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HIGH-ENERGY ION TAIL FORMATION 
DUE TO ION ACOUSTIC TURBULENCE 

IN THE TRIAM-1 TOKAMAK 

By Kazuo NAKAMURA*, Naoji HIRAKI*, Yukio NAKAMURA** 
and Satoshi IToH*** 

The two-component ion energy spectra observed in the TRIAM-1 
tokamak are explained as a result of the high-energy ion tail formation 
due to ion acoustic turbulence driven by a toroidal current pulse for tur-
bulent heating. 
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1. Introduction 

Turbulent heating is based on the principle that by driving a suffi-
ciently large current through a plasma, instabilities will be produced 
that give a resistivity much higher than the classical collision value, 
thus permitting rapid heating. Buneman1・2> proposed one mechanism, 

a fast-growing instability excited whenever the electron drift velocity 
exceeds the thermal velocity. Ion acoustic waves may also be driven 
unstable by the current3・4>. Many experiments have been executed to 
explore turbulent heating not only in linear machiness-io> but also in 
toroidal devices11-24> _ The TRIAM-1 tokamak2s-s•> was constructed to 

extend these experiments to larger scale so that the plasma could be 

confined in a stable equilibrium configuration, specifically a tokamak. 
Ion energy spectra in turbulently heated plasma are frequently 

observed to have two components and temperatures of the high energy 
components (tail ions) are sometimes ten times higher than that of the 
low energy components (bulk ions)1·•·12l. The fraction of the high 
energy tail with respect to the total density is usually about 10 %, The 
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st:"~c_tu~e. _of the compone_nt. is remar~a~Ie_ ~specially in experiments in 
which drift currents are along magnetic fields. 

We here pay attention to ion heating through absorption of the 
wave ener窃 of,ion acoustic turbulence which is supported by a drift 
current instability. Hatori et al.311 proposed a model in which the 
movement of the resonance region or a temporal variation of Te is 
explicitly taken into account and in which a velocity diffuion coefficient 
in the presence of the ion resonance broadening, u。isused. Then they 
derived a distribution of high ener四 component(tail) proportipnal to 
exp(-v/u0). We show that this distribution qualitatively and quantita-
tively agrees with observed ones. 

2. Experimental results 

Skin effects in toroidal turbulent heating experiments have been 
reported by several groups19•32>. However, little is known of the trans-
port of energy created in the skin layer, whether it is lost to the 
vacuum wall or it penetrates into the plasma core. In proposed scheme 
for turbulently heating a large toroidal plasma83>, one crucial assumption 
is that the thermal energy deposited in the skin layer is rapidly trans-
ported toward the plasma core. Otherwise, the electron temperature 
in the skin layer would become undesirably high, prematurely quench-
ing current-driven instabilities3'>. 

In the TRIAM-1 tokamak, effective bulk-ion heating in the plasma 
cote was observed when a toroidal current pulse for turbulent heating 
is applied in the counter-direction with the plasma current as well as 
in the co-direction35>. This implies that the thermal energy is deposit-
ed in the peripheral plasma at:first36・87>, and the energy is transported 
toward the plasma core. In fact, we observed a low-frequency ion 
acoustic wave which propagates in the direction almost perpendicular to 
the toroidal magnetic:field by the 4 mm microwave scattering methodm. 

In our measurements of charge-exchanged neutral particles from 
the peripheral plasma by neutral energy a:rtalyzer39>, the spectra shown 
in Figs. l(a) and (b) were observed40> before the application of the 
current pulse just after it respectively. Namely the temperature of 
bulk ions Tb=64 eV was raised up to Ti,=108 eV by the application of 
the current pulse, and the tail ion of the temperature Tt=697 eV was 
formed. At the time t = 100 μs after the current pulse, however, such a 
high-energy ion tail was not observed and the bulk-ion temperature 
profile was almost oarabolic41•'2>. 

3. Theoretical explanation 

We explain the two components in the ion energy spectra of the 
peripheral plasma observed just after the application of a toroidal cur-
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Fig. 1 The ion energy spectra measured at the height z = -4 cm 
(under the torus midplane) before the application of a 
toroidal current pulse for turbulent heating (a), and at the 
time t=lOμsec after it (b). The fitting lines are expressed 
as (a) F=l. 74x105 exp (-E/0.064), (b) F=2. 94xl06 exp 
(-E/0.108) and F=3.80x103 exp (-E/0.697). The negative 
charged voltage of the codenser V狂 meansthe negative 
polarity of the toroidal current pulse for turbulent heating. 
The BT and /p mean the toroidal field and plasma current, 
respectively. 
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rent pulse for turbulent heating in TRIAM-1 by using the model propos-

ed by Hatori et al. m as follows. 

It is considered that the ion distribution function f(v) follows a 

Fokker-Planck type equation of the form 

町(V) 3 3f(V) ~ = -fv-[ D(v; c,)詞-]．（1)

The diffusion coefficient D(v; c,) is given by Dupree's expressionrn, i.e. 

e ¥ z 
D(v; c,) =（出干 IE出R[kv-w,D(v; c,)], (2) 

R[kv-w, D(v; c,)] =Real J。~dt exp [ i(kv-w)t-½ がD(v; c加］．
(3) 

The resonance function R is approximated by 

R[kv-w,D(v;ら）］＝ ｛ 冗／ku。for lkv-wl<ku。/2,
0 for lkv-wJ>ku。/2,

(4) 

u。/2=(~ ら）） 1/3. (5) 

Consequently we have approximately 

D(v；ら） ＝ ｛ const. == d for Ivー叫<u。/2
(6) 

0 for Jv-c』>U。/2
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d =  
討

江 E出 (7)
M叩。 K

Now we make an assumption that c. increases by following the relation 

Cs=ら（t)=(Te(t)/M)112= c.0+At, (8) 

where A is a constant and c,0 = (Te(O)/M)112. 
In order to see the time evolution of f(v), we solve the above 

diffusion equation (1) with eqs. (6) to (8) after the following normaliza-
tion 

vbf == F, 

t 

(v;/d) 
琴： T,

V 
圭 V,

Vb 

C 
-L==C, 
Vb 

u。-＝U。,
Vb 

Au。
d == K' 

D 
d 
＿三 E.

The normalized equation is 

3F 3 [E 3F] 
3T ＝百ア 百V,

E={ 1 for IV-Cl<U。/2'
o for | V-CI> U。/2,

C=C。+（K/U。)T

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

The numerical solution is shown in Fig. 2 in case of C2=4, U。=1
and K =2. The function J(v) variates as shown by T =0, T =0. l, T =0. 2 
and T =0. 3 in the figure. 

The plasma parameters and normalizing parameters are as follows: 

z= -4cm, 

n = 2 X 1019 m -,, 

<}n 
--＝ 10-29 
n 

T. = 8Tb, 
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Fig. 2 The time evolution of the high energy ion tail 
formation due to ion acoustic turbulence. 

Tb= 108eV, 

←(i})112 = 1. 02x 105 m/sec, 

ne2 1/2 

ko=(*.-f" = 2. 05xl0'm-1, 

d=（冗
3/4 

T. lJn 3/2 
サ (3ん）（寸了） ＝9. OOX 1011 m2/sec3, 

サ＝ 1.15 X 10-s sec. 

In order to see the dependence of the function f(v) at T = oo on 
plasma parameters, we investigate the analytical solution in case of K = 
0, 

f(v) ＝立exp(t-f)[(J) （~)-(J) （岳）］

＋-kexp（晶—f-1)[(J) （呈一岱）ー(J)(v:bu。-~)] (19) 

2 ~ 
(f)(x)＝ァ｛臼dt

“ 
;;'J _ e-tz dt (20) 

ら＝ Cso士do/2 (21) 

The functions f(v) expressed by this equation are shown in Figs. 3 (a) 
and (b) in case of fixed C2 and fixed U,。,respectively.

The function f(v) expressed by eq. (19) has four variables; c•, U。,
the fraction of tail ions and the temperature of it. The temperature 
of the tail ions Tt is derived as follows: 
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Fig. 3 The different ion distribution functions at T = oo rn 
case of K =0. 

f(v)＝心oeXP(；--王-）り([)-<l)に）］

｝t 芦―立—}贔 lnf.

だ＝（［）に）＝ ｛ 9b信）～贋u。

(22) 

(23) 

(24) 

i.e. U。andTt are not independent. Consequently eq. (19) has three 

variables. In Fig. 4 are shown the contour lines of E/Tb, where E 

is the energy of the cross-point of the bulk and tail ion distribution 

functions. 

Fig. 4 

ロE-~;J 
The contour lines of E/Tb, where E is the energy of 
the cross-point of the bulk and tail ion distribution 
functions. The T,-value in the abscissa is the tail 
ion temperature at the energy E=lO Tb. The circles 
indicate the experimental ・ data obtained in・ the 
TRIAM-1 tokamak. 
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Fig. 5 The comparison of the theoretical spectrum (solid line) 
and the measured spectrum (dashed line). 

The data at r=4, 3 and 2 cm are also plotted in Fig. 4. The fact 
that all the data exist between E/Tb =5 and 6 is interpreted as follows: 
The tail grows no longer, since the ion acoustic instability damps if the 
fraction of the tail increases or the temperature of it increasesw. And 

it should be noticed that we adopted Tb=108 eV just after the applica-
tion of the current pulse for turbulent heating and not Tb=64 eV before 
the current pulse. 

For example, the spectrum shown in Fig. 1 (b) is fitted by the 
curve predicted in this model as shown in Fig. 5. The good fitting 
may be interpreted that the high-energy ion tail was formed by ion 

acoustic turbulence. 

4. Conclusion 

The high energy ion tail observed by neutral energy analyzer can be 
explained by a theoretical model of high-energy ion tail formation due 
to ion acoustic turbulence. 
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