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Breakdown and rearrangement of a vortex street in 

the far wake of a cylinder 

By Takashi KARASUDANI* Mitsuaki FUNAKOSHit 

Breakdown and rearrangement of a primary vortex street shed 
from a circular cylinder in the far wake are experimentally examined 

for 70 < R < 154 (R is the Reynolds number based on the diameter of the 
cylinder). According to the vorticity fields obtained using digital image 
processing for visualized flow fields, the primary vortex street breaks 
down into a nearly parallel shear flow of Gaussian profile at a certain 
downstream distance, before a secondary vortex street of larger scale 
appears further downstream. The process leading to the nearly parallel 
flow can be explanined as the evolution of the vortex regions of an 
inviscid fluid if we invoke the observation that the distance between the 
two rows in the primary vortex street increases with the downstream 
distance. Numerical computations with the discrete vortex method 

also support this explanation. Next, the wavelengths, a1 and a2, of the 
primary and secondary vortex streets are calculated from the above 

vorticity fields, and are also measured from the flow patterns obtained 
using the aluminium dust method. The ratio a五 decreaseswith 
increasing R, and ranges from 1.7 to 2.6. Moreover, the wavelength a2 
is a little smaller than that of the most unstable mode in the linear 
stability theory applied to the above nearly parallel flow. The speeds 

of the vortex streets relative to the fluid at infinity are also measured, 
and are 0.12U-0.19U and 0.03U-0.lOU for the primary and secon-
dary ones, respectively. Here U is the speed of the cylinder. 

Key words : Karman vortex street, far wake, breakdown, vortex 

d ynam1cs, image processing 

1. Introduction 

The behaviour of the wake of bluff body is one of the most fundamental 

problems in hydrodynamics, and there are many experimental and theoretical 
works on this subject. Regarding the wake of a circular cylinder, it is widely 
known that a regular two-dimensional vortex street (the Karman vortex street) 

is generated for about 50 < R < 180 if end conditions are appropriately 
controlled. Here R is the Reynolds number based on the diameter of the 
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cylinder. The evolution of this vortex street (called a primary vortex street 
from now on) in the far wake is interesting because of its close relation to the 
subject of the interactions among vorticity-concentrating regions, and was 
experimentally or theoretically investigated by many researchers. 
Using the aluminium dust method, Tanada11 observed that for 60<R<150 
the primary vortex street breaks down at about 50 diameters downstream and 
that a new vortex street of larger scale (called a secondary vortex street from 
now on) is subsequently rearranged. He also suggested that this process may be 
explained by the linear stability theory for the local mean wake profile which 
changes slowly in the streamwise direction. The downstream distance of the 
position at which the primary vortex street ceases to persist was measured by 
Honji2> from streak patterns visualized by the electrolytic precipitation method. 
Moreover, in the experiments with smoke-wire flow visualization and hot-
wire anemometry, Cimbala et al.3・ 4> found that the primary vortex street decays 
rapidly to a parallel shear flow and that for 100 < R < 160 a larger-scale struc-
ture (the secondary vortex street) can be seen beyond this region of decay. 
They also claimed that the growth of this structure is due to the hydrodynamic 
instability of a developing mean wake profile. 
On the other hand, from the experiments for R ;S 160 with smoke-wire flow 
visualization and hot-wire anemometry, Matsui & Okude5> and Okude & 
Matsu秒proposedthat the secondary vortex street is formed owing to a pairing 
(or merging) of the vortices in the primary vortex street. That is, they claimed 
that the wavelength of the vortex street becomes larger by the pairing of vortex 
regions without going through a parallel shear flow state. 
The breakdown of the primary vortex was examined also by Durgiin & 
Karlsson1> when the vortex street was subjected to a deceleration as it approa-
ched a large circular cylinder. Using hot-wire anemometry, they found that a 
stationary wake flow (calm region) is created after the breakdown and develops 
into a secondary vortex street. This behaviour is similar to the observation by 
Cimbala et al.31・ 4>, although the geometrical arrangements in these two investiga-
tions are different. Durgin & Karlsson suggested that the breakdown is qualita-
tively explained by considering the convection of a concentrated vortex region 
due to the motion imposed by all the other vortices. They also attributed the 
creation of the secondary vortex street to changing hydrodynamic stability. 
Moreover, it is widely known that we must be careful in predicting unsteady 
velocity or vorticity fields from visualized flow patterns. For example, in their 
experiments with the smoke-wire method, Cimbala et al.41 suggested that in 
order to accurately discern the flow at some location, the smoke-wire must be 
placed at a proper distance upstream of that location. Furthermore, Gursul et 
al.8> simulated flow visualization of an unsteady wake by computing the streak-
lines or timelines associated with a few specified vorticity fields. They found 
that the visualized patterns for the vorticity fields with and without attenuation 
in the downstream direction are barely distinguishable from one another. 
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The main purpose of the present paper is to experimentally examine in 
detail what occur$ in the breakdown and the rearrangement of the primary 
vortex street, with flowvisualization methods of relatively small ambiguity. We 

carried out two series of experiments described in §2: in series I, the aluminium 
dust method was used in order to measure the geometrical configuration of the 
primary and secondary vortex streets, whereas, in series II, the flow field was 
visualized by mixing polyethylene particles with water. Then we obtained the 
development of velocity and vorticity fields using a digital image processing 
method introduced in §3. 

The results are shown in §4 and are summarized as follows: for 70<R< 
154, by appropriately controlling end conditions, two-dimensional vortex streets 
are observed both in the near and far wakes. Furthermore, the primary vortex 

street breaks down into a nearly parallel shear flow of Gaussian profile at a 
certain downstream distance, before a secondary vortex street of larger scale 
appears further downstream. The ratio of the wavelongth of the secondary 

vortex street to that of the primary vortex street decreases with increasing R, 
and ranges from 1.7 to 2.6. Moreover, the speeds of the vortex streets relative 
to the fluid at infinity are about 0.12 U -0.19 U and 0.03 U -0.10 U for the primary 
and secondary vortex streets, respectively. Here U is the speed of the cylinder. 
In §5, the essential mechanism in the process from the primary vortex street 
to the nearly parallel flow is discussed. As first suggested by Durgin & 
Karlsson叫thisprocess can be explained as the evolution of vortex regions of an 

inviscid fluid if we invoke the observation that the distance between the two 
rows in the primary vortex street increases with the downstream distance. That 
is, the viscous effect is not dominant in this process. Numerical computations 

with the discrete vortex method also support this explanation. In §6, the 
formation of the secondary vortex street is discussed. The wavelength of the 
secondary vortex street measured in the experiments is compared with the 
result of the linear stability theory applied to the above nearly parallel flow. 

Consequently, the measured wavelength is a little smaller than that of the most 
unstable mode. 

There are a few more investigations related to the present work. For 
example, Matsui & Okude9J and Okude & Matsui6) experimentally examined the 

development of the far-wake flow pattern when a disturbance is introduced into 
the wake by a loudspeaker. Another experiment involving forcing was carried 
out by Nakano & Rockwell'0l by oscillating a cylinder transversally. Theoreti-

cal investigations of the long-time evolution of a parallel wake flow were 
performed for an inviscid fluid by Aref & Siggiaい andby Meiburg'l, whereas the 

evolution from a regular vortex street of finite area was examined by Tsuboi & 
Oshima13)_ Maekawa et al.14l numerically studied the transition mechanism in a 

spatially developing wake of a viscous fluid. The relation of the results of these 
experimental and theoretical investigations with the present results is discussed 
in §§5 and 7. 
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A preliminary report on a part of the present work was also writted by 
Karasudani et al. 15> 

2. Experimental setup 

Two water tanks with glass sides were used in the present experiments. 
The first tank (long tank) is 10m long, 60cm deep, and 60cm wide, whereas the 
other tank (short tank) is 4m long, 40cm deep and 40cm wide. Over these tanks, 
rails are mounted horizontally. The long tank has two carriages which are 
driven by servomotors and move uniformly along the rails. The short tank has 
a carriage driven by an inductiQn motor. Each tank has a heating device to 
make the water near the surface thermally stratified and to prevent thermal 
convection due to evaporation at the surface. This device is an electrical 
heating wire covered with a polytetrafluoroethylene tube and stretched around 
near the wall of the tank at about 2cm below the surface. 
Each of four stainless steel circular cylinders, one 0.599cm in diameter and 
48cm long, another 0.799cm and 56cm, another 0.998cm and 56cm, and the other 
1.001cm and 40cm was used as a model. These cylinders were held vertical and 
towed at speed U. The range of the Reynolds number R in the experiments is 
70<R<l54. Here R= Ud//.I,d is the diameter of the cylinder, and/.Iis the 
kinematic viscosity of water. It is widely known that end conditions must be 
appropriately controlled so that two-dimensional wakes are generated for all R 
in this range.16-23> In the present experiment, a rectangular plate of 4.6-5.9cm 
wide and 8.3-8.9cm long was attached at the bottom end of each cylinder to 
diminish end effects. The plate was inclined to make shedding vortex streets as 
parallel as possible. This end condition yielded almost two-dimensional flow 
pattern both in the near and far wakes, as shown in §4.1. 
Two series of experiments were carried out using these tanks and cylinders 
: in series I, the long tank was used, and the side-view flow pattern was 
visualized using the aluminium dust method with illumination on the vertical 
plane including the cylinder. We took photographs of this flow pattern every 10 
seconds with a 35mm camera fixed at 2.8m ahead of the initial position of the 
cylinder. The wavelongths and speeds of the primary and secondary vortex 
streets were measured from these photographs. 
In series II experiments, polyethylene particles were mixed with water for 
flow visualization. The particles had sizes 75ー 150μm in diameter, and were 
coated with a bond (Alone-alpha) so that their density was almost the same as 
that of water. They were illuminated horizontally at a height of 25cm above the 
bottom by sheets of light from two slide projectors. These projectors were 
placed just outside the side walls of the tank so that they were facing each other. 
The thickness of the sheet was about 5mm at the position of the model. 
Movements of the particles in the light sheet were recorded by a video camera. 
Elapsed time was also recorded on a video image. In experiments using the long 
tank, the recording and illumination systems mounted on the carriage were 
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moved at velocioy Uc~0.2 U, so that the evolution of each vortex region in the 
primary vortex street could be observed for a long time. Whereas, in experi-
ments using the short tank, the systems were fixed at 1.5m ahead of the initial 
position of the model. Experiments were repeated over 10 times, and image data 
having good contrast and adequate particle density were used for the digital 
image processing described in the next section. 

3. Digital image processing 

In order to see clearly the breakdown and rearrangement of the primary 
vortex street, we measured velocity and vorticity fields using a particle-tracking 
technique from the visualized flow field in the series II experiments. This 
technique is often used for the unsteady wake flow of a bluff body. Its applica-
tions to the two-dimensional near wake of a circular cylinder at low Reynolds 
number were reported by Imaichi : Ohmi24> and Green & Gerrard. 25> Aglif & 
J dmenez26> also used this technique for moderately three-dimensional turbulent 
flow in the near wake of a cylinder. However, no application to the far wake 
seems to exist. 
In the present work, velocity and vorticity fields were computed from image 
data by means of the following procedure: when we wanted to obtain the fields 
at time T, two instantaneous images of particles at times Ti= T-L1 T and T2 
= T+L1T and a track image for the time from T1 to T2 were generated on an 
image processor (NEXUS 6400) through an 8-bits A/D converter. These three 
digital images were reduced to binary images with a threshold value. Then 
original velocity data were computed from the positions of the ends of available 
pathlines during a small exposure time 2L1T in the track image. In.order to 
determine the direction of the velocities, we used the two instantaneous images. 
The value of L1T was chosen so that the longest pathline in each track image 
was composed of a sufficient number of pixels and also was almost straight. 
The data acquisition with this method was performed automatically by the use 
of a program on the processor. Here intersecting pathlines and pathlines of 
particles which appear later than T1 or disappear earlier than n were removed 
automatically, although their ratio was fairly small. We used a few threshold 
values for each image in order to obtain as many velocity data as possible. We 
usually obtained 300-600 velocity data for each image. An example of these 
data is shown by thin lines in Fig. 1. 
Here, we define x and y as the coordinates in the longitudinal and trans-
verse directions, respectively, fixed to the cylinder. Their origin is located at the 
backward edge of the cylinder, and x increases in the downstream direction. 
Velocities (u;, ;, vぃ） ata mesh point (x, y)=(x;, y;) of a square lattice of 
spachng t, which in 0.5d-0.6d, were computed from the above volocity data by 
the interpolation method described below: we first assume that the velocity (u, 
v) near the mesh point（ふ，y;)is expressed as 
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{u=ax＋釦＋rl,
v=a2x十幼y十Y2,

where a幻応， and'Yk(k=l, 2) are constants. Then these constants are deter-
mined by the least-square approximation from the original velocity data within 
a circle of radius D around (x;, y;). Here D was usually chosen as l.Od or 1.2d. 
Therefore, the mesh-point velocity (u;,;, V;,;) can be computed from eq.(l). An 
example of the application of this interpolation method is shown in Fig. 1, where 
velocities at mesh points are expressed by thick lines. This method works well, 
as this figure clearly illustrates. Finally, these meshpoint velocities were 
changed into the values in the reference frame fixed to the cylinder by adding U 
一仏 tothe streamwise component. The vorticity(J)＝(J);, j at a mesh point (x;, 

YJ) was computed from the following scheme : 

(J)i, j= Vi+1, j-Vi-1, J _ Ui. J+1 -ui, j-1 
2{ 2{ ・ 

From now on, these velocity and vorticity fields and their original velocity data 

are specified by L, the x value of the center of the image taken at the time T 
in the preceding explanation of data acquisition. 
The errors in the above data acquisition and interpolation were estimated 
by the following two computations : first, the original velocity data modified by 

adding U=に tothe streamwise component, say (ua, Va) (a=l, 2, ・・・, No), were 

compared with the velocities（元，応）（a=l,2,…，No) at the same positions 
obtained by an interpolation of the mesh-point velocities. The variable 

(1) 

(2) 
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(3) 

was computed for each velocity field and original velocity data. Consequently, 

び was0.08-0.14 for L / d~30, and 0.05-0.10 for L / d~30. Another error 
estimation was made for each velocity field by computing 

5= 戸̀JD?，J
max |(l)l・ • I' 
z, J 

where summation is over all mesh points of number Nm, and 

D ;,j= 
Ui+1, J・ - Ui-l, j Vi, j+1 - Vi, j-l 

2.t 
＋ 
2.t' 

(4) 

(5) 

is expected to be close to zero for a two-dimensional flow of an incompressible 

恥idif tis small. We obtained 8=0.06-0.08 for L/d::::::30, and 8=0.04-0.08 
for LI d ~ 30. These values of CJ and 8 show moderate accuracy in the near-
wake region and higher accuracy in the far-wake region. 

4. Experimental results 

4.1. Geometrical configuration of visualized flow field in series I experi-

ments 

Figure 2 shows a few typical examples of the side-view flow pattern of the 

wake field obtained in the series I experiments. We first find that the wake is 
almost two-dimensional. Moreover, we see a periodic pattern of constant 

wavelength near the cylinder and one of larger constant wavelength far down-
stream. It is likely that these two patterns correspond to the primary and 

0 x/d 50 100 

1.50 200 

200 250 300 350 390 

Fig. 2 Side-view flow patterns of the wake visualized by the 
aluminium dust method.(a)R=82 
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Fig. 2 (c)R=l46. 

secondary vortex streets, although the relation between the lightness in the 
pattern and the vorticity is not clear. The first periodic pattern becomes 

ambiguous at a certain distance Xp from the cylinder, and then the second one 
appears further downstream. 

For many R values between 70 and 154, we measured the wavelength a1 of 
the primary vortex street and the wavelength a2 of the secondary one from the 
periods of these periodic patterns. As shown in Fig. 3(a) and also in Table 1, R 
-dependence of a1 is fairly weak, whereas a2, although there is a little scatter in 
the data, decreases considerably with increasing R. Their ratio a2/ a1 is impor-
tant in discussing the main mechanism in the breakdown and rearrangement 
process of the primary vortex street. This ratio, shown by solid symbols in Fig. 
3(b), decreases with increasing R, and ranges from 1.7 to 2.6 for 70<R<154. 
There is no indication that this ratio is close to 2 for a wide range of R values. 
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Fig.3 (b) Their ratio a2/ a1. Solid symbols denote the 
results in series I experiments. △， the result by 
the digital image processing. 
ー•一·―,Taneda's result. ---, Matsui & 
Okude's result. x, the result by Cimbala et al. 
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Table 1 Tabulated examples of data for the primary and secondary vortex streets. 

d[mm] R U[cm/s] ai/d a2/d UI/U u2/ U Xp/lOd F1 F2 

5.99 70 1.47 6.1 15 0.13 0.035 20 10 4.4 

73 1.54 6.0 15 0.12 0.028 20 11 4.7 

75 1.58 5.8 14 0.12 0.055 20 11 5.0 

79 1.66 5.7 14 0.13 0.041 18 12 5.6 

80 1.64 5.7 14 0.13 0.058 16 12 5.4 

82 1. 75 5.7 14 0.13 0.047 17 13 5.8 

86 1.84 5.5 13 0.15 0.047 18 13 6.2 

88 2.08 5.5 13 0.15 0.061 15 14 6.2 

90 2.11 5.5 13 0.13 0.054 16 14 6.5 

99 2.12 5.2 12 0.15 0.062 12 16 7.8 

101 2.17 5 2 12 0.14 0.086 11 17 7.8 

111 2.36 5.0 11 0.16 0.070 10 19 9.6 

116 1.89 5.0 11 0.17 0.069 9.6 19 10 

126 2.07 4.9 10 0.14 0.064 7.2 22 12 

136 2.23 4.9 9.6 0.14 0.074 8.6 24 13 

142 2.32 4.7 9.4 0.14 0.065 7.1 26 14 

7.99 84 1.02 5.6 15 0.15 0.052 11 13 5.3 

95 1.33 5.4 11 0.13 0.076 14 15 7.7 

97 1.35 5.3 11 0.15 0.081 13 16 8.4 

119 1.44 4.9 8.4 0.14 0.087 10 21 13 

121 1.49 4.8 8.3 0.15 0.091 21 13 

131 1.61 4.9 9.1 0.12 0.095 5.2 24 13 

141 1. 70 4.8 7.7 0.13 0.077 6.8 26 17 

150 1.82 4.6 9.1 0.16 0.080 6.9 27 15 

9.98 105 1.26 5.1 9.8 0.14 0.070 12 18 10 

117 1.41 4.9 10 0.15 0.044 9.8 20 11 

122 1.50 4.9 9.3 0.15 0.084 7.6 21 12 

125 1.50 4.8 9.5 0.15 0.075 9.7 22 11 

126 1.51 4.8 9.5 0.14 0.088 7.7 23 12 

133 1.62 4.7 8.7 0 15 0.087 8.4 24 14 

135 1.60 4.8 8.1 0.15 0.071 9.1 24 15 

136 1.64 4.6 8.9 0.15 0.078 7.5 25 14 

139 1. 70 4.6 7.5 0.16 0.098 7.1 26 17 

141 1. 74 4.7 2.6 0.14 0.083 6.4 26 17 

146 1. 76 4.5 7.8 0.17 0.083 6.2 27 17 

150 1.81 4.5 7.6 0.15 0.098 6.2 29 18 

154 1. 77 4.5 7.8 0.18 0.10 6.9 28 18 
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This seems to contradict the scenario of the vortex pairing. The experiments 
by Taneda1> yielded the data roughly expressed by a dotted-broken line in Fig. 
3(b), whereas Matsui & Okude21> and Okude28> obtained the result denoted by a 
broken line. Both of them show a decrease, similar to ours, in the ratio a2/ a1 
with increasing R. The ratio measured by Cimbala et al.4> is also shown by 
crosses. Taneda's values are similar to ours, whereas the values by Matsui & 
Okude and by Cimbala et al. are slightly larger. 
Next, we measured u1 and u2, the speeds of the first and second periodic 
patterns relative to the fluid at infinity, from a series of photographs of the flow 
patterns such as those shown in Fig. 2. As found from Table 1, the speed u1 is 
0.12 U -0.18 U for 70 < R < 154, and has weak R-dependence, whereas u2 roughly 
increases from 0.03 U to 0.10 U with R, and is considerably smaller than u1. This 
result suggests that the primary vortex street moves faster than the secondary 
vortex treet in the reference frame fixed to the fluid at infinity. 
The value of Xp, which is expected to be the downstream distance of the 
position where the primary vortex street breaks down, decreases with increas-
ing R, as shown in Fig. 4 (and in Table 1). This tendency is consistent with the 
results by Taneda1>, by Honji2>, and by Cimbala et al.4> Honji's result, shown in 
Fig. 4 by a broken line, gives a little smaller values than ours. This discrepancy 
may be due to the difference in the flow visualization method (Honji measured 
Xp on the basis of the streak patterns obtained using the electrolytic precipita-

xp/d 

200 

150 

100 

50 

d[mm] 
● - 5. 99 

■ー 7.99

.. -9.98 

l
 

I• l
 ．
 

▲
●
 
ヽヽ

▲
 ヽヽヽ

ヽ
ヽヽ
ヽ
ヽヽ

•ヽ ヽヽヽヽヽ
ヽ
＼
 

＼
 

＼
 

ヽ

―

―

 

5゚0 100 
R
 

150 

Fig. 4 Dependence of Xp on R. Solid symbols denote the 
results in series I experiments. Solid line shows 
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12 T. KARASUDANI and M. FUNAKOSHI 

tion method). The values by Cimbala et al.4> are also shown in Fig. 4. Although 
their value for R=90 is consistent with ours, that for R=155 is a little larger. 
Next, we calculated the frequency of the time variation associated with the 
passage of the vortex streets. That is, the frequencies fr and /2 within the 
regions of the primary and secondary vortex streets, corresponding to the 
variations of signals at a measuring point fixed to the cylinder, were calculated 
from the formula fk=(U-uk)/ ak(k=l, 2). Figure 5 shows that nondimensional 
frequencies Fi and F2, defined by Fk = f.ば／v(k=l, 2), increase almost linearly 
with R. The calculation based on the least-square approximation gives the 
relations 

Fr=0.22R-5.4, A=0.16R-7.4, (6) 
which are expressed by solid lines in Fig. 5. These increases of Fr and F2 are 
mainly due to the decreases of a1 and a2 with increasing R, as found from Table 
1. The ratio Fil F2, shown in Fig. 6, decreases with increasing R and changes 
over the range between 1.5 and 2.3. This result suggests another problem in the 
vortex-pairing scenario because the expected ratio is Fil A=2. 
Matsui & Okude21> and Okude28> measured the frequencies of the velocity 
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Fig. 5 Nondimensional frequencies F1 and Fa correspond-
ing to the primary and secondary vortex streets. 
Solid symbols denote the present results. Solid 
lines show their rough tendency. ---, Matsui & 
Okude's result. 
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fluctuations in the primary and secondary vortex streets. They also obtained the 

linear dependences of F1 and F2 on R. As found from Fig. 5, their result on F1 
agrres well with ours, whereas their A value is considerably smaller than ours. 
Therefore, their ratio Fi/ F2, expressed by a broken line in Fig. 6, is appreciably 
larger than ours, particularly in the low R region. The data by Cimbala et al.4l, 

expressed by a cross in Fig. 6, lies midway between Matsui & Okude's and our 

data. 

4.2. Vorticity fields 

Figures 7-10 show the evolution of the vorticity field(J)（x, y) with increasing 

downstream distance obtained by the digital image processing. In order to 
specify each vorticity field, we use the distance Lin §3. In Figs. 7 and 9, contour 
lines for positive and negative vorticities are expressed by solid and broken 
lines, respectively. Here these contour lines are drawn on the basis of the values 

normalized with the largest absolute value of vorticity of each field, which 
decreases with increasing L. Figures 8 and 10 ate perspective views of the 
vorticity fields shown in Figs. 7 and 9, respectively. 

Both Figs. 7 and 8 for R=l06 and Figs. 9 and 10 for R=l40 indicate that 
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Fig.7 Evoution of vorticity field(1)（x, y) with increasing downstream 
distance. R=l06, Uc=0.2U. Contour lines for positive vorticity 
(solid lines) and for negative vorticity (broken lines) are drawn on 
the basis of the values 士0.2(1)max,士0.3(1)max,・・・， 士0.9(1)max-Here (1)max 
is the maximum absolute value of the vorticity for each L. (a)L/ d 
=20.0, (b) 34.6, (c) 49.2, (d) 63.9, (e) 71.1, (f) 93.0, (g) 136.8, (h) 180.6. A, B, 
and C are letters assigned to the vortex regions 

(al (b) (cl (dl 

そ

(f) 

... も ""- ,_,, 

Fig. 8 Perspective view of the vorticity fields shown in Fig. 7. 

the primary vortex street evolves into a nearly parallel shear flow, as shown in 

Figs. 7(e), 8(e), 9(d), and lO(d), before the secondary vortex street of larger scale 

appears further downstream. This indication agrees with the result by Cimbala 

et al.3・ •> In our experiments, even at the downstream distance where the flow 
field is the closest to a parallel flow, the vorticity field is not completely uniform 

in the streamwise direction. However, no indication of the vortex pairing is 

found from this vorticity field. 

Matsui & Okude9> and Okude & Matsui6> obtained vorticity fields in the far 
wake using a conditional sampling of the velocities measured by the hot-wire 

technique. This method, however, is applicable only to regular flow patterns. 

Therefore, they obtained vorticity fields only until just before the breakdown of 

the primary vortex street, because its breakdown and rearrangement process 
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Fig. 10 Perspective view of the vorticity fields shown in Fig. 9. 

was a little irregular. The evolution of the primary vortex street shown in Fig. 

8 of Okude & Matsui6l is similar to that shown in Figs. 9(a), (b), and (c). 

In order to show the process from the primary to the secondary vortex 

streets more clearly, we calculated trasversally integrated vorticity Q(x) in 

each vorticity field. Figure 11 shows the evolution of Q(x) normalized with Q凡

Here仙 iscomputed by the longitudinal averaging, over allぷsin each field, of 

transversally integrated|w 1-We easily find that in the above process the wake 

flow goes through a state that is strongly uniform in the x direction. 

Next, in order to examine the geometrical configuration of the vortex 

streets, we calculated the location (xo, y0) of the conter of each vortex region 

from the formula: 
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1 
Q/QN 

゜

゜

(b) 

67d 

1 (C) 

゜ 149d ~ 152d 
Fig. 11 Evolution of normalized tran-
sversally integrated vorticity 
Q(x)/QN. R=l40. (a)L/d=9.9, 
(b) 68.5, (c) 150.6. 

{Xo＝炉心，y）dxdy/fV(1)(x,y)dxdy,

Yo= !vy(1)（x, y)dxdy/ fv心，y)dxdy,
where V is the area in which I(1) |is larger than a given value 加max• Here(1)max 
is the largest I(1)|value in the vortex region, and r is chosen so that V contains 
only this vortex region. The alteration of r satisfying this condition, between 
0.2 and 0.4 for the near wake and between 0.4 and 0.7 for the far wake, gave rise 
to no significant change in the values of (xo, y0). According to these x。values,
we calculated the longitudinal spacings a1 and a2 of vortex regions of the same 
sign in the primary and secondary vortex streets, respectively. These spacings 
were also calculated f1;om the x values for which Q(x) takes the extremum. 
These two methods gave approximately the same spacing values. Consequently, 
a1 and a2 are almost independent of x, and, for R=l40, a1=4.8d and a2=8.7d, 
whereas a1=4.9d and a2=9.3d for R=l06. These values agree well with the 
results in the series I experiments, as shown in Fig. 3. 
Transverse spacings h1 and h2 of neighbouring vortex regions of opposite 
sign in the primary and secondary vortex streets were also calculated from the 
y0 values. Figure 12 shows the spacing ratios hi/ a1 in the left side (small x) and 
hd a2 in the right side (large x). The ratio hi/ a1 at first increases rapidly with 

(7) 
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Fig. 12 Change of the spacing ratios h,/ a1 and h,/ 
a, with downstream distance. Triangles 
denote the present results. ----, Okude 
& Matsui's result. 

x, and then saturates at a value close to 0.5 before the breakdown of the primary 

vortex street. Although the ratio hd a2 also increases with x, its increase rate 

is fairly small. Okude & Matsui29) calculated h1/ a1 using three different methods 
based on the smoke-wire flow visualization or hot-wire anemometry. Their 

result for R=SO, llO, and 140, expressed by a broken line in Fig. 12, is similar 

to ours. Their final value 0.45, however, is a little smaller than our value 0.5. It 

should be noted that both their results and ours show weak dependence of h1/ 

a1 on R. 

Finally, the movements of the vortex regions were examined. In Figs. 7 and 

9, their movements are easily noticed since letters (A, B,…） are assigned to 

each of them. Their speed in the streamwise direction was calculated according 

to the x。valuesin several vorticity fields. The speed in the primary vortex 
street relative to the fluid at infinity is almost independent of x, and, for R = 140, 

is 0.18U-0.19U, and 0.15U-0.18U for R=l06. These values are a little larger 

than u1 introduced in §4.1, which is 0.13U-0.16U for R::::::140 and 0.14 U-0.16U 

for R:::::: 106. On the other hand, the vortex regions in the secondary vortex street 

move at the lower speed of 0.05 U -0.10 U for these R values. This speed is 

consistent with the u2 value shown in Table 1. Okude & Matsui30) obtained the 

speed 0.14 U for the primary vortex street with R = 140 from visualized flow 

patterns and the data of velocity fluctuation. This value is consistent with our 

u1 value. 

5. Breakdown of primary vortex streets 

In this section, we will discuss in detail the process from the primary vortex 

street to the nearly parallel shear flow, described in §4. In this process, the effect 

of viscous diffusion does not seem dominant. This suggestion is based on the 

following rough estimations : the time required for the diffusion of vorticity over 

the representative longitudinal length a1 is estimated to be aU v, whereas the 

17 
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estimated time spent for the evolution of the vortex street to the parallel flow 
in the experiments isぷp/U. The ratio between these time scales is expressed 

as (aい）/(xp/U)=(ai/d)2R/(xp/d),which is 10-50 according to the data in 
Table 1. Therefore, the viscous diffusion seems unimportant in this process. 
Durgin & Karlsson7l in the discussion of their experimental results on the 
decelerated wake, proposed the following explanation, based on the inviscid 
theory, of the process from the primary vortex street to the stationary wake 
flow. If we assume the Karman type staggered arrangement of two rows of 
point vortices of strengths土I',shown in Fig. 13(a), then the velocity (u, v) at a 

point (x, y) near a point vortex in the lower row located at (xo, y0), induced by 
all other vortices, is expressed by l U=-2[I Tー喜3T2-2)ij+0(|rり，

冗「
(8) 

v= -v(3 T2-2)x + O(I f 12), 
6af 

where 元＝X-Xo, iJ = Y -Y。,r=（ふ ij),T=tanh（冗hi/a1), h1 i 1 is the distance 
between the two rows, and a1 is the spacing of the vortices of the same sign. 

Therefore, for T>芯只， thatis for h1/ a1 >0.365, we have the induced velocity 

(a) 
-「 -r 

h
 r
 

r
 

r
 

a 
Fig. 13 (a) Karman type vortex street. 
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Fig. 13 (b), (c) Distortion of a vortex region for 
(b) h1/a1>0.365, (c)for h1/a1< 
0.365. 
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field expressed by thin arrows in Fig. 13(b) near (xo, y0). Here the effect of the 

collective motion at the velocity (-I'T /2a1, 0) is removed, and I'is assumed to 
be positive. Therefore, if, instead of the point vortex, we consider a circular 

vortex region of small area with center at (xo, y0), the latter will be distorted 

into an ellipse in the way shown in Fig. 13(b). In contrast, if Tく⑫厄， thatis if 
h1/ a1 < 0.365, a mirror-image distortion will occur, as found from Fig. 13(c). 
Next, this distorted vortex region will rotate in the direction expressed by thick 
arrows in Figs. 13(b) and (c), owing to the effect of the velocity induced by the 
vorticity within the region. Thus, the major axis of the region will tend to turn 
counterclockwise toward the longitudinal direction if h1/ a1 > 0.365. Therefore, 
if we consider a vortex street composed of finite-area vortexregions whose 
centers satisfy the relation hi/ a1 > 0.365, we obtain the following suggestion : this 
vortex street will evolve to an approximately parallel shear flow if each r~gion 
becomes sufficiently slender so that it overlaps with neighbouring regions of the 
same sign. On the・ other hand, for hi/ a1 < 0.365, similar discussion suggests the 
preservation of the initial localized vortex structure. Therefore, if we consider 
a situation in which the ratio h1/ a1 increases with time (or with downstream 
distance) from a value smaller than 0.365, the vortex street can evolve into a 
nearly parallel shear flow after the ratio increases beyond 0.365. This is the 
scenario by Durgin & Karlsson7l, and was used to explain the result of their 
experiments in which h1/ a1 seems to increase with downstream distance because 
a1 decreases owing to the deceleration of the flow. 
Of course, this scenario is not perfect, as they themselves admitted. For 
example, the above two kinds of induced velocities must be taken into account 
simultaneously, and also expression (8) is not a good approximation when each 
vortex region has a fairly large area and is distorted to a considerable extent. 
However, Tsuboi & Oshima 13l obtained a numerical result which is consistent 
with this scenario. That is, using the discrete vortex method, they investigated 

the evolution of a Karman vortex street composed of circular vortex regions of 
uniform vorticity. They then found the transition to a nearly parallel flow 
(called merging in their paper) when both h1/ a1 is larger than a value roughly 
estimated as 0.4-0.5, and the area of the vortex region is not so small compared 
with d. This result suggests that Durgin & Karlsson's scenario is valid even for 
the evolution of a vortex street composed of vortex regions of fairly large area, 

although the threshold value of h1/ a1 may be a little larger than 0.365. 
In the primary vortex street of the present work, each vorticity region has 
neither circular shape nor uniform vorticity at any time, as found from Figs. 7 

-10. However, since this vortex street also is such that h1/ a1 increases with the 
downstream distance as shown in Fig. 12, Durgin & Karlsson's scenario may be 
applicable to it. Figures 7 and 9 give some indication of the distortion and 
turning of vortex regions which is consistent with the scenario. Definite conclu-
sion is, however, not obtained from these figures. 

19 
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In order to examine this problem in more detail, we carried out a numerical 

calculation using the inviscid discrete vortex method. In the calculation, the 

initial configuration of point vortices was determined in the following way : we 
first chose a part of the vorticity field containing a pair of vortex regions of 

oppositte sign. In approximating the nonuniform vorticity field within each 

vortex region by the aggregation of many point vortices, we used this criterion 

: "the point vortices have the same strength, and their number density is 

proportional to the vorticity." In the results shown below, each vortex region 

was approximated by the aggregation of about 200 point vortices. As a typical 

initial vorticity field representing the case with small hi/ a1, we chose the field 

containing the vortex regions B and C in Fig. 7(a). Another field containing two 

vortex regions of opposite signs obtained for LI d = 27.3 (not shown in Fig. 7) 
was also used for the case with large h1/ a1. These two fields correspond to (a) 

and (b) in Fig. 12. We then assumed for these vortex regions a periodic 

configuration in the x direction with a period av=2 lxo1―Xo2 I, where Xo1 and Xo2 
are theぶ。 valuesof the original two vortex regions calculated from (7). In the 
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numerical integration of the equation governing the motion of the point vortices, 
we employed the Euler's scheme of the second order accuracy with a time step 
corresponding to 0.09 sec. 

Figure 14 shows the evolution of the vortex street composed of the above 
vortex regions with the time t. Here only the range of one period in the x 
direction is shown. As found from Fig. 14(a), when hi/ a1 is small (0.31), the 
initial vortex regions remain isolated from each other. In contrast to this, when 
hi/ a1 is large (0.41), the vortex regions amalgamate to form a nearly parallel 
shear flow, as shown in Fig. 14(b). This latter behaviour is similar to the 
experimental results shown in Fig. 7. Moreover, the time required for the 
evolution from the vortex-street state to the nearly parallel flow in the inviscid 
calculation of Fig. 14(b) is similar to that in the experiment shown in Fig. 7. 
That is, in the experiment the vortex regions used as the initial condition in Fig. 
14(b) evolve into the nearly parallel flow shown in Fig.7(e) after about 60 sec., and 

the corresponding calculation of Fig. 14(b) gives a similar evolution time to this 
kind of flow. Incidentally, although the evolution time from the first figure to the 
last one in Fig. 14(a) is close to the time from Fig. 7(a) to Fig. 7(d), we see 
noticeable difference between the vorticity field in Fig. 7(d) and that in the last 
figure of Fig. 14(a). 

It is suggested from the results in this section that the breakdown process 
from the primary vortex street to the nearly parallel flow is basically explained 

by Durgin & Karlsson's scenario, which is based on the inviscid theory. The 
viscous effect seems unimportant in the breakdown process, although it prob-
ably contributes to the increase in h1/ a1. Furthermore, the results shown in Fig. 
14 suggest that the threshold 

value of hi/ a1 for the occurrence 
of the breakdown is less than 0. 
41 in the present case of the 
large-area nonuniform vortex 

regions. However, in the experi-

ment, the h1/ a1 value reaches 
about 0.5 just before the break-
down, as shown in Fig. 12. This 
large final value may be due to 

the continuous increase in h1/ a1 
during the time spent for the 
distortion and the turning of the 
vortex regions. 

6. Formation of secon-

dary vortex streets 

As shown in §4, a nearly 
parallel flow is observed before 

(a) 5.0d (b) 4.1d 

y
 

゜ ゜
-5.0d1 -4.1d 

I 

-0.3U O -0.3U 0 
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Fig. 15 Averaged longitudinal velocity 
profiles (thick lines) when the 
flow field is closest to a parallel 
flow, and best-fitted Gaussian 
profiles (thin lines). (a)R=l40, 
L/d=68.5, (b) R=l06, L/d= 
71.l. 
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the secondary vortex street appears far downstream. Therefore, it seems 

reasonable to predict that the formation of this vortex street is due to the 

instability of the parallel flow, as suggested by Taneda1> and by Cimbala et al.3・ 4> 

In order to examine this prediction, we calculated the linear stability of the 

parallel flow. 
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Figure 15 shows the y-dependence of the longitudinal velocities < u > 
averaged over allぶsin the velocity fields closest to a parallel flow. These 
velocity profiles are well approximated by the Gaussian profile : 

u(y) = Uoo-Uo exp（ーが炉）， （9) 
where uoo is the value of < u > for sufficiently large IY j, and is close to U. Also, 
for R=140, uo=0.30U and q=0.58/d (Fig. 15(a)), and uo=0.18U and q=0.55/d 
for R=l06 (Fig. 15(b)). Therefore, the local Reynolds number凡 basedon uo 

and q―1 is 72 for R=140 and 54 for R=106. 
The linear stability of the wake profile (9) was computed by Fujimura et 
al.31> using the expansion of dependent variables by the Chebyshev polynomials. 

Their results are shown in Fig. 16, where a solid line expresses neutral stability, 
and a broken line denotes the nondimensional wavenumber x = 27r / qA of the 
most unstable mode for each Re, Here A is the wavelength of each mode. 
The values of x corresponding to the wavelength of the secondary vortex 
street and R, of the nearly parallel flow in the experiments are also shown in 
Fig. 16. Here open symbols denote the result from the digital image processing. 
That is, Re was calculated from the velocity profiles shown in Fig. 15, and also 
the values of a2 shown in §4.2 were used as,1 in the calculation of x. The data 
expressed by solid symbols were estimated from the results in the series I 
experiments in the following way : first, the y coordinate giving the largest 

vorticity in the Gaussian profile (9), y= y戸ーl/2q,is assumed to be the same as 
the y coordinate of the center of the positive vortex region in the primary vortex 

street just before its breakdown. Next, if we use the result in §4 that hi/ a心 0.5
just before the breakdown, we can estimate q from the formula 0.5a1/2= -yv 
using the a1 value at that time. Furthermore, the velocity defect u。in(9) is 
estimated from the assumption that the velocity at y = Yv in (9) is equal to the 
velocity of the primary vortex street just before its breakdown. Using these 

values of q and u0, and the values of a2 shown in Table 1 as A, we can estimate 
(x,凡）． Asshown in Fig. 16, these estimated values are consistent with the data 
from the digital image processing, in spite of the several assumptions made. 
The Re values in the experiments are always much larger than the critical 
R1 value 4.512 in the theory. Furthermore, although the wavelength of the 
secondary vortex street is always within the unstable region in the theory, it is 
considerably smaller than that of the most unstable mode. One possible explana-
tion of this discrepancy is that the actual flow field is not exactly parallel and 

changes slowly in the downstream direction in contrast to the theoretical 
assumption. 

7. Discussion and conclusions 

We carried out two series of experiments on the breakdown and the 
rearrangement of the primary vortex street using the aluminium dust method 
and the digital image processing of the visualized flow fields. Consequently, we 
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obtained the following results : for 70 < R < 154, by appropriately controlling end 
conditions, two-dimensional vortex streets are observed both in the near and far 
wakes. Furthermore, the primary vortex street breaks down into a nearly 
parallel shear flow of Gaussian profile at a certain downstream distance, before 
a secondary vortex street of larger scale appears further downstream. This 
breakdown process can be explanined as the evolution of vortex regions of an 
inviscid fluid if we invoke the observation that the distance between the two 

rows in the primary vortex street increases with the downstream distance (the 
Durgin & Karlsson's scenario). That is, the viscous effect is not dominant in this 
process. Numerical computations with the discrete vortex method also support 

this explanation. The wavelength of the secondary vortex street is a little 
smaller than that of the most unstable mode in the linear stability theory applied 

to the above nearly parallel flow. The ratio of the wavelength of the secondary 
vortex street to that of the primary vortex street decreases with increasing R, 
and ranges from 1.7 to 2.6. Moreover, the speeds of the vortex streets relative 
to the fluid at in且nityare about 0.12U-0.19Uand0.03U -0.lOUfor the primary 
and secondary vortx streets, respectively. 
In contrast to the present work, a few experimets on the evolution of the 
primary vortex street in the far wake were carried out under controlled forc-
ings. In the experiments by Matsui & Okude9) and Okude & Matsui6¥ a 

disturbance was introduced into the wake by a loudspeaker driven with half the 
frequency of the velocity fluctuation in the primary vortex street. They found 
that the flow pattern and velocity fluctuation in the secondary vortex street are 
made more regular by the disturbance. Using a conditional sampling of the 
velocities, they also obtained the evolution of the vorticity field suggesting the 
vortex pairing (merging). Nakano & Rockwell 1°) examined the behaviour of 
the wake of a transvernally oscillated cylinder for R = 136. When the oscillation 
is purely sinusoidal with a frequency close to the inherent frequency of vortex 
formation, they observed a regular vortex pattern (locked-in response) in the 
near wake and obtained a result indicating the decay of the vortical structure at 
least until downstream distance 40d. In contrast, when the oscillation amplitude 
is modulated so that it includes subharmonic frequency, they observed a substan-

tial distortion of the vortex pattern leading to an increase in wavelength 
between the principal vortical structures in the region of downstream distance 

20d-35d. These results imply a significant effect of the subharmonic perturba-
tion on the evolution of the primary vortex street in the far wake. Therefore, 
since there is no particular reason for the selective generation of subharmonic 
disturbance in the presnt experiments, there is no contradiction in the fact that 
our results, which do not suggest vortex pairing, differ from those of Matsui & 

Okude. 
There are also a few theoretical investigations related to the evolution of 
the vorticity field in the far wake. Aref & Siggia11) numerically examined the 

evolution of two parallel vortex sheets of opposite sign with sinusoidal perturba。
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tion of wavelength ilp. Here a discrete vortex method was used under the 
assumption of nearly inviscid dynamics. They found that a vortex street of 
longitudinal spacing心emergesfor h／入p;:,.0.3, where h is the sheet separation. 
They also observed for h/ Ap >0.6 the transition of this vortex street to a new 
metastable vortex street of longitudinal spacing 2入P through the pairing of 
vortex regions of the same sign. Although this first vortex street has a ratio of 
the transverse spacing to the longitudinal spacing larger than 0.365, its evolution 

into a nearly parallel flow is not reported, as it is in the Durgin & Karlsson's 
secenario. One possible explanation of this difference is that each vortex region 
in the first vortex street is too localized to obey this scenario. This explanation 
is based on the observation by Tsuboi & Oshima 13J that sufficient extents of the 

vortex regions are necessary for the evolution into a nearly parallel flow. 
Meiburg12J also numerically examined the evolution of the two parallel vortex 

sheets. In his simulations with an initial perturbation composed of a basic mode 

of wavelength入p= h/0.48 and its subharmonic of wavelength 2入p,only the vortex 
pairing process was reported during the transition from the vortex street of 

wavelength 2入P• This result also may be due to the insufficient extent of the 
vortex regions in the first vortex street. 

Another related theoretical investigation was carried out by Maekawa et 
al. 14J They studied the transition mechanism in a spatially developing wake by 

means of direct numerical simulations of a viscous flow. In their simulations, 
the inlet flow was forced with a fundamental mode alone in their Case 1, and 
forced with a fundamental mode and its first and second subharmonics in their 
Case 3. In Case 3 with R=200, they found that a vortex street first appears at 
a certain downstream distance and is then significantly distorted by the presence 
of the subharmonics, suggesting an early stage of the vortex pairing. However, 
apart from the subharmonic aspect of the distortion, the spatial development of 
the vorticity field shown in their Fig. 6 seems consistent with the Durgin & 

Karlsson's scenario, That is, the distortion and turning of each vortex region 
are similar to those in this scenario. Also an increase in the spacing ratio with 
downstream distance is expected, because a gradual increase in the half-value 
width of the mean velocity profile is reported. Their other simulation for Case 
1, with R=600, showed that a regular vortex street formed at a certain down-

stream distance stays isolated and does not experience further distortion. The 
spacing ratio of the vortex street, measured from their Fig. 3, takes a constant 
value of 0.37 for a sufficiently large downstream distance_ The results of these 
two simulations suggest that if a simulation for Case 1 with R=200 were carried 
out, a spatial development to a nearly parallel flow would be observed, owing to 

the downstream increase in the spacing ratio, as in our experimental result. 
Unfortunately, however, no result for the above case is shown in their paper. 
Finally, aside from the comparison with the experiments, the dependence of 
the time development of the vortex street composed of finite-area vortex 
regions of nonuniform vorticity on their shape and on their vorticity distribution 
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is an interesting theoretical subject. Some results on this subject will be shown 

in the near future. 
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