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Abstract 

Dynamic crack propagation in PMMA was studied using the method of caustics in combination with a 

Cranz-Schardin type high-speed camera. Four different types of specimen geometries were employed to achieve 

the crack acceleration, deceleration and re-acceleration process in one fracture event. Dynamic stress intensity 

factor Km and crack velocity a were evaluated in the course of crack propagation to obtain the relationship 

between Km and a. The effect of crack acceleration and deceleration on the Km-a relations was examined 
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1. Introduction 

Dynamic crack propagation in brittle materials has 

been investigated using many experimental techniques. 

Optical methods such as photoelasticity 1•
4> and the method 

of caustics 5
-
9> have been widely employed for evaluating 

the state of dynamic stress field around a propagating 

crack tip, i.e. dynamic stress intensity factor Km. Crack 

velocity a was also estimated in crack propagation to cor­

relate with Km. Many experimental studies have been 

made on the relation between Km and a, however, different 

experiments derived significantly different types ofKm-a 

relationships. Much discussion has taken place on the ap­

plicability of the methods employed for Km evaluation, the 

definition of the crack tip stresses, the influence of speci­

men geometries and loading conditions and so forth. In the 

case of brittle fracture, a generally changes with time, re­

sulting in crack acceleration or deceleration according to 

the stress distribution in the specimen. The crack accelera­

tion is an important parameter to understand the behavior 

of dynamic crack propagation, however, quantitative dis­

cussion on the effect of the crack acceleration and decel­

eration on Km has been limited. 

The purpose of the present work was to study this 

* 1 Research Institute for Applied Mechanics, Kyushu Uni­

versity 

problem in more detail using the method of caustics in com­

bination with a Cranz-Schardin type high-speed camera1
0-

11>. Four different types of specimen geometries were 

employed so that cra.cks could undergo acceleration, 

deceleration and re-acceleration stages in one fracture 

process. Dynamic stress intensity factor Km and crack 

velocity a were evaluated in the course of crack propaga­

tion. The Km-a relations were determined for the stages of 

acceleration, deceleration and/or re-acceleration. Attention 

was focussed particularly on the effect of the crack 

acceleration and deceleration on the Km-a relations. 

2. Experimental Procedure 

Specimen geometries used in this experiment are il­

lustrated in Fig. 1, where (a) represents a single-edge­

notched (SEN) specimen, (b) a uniaxially pin-loaded 

specimen, ( c) a biaxially pin-loaded specimen and ( d) a 

SEN with two circular holes specimen. These four types of 

specimens were selected to obtain the different behaviors 

of dynamic crack propagation. The specimens were fabri­

cated from a 5mm-thick sheet of PMMA (Acrylite S-001). 

A sharp precrack was generated by momentum-controlled 

chisel-impact into a pre-machined saw-cut on the speci­

men edge. 

All specimens were tested under a displacement con­

trolled condition using a tensile testing machine. Tests 
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Fig. 1 Specimen geometries and loading methods 

were performed at room temperature and at a constant 

crosshead speed of lmm/min. Figure 2 shows the Cranz­

Schardin type high-speed camera with 30 spark gaps 

which permitted bifocal photography 10
-
11>. The lens box 

contained a half mirror as illustrated in Fig. 3. The mirror 

was placed at an angle of 45° with regard to the impinging 

light rays so that it partly split the rays in a rectangular 

direction. One focal distance was selected for specimen­

focussed images and the other for caustic images. 

3. Evaluation of Km and a 

Figure 4 shows examples of high-speed photographs 

taken with a SEN specimen, where series (a) represents the 

specimen-focussed images and (b) the corresponding 

caustic patterns. As seen, size of the caustic changed with 

growing crack length. The stress intensity factor Km was 

determined from the following equation: 

Km= (2Y2rt/3zodC'Y]312)(¢/3.17)512 (1) 

where <jJ is the caustic diameter at a crack tip, zo is the dis­

tance between the specimen and the image plane, d is the 

specimen thickness and rJ is a convergency factor for inci­

dent light rays 9>. 
The values of Km and crack length a obtained for the 

four specimens are shown in Figs. 5-8 as a function of time 

t. The Km variations for the specimens were different. In 

the SEN specimen under uniform tensile loading, Km in­

creased in the initial stage of crack propagation and gradu­

ally approached a constant value. The uniaxially pin­

loaded specimen exhibited Km increasing and decreasing 

behavior. In both the biaxially pin-loaded and SEN 

(Holes) specimens, there existed three stages of recogniz-

(a) Spark gaps (b) Lens box 

Fig. 2 Cranz-Schardin type high-speed camera. 

zo...➔-r: 

Mirror Specimen Image plane 

Fig. 3 Optical setup. 

Spark gaps 

Half mirror 
,j/ 

' ~ 

Lens 

able Km increasing, decreasing and re-increasing regions. 

To minimize data scattering in the evaluation of frac­

ture parameters, a data-fitting procedure which was pro­

posed in a previous work 9
> was employed; obtained values 

of Km and a were expressed as ninth order polynomial of t 

based on the least-squares method so that they closely fit­

ted their observed values (see Figs. 5-8). Crack velocity a 
was determined from the first time derivatives of the fitted 

curve a(t). If a was determined simply from the first time 

derivative of increment !ia which was obtained from suc­

cessive pictures taken on a film, large scatter in a was in-
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Fig. 4 Example of dynamic crack propagation in a SEN specimen. 
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Fig. 7 Time variations of Km and crack length a for 

a biaxially pin-loaded specimen 
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a SEN with holes specimen 
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Fig. 10 K~0 and crack velocity a for a uniaxially 

pin-loaded specimen 

evitably caused primarily by errors arising from visual 

identification of the crack tip position on film. Thus, the 

data-fitting procedure employed enabled us to determine 

crack velocity accurately. 

4. Km and a Relationships 

Figures 9-12 show values of Km and a as a function of 

crack length a. There are several interesting points in their 

relations. First, the change in a was qualitatively in accord 

with the one in Km. Second, a rose earlier than Km associ­

ated with a. Finally, Km for a constant a was larger when 

the crack was decelerated than when it was accelerated 

(see Figs. 10-12). Similar results were also obtained by the 

authors for epoxy and Homalite-100 specimens12
•
15

>_ 

To study the effect of the crack acceleration and de­

celeration, the values of Km were expressed as a function 

ofa. Figures 13-16 show Km(il) curves, where arrows indi­

cate the direction of progress of the fracture. The open 

circles represent the acceleration-free points (ii=0) ob­

tained from the maximum and minimum velocity posi-
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tions. There are several interesting points in the Km-a rela­

tions. First, Km(il) for the SEN specimen only exhibited 

the increasing process so that it gradually approached a 

constant value. Second, distinct crack acceleration (ii>0) 

and deceleration (ii<0) can be seen in the uniaxially pin­

loaded specimen. Finally, in both the biaxially pin-loaded 

and SEN (Holes) specimens, three stages of distinct crack 

accelera~ion (ii>0), deceleration (ii<0) and re-acceleration 

(ii>0) can be seen in one fracture proc~ss. Although Km(il) 

is shown to increase with a, it should be noted that their 

relation was not unique. For a constant a, the decelerating 

crack had a larger value of Km than the accelerating or re­

accelerating one. Such was also the case with other speci­

mens tested. 

The authors have suggested that Km was ,expressed as 

two parametric functions ofo and ii, i.e. Km(il, ii), and that 

Km(il, ii=constant) was-uniquely related to a 9
•
12

•
13>. This 

was examined using the obtained results. Figure 17 shows 

the Km(il) curves determined for the four specimens. The 

dotted curve of Km(il, ii=0) connecting the acceleration 

free points can separate the acceleration (ii>0) and decel-



Reports of Research Institute for Applied Mechanics, Kyushu University No. 121 September 2001 109 

3--------------, 

c:!. 

2.8 

2.6 

C')s 2.4 

z ~ 2.2 

b 2 
~1.8 

1.6 

PMMA ii=O 

SEN Specimen 

1.4 210 220 230 240 250 260 

Crack Velocity ti, mis 

Fig. 13 Km-a relation for a SEN specimen 

under unifrom tensile loading 

4.5 

4 
c:!. 
<') 

3.5 _§_ 
z 
~ 3 

"b 
~ ...... 2.5 

2 

220 

PMMA 

Pin-Loading 
(Uniaxial) 

240 260 280 
Crack Velocity a, mis 

300 

Fig. 14 Km-a relation for a uniaxially 

pin-loaded specimen 

eration (ii<0) area in the Km-a diagram. As seen, Km(iz) for 

a constant a had a larger value when the crack was deceler­

ated than when it was accelerated, i.e. Km(il, ii<0) > Km(il, 

ii>0). It should be noted that Km(il, ii=0) can be uniquely 

related to a as suggested in previous studies 9
•
13

)_ Hence, 

this clearly appears to indicate that Km(il, ii=0) can be the 

material property, while the time variations of Km and a 
were strongly influenced by specimen geometries and 

loading methods as shown in Figs 9-12. 

5. Conclusions 

Dynamic crack propagation in PMMA was studied us­

ing the method of caustics and a Cranz-Schardin high­

speed camera. Four different types of specimen geom­

etries were employed to achieve the crack acceleration, 

deceleration and re-acceleration process in one fracture 

event. Dynamic stress intensity factor Km and crack veloc­

ity a were evaluated, and the following findings were ob­

tained: 

(1) The variations of Km and a were strongly influenced 
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by the specimen geometries and loading methods. 

(2) a change was qualitatively in accord with the one in 

Km. 
(3) Km for a constant a was larger when the crack was 
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decelerated than when it was accelerated or re-accel­

erated. 

(4) Km for acceleration-free can be uniquely related to a. 
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