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Calculation Formulas for the Wave-Induced 

Steady Horizontal Force and Yaw Moment 

on a Ship with Forward Speed 

By Masashi KAsmw AGI* 

A new analysis method based on the theory of Fourier transform is 

provided for the added resistance, steady sway force, and yaw moment 
acting on an advancing ship in oblique waves. The principle of linear 
and angular momentum conservation is used to relate the steady force 
and moment to far-field disturbance waves generated by the ship. 
Maruo's added-resistance formula is derived easily with the present 
method in which Parseval's theorem is effectively used in place of the 

stationary-phase method. The new method is extended to the analysis 
of the steady sway force and yaw moment. Calculation formulas for 
these force and moment are obtained in a form analogous to that for 
the added resistance, involving only the Kochin function as unknown. 
In the limit of vanishing forward speed, the obtained formulas reduce to 

Maruo's for the drift force and Newman's for the drift moment. 

Key words: Added resistance, Steady sway force, Steady yaw 
moment, Momentum principle, Kochin function, 

Forward-speed effects 

1. Introduction 

When a ship is floating on the surface of waves, the mean drifting force and 

yawing moment will be exerted on the ship as a result of wave actions. These 
drift force and moment are of second order in the wave amplitude, but of 
engineering importance in designing the control system to maintain the position 

or heading of ships in waves. A rational theoretical analysis of this subject, 
based on the principle of momentum conservation, was provided first by Maruo1l 
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for the drift force in the horizontal plane and later by N ewman2> for the steady 
yawing moment. It has been common since these two papers to perform 
"exact" numerical computations of the drift force and moment when the ship's 
forward speed is zero. 

When a ship • is advancing at, constant forward speed, the same kind of 
second-order steady force and moment will be also exerted on the ship. 
Maruo3>,4> applied the momentum-principle analysis to the case of forward speed 

present, and provided a formula for the ship's longitudinal component of the 
steady horizontal force. This component is known as the added resistance in 
waves and has interested many researchers in the field of naval architecture, 
because the prediction of wave resistence is crucial in considering economical 
operations of ships in actual seaways. With this engineering reason, many 
studies on the added resistance have been made so far ; references of these are 
included in the proceeding of symposium5> held by the Society of Naval Archi-

tects of Japan. 
In oblique waves, due to the steady sway force and yaw moment, the ship 

will advance with the drift angle and check helm to maintain a designated 
course and thus experience the increase of resistance arising from these secon-
dary causes. Therefore in discussing the overall propulsive performance of a 
ship in waves, we need to focus more attention on the sway force and yaw 
moment besides the added resistance. However no calculation formulas exist 
for these steady force and moment, involving only the Kochin function as does 
the added-resistance formula. It may be true that Maruo's added-resistance 
analysis can be directly applied to the lateral force component, but it seems 
difficult to derive a compact formula for the yaw moment, as long as we follow 
Maruo's procedure of analyzing the momentum relation. His procedure is 
complicated, because the stationary-phase method is skillfully used to lead to a 
final experssion. Thus, to succeed in obtaining a compact formula for the 
steady yaw moment, we must first develop a new analysis method with which 
Maruo's added-resistance formula can be easily derived, and next apply it to the 
principle of angular momentum conservation which relates the moment on a 
ship to the far-field ship-generated waves. 

The present paper reports the work performed along the above lines. In 
the new analysis method, Parseval's theorem in the Fourier-transform theory is 
effectively utilized, and thereby complicated calculi seen in Maruo's analysis are 
avoided. The obtained formulas permit the prediction of the steady sway force 
and yaw moment in terms only with the Kochin function equivalent to the 
far-field disturbance waves. Of course Newman's zero-speed results are 
recovered from the present formulas in the limit of vanishing forward speed. 

2. Far-field asymptotic form of the velocity potential 

For the sake of subsequent analyses on the principle of momentum and 
energy conservation, we need to obtain the asymptotic form of the disturbance 
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velocity potential at large distances from a ship. Let us consider a ship 
advancing at constant forward velocity U into a plane progressive wave of 
amplitude a, circular frequency(J)o, and wavenumber k。.Thewater depth is 
assumed infinite and thus k。=(J)~/g, with g the acceleration of gravity. The 
angle of wave incidence is. denoted by x and measured as in Fig. 1, with x.=:= 0 

corresponding to the following wave. Due to the effect of this incident wave, 
the ship performs sinusoidal oscill.ations about its mean position with the 
circular frequency of encounter(J),which is related to(J)。by(J)＝ (J)。-K。Ucos X・ 

ヽ
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Fig. 1 Coordinate system and notations 

As shown in Fig. l, we take a right-hand Cartesian coordinate system 0-
xyz, translating with the same velocity as that of the ship. The x-axis is 
positive in the direction of ship's forward motion, the y-axis positive starboard, 
and the z-axis positive downward, with the origin placed on the undisturbed free 
surface. 

To justify the linearity, we assume the amplitudes of incident wave and 
ship's oscillations to be small. Further we assume the flow inviscid with 
irrotational motion. Then the velocity potential can be introduced and written 
by linear assumption as 

(J)(x, y, z, t) = -Ux+ ¢(x, y, z, t) 

¢(x, Y, z, t) = Re［ゆ（x,Y, z)e;"'t] 

¢(x, Y, z) = -1J.!-只(f)o+q;) 
加。

(1) 

(2) 

(3) 
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(f!o = e 
-koZ-iko（ぶcosx+ysinx)

(J)(J)。6 ^ 

(f! = ([!7ー ミ立
g j=1 a 

(f!j 

(4) 

(5) 

In the above, rpo is the potential of the incident wave and rp the disturbance 
potential due to the presence of a ship. The latter is divided into the scattered 
potential rp7 and the radiation potential rp; (j = 1, 2,.. ・, 6) due to forced 

motion of the ship in each mode of six degrees of freedom; ~J is the amplitude 
in the jth mode of motion. The symbol'Re'in (2) means the real part to be 

taken. 
The velocity potentials, rp。andrp, are governed by Laplace's equation and 

subject to the linearized free-surface boundary condition 

(i(J)ー U玉）2炒―g曇＝ 0 (6) 

on z = 0 and the condition of vanishing velocity as z→oo. In addition, the 

disturbance potential <p satisfies a suitable radiation condition. 
From Green's theorem, the disturbance potential <p at any point P = (x, y, 

z) in the fluid is given by 

rp(P) = f 1（誓）＿rp(Q)i□G(P; Q)dS(Q) (7) 

where Q =（ふり， t)denotes the integration point on the wetted portion of ship 
hull SH ; o/on is the normal differentiation with respect to the integration point, 
with the normal defined positive into the ship hull; and G(P; Q) denotes the 
Green function or source potential which satisfies the same free-surface and 
radiation conditions as those to be satisfied by rp. With the Fourier-transform 
technique, this Green function can be written in the form6> 

l / 1 1 
G(P; Q) =--(―--

__J_ OO4/1k(:/ r') OO e―'n(g+［）-|y-刀|-

27[[oe g)dK. Rei (n+ 1V)v戸デ ndn

_ 1 7[ [ llk2 + i3K4 ]戸c―v(z+s)-ly-：戸万→k(X-!i)dk

＋古[-1:1+ 1:'+ 1~]~ 
Xe―l(z+ s)-i6klY-,11 ふ刀亡戸位（お— •)dk (8) 

where 

バ＝以x-g)2+（yーザ＋（z工t)2r'j 
1 v= （①十kU)2= K +2kr+ 

炉

g K。

(9) 

(10) 
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(13) 

(14) 

In the case of r > 1/ 4, wavenumbers ks and k. given by (13) is not real, and thus 
the limits of integration in (8) should be interpreted such that ks = k. for r > 1/ 
4. (Hereafter this convention will be understood.) 

To obtain a far-field approximation to the disturbance potential <p when the 

transverse distance lvl is large, let us first consider the asymptotic approxima-
tion of the Green function itself. It is obvious that all the terms except the last 
one in (8) vanish for large values of IYI- (These terms represent the local 
disturbance in the vicinity of the x-axis.) Therefore, substituting only the last 
term of (8) into (7), we obtain the desired approximation of the velocity 

potential valid at large distances from the x-axis : 

1 K1 k3 

叫， Y,z)～五[-[OO+i2 十 1~ ]H±(k) 

X~e―VZ干 ifkY -fv'Ck2— ikx 

｀ 
dk (15) 

where 

庄（k)=且（鷹― (jJ羞）e ― Vs土 i€K叫叫kl;dS (16) 

is the Kochin function equivalent to the complex amplitude of the far-field 
disturbance wave. The upper or lower of the complex signs in (15) and (16) is 
to be taken according as the sign of y is positive or negative, respectively. 

With the convention that the Kochin function is zero outside of the integration 
range explicitly shown in (15), we shall write (15) in the form 

rp(x, Y, z)~½ J:iEkH土(K) V 2冗—～ ふ亡71e
-vz+ieky,lv'立万e―ikXdk (17) 

Here the notation (14) has been used. 

From this equation, we can readily obtain the Fourier transform of the 
disturbance potential in the far field : 
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F{q;(x, Y, z)} = 1:q;(x, y, z)e•kxdx (18) 

= iEkH±(k)~e-vz+iCkY./Vこ戸
~e (19) 

Note that neglected in (17) or (19) are only the local disturbances near the x-
axis and that the momentum or the energy associated with these terms become 
infinitely small as the coordinate x tends to plus or minus infinity. 

The Fourier transform of the incident-wave potential q;。willbe derived by 

substituting (4) into the definition (18), with the result 

F{ <po{x, Y, z)} = 2祠(k-kocosx)e―koZ-ikoYSlnx (20) 

where 8(k-k。cosx)is Dirac's delta function, thus contributing only for k = k。
cosx. 

For convenience in subsequent derivations, we decompose the Kochin func-

tion in the form 

H±(k) = C(k)土知S(k) (21) 

where 

C(k) = f［（岳— (f! 心）e―以＋ iklicos(1J~)dS

S(K） ＝ 仄（悶―¢土）e―Vこ十ikI!sin(7J□ )dS] 
(22) 

We note that C(k) and S(k) represent the symmetric and antisymmetric com-
ponents, respectively, with respect to the center plane of a ship symmetrical 
about y = 0. 

3. The added resistance 

The principle of linear momentum conservation 
lri. this section, we shall consider by use of the Fourier-transform technique 

the same problem as that analyzed by Maruo4> and show that Maruo's added-

resistance formula can be derived with considerable ease. Following Maruo, 
we begin by considering the rate of change of linear momentum within the fluid 
domain bounded by the ship's wetted surface SH, the free surface SF, and a 
control surface Sc at a large distance from the ship. Using Gauss'theorem and 

taking account of that there is no flux across S五andSF and that the pressure 
is zero on SF, we get: 

d閃＝一ffpndS-fflpn+pV<))(n ••<)))] dS (23) 
SH.I.!Sc  

where p is the fluid pressure, p the fluid density, and n the normal vector. 
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As usual, we take time average of the above. Because of the periodicity of 

fluid motion, there can be no net increase of momentum in the control volume 
from one cycle to another. Therefore the steady force in the horizontal plane 
can be related to the far-field velocity potential, in the form 

F = f LpndS 
SH 

= -fiC[pn＋叫（差Unェ）］dS (24) 

where, from Bernoulli's equation, 

p= 一 p｛璧— U塁＋杯叫—gz} (25) 

and nx is the x-component of the normal vector. In (24) and (25), eq. (1) has 
been substituted and the overbar in (24) means taking time average. 

Since a resistance is defined as the force in the negative x-direction, we 

obtain from (24) an expression for the added resistance : 

月＝f[［加＋p塁（ご―Unェ）］dS (26) 

In the present analysis, instead of the usual control surface of a circular 
cylinder of large radius about the z-axis, we take two flat plates as the control 
surface, which are, as shown in Fig. 1, located at y =士 Yand extend from x 
= -oo to x = + oo and from the instantaneous free surface down to z = + 00. 

(The value of Y is assumed large such that the local waves near the x-axis can 
be neglected.) Careful readers might be anxious about the momentum flux from 
the vertical planes parallel to the y-axis at x =土oo. However the control 

surface considered here is of infinite length in the x-direction and all the 
disturbance waves radiating away from the x-axis are precisely taken into 

account. Thus, neglected are only the contributions from the local waves which 
exist only near the x-axis; these will become zero at x =土ooin the three-

dimensional case. 
Note that the x-component of the normal vector is zero on the present 

control surface. Then, neglecting terms higher than 0（が） asin the usual 
procedure, we readily obtain from (26) 

R=p[りOOOO［信詈］＿yydx (27) 

Here []どvmeans the difference between the values of the quantity in brackets 
at y = Y and at y = -Y. Substituting (2) into (27) and performing the 

time-average calculation, it follows that 



8
 

Masashi KASHIW AGI 

R＝炉Re』OOd王［差詈］＿yydx (28) 

where the asterisk denotes the complex conjugate. 
Next we substitute the velocity potential (3) for </; into the above. The 

result will involve terms which are quadratic in the disturbance potential q; and 
the incident-wave potential rp。separately,plus the cross terms of rp and q>o. The 
contribution from q>o alone is zero, because there can be no force associated with 
the undisturbed incident wave system. ・ Taking these into consideration, (28) 

can be written in the form 

R＝碑⑯＋瓦）（29)
K。

応½Re』OOdzjOOOO［璧ご］＿:ydx (30) 

瓦＝ ½Re』OOd王［翌誓＋誓警］＿:ydx (31) 

We notice that the integrations with respect to x are of the form to which 
the following Fourier-transform theorem (Parseval's theorem) can be applied: 

1:1(x)g*(x)dx＝古1:F(k)G*(k)dk (32) 

where F(k) and G(k) are Fourier transforms of f(x) and g(x), respectively, 
which may be calculated from the definition (18). 

Let us consider first eq. (30). Since the potential cp has exponential depen-
dence on the coordinate z as seen in (17), the z-integration in (30) can be 
carried out with the formula: 

f~e―2vzdz =-¼ 。 2v (33) 

The x-integration in (30), on the other hand, can be performed by applying the 
Parseval's theorem (32) in terms of the Fourier transform of cp given by (19). 
After performing the x-and z-integrations in this manner, we get the following 
result with relative ease. 

瓦＝上1:€J.{IH+(k)l2+IH一(k)l2}~kdk
8冗ー。 ふ

＝点[-仁＋仁＋〖］｛屈(k)l2+IH一(k)ド｝ぷ~kdk
(34) 

Here we have used the convention concerning the integration range noted in 
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deriving (17). In (34), it is understood that ks= k4 in the case of r>l/4. 

We proceed to the second term瓦 definedby (31). In the calculation of 
(31), it is sufficient to retain only terms which are independent of the coordinate 
y, because according to the theory of hyperfunction7l, sinusoidal terms will 

vanish when taking the limit of Y→oo after performing the x-and z-integra-
tions. Therefore only two cases should be considered here : k。sinx = 

€k{；i二戸 and k。sinx =一 €k/戸二戸．

We begin with the first case, k。sinx = Ek/vこ豆 Sincewe are going to 
apply the Parseval's theorem (32) to the x-integration in (31), we must consider 
the product of the Fourier transforms of (f! and (f!o, given by (19) and (20), 
respectively. Thus due to Dirac's delta function appearing in (20), we can put 

k=k。cosx ; from this and k。sinx = Ekh万二戸， wehave v = k。.Therefore 
the z-integration in (31) takes the form 

』OOe―(v+ko)zdz= ~ = fv (35) 

Applying this result and Parseval's theorem, eq. (31) can be reduced to 

R2 
1 

＝如cosxIm[H(k。,x)l
2 

(36) 

where'Im'denotes the imaginary part, and H(k。,x)is the function obtained 

after substituting k = k。cosx and恥りこ炉＝ K。sinx into the Kochin func-
tion H+(k) and thus can be written as 

H(k。,x) ＝八(~― <p-fn)e ― kos+iko(l/cosx+osinx)dS (37) 

In the second case of k。sinx =一 €kl戸二炉， we can easily confirm that the 

reductions analogous to the first case lead to the same final result as (36) and 
(37). Therefore we have completed all of the necessary integrations. 

Substituting (34) and (36) into (29) gives the formula for the added 

resistance in waves: 

p：が＝二。[-1:]+［3+［］｛|H+（K)|2+|H-(K)ド｝

X 
V 

｀ 
kdk - 1 

cosx Im[H(k。,x)l (38) 
2 

Principle of energy conservation 
In Maruo's analysis, the last term of (38) is transformed further using the 

energy-conservation principle. Since no external force exists except the con-

stant towing force and the gravitational force keeping the equilibrium position 
of the ship in space, there is no work done or no dissipation of energy. Thus, 
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owirtg to the periodic nature of the fluid motion, we have the relation'l 

fl屡（璧―Unx)ds= 0 (39) 

Notirig that nェ＝0on the control surface shown in Fig. 1 and neglecting 
higher0order terms resulting from the free-surface elevation, the above equation 
can be transformed as 

〖王［璧璧］＿yydx ＝紐e[吋：［ i吟誓］＿yydx=0 (40) 

Substituting (3) and decomposing the result into two parts like (29), we can 
write (40) in the form 

がm』OOd王［誓］＿yydx

＝一tIm』OOdz[OOOOい誓—疇rydx (41) 

The procedure of performing these integrations with respect to x and z is 
the same as that for (30) and (31); that is, we apply Parseval's theorem (32) 
with the Fourier transforms of rp and rpo. After straightforward reductions, we 
get the following result : 

点[-仁＋仁＋［］｛屈(k)l2+IH一(k)l2}心 dk

1 = ¾Im[H(k。,x)]
2 

Here H(k。,x)is the Kochin function defined by (37) 

(42) 

With this energy relation, the added-resistance formula (38) can be recast 
in the form 

p:が＝土[-仁＋仁＋1~]{IH+(k)l2+ IH一(k)l2}

V x~(k-kocosx)dk 
ふ

(43) 

If the relation (21) is substituted for H士(k),the above equation can be expressed 
as 

心＝贔[-仁＋i2k•+〖］{IC(k)|2+IS(k)l2} 
X 

V 

ふ
(k-ko cosx)dk (44) 



Calculation Formulas for the Wave-Induced Steady Horizontal Force 
and Yaw Moment on a Ship with Forward Speed 11 

Introducing Hanaoka's variable transformation8> 

k = K° { 
2cos0 

l-2rcos0士J1-4rcoso}, (45) 

we can confirm that (43) or (44) is identical to that derived by Maruoり
However, a point to be emphasized here is that the derivation in this paper ia 
quite・simple in comparison to Maruo's, because the Fourie~transform technique 
is used in place of the stationary-phase method which was essential in Maruo's 
analysis. We can see from (44) that symmetric waves C(k) and antisymmetric 
waves S(k)・ contribute independently to the added resistance and no contribution 
exists from the interaction between・ them. 

4. The steady sway force 

The y-component of (24) gives the formula for the steady sway force : 

瓦＝［L［四＋噂（差Unx)]ds (46) 

Evaluating this on the control surface shown in Fig. 1, (46) can be reduced to 

瓦＝一LOO吋ご［P→（璧）2rydx

=“OOdz[]（璧）2+（璧）2-（誓）2］＿yydx

叶pgi]町＿:ydx +O（が） (47) 

Here eq. (25) for the pressure P has been sub~tituted and品 isthe unsteady 
elevation of the free surface, which is given by 

品＝ i（璧— U璧）Z=O+o（が） (48) 

Calculating time average in (47) and substituting (3) for the velocity 
potential, we can write (4 7) in the following decomposed form 

where 

2 冗＝一pga
K。（了＋½) (49) 

冗＝一｝』立[|釘＋慶I2」誓「］＿yydx

叶Re仁[{KI吋＋如璧「＋i2ず翌｝Z=Orydx (50) 
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t= —伊e』OOdz「［虹寧＋虹如＊ ＿立国 Y
-OO 8x 0x Oz Oz 8y 8y ]-ydx 

叶Rel]｛酬＊＋玄岳誓
+iて（疇噌）｝Z=Orydx (51) 

Note that Vi represents the contributions from ship-generated disturbance 
waves and Yi the contributions from the interactions of incident wave and 
ship-generated waves. 

Let us first consider Y1. In order to apply the Parseval's theorem (32) to 
the x-integrations in (50), we need to obtain the Fourier transform of the 
derivatives with respect to x, y, z of the disturbance potential rp ; which can be 
done easily using (19). The z-integration, which is necessary in the first term 
in (50), can be performed by use of (33). Summarizing these, we obtain the 
result 

Y1= 
1 °°がV,. V3 

―豆/_)H+(k)l2-IH一(k)ド）｛2（V2＿が）十四万―t
一占（K＋長＋2rk)}dk

= _l__/_)H+(k)l2-IH一(k)l2)vdk
8冗ーOO

(52) 

From (21), the following relation holds : 

IH+(k)l2-IH一(k)12= 2€dm{2C(k)S*(k)} (53) 

Thus, recalling the convention about the range of integration with respect to k, 
eq. (52) can be written in the form 

可＝点[-f二fK3+「］Im{2C(k)S*(k)}vdk 
-oo Jiu Jk< 

(54) 

Next we consider the second term,瓦 definedby (51). Also here, we 
apply the Parseval's theorem with the Fourier transforms of <p and<po; these 
are given by (19) and (20), respectively. With the reasons stated in transform-
ing the interaction terms between rp and rpo in the added-resistance formula, we 

can concentrate on the case of k = k。cosX,士c“勺亡ゴ互＝ kosin x, and thus 
v=k。.Usingthese relations, eq. (51) can be transformed as 

冗＝一½Re［伊（K。,x)｛竺亨＋上—K。 sinx
＿土(K+（K唸。~+2rkocosx)} ] 
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1'. = -¾kosinx lm[H(k。，兄）］ （55) 
2 

where H(k。,x)is given by (37). 

As in the added-resistance formula, the above result can be put in a different 

form by applying the principle of energy conservation. Substituting the rela-

tion (42) in (55) and expressing the resulting equation in terms of C(k) and 
S(k) defined by (21), we get: 

- 1 K3 

y2 ＝ー石kosinx[ -J:1 + 1:• + 1~ ] 

X {1c(k)l2+IS(k)l2~ ヽ dk (56) 

Therefore, substitution of (54) and (56) into (49) gives the formula for the 

second-order steady sway force : 

土＝一4;K。[-［口［2k3+[］Im{2C(K)S*（K)｝疇

smx k1 k3 ＋戸[-1:1+ L十[]{|C(K)|2+|S(K)『｝/戸dk(57) 

From this result, we can see that the first term comes from the interaction 

between symmetric and antisymmetric waves, whereas the second term comes 

from the independent contributions of symmetric and antisymmetric waves. 

Since the second term is multiplied by sin x, both terms in (57) become zero in 

head and following waves for a ship with transverse symmetry. 

5. The steady yaw moment 

In order to relate the wave-induced steady yaw moment to the far-field 

velocity potential, we consider the principle of angular momentum about the z 

-axis. N ewman2l gave an expression for the rate of change of the vertical 

component of angular momentum, which is of general and thus applicable to the 

present problem. This can be expressed as 

dKz 
dt-＝ -ff P(rXn)z dS 

-JZ[p(rxn);z＋p(rx▽砂（n・▽(J))]dS (58) 
Sc 

Here r is the position vector and the subscript z denotes the z-component of 

vector quantities. Note that the first term on the right-hand side of (58) is the 

minus yaw moment, because the unit normal is defined positive when pointing 

out of the fluid domain. 

We take time average of (58). Since the fluid motion is periodic, there 
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exists no net increase of angular momentum in the control volume. 
we get: 

Therefore 

Mz = f lHP(rxn)zdS 

＝ー］］［p(rxn)叶 p(rx▽([)）,(n• V([)）］dS 
Sc 

(59) 

Here the pressure of fluid p is given by (25), and it follows from (1) that 

(rxn)z=ぉny-ynx

綽砂
(rx▽([)）z = X面―y□-u) (60) 

n.▽([) ＝ nx（璧— u)+ny亨y 

Evaluating the above equations on the control surface shown in Fig. 1 and 
discarding terms higher than 0(¢り， eq.(59) can be reduced to 

正＝ “OOdzi]噌塁）2+（璧）―（璧）］］＿YYdx

-½pgl]司＿YYdx

+piOOdzi]虐塁］＿YYdx+pu[]応塁］＿YYdx

where品 isgiven by (48). 

(61) 

As before, calculating time average and substituting (3) gives the following 
expression : 

where 

2 - pga --
Mz = ~(N1 + N2) K。

瓦＝十RelOOdzi：い（以~12＋信 2_ 鷹『）＋ 2噂ご］＿YYdx

-+Rel:［叶Kl叶＋ん膚2＋詞＊甕｝Z=O

+2y{（咋＊＋んご）鸞｝z=O]:ydX 

昂＝紐el00dz 1:[ X（ 立疇十如疇＿往疇
-00 0x 0x Oz Oz 0y 0y) 

+y（蝕疇十疇虹） Y 
0x 0y 0x 0y ]＿Ydx 

—峠e[0000［吋K亨＋ん塁誓＋叫噂—¢誓）｝z=O

(62) 

(63) 
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+yい（疇—¢口）王（信ご＋鸞＊長）し］一~ydx (64 

In order to apply Parseval's theorem (32) to the x-integration in (63) and 
(64), the Fourier transform of the derivatives of rp times the coordinateぉ must
be obtained. Considering x(orp/ox) as an example, it follows from (17) that 

噂＝ 21冗[:a庄 (k)星Tze―V左疇喜叫e―ikxdk

＝ー五f：瓜［ EkH±(k)Fk戸―Vえ＋叫叩亨']e―ik必dk(65)

Therefore the Fourier transform of the above can be readily found : 

where 

叫信｝＝ →羞[€Kか(k) 星戸e―泣＋叫~]

＝一 ·--¼{H 士(k)}~e-'炉€kY戸
z dK 五戸刀召

-iH囁）瓜{~戸 VZ}e+ifkY~

工H士(k)
vk(vv'-k) 

V2ーが
e―vzye平ifkYぷ厄二戸

, dv k 
v'=扉＝ 2（T+K。)

Regarding the Fourier transform of rJ,:p* /rJx, we have from (17) 

叶ご｝ ＝［H±(k)]* 亨〗e-土叫ご戸

(66) 

(67) 

(68) 

Similarly, we can obtain Fourier transforms which are necessary in carrying out 

the i'-integration in (63). According to Parseval's theorem, we must consider 
the integration of the product of (66) and (68) with respect to k and similar 
integrations appearing in (63). In carrying out these integrations, we note that 
the integrand originating from the second term on the right-hand side of (66) is 

pure imaginary and thus does not contribute to the final result. Furthermore 

we can confirm that the summation of all the terms linearly proportional to y, 
including the contribution from the last term in (66), is precisely zero. Con-
cerning the integration with respect to z in (63), eq. (33) can be used. 

Summarizing these reductions, we shall get : 

応＝ー81冗Im]]羞{H+(k)}(H+(k))*

15 
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羞 {H-(k)}(H-(k))*]vdk (69) 

Using (21), this equation can be rewritten in the form 

co 

N1 
1 = ti 1: €kRe{C'(k)S*(k)-C*(k)S'(k)}vdk 47[ —O 

l K1 幻

= --&[ -1:1 + 1:• + 1~ ]Re{C'(k)S*(k)-C*(k)S'(k)}vdk 

Here from (22), C'(k) and S'(k) are explicitly given as 

：悶｝＝f1( 悶—¢羞）e 内＋ik~
X [ (-v's+給）［cos(nご 巧

sin（刀ご）｝ 

(70) 

干 VVf-K {sin（亨万}dS (71) 
: Tj cos（刀亭） ］ 

It is clear from (70) that only t世interactionsbetween symmetric and antisym-
metric waves contribute to the Ni term, which is the same as the steady sway 
force. 

Next, we consider the second term,瓦， definedby (64), which originates 
from the interaction of the incident wave and ship-generated waves. Following 
the foregoing procedure, the Parseval's theorem (32) will be used in conjunction 
with the Fourier transforms (20) and (66). Then we can put k = k。cosx due 

to the property of Dirac's delta function in (20) and k。sinx = Ek/戸二石 ork。
sin x =—€いパエニ炉 depending on the value of x due to the reasons stated in 
transforming (31); thus the relation 1、I=k。holds.

After the x-integration using Parseval's theorem and the z-integration 

using 

』OOze―2vzdz=（古）2 (72) 

and (33), the interim result will consist of three parts, just like (66): the first 

(denoted by N:』 includesthe derivative of the Kochin function, the second（瓦）
incudes the terms linearly proportional to y, and the third（Jlfu) is the remain-
der. After somewhat lengthy calculations, these three parts can be found to be: 

N21 = -½sinxReに羞[H±(k)]}
瓦＝ 0

(73) 

(74) 
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応＝―｝ sinxRe忙＋唸。~)H(k。,x)} (75) 

Here the quantity in braces in (73) should be evaluated at k = k。cosx and 

±€k｛戸二k2 = k。sinx,with the complex sign taken according to H+(k) or 
H⑭)， respectively. Therefore, using the relation k。=V= ((J)十kU)2/gand 

notation (21), the final result can be written as 

N2 = N21 + N22+ N23 

= -½sinx Re［伍＋kU)一
d 

2g dK 
{（①十kU)H土(k)}］←koCOSx (76) 

士,k~ = k osin x 

= -½sinxRe[ 如｛C ＇（ K。,x)+iS'(k。,x)}
2 

＋（て十 k゚覧OSX)H(K。,x)] (77) 

where C'(k。,x)+iS'(k。,x)is to be interpreted as 

［羞{C(k)+i S(k)} ]~~ 
＂氾ー K・=kosinx

Substituting (70) and (77) into (62), we obtain the formula for the steady 
yawing moment in waves: 

Mz k1 k3 

声＝ 47[K。[-J:'+ 1:•+ 1~]Re{C'(k)S)(k)-C*(k)S'(k)｝疇
1. 

万 sinxRe[ C'(k。,x)+iS'(k。,x)

士（r+K望。~)H(k。,x)] (78) 

This is the result obtained for the first time by the present analysis. In the limit 
of vanishing forward speed, r and 1/K,。arezero from (11), and k1 = -oo, k2 = 

-K, k3 = K, and k4＝⑳ from (12) and (13). Thus we can confirm that 

Newman's result2l at zero forward speed is recovered from the present result. 

6. Concluding remarks 

The formulas obtained in this paper permit us to calculate the second-order 
sway force and yaw moment, provided that the Kochin function is determined 

from the velocity potential on the ship hull. Although there are still a number 
of problems to be resolved for a reliable solution by the three-dimensional panel 
method, some progress have been made recently in developing a fast algorithm 

of the Green function with forward speed and sinusoidal oscillation; for 
instance, Iwashita & Ohkusu9l. Therefore it will be possible in the near future 
to obtain the Kochin function from the "exact" solution of the entire boundary-

value problem. However, from the viewpoint of economical computations with 
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relatively good accuracy, the unified slender-ship theory developed by 
Newman10> and Sclavounos11> may be the first to be tested for the determination 

of the Kochin function. The computational work along this line is now in 

progress, and the results will be presented in the foreseeable future together 

with experiments to verify a part of them. 
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