
.

(4.3.50)

The bounce action is derived:

B = SE(φ)− SE(φfv) (4.3.51)

=
A+ −A−

4
+

∫
dλE

∫
d3x

√
qE

8π

{
h′f+ − hf ′

R

√
1 + Veffg2

+ − (+↔ −)

}
,

(4.3.52)

where SE(φfv) = −A+/4.

4.3.3 Numerical Estimation of Bounce Action

In this section, we numerically evaluate the bounce action derived in the
previous section. In the catalysis of Kerr-AdS5, there are some parameters
we need to fix: m0, M±, a±, and l±. As for several values of parameters, we
here set m0 = 500, l+ = 7, l− = 4. Fig. 4.8 shows a plot of the effective
potential, where the same type of bounce solution as shown in Fig. 2.9 is
obtained. In addition, we studied the allowed parameter range for stationary
solutions and show this range in Fig. 4.9. This parameter restriction is
based on the condition that the black hole before and after the decay must
be regular. From this figure, the constraints from before and after the decay
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are close to each other as the seed black hole mass becomes large, and the
constraint from the remnant black hole (before the decay) is always strong.
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Figure 4.8: Plot of effective Euclidean potential, (4.3.31), for example param-
eters. The parameters are set to M− = 14.04, a+ = 1, l+ = 7, l= = 4, m0 =
500, where (a) shows an oscillating solution, (b) shows a stationary solution,
and (c) does not show a bounce solution. The mass parameter of the false
vacuum differs and is set to (a)M+ = 1 (b)M+ = 10, and (c)M+ = 19.5.

Then, we numerically evaluate the bounce action for the allowed parame-
ters. In Fig. 4.10, we compare the non-stationary and stationary cases. The
marker at each plot corresponds to the stationary solutions, and dashed line
is the non-stationary bounce action. We found that when we fixed the seed
black hole mass the stationary solution gave the minimum bounce action,
and this means that the stationary bounce solution has the largest decay
rate. Fig. 4.11 show the ratio of bounce action with the non-rotating black
hole. From this figure, the bounce action is slightly decrease by the rotation,
though the action increase for the large spin parameters. Small rotation do
not change the decay rate so much, but the large rotation surpress the decay.
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Figure 4.9: Plot of allowed range of the parameters (M+, a+) from the
constraint that there is no naked singularity. The area below the red solid
line indicates the constraint of the false vacuum (seed) black hole, while
that below the black dashed line indicates the constraint of the true vacuum
(remnant) black hole.

Let us consider the stationary bounce action, and the stationary bounce
action is derived as follows:

e−B = eA+−A−/4 = e−∆SBH , (4.3.53)

where ∆SBH = (A+−A−)/4 is the entropy difference for the black hole before
and after the decay. In the general vacuum decay case, the entropy difference
∆SBH is always positive, and the Bekenstein-Hawking entropy decreases af-
ter the vacuum decay (see the results in Sec.2.5 and Sec.4.1). However, we
found that the entropy difference for the decay induced by a black hole with
a large spin could be positive (Fig. 4.12). Naively, this case corresponds
to e−B � 1, and our Euclidean method seems invalid because of the break-
down of the semi-classical approximation. Contrary to this, there is another
understanding of these results from the viewpoint of thermodynamics. The
positive entropy difference, 0 < ∆SBH = (A+−A−)/4, suggests that the en-
tropy increases after the decay, and from the second law of thermodynamics,
this entropy increase process is seen just a thermal phase transition and can
be regard as a physical process.

67



Chapter 4. Catalytic Effect in Five Dimensions

10.85 10.90 10.95 11.00 11.05 11.10 11.15 11.20
8.2

8.4

8.6

8.8

9.0

M-

B

a+=0.15

a+=0.3

a+=0.45

a+=0.6

a+=0.65

10.3 10.4 10.5 10.6 10.7 10.8 10.9
0

2

4

6

8

M-

B

a+=1.05

a+=1.2

a+=1.35

a+=1.5

Figure 4.10: Plot of the bounce action for stationary (markers) and non-
stationary (dashed lines) solutions. We varied spin parameter a+ from a+ =
0.15 to a+ = 1.5. The non-stationary solution was constructed by shifting
remnant mass M− from a critical value using parameter δ ≡ M−/M

crit
− . We

evaluate for 10−13 ≤ δ ≤ 0.02, where δ = 0.02 is the maximum difference
because 0.02 . δ alters the orientation of the bubble wall and breaks our
scenario.
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Figure 4.11: Plot of the ratio of bounce action with the non-rotationg case.
The parameters are set to m0 = 500, l+ = 7, l− = 4 and varied M+ =
0.3, 0.5, 0.8.

Figure 4.12: Contour plot of the bounce action for stationary solutions using
the parameters allowed by the regularity conditions. The area surrounded
by the blue solid line indicates that the bounce action is negative.
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Chapter 5

Quasi-normal Modes of
Kerr-AdS5

This chapter first briefly reviews the superradiant instability, which cause
the classical instability of rotating black holes. Then, the subsequent sections
focus on the quasi-normal modes of a Kerr-AdS5 black hole. We adopt Heun’s
equation method to identify the quasi-normal modes and show that there
are two types of quasi-normal modes [39]. Then, we discuss the spacetime
instability due to the superradiance and thermal properties of the quasi-
normal modes. Finally, we discuss the competition between the unstable
quasi-normal modes and catalytic effect of the vacuum decay.

5.1 Superradiant Instability

The waves scattered by a Kerr black hole extract the energy from the black
hole, and the energy increases after the scattering. This phenomenon is
known as superradiant scattering [29, 30, 31, 32]. This amplified scattering
occurs when the incident wave e−ωt+imφ, and angular velocity of the Kerr
black hole Ω satisfy the following relation:

ω < mΩ. (5.1.1)

Press and Tuekolsky suggested that if the Kerr black hole was surrounded by
mirrors that reflected the wave, the incident wave would be amplified by the
black hole, reflected by the mirrors, return to the black hole, be amplified
again, reflected again, and so on. This repetition would continue until the
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mirror was destroyed by the radiation pressure of the amplified wave [104].
This phenomena is so-called “black hole bomb” and was studied in detail
by [105]. In the first suggestion, the mirrors was put by hands. However,
Damour et al. showed that this situation could be realized using a charged
massive scalar field for the charged and rotating Kerr-Newman black hole case
[106]. In this case, there is a local minimum in the effective potential, and
the scalar field is trapped in this minimum and can be regard as a mirror.
The relations among the instability, the scalar field mass and charge have
been studied [107, 108, 109]. On the other hand, AdS spacetime itself can be
regarded as a box, whose boundary can be seen as a mirror. This is explained
by considering the Regge-Wheeler potential (3.1.6) for AdS spacetime. The
metric for Schwarzschild-AdS spacetime is given by:

ds2 = f(r)dt2 − dr2

f(r)
− r2(dθ2 + sin2 θdφ2), (5.1.2)

f(r) = 1− 2M

r
− r2, (5.1.3)

where we set the AdS radius equals to one. Then, the Regge-Wheeler equa-
tion and its potential for the scaler perturbation are obtained: [110, 111],(

− d2

dr2
∗

+ V (r)

)
R(r, ω) = ω2R(r, ω), (5.1.4)

V (r) =

(
1− 2M

r
+ r2

)(
l(l + 1)

r2
− 2M

r3
+ 2

)
, (5.1.5)

where r∗ is the tortoise coordinate, which is defined as:

∂r

∂r∗
= f(r). (5.1.6)

Fig. 5.1 shows a plot of the potential V (r∗). This figure shows the potential
barrier around the horizon and at infinity. This is the difference when we
plot the potential for the gravitational perturbation for Schwartzschild black
hole case, Fig. 3.1. Thus, the AdS spacetime is thought to be a box, and the
region between two potential barriers acts as a kind of cavity, in which the
situation of surrounding a black hole by reflectiong mirrors can be realized
by placing the black hole there. Naively, AdS spacetime with a Kerr black
hole is unstable as a result of the superradiance. The instability of a small

72



Chapter 5. Quasi-normal Modes of Kerr-AdS5

Kerr-AdS4 was confirmed by [33]. However, the black hole also acts like an
absorber because only ingoing modes at the event horizon, and it is proposed
that spacetime is stable for a large black hole[112, 113, 114, 115]. In the
following sections, we discuss the quasi-normal modes of a Kerr-AdS5 black
hole, along with the instability caused by superradiance. The instability was
investigated using Painlevé transcendents, but the parameters were restricted
to special cases such as those with nearly equal spins, a near extremal or small
black hole [34, 35, 36, 37, 38].

-1.5 -1.0 -0.5 0.0

10

100

1000

104

r*

V
(r

*
)

Figure 5.1: Plot of the Regge-Wheeler potential of scalar perturbation for the
Schwarzschild-AdS black hole. The parameters are set to M = 10−2andl = 0.
There are the potential barriers near the horizon and the infinity can be seen,
and this structure is considered to be a black hole in a box.

5.2 Setups

In this section, we consider the perturbations of a scalar field, and apply
the Heun’s equation method we reviewed in Sec. 3.2. Let us start with the
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Kerr-AdS5 metric:

ds2 = −∆r

ρ2

(
dt− a1 sin2 θ

1− a2
1

dφ− a2 cos2 θ

1− a2
2

dψ

)2

+
∆θ sin2 θ

ρ2

(
a1dt−

r2 + a2
1

1− a2
1

dφ

)2

+
1 + r2

r2ρ2

(
a1a2dt−

a2(r2 + a2
1) sin2 θ

1− a2
1

dφ− a1(r2 + a2
2) cos2 θ

1− a2
2

dψ

)2

+
∆θ cos2 θ

ρ2

(
a2dt−

r2 + a2
2

1− a2
2

dψ

)2

+
ρ2

∆r

dr2 +
ρ2

∆θ

dθ2,

(5.2.1)

where the AdS curvature radius is set to one, and M is the mass parameter
of the Kerr-AdS5 black hole. Because the 5D rotating black hole has two
independent rotation axes, a1 and a2 are the spin parameters for the two
rotations of the Kerr-AdS5 black hole. In addition, the following parameters
are defined:

∆r ≡
1

r2
(r2 + a2

1)(r2 + a2
2)(1 + r2)− 2M (5.2.2)

=
1

r2
(r2 − r2

0)(r2 − r2
+)(r2 − r2

+), (5.2.3)

∆θ ≡ 1− a2
1 cos2 θ − a2

2 sin2 θ, (5.2.4)

ρ2 ≡ r2 + a2
1 cos2 θ + a2

2 sin2 θ. (5.2.5)

Here, r+, r−, r0 are the roots of the equation ∆r = 0 ; r+ and r− are the
real roots and correspond to the outer and inner horizon radii, respectively;
and r0 is the imaginary root. Based on the thermodynamics of Kerr-AdS5

spacetime, the Arnowitt-Deser-Misner (ADM) mass and angular momentum
are given by: [116, 117, 118]

M≡ πM(2Ξ1 + 2Ξ2 − Ξ1Ξ2)

4Ξ2
1Ξ2

2

, Jφ ≡
πMa1

2Ξ2
1Ξ2

, Jψ ≡
πMa2

2Ξ1Ξ2
2

, (5.2.6)

where Ξi ≡ 1 − a2
i (i = 1, 2). From these formulas, the spin parameters,

a1, a2, are restricted to a1, a2 ≤ 1, in order for all the physical quantities in
(5.2.6) to be well defined. Then, we consider the instability of a scalar field
with mass µ and compute the quasi-normal modes of the Kerr-AdS5 black
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hole. In this case, the Klein-Gordon equation with scalar field Φ(t, r, θ, φ, ψ)
is: [

∇µ∇µ − µ2
]

Φ = 0. (5.2.7)

Assuming the ansatz, Ψ = e−iωt+im1φ+im2ψS(θ)R(r), the equation is decom-
posed into the following radial and angular equations:

1

r

d

dr

(
r∆r

dR(r)

dr

)
−
[
λ+ µ2r2 +

1

r2

(
a1a2ω − a2(1− a2

1)m1 − a1(1− a2
2)m2

)2
]
R(r)

+
(r2 + a2

1)2(r2 + a2
2)2

r4∆r

(
ω − m1a1(1− a2

1)

r2 + a2
1

− m2a2(1− a2
2)

r2 + a2
2

)2

R(r) = 0,

(5.2.8)

1

sin θ cos θ

d

dθ

(
sin θ cos θ∆θ

dS(θ)

dθ

)
−
[
−λ+ ω2 +

(1− a2
1)m2

1

sin2 θ
+

(1− a2
2)m2

2

cos2 θ

−(1− a2
1)(1− a2

2)

∆θ

(ω +m1a1 +m2a2)2 + µ2(a2
1 cos2 θ + a2

2 sin2 θ)

]
S(θ) = 0,

(5.2.9)

where λ is the separation constant, which is determined by the regularity
condition, S(θ), at θ = 0 and θ = π/2 [119]. Then we perform the following
transformations like we did at (3.2.8)-(3.2.11):

r → z ≡ r2 − r2
−

r2 − r2
0

, (5.2.10)

R(r)→ R(z) ≡ z−θ−/2(z − z0)−θ+/2(z − 1)∆/2Π(z), (5.2.11)

sin2 θ → u ≡ sin2 θ

sin2 θ − χ0

, with χ0 ≡
1− a2

1

a2
2 − a2

1

, (5.2.12)

S(θ)→ S(u) ≡ um1/2(u− 1)∆/2(u− u0)m2/2Θ(u), (5.2.13)

where

z0 ≡
r2

+ − r2
−

r2
+ − r2

0

, u0 ≡
a2

2 − a2
1

a2
2 − 1

, ∆ ≡ 2 +
√

4 + µ2. (5.2.14)

75



Chapter 5. Quasi-normal Modes of Kerr-AdS5

Under these transformations, the boundaries are mapped to:

r : (r+,∞)→ z : (z0, 1), (5.2.15)

θ : (0,
π

2
)→ u : (0, 1). (5.2.16)

Note that for these transformations, black hole horizon r+ is mapped to z0,
which is different from the mapping at (3.2.21). Then, the radial and angular
equations are reduced to the Heun’s differential equations [34]:

d2Π

dz2
+

[
1− θ−
z

+
−1 + ∆

z − 1
+

1− θ+

z − z0

]
dΠ

dz

+

(
κ1κ2

z(z − 1)
− K

z(z − 1)(z − z0)

)
Π = 0, (5.2.17)

d2Θ

du2
+

[
1 +m1

u
+
−1 + ∆

u− 1
+

1 +m2

u− u0

]
dΘ

du

+

(
q1q2

u(u− 1)
− Q

u(u− 1)(u− u0)

)
Θ = 0, (5.2.18)

where

Ti ≡
r2
i∆
′
r(ri)

4π(r2
i + a2

1)(r2
i + a2

2)
=

ri(r
2
i − r2

j )(r
2
i − r2

k)

2π(r2
i + a2

1)(r2
i + a2

2)
, i 6= j, k, (5.2.19)

θi ≡
i

2π

ω −m1Ωi,1 −m2Ωi,2

Ti
, Ωi,1 ≡

a1Ξ1

r2
i + a2

1

, Ωi,2 ≡
a2Ξ2

r2
i + a2

2

, (5.2.20)

κ1 ≡ −
1

2
(θ− + θ+ −∆− θ0) , κ2 ≡ −

1

2
(θ− + θ+ −∆ + θ0) , (5.2.21)

q1 ≡
1

2
(m1 +m2 + ∆− ζ) , q2 ≡

1

2
(m1 +m2 + ∆ + ζ) , (5.2.22)

ζ ≡ ω + a1m1 + a2m2, (5.2.23)

K ≡ −1

4

{
λ+ µ2r2

− − ω2

r2
+ − r2

0

+ (z0 − 1)[(θ+ + θ− − 1)2 − θ2
0 − 1]

+z0

[
2(θ+ − 1)(1−∆) + (2−∆)2 − 2

]}
,

(5.2.24)

Q ≡ −1

4

{
ω2 + a2

1µ
2 − λ

a2
2 − 1

+ u0

[
(m2 + ∆− 1)2 −m2

2 − 1
]

+(u0 − 1)
[
(m1 +m2 + 1)2 − ζ2 − 1

]}
.

(5.2.25)
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For the radial part, we are interested in the solution near z = z0, 1 because the
boundaries are mapped to these points, and the general solutions of Heun’s
differential equation for the radial part at each point can be found as follows
(5.2.17) 1, for z ∼ z0 (r ∼ r+):

Π(z) = a1H`

(
z0

z0 − 1
,
−K
z0 − 1

;κ1, κ2, 1− θ+,∆− 1;
z0 − z
z0 − 1

)
+ a2

(
z0 − z
z0 − 1

)θ+
H`

(
z0

z0 − 1
,
θ+[z0(∆− θ−)− 1 + θ−]

z0 − 1
− K

z0 − 1
;

κ1 + θ+, κ2 + θ+, 1 + θ+,∆− 1;
z0 − z
z0 − 1

)
,

(5.2.26)

and for z ∼ 1 (r ∼ ∞):

Π(z) = a3H`
(

1− z0, κ1κ2 − K̃;κ1, κ2, δ − 1, 1− θ−; 1− z
)

+ a4(1− z)2−∆H` (1− z0, [(1− z0)(1− θ−) + 1− θ+](2−∆)

+ κ1κ2 − K̃;κ1 + 2−∆, κ2 + 2−∆, 3−∆, 1− θ−; 1− z
)
,

(5.2.27)

where a1, a2, a3, a4 are the arbitrary constants, and we define K̃ ≡ K+κ1κ2z0.
For the angular equation (5.2.18), we are interested in the solution around
u = 0, 1, and the general solutions at each point can be found as follows, for
u ∼ 0 (θ ∼ 0):

Θ(u) = b1H`
(
u0, Q̃; q1, q2, 1 +m1,∆− 1;u

)
+ b2z

m1H`
(
u0, Q̃−m1[u0(∆− 1) +m2 + 1];

q1 −m1, q2 −m1, 1−m1,∆− 1;u
)

(5.2.28)

1We also refer https://dlmf.nist.gov/31.
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and for u ∼ u0 (θ ∼ π/2):

Θ(u) = b3H`

(
u0

u0 − 1
,
−Q
u0 − 1

; q1, q2, 1 +m2,∆− 1;
u0 − u
u0 − 1

)
+ b4

(
u0 − u
u0 − 1

)−m2

H`

(
u0

u0 − 1
,
−Q−m2[u0(∆ +m1)− (1 +m1)]

u0 − 1
;

q1 −m2, q2 −m2, 1−m2,∆− 1;
u0 − u
u0 − 1

)
,

(5.2.29)

where b1, b2, b3, b4 are also arbitrary constants, and we define Q̃ ≡ Q+q1q2u0.
The boundary conditions for the radial modes consist only of the ingoing
mode at the horizon and Dirichlet boundary conditions at the infinity. These
conditions are translated into the following formulas, for Π(z):

R(z) ∼
{

(z − z0)−θ+/2 ∼ (r − r+)−iω for z → z0 (r → r+),

(z − 1)∆/2 ∼ finite value for z → 1 (r →∞),
(5.2.30)

and for the angular modes, the regularity conditions of the separation of
variables using separation constant λ at u = 0 (θ = 0) and u = u0 (θ = π/2)
are as follows:

S(u) ∼
{
u|m1|/2 for u→ 0 (θ → 0),

(u− u0)|m2|/2 for u→ u0 (θ → π/2).
(5.2.31)

To satisfy the boundary conditions (5.2.30), a2 and a4 should be zero (a2 =
a4 = 0). Then, the solutions are derived as follows:

R(z) ∼



Rin ≡ z−θ−/2(z − z0)−θ+/2(z − 1)∆/2

×H`
(

z0

z0 − 1
,
−K
z0 − 1

;κ1, κ2, 1− θ+,∆− 1;
z0 − z
z0 − 1

)
for z → z0 (r → r+)

RAdS ≡ z−θ−/2(z − z0)−θ+/2(z − 1)∆/2

×H`
(

1− z0, κ1κ2 − K̃;κ1, κ2, δ − 1, 1− θ−; 1− z
)

for z → 1 (r →∞)

(5.2.32)
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where we define Rin and RAdS for later convenience. In addition, the regular-
ity conditions are distinguished by the value of m1 or m2, for u ∼ u0(θ ∼ 0):

Θ(u) =


H`(u0, Q̃; q1, q2, 1 +m1,∆− 1;u) for m1 ≥ 0,

z−m1H`
(
u0,−m1[u0(∆− 1) + 1 +m2] + Q̃;

q1 −m1, q2 −m1, 1−m1,∆− 1;u
)

for m1 ≤ 0,

(5.2.33)

and for u ∼ u0(θ ∼ π/2):

Θ(u) =



H`

(
u0

u0 − 1
,
q1q2u0 − Q̃
u0 − 1

; q1, q2, 1 +m2,∆− 1;
u0 − u
u0 − 1

)
for m2 ≥ 0(

u0 − u
u0 − 1

)−m2

H`

(
u0

u0 − 1
,
−m2[u0(m1 + ∆)− 1−m1]

u0 − 1

+
q1q2u0 − Q̃
u0 − 1

; q1 −m2, q2 −m2, 1−m2,∆− 1;
u0 − u
u0 − 1

)
for m2 ≤ 0.

(5.2.34)

We have derived the solutions for the Heun’s equations (5.2.32)-(5.2.34) that
satisfy the boundary conditions, and the next step is to evaluate the quasi-
normal modes. As a similar manner in Sec.3.3 for equal spins (a1 = a2)
because the separation constant is given analytically. However, in the case
of a spin hierarchy case (a1 6= a2), we need to simultaneously solve the
separation constant, λlm1m2n, and quasi-normal frequency, ωlm1m2n.

5.2.1 Two Types of Quasi-normal Modes

In this section, we introduce the two types of quasi-normal modes. As a
simple case, we consider the quasi-normal frequencies for the equal spin case,
a1 = a2 ≡ a. In this case, the angular equation is reduced to a hypergeometric
differential equation, and the separation constant is obtained analytically
[119]:

λ =(1− a2)
[
l(l + 2)− 2ωa(m1 +m2)− a2(m1 +m2)2

]
+ a2ω2 + a2∆(∆− 4). (5.2.35)
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n Re(ω) Im(ω)

0 5.823324048 2.617598939× 10−6

1 7.748178566 1.094235728× 10−5

2 9.629738537 2.394806362× 10−5

3 11.45780837 3.290281046× 10−5

4 13.20764082 −3.386089822× 10−4

Table 5.1: First five type-I quasi-normal modes of Fig. 5.2, and first four
modes show the unstable modes (positive sign of Im(ω)). The threshold
between unstable and stable is Ω = 12.53888341 for this parameter choice,
and the result satisfies this condition. In addition, the value of the imaginary
part is small compared to the real part, so the type-I modes are located along
the real axis.

Using this formula, the problem is reduced to only the radial equation. Then,
we plot the Wronskian2 of the radial solutions, W [Rin(z), RAdS(z)], and find
that there are two types of quasi-normal frequencies, as seen in Fig. 5.2: the
type-I modes are localized at the real axis (|Re(ω)| � |Im(ω)|), and type-II
modes are localized near the superradiant frequency Ω. This superradiant
frequency is obtained for the Kerr-AdS5 black hole case as:

Re(ωlm1m2n) < m1Ω+1 +m2Ω+2 ≡ Ω, (5.2.36)

where Ω1,2 are defined by (5.2.20).
These two types of quasi-normal modes have their own characteristics.

Type-I modes correspond to the instability due to the superradiance because
the first four type-I modes satisfy the superradiant condition (5.2.36), and
the sign of their imaginary part is positive (Table 5.1), so their amplitudes
are diverge as time evolution. On the other hand, the type-II modes are not
related to the instability, but reflect the thermal properties of the Kerr-AdS5

black hole. These properties are discussed in the following sections.

2For the Kerr-AdS5 black hole case, because the radial boundaries are mapped to
r : (r+,∞)→ z : (z0, 1) (5.2.15), the Wronskian is evaluated at z = (z0 + 1)/2.
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Figure 5.2: Contour plot of Wronskian W [Rin(z), RAdS(z)] evaluated at z =
(z0 + 1)/2. The parameters are set to M = 10−2, µ = 10−3, a+ = 0.07, l =
2,m1 = m2 = 1. For these parameters, the superradiant frequency Ω =
12.53888341. The top figure shows the original contour plot, and in the
lower figure, we identify the poles as the type-I modes, type-II modes, and
singular points that are not quasi-normal modes Re(ω) = Ω.
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5.3 Instability

5.3.1 Small black hole

We begin with an equal spin and small black hole (M� 1). We plotted the
type-I modes for l = 1, 2, 3, 4 up to Re(ωlm1m2n) < Ω in Fig. 5.3, and it can be
seen that the sign of the real part is positive in every case. This means that
for a small black hole, unstable modes exist, and this instability is related
to the superradiance. The figure also shows that the l = 1 modes have the
largest instability, and each plot shows a slight peak before the superradiant
frequency. These instabilities are thought to arise as a result of the resonance
between the ergo region and AdS boundary, like in the 4D case. In addition,
in Fig. 5.4, we vary the spin, 10−4 ≤ a ≤ 10−3, and find that a large spin
enhances the instability because the value of Im(ω) increases.

0 50 100 150 200
10-26

10-21

10-16

10-11

10-6

Re ω

Im
ω

{1,1,0}
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{3,2,0}

{3,1,0}

{4,4,0}

{4,3,0}

{4,2,0}

{4,1,0}

𝑙, 𝑚!, 𝑚"

Figure 5.3: Plot of type-I modes that satisfy the superradiant condition
for several values of angular modes (l,m1,m2). The parameters are set to
M = 10−5, a = 4 × 10−4, υ = 10−2. The angular modes for l = 1 show the
largest instability.
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Figure 5.4: Plot of type-I modes for various spin parameters, a+: 10−4 ≤
a ≤ 10−3. Other parameters are set toM = 10−5, µ = 10−2, and the angular
modes are fixed to (l,m1,m2) = (1, 1, 0). The upper and lower figures show
log and linear scale plots. Larger spin indicates the larger value of Im(ω), so
the instability increase with the spin.
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The next step is to create a spin difference (a1 6= a2) and investigate
how the instability changes. The symmetry of the spacetime is reduced from
U(2) to U(1) × U(1) as a result of the spin difference. We express the spin
difference as the ratio of the spin parameters, a2/a1 ≤ 1, where a ratio equal
to one corresponds to the equal spin case, and we assume that a1 is larger.
Then, in Fig. 5.5, we fix the superradiant frequency Ω = 116 and vary spin
ratio a2/a1 = 1, 0.5, 0.9. We find that the instability is enhanced when the
spin ratio is large. From this result, the symmetry reduction of the Kerr-
AdS5 black hole enhances the superradiant instability when the parameters
M, µ,Ω are fixed.

5.3.2 Large black hole

Next, we consider the instability of a large black hole (1 � M). Just as
with the small case, we first plot the contour plot of the Wronskian in Fig.
5.6 and find that there are also two types of quasi-normal modes. However,
there are no unstable modes for a large black hole. This can be understood
that the superradiant frequency for the large black hole is very small (e.g.,
the parameters in Fig. 5.6 are M = 5, a = 0.5, and Ω = 0.2821488469). On
the other hand, based on the physical understanding, the large black hole
acts as a kind of absorber, so the resonance between the ergo region and AdS
boundary disappears.

84



Chapter 5. Quasi-normal Modes of Kerr-AdS5

0 20 40 60 80 100 120

-1.×10-6

0

1.×10-6

2.×10-6

3.×10-6

4.×10-6

Re ω

Im
ω

a2/a1=0.1

a2/a1=0.5

a2/a1=0.9

a1= a2

<latexit sha1_base64="0zv7oxDup5EJBD9KTCDxuoxWMOg="></latexit>

⌦ = 116

Figure 5.5: Plot of quasi-normal frequencies for several values of spin ra-
tios a2/a1. We fixed parameters M = 10−5, µ = 10−2 and also fixed the
superradiant frequency Ω = 116 and angular modes (l,m1,m2) = (1, 1, 0).
We took the spin ratio a2/a1 = 1, .0.9, 0.5, 0.1. The black dashed line shows
the superradiant frequency Ω. The instability increase as the spin difference
becomes large.
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Figure 5.6: Contour plot of Wronskian, W [Rin(z), RAdS(z)], evaluated at
z = (z0 + 1)/2, especially for the large black hole. The parameters are set
to M = 5, µ = 10−2, a+ = 0.5, l = 2,m1 = m2 = 1. For these parameters,
the superradiant frequency Ω = 0.2821488469. The identified modes are
overplotted, where the red dots correspond to type-I modes and yellow dots
correspond to type-II modes. The white dashed line represents the superra-
diant frequency. Because Ω becomes small for the large black hole, there is
no unstable modes for the type-I modes.
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5.4 Thermality and Other Properties

This section focuses on the type-II modes, and the signs of these modes are
all negative. Thus, they are not related to the instability. On the other
hand, the imaginary part of a type-II mode shows an interesting feature.
Fig. 5.9 shows a plot of the separation of the imaginary part of the quasi-
normal frequencies ∆Im(ωlm1m2n) for a small black hole. Here, ∆Im(ωlm1m2n)
is defined as:

∆Im(ωlm1m2n) ≡ Im(ωlm1m2n)− Im(ωlm1m2(n+1)), (5.4.1)

and the separation, ∆Im(ωlm1m2n), is seemed to approach 2πTH at the zero
temperature limit (a → amax). Then, we investigate the large black hole in
Fig. 5.8. This figure confirms that even for a low temperature limit (a→ 1),
the separation effectively and asymptotically approaches 2πTH , except for the
fundamental mode (n = 0). Note that for the large black hole case, because
the condition of a1, a2 ≤ 1 is stronger, we cannot take the zero temperature
limit. From these results, we conclude that type-II modes reflect the thermal
property of a Kerr-AdS5 black hole.
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Figure 5.7: Plot of imaginary part spacing ∆Im(ωlm1m2n) of the small black
hole case. The parameters are set to M = 10−2, µ−10−2, and angular modes
are (l,m1,m2) = (2, 1, 1). In this case, there is a maximum spin parameter
amax, and the vertical axis is scaled for amax. The spacings are plotted for
n = 0 ∼ 5. The blue dashed line shows 2πTH , and the Hawking temperature
is zero at the limit of a→ amax. The lower panel shows an enlarged view of
the region for 10−3.3 ≤ (amax − a)/amax ≤ 10−3.26.
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Figure 5.8: Plot of imaginary part spacing ∆Im(ωlm1m2n) of large black hole
case. The parameters include M = 10, µ − 10−2, and angular modes are
(l,m1,m2) = (2, 1, 1). In this case, the maximum spin is one, and we take
this limit. The spacings are plotted for n = 0 ∼ 5. The black dashed
line shows 2πTH(a), and black solid line shows the asymptotic value of the
Hawking temperature (a→ 1).
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Finally, we consider the asymptotic behavior of Re(ωlm1m2n). Figs. 5.9
and 5.8 show plots of the asymptotic behaviors of Re(ωlm1m2n) for small
and large black holes, respectively. As seen in these figures, the real part
approaches Ω for the zero or low temperature limit:

Re(ω)→ Ω = m1Ω1 +m2Ω2. (5.4.2)

We discuss the interpretation of this aymptotic value at Appendix A.1.
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Figure 5.9: Plot of asymptotic value of real part for small black hole case.
The parameters are M = 10−2, µ−10−2 and angular modes are (l,m1,m2) =
(2, 1, 1). In this plot, the vertical axis is scaled to amax. The black solid line
shows the superradiant frequency as a function of a, and black dashed line
represents Ω for the limit of a→ amax.
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Figure 5.10: Plot of asymptotic value of real part for large black hole case.
The parameters are M = 10, µ − 10−2 and angular modes are (l,m1,m2) =
(2, 1, 1). The lower figure shows an enlarged view of the region at 1×10−3 ≤
1− a ≤ 1.1× 10−3.
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5.5 Quasi-normal Modes vs. Catalytic effect

Finally, we compare the time scales, including the lifetime of the vacuum due
to catalysis and the time scale of the superradiant instability. The lifetime
of the vacuum can be obtained using the bounce action we investigated in
Sec. 4.3. The lifetime and bounce action are related:

τvacuum =
1

Γ
, Γ = Ae−B, (5.5.1)

whereB is the bounce action, and A is the pre-factor that comes from the zero
modes of the instanton and the loop corrections, and is usually determined
by a dimensional analysis. Here, we assume that A = 1/r+ as the pre-factor
because this determines the typical size of the nucleated bubble, and this
assumption has been adopted in the previous studies [53, 58, 54].

The other timescale is the classical instability due to superradiance. This
instability is studied using the quasi-normal modes and is related to the sign
of the imaginary part. If the imaginary parts of the quasi-normal modes are
positive, the amplitudes of the perturbation diverges exponentially with the
time evolution eIm(ω)t. Then, the time scale of this instability is given as
follows:

τSR =
1

max [Im(ω)]
, (5.5.2)

where max [Im(ω)] is the value of the maximum positive imaginary part.
This is because the quasi-normal modes arise when the frequency satisfies
the superradiant frequency, and in general we do not know which mode
expresses the largest instability. Thus, we here denote this most unstable
mode as max [Im(ω)].

We derived the formulas of the two timescales and plotted for several
values of parameters, comparing these in Fig. 5.11. From this figure the
timescale of the classical instability is always longer. This means that even
though Kerr-AdS5 spacetime has a classical instability, the “bubble universe”
scenario is realizable.
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Figure 5.11: Plot of τSR and τvacuum as a function of the spinparameter a+ for
the parameters µ = 10−2,M+ = 2, l+ = 7, l− = 4, where τvacuum is evaluated
as a stationary solution, and τSR is evaluated as the mode that indicates the
largest instability. Note that τSR is evaluated for the black hole in a false
vacuum.
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Chapter 6

Conclusion

In this thesis, we considered Kerr-AdS5 spacetime in relation to the catalytic
effects of the vacuum decay and quasi-normal modes having the motivation
to apply to the “bubble universe” scenario, including the catalytic effects of
other objects in five dimensions, such as a Schwarzschild black hole, a cloud
of strings, and quintessence. We showed that objects in five dimensions also
have a catalytic effect. Here, we briefly summarize the contents of this thesis.

In Chap. 4, we investigated the catalysis effect in five dimensions. In the
bubble universe setup, the catalysis of a black hole and a cloud of strings
were not considered, but we revealed that they play a role in the catalysis of
the vacuum decay. This result could be extended to discuss the more realistic
bubble nucleation.

The same chapter evaluated the catalysis of a rotating black hole in 5D
AdS spacetime (Kerr-AdS5). Because of the rotation, the spacetime is no
longer spherically symmetric, and we used the rotating shell as a junction
surface. The junction conditions were derived for this setup, and we calcu-
lated the Euclidean action. We numerically estimated the action and found
that the rotation can enhance the vacuum decay slightly, and the stationary
bounce solution gives the most probable process, which is the same as the
results for the 4D and 5D spherical symmetric cases. We also found the pa-
rameter where the bounce action could have a negative value, and that this
process naively violates the semi-classical approximation. On the other hand,
based on the second law of thermodynamics, this process can be regarded
as a thermal transition with an increase of entropy. Thus, we may accept
that in this parameter region, the vacuum decay is nucleated by the thermal
effect of the black hole.
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Chapter 6. Conclusion

In Chap. 5, we investigated the quasi-normal modes of Kerr-AdS5 space-
time, and discussed the instability, thermal properties. First, we found that
there are two types of quasi-normal modes for Kerr-AdS5 spacetime. Type-I
is a mode that corresponds to the resonance between the black hole ergo
region and AdS boundary, which causes a spacetime instability. Type-II is a
mode that reflects the thermal property of the black hole because the spacing
of the imaginary part (∆Im(ωlm1m2n)) approaches 2πTH . We further investi-
gated the spin effect on the instability, increment of the spin, and hierarchy
of spins. We showed that the spin enhances the instability and hierarchy,
which results in a symmetry reduction also enhances the instability. The
instabilities of the quasi-normal modes are related with the superradiant in-
stability of the black hole, and this phenomenon has the threshold to occur.
We confirmed that the unstable modes arise if the quasi-normal frequencies
satisfy this condition.

Finally, we compare two time scales, the lifetime due to the catalysis of
the vacuum decay and the classical instability studied based on the quasi-
normal modes. We found that at values of parameters the time scale of the
classical instability is always longer. We showed that a bubble universe can
be realized by the nucleation around a rotating black hole even though the
rotating black hole is unstable due to the superradiant instability.

In conclusion, we have some comments about the contents as a whole.
We studied Kerr-AdS5 spacetime in relation to the quasi-normal modes and
catalytic effect of the vacuum decay based on a strong motivation to resolve
the open question about the very beginning of the universe, and our study
was based on the bubble universe setup. We extended this model to a rotating
black hole and showed that this scenario can be realized for a large framework,
without considering the localization of matter, inflation, big-bang, and other
conditions that the universe must have. A consideration of these properties
still remains as future work, although we hope that our study will provide
some insight or make a contribution to other studies attempting to answer
the open questions of modern physics, especially those in cosmology, from a
higher dimensional point of view.
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Appendix A

Hod’s Conjecture
-Black Hole Area Quantization-

In this appendix we introduce Hod’s conjecture [42], which addresses the
black hole quantization using the asymptotic value quasi-normal modes. We
start with Schwartzschild black hole with mass M . The horizon area of the
black hole is:

Ah = 4πr2
h = 16πM2. (A.0.1)

Then, we drop the object with mass m to the black hole, and the area of the
horizon changes according to the mass gained from the black hole:

∆Ah = 16π(M +m)2 − 16πM2 = 32πM∆M, (A.0.2)

where we assume that m � M and m = ∆M . On the other hand, giving
the perturbation to the black hole corresponds to exchanging the energy and
may change its mass. Then we assume the quasi-normal frequency is related
to the energy:

E = ∆M = ~ω. (A.0.3)

Combining (A.0.2) and (A.0.3), we get:

∆Ah = 32πM~ω. (A.0.4)

This formula suggests that the quasi-normal frequency is related to the area
of the black hole. Hod discussed this relation based on the Bohr’s corre-
spondence principle: “the classical limit of quantum theory (large quantum
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-Black Hole Area Quantization-

numbers) should be equal to the classical one.” The quasi-normal modes that
were showed at (3.1.24), indicates the asymptotic behavior of a large n. Be-
cause a large n quasi-normal frequency has a large negative imaginary part,
which corresponds to the damping of the frequency, the relaxation times,
τ = 1/Im(ω), of these modes are very small. If we take n → ∞, the relax-
ation time becomes τ → 0. In this limit, we assume that the energy exchange
occurs as a quantum transition, which is the Bohr’s correspondence principle.
Then, (3.1.24) can be expressed for the general black hole mass case:

Mω = 0.0437123− i

4

(
1

2
n+ 0.5

)
+O[(n+ 1)−1/2]. (A.0.5)

The real part of (A.0.5) is related to the energy quanta exchanged at the
τ → 0 limit. Then, Hod boldly regarded this value as Re(ω) = 0.0437123 ≈
ln 3/8π,1. Using this, the minimum value of the black hole area is estimated
as follows:

∆Amin = 32π~
ln 3

8π
= 4~ ln 3 = 4`2

p ln 3, (A.0.6)

where

`p =
√
~ (A.0.7)

is the Planck length (G = c = 1). Here, we remember the relation between
the entropy of the black hole and its area [70, 71, 72]:

SBH =
A
4~

=
A
4`2
p

, (A.0.8)

and this entropy is assumed to be derived from the micro-states at the hori-
zon,

SBH = lnn =
A
4`2
p

, (A.0.9)

A = 4`2
p ln 3, (A.0.10)

where n is the number of micro-states of the black hole at the horizon. If we
choose n = 3, the horizon area agrees with the result. It is surprising that

1This value is evaluated up to 50 digits as ln 3/8π = 0.043712394070757472249683910
264841511461629860820140.
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-Black Hole Area Quantization-

two results derived independently (A.0.6) and (A.0.10) are the same, but it
is unclear why this unique value, n = 3, was selected.

One of the interpretations of this result was suggested by Dreyer [43]. He
pointed out that there is some relation with the loop quantum gravity. Here,
we simply introduce the result. In the loop quantum gravity, the spacetime
is discretized, and the area also has a discrete value2:

A = 8π`2
pγ
∑
i

√
ji(ji + 1) (A.0.11)

where j = 0, 1/2, 1, 3/2, · · · , and γ is the Immirzi parameter that arises in
the loop quantum gravity, where there is no principle to determine to specific
value [120]. It is also shown that the entropy of the black hole is given by
the lowest possible spin [121, 122]:

S =
A ln(2jmin + 1)

8πγ`2
p

√
jmin(jmin + 1)

. (A.0.12)

Then, we assume that the smallest area (smallest j) corresponds to the small-
est area of the black hole:

Amin = ∆A = 8π`2
pγ
∑
i

√
jmin(jmin + 1). (A.0.13)

By comparing (A.0.13) with (A.0.10), we can obtain the Immirzi parameter
using jmin:

γ =
ln 3

2π
√
jmin(jmin + 1)

. (A.0.14)

Substituting this into (A.0.12),

S =
A

4`2
p

ln(2jmin + 1)

ln 3
, (A.0.15)

and supposing that this is equal to the Beckenstein entropy (A.0.8),

jmin = 1, (A.0.16)

2A spin network provides the basis of the Hilbert space of the loop quantum gravity,
and the representation of the gauge group labels the edge of the graphs. Here, we use the
result that the group is SU(2).
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is derived. This is also surprising because the results of two different deriva-
tions coincide. Naively, jmin = 1/2 is preferable, but there is no unified
understanding of this and it still remains as an open question. In addition to
this result, Tamaki et al. investigated the quasi-normal modes of the GM-
GHS solution and showed that the asymptotic value is the same as that in
the 4D Schwarzschild case [44].

A.1 Asymptotic value of real part

In this section we give some arguments of the asymptotic value of real part.
The thermodynamics of a Kerr-AdS5 black hole give the following relation
[116]:

∆M = TH
∆A

4G
+

2∑
i=1

Ωi∆Ji. (A.1.1)

Remembering the correspondence of the asymptotic value of the quasi-normal
modes and the quantization of the black hole area:

∆M = lim
n→∞

Re(ω). (A.1.2)

Assuming that ∆Ji = mi, we naively combining these formulas produces the
following relation:

TH
∆A

4G
= 0. (A.1.3)

This result shows that in the case of TH 6= 0, the horizon spacing is zero, but
we have no further understanding of this result and we have just shown up
to n = 5, so the higher modes may behave differently. In addition, an ultra-
spinning Kerr-AdS4 black hole can have a singular horizon [123, 124, 125],
and a similar situation can be realized for a Kerr-AdS5 back hole. Thus,
further analysis is needed to obtain a certain result for area quantization.
Anyway we show an initial insight into area quantization for a Kerr-AdS5

black hole.
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