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Abstract 

From the view point of the oscillatory characteristics, the heat transport in the plasma edge region 
is investigated based on a transition transport model with hysteresis nature. A hysteresis type flux-force 
relation is incorporated into the model by introducing a transition model of the heat diffusivity. For a 
given influx from the upstream side, the one dimensional heat transport equation is solved numerically. 
The time evolution of the heat flux oscillation due to the hysteresis nature and the parameter dependences 
of its amplitude and frequency are examined. The non-monotonous relation between the frequency of the 
flux oscillation and the influx is obtained. The critical behavior of the transition between two transport 
mechanisms, i.e., the hysteresis type and the discontinuous one, is expressed as power law relations of them. 
The self-organized criticality like bahavior, i.e., power spectrum obeying power law, is found in a limiting 
case of the model. 

Key words : edge relaxation phenomena, edge localized mode, bifurcation, transition, hysteresis, oscil­
latory characteristics, self-organized criticality 

1. Introduction 

Research on the controlled thermonuclear fusion is 

an important issue as a candidate for a new energy 

source in the next generation, and has long been a world 

wide project. In various kinds of magnetic confinement 

devices, the tokamak has been most extensively investi­

gated and advanced. Large tokamaks such as JET and 

JT-60U are making remarkable progress toward a real­

ization of fusion conditions in a confined plasma. Re­

cently, JET has produced slightly in excess of 12MW of 

fusion power using a D-T plasma. 

However, many problems to be solved for the realiza­

tion of the fusion reactor are still left. For examples, the 

physical mechanisms of the anomalous transport phe­

nomena or collapse events in high temperature plasmas 

are needed to be clarified. These phenomena lead to the 

strong degradation of plasma confinement performance 

to attain the D-T reaction. It is just recently to reach 

the boundary of the break even in tokamaks. This is be­

cause the anomalous transport causes the degradation of 

the energy confinement, so-called low confinement mode 

(L-mode). In the L-mode, it is known empirically that 

the larger input power leads to the lower plasma con-
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finement. One promising scenario in the tokamak reac­

tor is the operation in the improved confinement regime 

known as high confinement mode (H-mode). It occurs 

spontaneously when the heating power exceeds a certain 

threshold value. Then, the pressure gradient increases 

near the plasma edge, namely, a transport barrier is 

formed. However, the bursts of edge localized modes 

(ELMs), one of collapse events, are frequently observed 

during the H-mode phase in experiments. The ELMs are 

characterized by the sudden drop of the plasma pressure 

with a burst of particle and/or heat flux and lead to a 

lasts of the plasma energy. 

In high temperature plasmas in toroidal devices, var­

ious kinds of collapse events have been observed l, 2). 

The sawtooth crash 3), the internal disruption 4) and 

the high-,B collapse 5) are examples of collapse events 

observed in the plasma core region. In the plasma edge 

region, the bursts of the ELMs are frequently observed 

during the H-mode phase. The ELMs are categorized at 

least into three types, i.e., type I, type III and dithers 
6). The type I ELMs, also called the giant ELMs, is ob­

served near the threshold value of ,B-limit at the plasma 

surface 7, 8). Under its occurrence, the pressure repeats 

the cycles characterized by a slow rise by the heating 

and a rapid (10 ~ lOOµsec) drop, by which the energy 

of plasmas is lost periodically or intermittently. The 

dithering ELMs is the repetitive L-H-L transitions in 
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the vicinity of L/H transition condition. 

In theoretical works, various kinds of models have 

been proposed to describe collapse events 9). The ba­

sic models of collapse events can be. divided into two 

categories: the models based on magnetohydrodynamic 

(MHD) instabilities and the models based on nonlinear 

transport with limit cycle solution, i.e., hysteresis na­

ture. A simulation of the burst of type-I ELMs has been 

done assuming that it occurs due to a short breakdown 

of the transport barrier IO). Termination of the trans­

port barrier has usually been discussed based on linear 

MHD stability. It has been reported that the achiev­

able pressure gradient in the H-mode is bounded by the 

MHD stability 7, ll, 12). However, the conventional ar­

gument has great difficulty in explaining the sudden in­

crease in magnetic fluctuation where the timescale is of 

the order of 10µ.sec. The linear MHD mode growth is 

dictated by the background plasma parameters, whose 

change only takes place on the slow transport timescale. 

Recently, a new nonlinear transition transport model 

has been proposed to explain the collapse events ac­

companied with the rapid growth of the magnetic fluc­

tuation, such as the giant ELMs or the sawtooth crash 
13) This model is based on the transition from the 

electrostatic turbulence, which is relevant to explain the 

L-mode and the H-mode transport, to the electromag­

netic turbulence with the braided magnetic field. When 

the pressure gradient exceeds a certain threshold value, 

the overlap of the small scale magnetic island occurs 

and causes the stronger turbulence. By this, the heat 

diffusivity is enhanced and kept until the pressure gra­

dient falls to another threshold value. In other words, 

the heat diffusivity has hysteresis nature with respect to 

the pressure gradient. Such hysteresis nature has a po­

tentiality to explain the fast growth of the outward heat 

flux and the evacuation of the plasma energy. Employ­

ing this hysteresis type transition model, the collapse of 

the temperature profile and the associated energy burst 

have been reproduced by simulation study as has been 

observed in experiments 14, lS). The role of the hys­

teresis nature has also been predicted for the dithering 

ELMs. A model for the dithering ELMs, i.e., the self 

generated oscillation due to the hysteresis characteris­

tics of the L-H transition, was proposed based on electric 

field bifurcation theory. This model has shown an agree­

ment with experiment.al observation on dithering ELMs 

through simulation study 16). Among various theoret­

ical models, the transition transport model with hys­

teresis nature is considered as one of strong candidates 

for the physical mechanism of the collapse. However, 

the physical mechanism of the collapse is not yet fully 

clarified. 
In this paper, based on the transition transport 

model with hysteresis nature, we study the edge relax­

ation phenomena in high temperature plasmas from the 

view point of the oscillatory characteristics of the heat 

transport. The aim of this paper is not to reproduce 

the collapse, but to examine the transition model with 

hysteresis nature as one of candidates for the physical 

mechanism of the collapse. The characteristics of the 

oscillatory behavior caused by the hysteresis nature are 

numerically analyzed. To elucidate the dynamics due 

to the hysteresis nature, a simplified transition model is 

employed and examined. 

This paper is organized as follows. In Chapter 2., the 

edge relaxation phenomena and the transition models 

with hysteresis nature are reviewed. In Chapter 3., the 

simulation model including the transition model with 

the hysteresis nature is introduced. In Chapter 4., the 

time evolution and the oscillatory characteristics of the 

heat transport are analyzed by numerical simulation. In 

Chapter 5., summary and discussion are given. 

2. Reviews 

In high temperature plasmas in toroidal devices, var­

ious kinds of collapse events have been observed. The 

edge localized modes (ELMs) are typical examples of 

collapse events observed in the plasma edge region. To 

explain the collapse, many theoretical models have been 

proposed, and simulations based on them have been car­

ried out. However, the physical mechanism of the col­

lapse is not yet fully understood. Among various theo­

retical models, the transition transport with hysteresis 

nature is considered as one of strong candidates for the 

physical mechanism of the collapse. 

In this chapter, we firstly review the empirical phe­

nomenology of the ELMs. Next, we show the theoretical 

models for the ELMs, especially, the transition models 

with hysteresis nature. 

2.1 Edge Localized Modes 

Toroidal plasmas are subjected to various kinds of 

catastrophic phenomena. The achievable plasma pa­

rameters have been limited by the occurrence of catas­

trophic events in addition to the competition between 

the losses and the external sources. Therefore, the crash 

phenomena in high temperature plasmas have been con­

sidered to be the essential problem in fusion research 

and is also an academic problem of nonlinear and far­

nonequilibrium systems. The characteristics of the col­

lapse events include the typical features as follows: (i) 

the sudden onset of symmetry-breaking perturbation, 

(ii) bursts of plasma energy, momentum and particles 

across magnetic surfaces, (iii) avalanches, i.e., the prop­

agation of the collapses and (iv) the possible periodic 

occurrences of bursts, and also their unpredictability. 
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Fig. l Comparison of the different dynamic behavior of the H-mode with varying (P - Ps~1:)/ P;-;/,J. (a) 
(P-Pfc1:)!Ps~1: ~ 0.0, (b) (P-Ps~1:)I Ps~1: ~ 0.2, (c) (P-Pf;1:)/Pfc1: ~ 0.5, (d) (P-Pfc1:)/Pfc1: ~ 1.2. 
(Cited from Ref. 17) ) 

In high temperature plasmas: various kinds of col­

lapse events have been identified l) . The sawtooth 

crash 3): the internal disruption 4) and the high-,8 col­

lapse 5) are examples of collapse events observed in the 

plasma core region. As typical examples observed in 

the plasma edge region, the bursts of the edge localized 

modes (ELMs) are frequently observed during the high 

confinement mode (H-mode) 6). 

The improved confinement mode known as H-mode 

is often perturbed by the onset of a quasi-periodic se­

ries of relaxation oscillations involving bursts of MHD 

activity and D 0 emission, known as ELMs. These result 

in rapid losses of particles and energy from the region 

near the plasma boundary, reducing the average global 

energy confinement by 10 ~ 20%. Furthermore, these 

transient bursts of energy and particles into the scrape­

off layer produce high peak heat loads on the divertor 

plates which must be accommodated by the divertor de­

sign. On the other hand: ELMs are more efficient, and 

beneficial, in removing density and impurities. Thus 

they are deemed necessary for the stationary H-mode 

operation: preventing the build-up of density, impuri­

ties and helium ash. It is, therefore, desirable to be able 

to control the level and nature of the ELM activity in 

order to meet these various conflicting conditions. This 

would be aided by understanding their cause. 

The characterization of ELMs has recently began. 

For example, the classification of ELMs in ASDEX­

U pgrade experiments was made 17) . At the heating 

power near the threshold power for the L-H transition, 

a self generated oscillation of periodic L-H-L transition 

occurs. For (P - Pfc1:)/ Pfc: > 0.2, ELMs called type 

III occur, where P is the injected power and Pfc: is 

the threshold power value of the L/H transition. They 

are characterized by dveLM /dP < 0, where VELM is 

the frequency of ELMs. The frequency decreases as 

the power is increased. For (P - Pfc1:)/ Pfc1: 2'. 0.5, 

the discharge becomes ELM-free. ELMs called type I 

occur for (P - Ps~:)/ P};_: 2: 1. They are character­

ized by dveuvt/dP > 0. The power dependence of the 

type I ELM frequency is opposite to that of type III. 

These ELMs are considered to appear when the edge 

plasma parameter is close to the critical value of the 
ideal MHD mode stability 7 , ll, lS, 19). Comparison of 

the different dynamic behavior of the H-mode with vary­

ing (P - Ps~:)/ Pfc: is shown in Fig 1. 

The new classification has been done, taking the ex­

perimental results in the other toroidal fusion devices 
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into account in addition to ASDEX-Upgrade's 6). ELMs 

are classified into the three distinct types according. to 

the occurrence of the magnetic precursor and the depen­

dence of the ELM frequency on the energy flux through 

the separatrix, Psep• The distinct types of the ELMs 

are as follows. 

• • Type I ELMs (giant ELMs): The burst occurs near 

the ideal ballooning limit a :::::; O'.crit. The ELM rep­

etition frequency VELA! increases with the energy 

flux through the separatrix Psep, rather than the 

injected power P, i.e., 

dVELJt.f O --->. 
dPscp 

In present experimental results, no clear magnetic 

precursor oscillation has been identified. During 

the ELM, there is a high level of incoherent mag­

netic fluctuations. 

• Type III ELMs: At Pscp :::::; Pf/:, heating pow­

ers just above the threshold for L-H transition, the 

bursts of type III ELMs occur. The ELM cycle fre­

quency decreases with the power through the sep­

aratrix, i.e., 
dVELM O ---<. 
dPscp 

(2) 

There is a coherent magnetic precursor oscillation 

with toroidal mode number n :::::; 5 ~ 10 and 

poloidal mode number m :::::; 10 ~ 15 on the mag­

netic probes located close to plasma, especially in 

the outboard midplane. During the ELM, a high 

level of magnetic fluctuations has been detected. 

• Dithering ELMs: At Pscp :::::; Pfc:, prior to the final 

transition to H-mode, repetitive L-H-L transitions 

can occur. The repetition frequency shows a slight 

decrease with increasing Pscp• The dithering cycles 

does not show the MHD signatures as found in type 

III ELMs: there is no magnetic precursor oscilla­

tion, and the level of turbulence during the tempo­

rary L-phase does not significantly exceed that of 

the L-phase at Pscp ~ Ps~1:. 

Figure 2 shows the input power and the DQ signal 

at the divert.or for the typical sequence of ELMs during 

a power rise in DIII-D. Here, DQ signal represents the 

energy flux from the plasma surface. In a discharge 

where the heating power is increased in step, type III 

ELMs occur at heating power just above the threshold 

for L-H transition P8~:. Their frequency decreases as P 
increases until finally they are stabilized and an ELM­

free phase appears. With a further rise in the heating 

power, type I ELMs (giant ELMs) occur at even higher 

P, their frequency now increases with P, although it 

decreases with plasma current I. Then, the time scale 

of the crash becomes the order of lOµsec. 

15 Injected NBI Power (MW} 69105 

10 
r 

5 ~ 
0 

D a. in the Divertor (a.u.) Type I 

Type Ill 
◄ .. 

I I 

500 1000 1500 2000 2500 3000 }500 

llME (msec) 

Fig. 2 Typical sequence of ELMs during a power 
rise in DIII-D. At P :::::; Pf/:, type III 
ELMs are found. At higher P, type I 
ELMs (giant ELMs) occur. (Cited from 
Fig.2 in Ref. 6)) 

The different types of ELM have different effects on 

the plasma. Type I ELMs change the energy content 

W by 8W ~ 10% and 8W is rather independent of P 
but decreases with increasing I. For type III EL Ms, 

8W:::::; 1 ~ 5%. 

Because of the observations of magnetic fluctuations 

associated with ELMs it is interesting to relate the edge 

pressure gradients to the critical values for ideal balloon­

ing stability. Type III ELMs occur when the normalized 

pressure gradient a lies below the critical value for ideal 

instability, O'.crit, so the ideal modes can be excluded as 

an explanation for them, although resistive ballooning 

modes may be involved. Indeed there is evidence that 

a critical edge temperature exists above which type III 

ELMs disappear. For type I ELMs a/acrit '.::='. 1 and the 

ideal ballooning modes can be expected to play a role. 

2.2 Transition Models with Hysteresis Na-
ture 

The theoretical models of ELMs can be divided into 

three categories: two basic models, i.e., a model based 

on magnetohydrodynamic (MHD) instabilities and a 

model based on nonlinear transport with limit cycle so­

lution, and a model by the combination of these two 

types. 

A class of models is based on MHD stability analysis, 

which examines whether MHD modes could be unsta­

ble at the ELM onset. Since ELMs are accompanied by 

bursts of magnetic perturbation, a number of models in­

volve the excitation of various MHD instabilities: ideal 
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and resistive ballooning modes, external kink modes and 

so-called :peeling modes' 20). Such models envisage that 

the application of auxiliary heating drives the equilib­

rium to a state which triggers MHD instability, resulting 

in the loss of plasma, followed by a recovery stage un­

til the cycle is repeated. Detailed MHD stability anal­

yses on experimentally plausible pressure and current 

profiles have performed to determine whether they are 

linearly unstable to a specific MHD instability. How­

ever: the usual linear stability analysis hardly predicts 

the effect of the mode on transport. This has to be in­

ferred fron:i. the nonlinear stability analysis. The effect 

of the saturated mode, or the combined effect of sev­

eral nonlinearly interacting modes, on confinement has 

to be examined. Such nonlinear MHD stability analysis 

is usually difficult to compute. Thus, theoretical study 

of the nonlinear MHD effect on transport has not been 

given so far. Furthermore, the ELM cycle as the dy­

namics has often been discussed in a phenomenological 

manner. 

Other models involve limit cycle solutions of the 

nonlinear transport equations governing the plasma 

edge region, exploiting the electric bifurcation inherent 

in theories of the L-H transition. A number of models for 

the L-H bifurcation mechanisms involving nonambipo­

lar losses and the reduction of anomalous transport due 

to the radial electric field shear have been proposed. By 

introducing spatio-temporal variation into these mod­

els it is possible to obtain limit-cycle behavior. Such 

models might describe the sequence of bursts of ELMs. 

As an example of this type model, we briefly review a 

model for dithering ELM based on the radial electric 

field bifurcation theory in subsection 2.2.1. 

Finally, elements of both two basic models men­

tioned above, i.e., MHD stability and nonlinear trans­

port: have been combined, with MHD or pressure driven 

fluctuation transport playing a role. The MHD stability 

analyses have really only addressed the question which 

MHD modes become unstable at the ELM onset, and 

the ELM cycles in these models were generally no more 

than phenomenological. The models with limit cycle 

oscillation have made little connection with MHD al­

though there are the facts that MHD fluctuations are 

invariably observed. As an example of the model that 

contains both MHD triggering and cycle mechanisms, 

the magnetic braiding mode (M-mode) transition model 

of the giant ELM is reviewed in subsection 2.2.2. 

2.2.1 Electric Field Bifurcation 

The first theory for the L-H transition was proposed 

in which the bipolar loss is included in order to ob­

tain the consistent ambipolar radial electric field 21). 

A bifurcation in the particle flux associated with the 

change of the radial electric field is found. In this the­

ory, the particle and energy fluxes can have multiple 

values for the same parameters of density and temper­

ature. The edge region of plasma column la - rl ~ Ppi 
is attributed to the direct orbital loss region (a: minor 

radius, Ppi = vrimiqR/(aeBt): ion poloidal gyroradius, 

Bt: toroidal magnetic field). The ion orbital loss was 

given by 

(3) 

where the coefficient F is proportional to the relative 

number of particle in the loss cone in the velocity space, 

0 < F < land ni is the ion density. In order to estimate 

F in the presence of radial electric field Er, two simple 

assumptions were made: (i) The ions which satisfy the 

resonance condition v11/(qR) = Er/(rBt) are lost di­

rectly. (ii) The ion distribution function Ji is close to 

the Maxwellian, Ii ex exp(-vtt/ v}i). Then the estima­

tion F ex exp {-(PpieEr/Ti) 2
} was made and the ion 

loss has the form 

(4) 

where the coefficient F is the contribution of the bounce 

average. On the other hand, the anomalous loss was 

taken as 

ran<?m _ -Db (n~ T~ eEr) 
e-i - cone + QT. + T. ' ne e e 

(5) 

where a is a numerical coefficient of the order of unity. 

The parameter D!o is the bipolar part of anomalous dif­

fusivity. The prime denotes the derivative with respect 

to the radial direction. Equating Eqs. (4) and (5), the 

equation to determine the ambipolar electric field was 

given as· 

where do = D!o.fi./(p;Ji'vii) and A = -ppi(n~/ne + 
a.T~/Te). Figure 3 (a) illustrates the A dependence of 

f' as the solution of Eq. (6) and Fig 3 (b) shows the A 
dependence of the radial electric field. When A is below 

the critical value Ac, the electric field is negative and 

the fluxes are large. If A exceeds Ac, the electric field 

turns to be positive and the fluxes are reduced. The 

L-mode corresponds to the branch of the large loss flux 

and the H-mode is that of the reduced loss flux. It is 

shown that the bifurcation from the L- to H-mode takes 

place as A----+ B'----+ C----+ C'----+ D and that from the H­

to L-mode occurs at D----+ C'----+ B----+ B'----+ A. Because 

Ac for the L- to H-mode transition is larger than that 

for the H- to L-rnode transition, there is a hysteresis in 

the relation off' and A as shown in Fig. 3 (a). 
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Fig. 3 Solutions for (a) the normalized flux and 
(b) the radial electric field as a function 
of>. (for the case of do = 1.3). Transition 
from the branch of the large flux to that of 
small flux occurs at >. = >-c- (Cited from 
Ref. 21)) 

A model for the dithering ELM, i.e., the self­

generated oscillation due to the hysteresis characteris­

tics of the L-H transition 22), was proposed based on 

electric field bifurcation theory 21). The earlier local 

L-H bifurcation model has been extended by including 

radial transport equations for the normalized density n 

and radial electric field Z 

8n = ~D(Z)°n 
8t ox ox (7) 

(8) 

where c is a smallness parameter, and the transport coef­

ficientsµ and Dare comparable in magnitude~ Do. N 

represents the non-ambipolar flux of local theory, g = >.d 
where >. = Ppi/ Ln with Ppi a poloidal ion Larmor radius 

and £ 11. the density scale length and d = Do/ViP~i where 

vi is the ion collisionality. A model S-cllrve for N is as­

sumed as 

N = g - g0 + {3(Z3 
- aZ), (9) 

D 

H 

0 

g 

Fig. 4 A model of effective diffusivity D (i.e. ra­
tio of the particle flux to the density gra­
dient) as a function of gradient parameter 
g, showing the possibility of bifurcations 
and hysteresis. (Cited from Ref. 22)) 

where D(Z) is a smooth function, 

D(Z) = Dmax; Dmin + ( Dmax ; Dmin) tanh(Z). 

(10) 

In the local theory, the relation N(Z, g) = 0 holds, 

which gives rise to the possibility of the L-H bifurca­

tion shown in Fig. 4. Setting E = 0, Eqs. (7) and 

(8) lead to a Ginzburg-Landau equation which is solved 

numerically for appropriate boundary conditions, say 

d(ln(n))/dx = -1/>.s at the edge and fixed particle flux 

r in from the core. Periodic solutions for edge density 

and loss flux rout are found in a restricted parameter 

range near the L-H transition condition and the be­

havior of rout resembles the Do. emission during ELMs 

shown in Fig. 5. The parameter space for the occurrence 

of these limit cycle is 

(11) 

where gm,M = go =f 2{3(a/3/3)312 and Dm,M = D(Z = 
±~)-

During the cycle a transport barrier in D is pro­

duced near the edge as n rises, D having a smooth vari­

ation, due to the viscosityµ, over a width L\ ~ ✓2/3µ.ja 
(for smallµ) in which poloidal rotation exists. The pe­

riod of these oscillation is given by r ~ Ca>.sL\/DM, 

where C ~ 0(1) is a numerical coefficient. For fixed 
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4 

2 

1. time 2 · 

Fig. 5 Temporal evolution of the outflux rout 

corresponding to the model of Fig. 4. 
(Cited from Ref. 22)) 

value of A;/ D M, the relation T ex D-;.:?5 is obtained; 

for fixed value of rinA;, T ex r~i°" 5 is obtained. The 

ratio of T to the period of good confinement TH can 

vary between O and 1. The parameters a,/J, Dm, DM 
can be evaluated for a specific L-H bifurcation model. 

Thus for the model of Ref. 21), one can set a = 3{3 = 
3(1 - d✓ln(2e/d))/2(1 + d✓ln(2e/d)), Dm ~ d, DM ~ 
d/2 ln(2e/ d). 

The earlier local L-H bifurcation model has been fur­

ther extended by considering transport equation of tem­

perature T in addition to that of density n and radial 

electric field Z 16). Both diffusivity D and heat diffu­

sivity x have similar dependences on Z. The boundary 

conditions are imposed by specifying the particle flux 

r in and the heat flux qin from the core. The gradi­

ent lengths An and AT at the plasma edge are applied. 

This system has more complicated propaties, in which 

increases in n drive it towards the L-mode, whereas in­

creases in T drive it to the H-mode. This model is used 

to describe dithering H-modes rather than ELMs. 

2.2.2 Magnetic Braiding Mode Transition 

An anomalous transport theory has been developed 

based on the self-sustained turbulence of the current­

diffusive ballooning mode ( CD BM) or interchange mode 

(CDIM) 23), including the effect of velocity shear 24). 

The CDBM model is derived by a self-consistent treat­

ment of pressure-gradient-driven turbulence involving 

transport coefficients ( e.g. a turbulent current diffu­

sivity in Ohm's law) due to the same turbulence. The 

theory may well explain the L- and H-mode confinement 

characteristics (including the low /reversed shear cases) 
25, 26). In the L- and H-mode transport, the E x B 

vortex motions determine the anomalous transport co­

efficients, where E is the electric perturbation. These 

transport coefficients are characterized by the pressure 

gradient parameter a and the model also contains the 

possibility of L- to H-mode transitions through the in­

clusion of radial electric field shear stabilization. At 

saturation, anomalous electron transport coefficients, Xe 

and µe, and those for ions, Xi and µi, are of the same or­

der and xe/ µe ~ xd µi ~ 1 holds where x and µ are the 

turbulent thermal diffusivity and viscosity, respectively. 

A modified version of the CDBM transport model 

provides a description of giant ELMs 13). Since the ba­

sic model involves essentially electrostatic turbulence, 

all transport coefficients are expected to be comparable. 

However, if one considers the associated magnetic per­

turbation and the island overlapping, then the magnetic 

stochasticity can set in. A new branch of self-sustained 

turbulence exists in the regime of high pressure gradient 
27). The branch, called the 'M-branch', is dominated by 

the magnetic perturbation, iJ, and is associated with 

magnetic braiding. In the M-mode state, the selective 

diffusion of electrons appears, and the ratio µe/ µ,i is 

increased as µe/ µi ~ xe/Xi ~ M. The ratio M is eval­

uated as M ~ ✓af3imi/me where a= -Rq2{3' is the 

normalized pressure gradient, and /3i = v;hdv!. The 

transport coefficients are enhanced by factors of 

where XH is the thermal diffusivity for the H-mode. 

This form of Xi agrees with the result of the scale­
invariance theory by Connor 28) . 

When the pressure gradient exceeds a critical value, 

the associated small-scale magnetic islands satisfy the 

Chirikov condition at which the magnetic braiding takes 

place 29
) , and the electron transport is preferentially in­

creased in comparison with the ion transport, causing 

the stronger turbulence. The time scale on which the 

turbulence level grows at the onset of the H to M bifur­

cation, f 9 r, is of the order of the poloidal Alfven tran­

sit time defined by TAp = a✓µonimi/ Bp, where Bp is 

poloidal magnetic field. This time scale is similar to that 

of strong linear ideal MHD stability. The boundary for 

the Chirikov criterion for the H-M transition, a = ac, 
is plotted explicitly on the s-a diagram in Fig. 6. In the 

high-shear region, the boundary is given approximately 

as 
s 

a=ac~ 2. (13) 

(The numerical coefficient 1/2 depends on radial electric 

field shear WEI = E;TAp/ B.) In the M-mode, one ex­

pects that the rapid transport leads to a reduction in a 
and, in turn, to a reduction in magnetic perturbations 

and a back transition to the H-mode occurs when is­

land overlap ceases. The back transition condition from 
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Fig. 6 The critical pressure gradient for the H­
M transition in the s-a diagram form. 
The full curve indicates the boundary for 
WEI = 0.1 and the dashed curve for WEI = 
0.5, where WEI measures radial electric 
field shear. The M-mode transition does 
not occur for the case of lower magnetic 
shear. The dotted curve indicates, for ref­
erence, the linear ideal ballooning mode 
instability threshold. (Cited from Ref. 
13)) 

the M-mode to the H-mode is dictated by the M-mode 

characteristics. The condition is given as 

If the pressu~e gradient becomes lower than a1, a back 

transition to the H-mode takes place. Summarizing 

these bifurcation conditions, Eqs. (13) and (14), the 

region of multivalued branches is derived. Bistable 

branches of H-mode and M-mode are possible in the 

regime 

(15) 

This situation leads to the bifurcation and hysteresis in 

the flux-gradient relation as is shown in Fig. 7. The 

explanation of the fast time scale is possible if this kind 

of transition is considered. The existence of hysteresis 

characteristics allows the enhanced transport in the M­

mode to continue even though the free-energy source 

(pressure gradient, a) starts to decrease. 

A cycle, involving the H-mode, the H-M transition, 

the M-mode and the back transition to the H-mode, 

is attributed to a giant ELM. A model path is consid­

ered in the following. At the critical pressure gradient, 

a = Cl'.L..-H, the plasma edge initially on the L-mode 

· enters the H-mode phase. Since XH < XL holds, the 

pressure gradient develops further. At some location Tc 

near the edge, the pressure gradient reaches the criti­

cal condition for the onset of the H/M transition. A 

i 
I 
! 
i ------4-
i i -- ........ 

aL-H cl"-H (Linear) a: 
I MHD /na(A.U.) 

Fig. 7 Multi-fold solutions of the self-sustained 
turbulence, showing L, H and M phases. 
The thermal transport coefficient x is 
shown as a function of the pressure gra­
dient parameter a. (Cited from Ref. 13)) 

sudden large loss of flux is induced. Since the relation 

x:1 » xf1 holds, a sudden electron heat loss is initi­

ated, followed by ion heat loss. The M-branch termi­

nates when the plasma evacuates the excess free energy 

so as to reach the critical pressure gradient, a 1 . Then, 

a back transition from the M- to H-mode occurs. 

The time scale of the crash and dependence of the 

ELM period are discussed in Ref. 27). Due to the en­

hanced heat flux of M-branch, an avalanche process can 

be induced. The large heat flux forces the pressure gra­

dients at the outside and inside of first transition point 

Tc to increase. As a result of this increment of a, the 

next M-mode transition takes place at the both sides 

of Tc. Thus, the M-mode transition catastrophe propa­

gates as an avalanche from Tc over a region Tp < T < a, 

with the speed 

(16) 

where t!1 and rf1 are the correlation length and time 

of the M-mode turbulence. This velocity is much faster 

than that due to the L-mode diffusion. The ELM period 

is mainly given by the heating time from a = af1 to a = 
a:. Thus the ELM frequency increases with heating 

power. An analytic estimate is 

q2P 
fELM <X ( )2B2 a a-Tp 

(17) 

for P » Pc, where P is the power from the plasma and 

Pc is the value needed to reach a~. Using the thermal 

diffusivity from the CDBM theory one finds 

(18) 

suggesting it is easier to achieve ELM-free H-modes at 

lower densities. For P 2:: Pc the dependence off ELM on 
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Fig. 8 The simulation of the ELM crash, tak­
ing into account the avalanche process. 
The time slices of the profiles of (a) the 
pressure gradient a and (b) the electron 
temperature Te are shown from i = 0.00 
to 2.12, where i = t/TAp• The numbers 
1~4 corresponds to the time, i = 0.00, 
i = 0.26, i = 0.53 and £ = 2.12, respec­
tively. f1 is the boundary of the H-mode 
region, where f = r/a - 1. In (a.1) and 
(b. l), dashed curves show the initial L­
mode profiles of a: and Te. In (a.2)~(a.4) 
and (b.2)~(b.4), the dotted curves show 
the initial a: and Te profiles of the H-mode 
at i = 0.00. The arrow l indicates the 
crash front ( transition front). The transi­
tion process starts at f s. The propagation 
of avalanche is found. ( Cited from Ref. 
15)) 

P is modified 

F 

F 

f 

i 

(19) 

The theory also provides an estimate of the plasma en­

ergy loss oW during an ELM 

where vVped is the pedestal energy, Wped 

21r2 a2 Rp(rp)-

A transport simulation has been performed to study 

the avalanche dynamics, where a model hysteresis curve 
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0.6 0.5 

0.3 

0.0 
-0.3 -0.2 O.OF -0.2 -0.1 0.0 i' 

CJ. 1.5 r. (a.2) i = 15.91 
1.0 1.2 

0.9 

0.6 0.5 

0.3 

0.0 
-0.3 -0.2 -0.1 t O.Of -0.2 -0.1 0.0 i' 

CJ. 1.5 
(a.3) i = 23.87 t, 

1.2 1.0 

0.9 

0.6 0.5 ······· 

0.3 

0.0 
t 

0.0 
-0.3 -0.2 -0.1 0.0 f -0.3 -0.2 -0.1 0.0 I' 

a.1.5 
(a.4) i = 32.47 t, 

1.2 1.0 

0.9 

0.6 0.5 ···•. 

0.3 

0.0 0.0 
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Fig. 9 The time slices of the profiles of (a) the 
pressure gradient a and (b) the electron 
temperature Te are shown from i = 8.00 
to 32.47. The numbers 1~4 corresponds 
to the time, i = 8.00, i = 15.91, i = 
23.87 and i = 32.47, respectively. In 
(b.l)~(b.4), the dotted curves show the 
initial temperature profile at i = 0.00. 
The arrow i indicates the boundary be­
tween the H-mode and the M-mode (back 
transition front). The erosion of profile is 
found. (Cited from Ref. 15)) 

for the transport coefficients is employed 14• 15). The 

temporal evolutions of a and the temperature profile 

are shown in Fig. 8 and 9. The H-M transition is in­

duced at the centre of the transition region, where the 

H-mode is established. The transition fronts propagate 

to both sides with a speed of order M 2 l/TAp, where l is 

the typical scale length. The M-mode transport and the 

erosion process still continue until the back transition to 

the H-mode is complete over the whole M-mode region. 

After the back transition, the edge plasma returns to 

the original profile on the heating time scale. The time 

series of the outflux and stored energy are also shown in 

Fig. 10. The rapid rise of outflux and the energy burst 

were confirmed. 

An avalanche in anoth~r phenomenon is possible. 

A transport analysis for the high-,8 sawtooth crash has 
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i=2.33 i=32.47 

Fig. 10 The time evolutions of (a) the heat fluxes 
of the ion Qi and the electron Qe at the 
plasma surface and (b) the stored energy 
Ws. The burst becomes large at around 
i = 2.33 and terminates at i = 32.47. 
The stored energy is exhausted by the en­
hanced heat flux. (Cited from Ref. 15}) 

also been carried out, based on the M-mode transition 

model 3o). The sawtooth oscillations are modeled by 

the repetitive transition between the L- and M-modes. 

The propagation of the M-mode transition front with 

a· speed of order M 2 l / T Ap inside the q = l surface has 

been shown, and a crash with the fast time scale and a 

recovery with the slow time scale have been confirmed: 

It is interesting to note the work of de Blanck in 

which an avalanche mechanism is applied to the problem 

how a localized ballooning instability can lead to a rapid 

propagation of its effect 31). 

3. Theoretical Model for the Analy­
sis 

In this chapter, the theoretical model for the anal­

ysis is presented. The hysteresis characteristics is in­

corporated into the flux-force relation by introducing 

the transition transport model of the heat diffusivity. 

To examine the oscillatory characteristics of the heat 

transport caused by the transition model with hystere­

sis nature, a simplified model is introduced. 

A slab geometry with Cartesian coordinates is used 

for the plasma edge region: 0.8 :::; x/a :::; 1, where the 

main magnetic field is in the z direction, the plasma is 

inhomogeneous in the x direction and a is the minor 

radius. This region is assumed to be heated only by a 

constant influx from the upstream side (at x/a = 0.8). 

To clarify the characteristics of the heat transport, the 

density profile is assumed to be constant and uniform. 

As a basic equation, we employ the one dimensional (1-

D) heat transport equation, 

(21) 

X, [m2/s] 
(a) 

upper 

X2 - -
(ii) branch 

I 

(iii)t t(i) 

X1 I 

lower (iv) I 
branch 

I I 

gc2 gc/ g(keV/m4] 

(b) 
upper 
branch M~--------------~ 

Xi~I-o_w_e_r ____ ---.1, 

branch 

g[keV/m4] 

Fig. 11 The transition models of the heat diffu­
sivity Xt(9) (a) with hysteresis nature and 
(b) with discontinuity. The distance be­
tween the two thresholds is defined by 
/)..gc = 9cI - 9c2 • In the limit of /)..gc -+ 0, 
the hysteresis nature of the model vanishes 
and only discontinuity remains. 

where no, T(x, t) and q(x, t) are the density, the tem­

perature and the heat flux, respectively. The heat flux 

is defined as 

{) 
q(x, t) = -nox(x, g) ax T(x, t), (22) 

where x(x,g) is the heat diffusivity and g represents a 

parameter which controls the transport. The bound­

ary conditions are imposed as follows: a constant influx 

Qin(t) = q(0.8a, t) = canst at the upstream side and 

a constant edge temperature T(a, t) = 0 at the down­

stream side. 

The transition model of the diffusivity, Xt(9), with 
hysteresis nature is shown in Fig. 11 (a). The absolute 

value of the pressure gradient is employed as a parame-
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ter g, 

g(x, t) = jno ! T(x, t) I · (23) 

The diffusivity has two branches. On these branches, 

the diffusivity is assumed to be independent of the pa­

rameter g, and is denoted by x1 for the lower branch 

and x2 for the upper one. The lower branch has an 

upper threshold of the pressure gradient, gc1, and the 

upper branch has a lower threshold, 9c2. The distance 

between the two thresholds is defined as 

~9c = 9el - 9c2· (24) 

In the limit of ~9e - 0, hysteresis nature of the model 

vanishes, and only discontinuity remains, as is shown in 

Fig. 11 (b). 

The radial dependence of the diffusivity is shown in 

Fig. 12 (a). It is assumed to be in the following way. 

In the region 0.8 :::; x/a ::::; 0.9, the diffusivity is kept 

constant and uniform, 

x(x, g) = Xo- (25) 

X [m2/s] 
(a) 

upper branch 
- - -:-:·---:-: - -

Xo•--------· 

lower branch 

1.-________ .__ _______ _,1 xla 

0.8 0.9 1.0 

X [m2/s] 
(b) 

In the region 0.9:::; x/a::::; 1, which we call 'transition X0•--------~ 

region', it has a parabolic dependence on x as, 

(x - 0.9a)(x - a) 
x(x, g) = xo + (xo - Xt(g)) ((a_ 0_9a)/2)2 , (26) 

where Xt (g) is given by the transition model and takes 

either value of XI or x2. 
During the occurrence of the transition, the spatial 

region on the lower branch and that on the upper one 

touch each other at a location where the pressure gradi­

ent pro.file crosses the threshold condition. Then, the in­

terface appears between these regions. The pro.file of the 

diffusivity on this occasion is shown in Fig. 12 (b). The 

interface is assumed to form the spatial 'meso-phase' 

where Xt (not x) has a linear dependence on x, and its 

finite thickne,ss is denoted by c5meso• These assumptions 

are formulated as follows: the relation, 

I 
Bxt I x2 - XI 

fu = (),neso ' 
(27) 

is assumed to hold in the region Ix - Xel :::; c5meso/2, 

where Xe represents a radial location where the thresh­

old condition g(xe) = 9eI or 9e2 is satisfied. 

At a location Xe where the spatial region on the 

lower branch and that on the upper one touch each 

other, the enhanced heat flux from the region on the 

upper branch to that on the lower one is induced. The 

timescale of this 'convective transport' caused by the 

transition is evaluated by the convection term of eq. (21) 

in the meso-phase, 

l lc5meso 

Teon·v '.:'::: lox/ 8xlx=xc: '.:'::: x2 - XI 
(28) 

8 I. • mes<la----.. x/a ..__ ________ .1..-_____ _,;__;_---1 

0.8 0.9 1.0 

Fig.· 12 The radial dependences of the heat diffu­
sivity on the lower and the upper branch 
are assumed as is shown in (a). During the 
occurrence of the transition, the spatial re­
gion on the lower branch and that on the 
upper one touch each other at the location 
where the pressure gradient profile crosses 
the threshold condition. The profile of the 
diffusivity on this occasion is shown in (b). 
These two regions are assumed to be sep­
arated by the spatial 'meso-phase', and its 
finite thickness is denoted by c5meso• 

where l = 0. la is the radial length of the transition 

region. The system of this model has such a convec­

tion timescale in addition to the diffusive transport time 

scale evaluated by 

l2 
Tdiff '.:'::: -. 

Xo 
(29) 

The parameters of a middle sized tokamak are used: 

a = 0.5m and no = 3.0 X 1019m- 3 for the plasma 

edge region. The values of the diffusivity are set as 

xo = l.0m2 /sec, XI = 0.5m2 /sec and x2 = l.5m2 /sec, 
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respectively. For the simplicity, the pressure gradient is 

normalized to go as g = g/go, where go= 1020keV /m4
. 

One threshold is fixed at ge1 = 2.4. Another threshold, 

ge2 ( = 9el - Age), is given by setting the value of Age. 

The influx is set to Qin = 1.5 x 1020keV /m2sec in order 

that the limit cycle oscillation between the two branches 

is possible, i.e., to satisfy the condition, 

(30) 

The thickness of the meso-phase is assumed to be 

8meso = 5.0 x 10-3 m in order that the relation 

Teonv/Tdif J ~ O.l may be satisfied. In other words, we 

consider the case that the convective transport due to 

the transition is much faster than the diffusive trans­

port. 

4. Simulation Study 

In this chapter, based on the transition model with 

hysteresis nature, the heat transport in the plasma edge 

region is numerically analyzed from the view point of 

the characteristics of oscillatory behavior. In section 

4.1, the time evolutions of the net loss of heat flux are 

simulated for three typical cases. The limit cycle pro­

cesses of their oscillations are illustrated and compared 

with each other. The time evolutions of the pressure 

gradient profiles are also shown to reveal the underlying· 

avalanche dynamics. In section 4.2, for periodic oscil­

lation of the flux loss, the parameter dependences of 

its amplitude and frequency are investigated. The de­

pendences on the influx and the distance between two 

thresholds are examined. In section 4.3, for irregular os­

cillation of the flux loss, its power spectrum is analyzed. 

4.1 Time Evolution of Flux Loss 

In experiments, ELM bursts are usually detected 

as temporal oscillations of D0t signal. Here, DOt sig­

nal represents the energy flux from the plasma surface. 

It corresponds to the out.flux to the downstream defined 

by Qout(t) = Q(a, t) in our model. In this section, the 

time evolutions of the net loss of heat flux, defined by 

Qloss(t) = Qout(t) - Qin, are simulated for three typi­

cal values of the distance between two thresholds, (a) 

Age = 1.2, (b) Age = 0.4 and (c) Age = 0. The limit 

cycle processes of their oscillations are illustrated and 

compared with each other. The time evolutions of the 

pressure gradient profile g(x, t) are also presented. The 

avalanche dynamics inducing the flux loss oscillations 

are studied. 

In the case of (a) Age = 1.2, the periodic oscillation 

of the flux loss is observed, as is shown in Fig. 13. It 
consists of a limit cycle process of four steps. When 

the pressure gradient exceeds the threshold ge1, the four 

steps are as follows: (i) a rapid rise of the flux loss due 

2 0 q1oss [ 1020ke V /m2s] 
. (a) 

-2.0 .___ ____ _._ ____ _!, ____ ____,J t[ms] 
0 10 20 
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-1.0 

I 
--7----
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I 

30 

.___ ___ ..__ ___ .,__ ___ ..1...-__ ___, -2.0 
24.7 

t[ms] 
24.8 24.9 25.0 25.1 

Fig. 13 (a) The time evolution of the net loss of 
heat flux Qloss(t) in the case of Age= 1.2. 
(b) The extended view of the region sur­
rounded by the box in (a). 

to the transition from the lower to the upper branch, (ii) 

a gradual decrease of the flux loss in the upper branch, 

(iii) a sudden drop of the flux loss caused by the back 

transition from the upper to the lower branch and (iv) 

a gradual increase of the flux loss on the lower branch. 

These steps (i)~(iv) correspond to the states (i)~(iv) in 

Fig 13. The extended view of the step (i) is also shown in 

Fig 13 (b). The time scale of the rapid change of the flux 

loss in the step (i) or (iii) is in the order of convection 

timescale due to. the transition, Teonv = 250µsec. The 

time scale of the gradual change in the step (ii) or (iv) 

are in the order of the diffusion time, Tdif f = 2.5msec. 

The corresponding pressure gradient profile, shown 

in Fig. 14, also repeats the periodic changes. Starting 

from the initial profile which just touches the thresh­

old of the lower branch ge1 at the center of the tran­

sition region x/a = 0.95 (dotted curve), the profile 

repeats the cycle of four steps as follows. (i) Two 

pulses appear around the center of the transition re­

gion x/a = 0.95 and propagate making the distance 
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Fig. 14 The time evolution of the pressure gradi­
ent profile g(x, t) in the case of 6.[Jc = 1.2. 
The profile plotted by the dotted line in 
every frame shows the profile at the onset 
of the back transition, t = 3. 717msec. 

bet.ween them spread by the successive transitions from 

the lower to the upper branch. The process is shown in 

Fig. 14 (i-l)~(i-3). One pulse propagates toward the up­

stream side, and another to the downstream side. The 

pulse propagating toward the upstream/downstream 

side in the pressure gradient profile corresponds to the 

cold/heat pulse in the temperature profile. The region 

of enhanced transport, which corresponds to that be­

tween two peaks of the pulses, expands with its propa­

gations. In this case, the pulse to the downstream side 

arrives at the edge boundary and this arrival causes the 

rapid rise of the flux loss. (ii) The erosion of the profile is 

caused by the enhanced diffusivity. The profile is eroded 

only in the transition region and reaches the threshold 

9c2 at x/a = 0.95, · as is shown in Fig. 14 (ii). (iii) 

Two negative pulses due to the back transition appear 

at x/a = 0.95 and propagate separating the distance 

between them by the successive back transitions from 

the upper to the lower branch. The process is shown 

in Fig. 14 (iii-l)~(iii-3). The region of the lower trans-
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Fig. 15 The time evolution of the net loss of heat 
flux qloss(t) in the case of 6.flc = 0.4. 

port, which corresponds to that between two peaks of 

the negative pulses, spreads with its propagations. The 

negative pulse to the downstream side reaches the edge 

boundary to cause the sudden drop of the flux loss. (iv) 

The profile restores owing to the heating brought by 

the influx, and reaches at the threshold 9cl again, as 

is shown in Fig. 14 (iv). The time scale of the pulse 

propagation in the step (i) or (iii) is same as that of the 

. rapid change of the flux loss, Tconv• The time scale of 

the erosion in the step (ii) or the recovery in the step 

(iv) is in the order of the diffusion time, Tdiff• 

Periodic bursts of the flux loss are also found in case 

(b) 6.[Jc = 0.4, as is plotted in Fig. 15. In this case, the 

only rapid rise and sudden drop of the flux loss are re­

peated frequently. The gradual change of the flux loss 

is hardly observed within the one limit cycle process, 

since the period of the oscillation is much smaller than 

the diffusion time scale, T « Tdif f, where T is the os­

cillation period, i.e., the duration time of the one limit 

cycle process. 

The corresponding time series of the pressure gra­

dient profile at the saturated state is shown in Fig. 16. 

The profile change in this case is also periodic, but is 

mainly caused by the propagations of pulses. The limit 

cycle process is dominated by two steps which are the 

counterpart of steps (i) and (iii) in case (a). When the 

profile exceeds the threshold of the lower branch gc1, 

two pulses appear and propagate just like the step (i) in 

the case of (a). But the pulses are ceased by the thresh­

old 9c2 and the· pulse toward the downstream side does 

not reach the edge boundary. The process is shown in 

Fig. 16 (i-l)~(i-3). When the pulses stop their prop­

agation, the back transition starts at the tails of the 

pulses. The location is indicated by arrows in Fig 16 

(i-3). The negative pulses generated by the tails of the 

pulses propagate so as to get closer to each other, and 
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Fig. 16 The time evolution of the pressure gradi­
ent profile g(x, t) in the case of D.[Jc = 0.4. 
The profile plotted by the dotted line in 
every frame shows the profile at the onset 
of the back transition, t = 0.026msec. 

finally merge at x/a = 0.95. The process is shown in 

Fig. 16 (ii-l)rv(ii-5). The erosion and the recovery of 

the profile in the time scale Tdif f are not observed. 

In case (c) D.[Jc = 0, shown in Fig. 17 (a), the 

flux loss approaches to the steady state value, namely, 

Qloss(t) = 0. But, it is accompanied by the extremely 

small component of irregular fluctuations. The zoomed 

view is also shown in Fig. 17 (b). These fluctuations are 

caused by repetitions of forward transitions and back 

transitions at the discontinuous point of Xt(g). The pe­

riodic oscillation observed in case (a) and (b) is not re­

vealed. 

The pressure gradient profiles at the initial and the 

final saturated state are shown in Fig. 18. The pressure 

gradient hardly exceeds the threshold 9cl = 9c2 and 

the steady state profile has the flattened region reaching 

the threshold. In reality, the repetitive transition and 

back transition occur continuously in the region where 

the profile touches the threshold condition, so that the 
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0.2 
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-2.0 lQ-3 ...._ _ _,__ _ __,_ __ _.__ _ __,_ _ __, t [ms] 

35 36 37 38 39 40 

Fig. 17 (a) The time evolution of the net loss of 
heat flux Qloss ( t) in the case of D.[Jc = 0. 
(b) The extended view of the region sur­
rounded by the box in (a). 

pressure gradient profile always fluctuates. No periodic 

change of the profile is observed. 

4.2 Characteristics of Periodic Oscillation 

In previous section 4.1, the periodic oscillations of 

the flux loss are observed for the finite values of D.gc, 

In this section, for the periodic oscillation of the flux 

loss (for finite D.gc), the parameter dependences of its 

amplitude and frequency are investigated. The depen­

dences on the influx are examined in subsection 4.2.1, 

and those on D.gc in subsection 4.2.2. 

4.2.1 Dependences of Amplitude and Fre­
quency on Influx 

The dependence of the ELM frequency on the input 

power has been extensively investigated in experiments. 

The types of ELM bursts are generally classified with 

respect to the power dependence of the frequency. In 
our model, the heat source is given by the influx in­

stead of the power deposition. In this subsection, the 

dependences of the amplitude and frequency of the flux 

loss on the influx are investigated. Those are simulated 

for the two values of finite D.gc, (a) D.[Jc = 1.2 and (b) 
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The time evolution of the pressure gra­
dient profile g(x, t) in the case of li[Jc = 
0. The profile plotted by the dotted line 
shows the initial profile at t = 0msec. The 
solid line is the saturated state profile at 
t = 50msec. 

liflc = 0.4. The amplitude and the frequency are ob­

tained from the time series of the flux loss in a saturated 

state, t ?'., 30msec. The amplitude, !:l.Qloss, is calculated 

as the difference between the minimum and maximum 

values of the flux loss, !:l.Qloss = (Q~!: - Q~~~)/2, where 

Q~~~ and Q~!: are minimum and maximum of the flux 

loss, respectively. The frequency, v, is determined as 

the reciprocal of the duration time of one limit cycle 

process, v = 1/r. 

Figure 19 shows the dependences of the amplitude 

(a) and the frequency (b) of the flux loss on the influx 

Qin in the case of li[Jc = 1.2. As the influx increases, 

three phases appear: the stationary phase on the lower 

branch, the oscillatory phase with the limit cycle be­

tween two branches, and the stationary phase on the 

upper branch. In the oscillatory phase, the amplitude of 

the flux loss is almost independent of the influx. In this 

case, the. pressure gradient pulse caused by the transi­

tion reaches the downstream side boundary in the whole 

region of oscillatory phase. On the other hand, the non­

monotonous relation between the frequency of the flux 

loss and the influx is observed. The sign of 8v/8Qin has 

a reversal point near the center of the oscillatory phase. 

In the left region of the top of the frequency curve, the 

duration time staying on the lower branch r1 is longer 

than that on the upper branch r2. In the right region, 

this relation is reversed, r1 < r2. This is because larger 

influx makes the erosion of the profile slower and the 

restoration faster. Since these duration time of r1 and 

7 2 have nonlinear dependence on the influx, such a con­

vex form dependence of the frequency is derived from 

V = l / T = 1 / (ri + 72). 
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Fig. 19 The dependences of (a) the amplitude 
!:l.Qloss and . (b) the frequency v of the 
flux loss on the influx Qin in the case of 
f:l.[Jc = 1.2. 

Figure 20 shows the dependences of the amplitude 

( a) and the frequency (b) of the flux loss on the in­

flux Qin in the case of li[Jc = 0.4. From the amplitude 

dependence in Fig 20 (a), three regions with the differ­

ent types of the dependency are found in the oscillatory 

phase, which are divided discontinuously. In the left 

side region of the oscillatory phase, the amplitude and 

the frequency increase with the influx. Since the pres­

sure gradient pulse caused by the transition does not 

arrive at the upstream side boundary in this regime, 

the pulse repeats to make a round trip in the transition 

region frequently. Therefore, the oscillation has small 

amplitude and high frequency. As the influx increases, 

the pressure gradient pulse caused by the transition be­

comes possible to arrive at the downstream side bound­

ary, and the amplitude increases rapidly. Therefore, in 

the center region of the oscillatory phase, the avalanche 
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Fig. 20 The dependences of (a) the amplitude 
.6.qzoss and (b) the frequency v of the 
flux loss on the influx qin in the case of 
.6.flc = 0.4. 

dynamics of pulse propagation is similar to the previous 

case .6.flc = 1.2. But, the tendency that the amplitude 

slightly increases with the influx is different from the 

case of .6.gc = 1.2. The frequency gradually decreases 

as the influx increases. The opposite amplitude and fre­

quency dependences to those in the left side region are 

found in the right side region of the oscillatory phase. 

In this regime, the duration time staying on. the upper 

branch is much longer than that on the lower branch, 

and the negative pulse of the pressure gradient caused 

by the back transition does not arrive at the upstream 

side boundary. The negative pulse goes up and down 

the transition region frequently. 

Various oscillatory dependences on the influx are 

found in the model with hysteresis. Especially, with re­

spect to the frequency dependences on the input power, 

both types of bursts, i.e., 8v/8P > 0 and 8v/8P < 0, 

are found to be possible, where P is the power input. 

4.2.2 Dependences of Amplitude and Fre­
quency on Distance Between Two Thresh­
olds 

In section 4.1, the different types of oscillatory be­

havior are observed for the different values of .6.gc. In 

this subsection, the dependences of the amplitude and 

frequency of the flux loss on the distance between two 

thresholds are investigated. Especially, it is important 

to analyze the behavior in the limit of .6.gc ---+ 0, which 

corresponds to the critical behavior of the transition 

between two transport mechanisms, i.e., the hysteresis 

type and the discontinuous one. 

Figure 21 shows the dependences of the amplitude 

( a) and the frequency (b) of the flux loss on the distance 

between the two thresholds, .6.gc. The value of .6.flc is 

altered from 0.1 to 1.4. From Eqs. 24 and 30, the limit 

-cycle oscillation of the flux loss occurs provided that the 

condition x1gc1 ~ qin ~ x2(gc1 - .6.gc) holds. As .6.gc 

increases, the second expression of inequality becomes 

not to be satisfied. The limit cycle condition is violated 

in the regime of .6.flc > 1.4. There, the pressure gradi­

ent is maintained above the lower threshold gc2 on the 

upper branch, and the flux loss approaches to zero with­

out the limit cycle oscillation, therefore .6.qzoss = v = 0. 

In the range of 0.6 ~ .6.flc ~ 1.4, the amplitudes and 

the frequencies of the flux loss oscillation are fitt.ed by 

.6.qzoss ex: .6.gc 112 and v ex: .6.gc - 6
, respectively. In this 

range, the pressure gradient pulse caused by the tran­

sition arrives at the downstream boundary. Therefore, 

the oscillation of the flux loss has a large amplitude and 

a low frequency. A change in the .6.gc dependence is 

found at .6.flc = 0.6. In the range of 0 < .6.flc ~ 0.6, 

the scaling relations .6.qzoss ex: .6.gc 3 and v ex: .6.gc - 3
/

2 

are observed. In this range, the oscillation with small 

amplitude and high frequency is realized, since the pres­

sure gradient pulse due to the transition does not reach 

the downstream boundary. 

To check the availability of these power law rela­

tions, the further simulations are carried out for the 

other values of the threshold of the lower branch. The 

value of !Jc1 is changed as 2.2, 2.6 and 2.8. The common 

power law relations are obtained for different values of 

gc1, which is shown in Fig. 22. The power law relations 

in the range of 0 < .6.gc ~ 0.6 can be exterpolated in 

the limit of .6.gc ---+ 0. Thus, the critical behavior of the 

transition between two transport mechanisms, i.e., the 

hysteresis type and the discontinuous one, is expected 

to obey the same power law relations. 
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Fig. 21 The dependences of (a) the amplitude 
llqloss and (b) the frequency v of the 
flux loss on the distance between the two 
thresholds ll9c. 

4.3 Spectral Analysis for Irregular Fluctu­
ation 

In section 4.1, an irregular fluctuating component 

of the flux loss is found in the case of fl§c = 0, as is 

shown in Fig. 17. This fluctuation has small but finite 

amplitude. However, in previous subsection 4.2.2, the 

relations llqloss ex llgc 712 and v ex ll9c - 3
/

2 are found to 

hold in the limit of ll9c - 0. Therefore, the amplitude 

and the frequency of the fluctuation are expected to 

be llqloss - 0 and v - oo in this limit, respectively. 
Furthermore, the observed fluctuation has irregularity 

although no probabilistic quantity is introduced in our 

model. In this section, the cause of these fluctuation 

and irregularity are investigated. The power spectrum 

of this irregular fluctuation is also analyzed. 
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Fig. 22 The dependences of (a) the amplitude 
llqloss and (b) the frequency v on the 
distance between the two thresholds ll9c 
for several values of 9cl . The points 
•, o, 6 and D correspond to the case of 
§c1 = 2.2, 2.4, 2.6 and 2.8, respectively. 

To study the origin of the fluctuation and the irreg­

ularity, the values of the pressure gradient at the onset 

of the forward transition 9tl (x) and the back transition 

gt2 (x) are analyzed and compared with the given value 

of the threshold 9c1 = 9c2. The differences between 

the actual transition points and the given thresholds 

are denoted by 891 = 9tI - 9cI and 892 = 9t2 - 9c2• 

These values are checked at the center of the transition 

region x/a = 0.95. The distance between the forward 

transition and the back transition points is defined as 

ll9t = 9t1 - 9t2 = 891 - 892 + llgc, and the relation 

ll9t = 891 - 892 holds for 9c1 = 9c2- The probabil­
ity distribution functions (PDF) of the differences be­

tween the transition points and the threshold, A(891) 
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Fig. 23 The probability distribution functions of 
the differences between the actual tran­
sition points and the given threshold, 
A ( 891) for the forward transition and 
P2(8g2) for the back transition. 

and A(8g2), are examined and shown in Fig. 23. It 
is found that the transition condition is probabilistic, 

and that the expectation value of the distance between 

the forward transition and the back transition points 

(/::;.gt) has a finite value, where (/::;.gt) = (891) - (892) 
and (8gi) = f 8giPi(8gi)d8gi (i = 1, 2). 

The actual transition point 9tl and back transition 

point 9t2 do not strictly coincide with the given thresh­

old condition gc1 = 9c2, since the finite size of discrete 

time steps in computation allows the pressure gradient 

parameter to pass the threshold without the forward 

transition or back transition, as is schematically illus­

trated in Fig. 24. The finite time step makes (/::;.gt) fi­

nite, since the transition and the back transition do not 

occur at the same time step. In other words, a hystere­

sis with finite width (/::;.gt) is formed by the finite size of 

time step. This finite (~gt) makes the flux loss fluctuate 

although we set /::;.gc = 0. The step length of the pres­

sure gradient evolution on the lower branch is different 

from that on the upper branch. By this, the iteration 

of limit cycle makes the orbit of the pressure gradient 

evolution deviate from the past one. Therefore, the ac­

tual transition point has a probability distribution. This 

probabilistic transition condition generates irregularity. 

Note that this probabilistic transition condition always 

exists, but it hardly influence the dynamics in the larger 

/::;.gc case, i.e., /::;.gc/ (/::;.gt) ~ l. 

The probabilistic transition condition and the finite 

(/::;.gt) in our model seem to correspond to a noise and a 

finite size effect in the sand pile model (8PM) which 
shows the self-organized criticality (SOC) 32, 33, 34) 
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I 
I 

back L1gtl forward 
transition ◄ ► transition I 
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Fig. 24 The schematic illustration of the time evo­
lution on the g-Xt plane in the case of 
/::;.{Jc= 0. 
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Fig. 25 The power spectrum S(f) of the fluctua­
tion in Fig. 17. 

The SOC is characterized by the power spectrum of 

power law called '1/ f noise'. The power spectrum S(f) 
of the irregular fluctuating component in Fig. 17 (b) is 

shown in Fig. 25. The power spectrum is defined by 

S(f) = Jl<lloss(f)l 2
, where (jloss(f) is the Fourier com­

ponent of Qloss ( t) and is complex. The power law de­

pendences of the power spectrum are found. Following 

the works of Refs. 35, 36), the spectrum can be divided 

into three characteristic regions as follows. In the high 

frequency end of the spectrum, 50 ::; ![kHz] ::; 200, the 

dependence Sex 1-4 is obtained. This frequency band 

is identified as the noninteracting event region. The en­

hanced fluxes caused by the transition do not overlap 
with each other and are isolated events. In the middle 
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frequency range, 5 ::::; f[kHz] ::::; 50, the spectrum is fit­

ted as Sex f- 1
. The local events may overlap with each 

other in this region, and a large avalanche can be formed 

by their coalescence. The 1/ f spectrum is indicative of 

the lack of characteristic scale for the avalanche. In 

the low frequency range, 0.1 ::::; f[kHz] ::::; 5, the spectral 

power becomes flat, S ex J0
• This region is considered as 

the cutoff of 1/ f dependence by the finite system size re­

striction. The events in this region are global discharge 

events with the scale of spatial spread comparable with 

the system size. These three spectral regions have been 

identified in the SPM and they are the characteristics 

of many SOC systems. These scaling relations of the 

power spectrum are also obtained for finite but small 

values of !:1gc. The SOC-like behavior is expected to 

appear under the condition !:1gc/ (f1gt);:, 0.9. 

5. Summary and Discussion 

In this paper, we studied edge relaxation phenom­

ena observed in high temperature plasmas from the view 

point of the oscillatory characteristics of the heat trans­

port. The oscillatory behavior of the heat transport in 

the plasma edge region was investigated by an approach 

based on nonlinear transport with limit cycle solution. 

The hysteresis type flux-force relation was incorporated 

into the model by introducing the transition transport 

model of heat diffusivity with hysteresis nature. Based 

on the model, we numerically analyzed the time evolu­

tion of heat flux and the parameter dependences of its 

amplitude and frequency. A part of our analysis with 

respect to the parameter dependence has been reported 
in Ref. 37). 

In chapter 2., the empirical phenomenology of ELM 

was reviewed. The experimental classifications of ELMs 

were presented. The theoretical models of ELMs were 

also reviewed. Especially, we reviewed two transition 

models with hysteresis nature, i.e., the electric field bi­

furcation theory and the magnetic braiding mode tran­

sition model. 

In chapter 3., the theoretical model for the present 

analysis was introduced. Based on the 1-D heat trans­

port equation, the heat transport in the plasma edge re­

gion heated only by a constant influx from the upstream 

side was considered. The hysteresis characteristics were 

incorporated in the flux-force relation by introducing 

the transition transport model of heat diffusivity with 

hysteresis nature. To investigate the characteristics of 

oscillatory behavior caused by the hysteresis nature, a 

simplified transition model was introduced. 

In chapter 4., based on the transition model with 

hysteresis nature, the oscillatory behavior of the net loss 

of heat flux was investigated. 

First, we analyzed the time evolutions of the net loss 

of heat flux. The underlying avalanche dynamics were 

studied showing the time evolution of the pressure gra­

dient profile. For finite values of hysteresis width with 

respect to the pressure gradient !:1gc, the periodic pro­

cess of the limit cycle oscillation exists. Two typical 

cases with finite !:1gc were shown to have different types 

of the periodic oscillations depending on whether the 

pulse of the pressure gradient generated by the tran­

sition arrives at the edge boundary or do not. If the 

pulse reaches the boundary, the flux loss repeated the 

limit cycle process of four distinct steps, i.e., rapid rise 

by the transition, gradual decrease due to the erosion 

of the profile, sudden drop by the back transition and 

gradual increase by the recovery of the profile. In the 

case without an arrival of the pulse at the boundary, 

only rapid rise and sudden drop of the flux loss were re­

peated. This oscillation has the small amplitude and the 

high frequency compared with the case of the pulse ar­

riving at the boundary. For !:1gc = 0, the profile hardly 

develops to excess the threshold and approaches to the 

steady state profile. The flux loss gets close to the steady 

value, but is accompanied with the small component of 

the irregular fluctuations due to the limit cycle oscilla­

tion around the discontinuous point of the diffusivity. 

This fluctuation is found to be generated by the prob­

abilistic transition condition and the finite size effect of 

the pressure gradient owing to the discrete time steps in 

computation. The situation of transport in this case was 

very similar to the evolution rule of SPM, and the power 

spectrum which obeys power law relations is obtained. 

Second, the parameter dependences of the ampli­

tude and the frequency of the flux loss were investigated. 

The amplitude has weak or no dependence on the influx 

when the positive or negative pulse of the pressure gra­

dient reaches the downstream boundary. While, in the 

case without the arrival of the pulse at the boundary, 

it has dependence. The non-monotonous dependences 

of the frequency on the influx were observed for given 

values of !:1gc. With respect to the dependences on the 

distance between two thresholds, the amplitude and fre­

quency were fitted by !:1qloss ex l:1gc 112 and v ex !:1gc - 5
, 

respectively, in the region of 0.6 ::::; !:1gc :=::; 1.4. The 

limit of !:1gc ~ 0 was investigated, and the transition 

between two transport mechanisms, i.e., the hysteresis 

type and the discontinuous one, was clarified. Power law 

relations of the amplitude, !:1qtoss ex !:1gc 3 , and the fre­

quency, v ex !:1gc - 3! 2, were obtained for O < f1§c :=::; 0.6. 

Analyzing such change of the oscillatory characteristics 

may give a key to understand the mechanism of the col­

lapse. 

For future work, we investigate the influence of the 

meso-phase thickness on the oscillatory characteristics 

of the flux loss. For periodic oscillation (for finite !:1gc), 
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the dependences of the amplitude and frequency of the 

flux loss on the meso-phase thickness is analyzed. The 

timescale of the convection due to the transition is de­

termined by the thickness of meso-phase according to 

Eq. 27. Therefore, the smaller Age case, in which the 

period of the oscillation is in the order of convection 

timescale, is expected to be much more strongly affected 

by the change of bmeso. For irregular oscillation, which 

corresponds to the smallest Age case, i.e., Age = 0, 

the influence of the moso-phase thickness on the power 

spectrum can be examined. The coalescence of neigh­

boring local events due to the transition is promoted by 

the overlap of their meso-phases. Therefore, the wider 

bmeso makes the probability of large event occurrence 

be higher. The large amplitude (or low frequency) com­

ponent of power spectrum is expected to increase. The 

characteristics of SOC-like behavior will be further an­

alyzed with well-defined origin of irregular fluctuation. 

For finite Age case, a probabilistic component is intro­

duced in the influx (or the thresholds). Then, the irreg­

ular fluctuation may be caused by the finite size effect 

due to given Age and the incorporated noise instead of 

the finite size effect and the noise due to the discrete 

time step in computation. These are left for our future 

work. 
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Appendix 

Al. Transition Model with Discon­
tinuous Derivative 

The transition model with discontinuous derivative, 

shown in Fig. Al, is also considered as one of transi­

tion transport mechanisms in addition to the model with 

hysteresis nature and that with discontinuity shown in 

Fig. 11. The transition model with discontinuity and 

that with discontinuous derivative correspond to the 

phase transition of the first and second order, respec­

tively. Here, we simulate the time evolution using the 

transition model of the diffusivity with discontinuous 

derivative. 

The simplified transition model with discontinuous 

derivative is shown in Fig. Al. The diffusivity has an 

intermediate branch between the upper and the lower 

branch (in the region 9cl ::; 6.gc ::; 9c2) and is assumed 

to be a linear function of the pressure gradient on this 

branch. The other setup for simulation is the same as 

that in chapter 3., and the case of 6.gc < 0 represents 

the model with discontinuous derivative according to 

the previous definition of the thresholds. 

-0.4 .__ __ ..,__ __ __._ __ --L ___ 1--_ ____. t[ms] 

0 20 30 40 50 

Fig. A2 The time evolution of the net loss of heat 
flux qloss(t) in the case of 6.flc = -1.2. 

The time evolution of the flux loss in the case of 

6.§c = -1.2 is shown in Fig. A2. The flux loss settles 

down to the steady state value, qzoss(t) = 0. The satura­

tion of the flux loss occurs in the order of diffusion time 

Tdif J. The corresponding initial and saturated pressure 

gradient profiles are shown in Fig. A3. Starting from 

the initial profile which just comes close to the thresh­

old of the lower branch 9c1 at the center of the transition 

region x/a = 0.95 (dotted line), the profile partially ex­

ceeds the threshold and reaches the steady state (solid 

line) where the diffusion and the influx are balanced. 

In this case, the profile can maintain itself beyond the 

threshold of the lower branch. 

Neither the repetitive limit cycle process nor the 

rapid change in the time scale Tconv is found. The tran­

sition model with discontinuous derivative, which ap­

proaches the final state, belongs to the soft-type tran­

sition. The soft-type mechanism causes the gradual 
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g [ 1020ke V /m4] 
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Fig. A3 The time evolution of the pressure gradi­
ent profile g(x, t) in the case of !:,.fie = 
-1.2. The profile plotted by the dotted 
line shows the initial profile at t = 0msec. 
The solid line is the saturated state profile 
at t = 50msec. 

transition in slow transport timescale. On the other 

hand, the transition models with hysteresis nature and 

with discontinuity, which cause the dynamic process, are 

categorized in the hard-type transition. The hard-type 

mechanisms cause the sudden transition in fast convec­

tion timescale. Moreover, work-done to the outside of 

system is realized by hysteresis nature. A hysteresis 

nature has a potentiality to explain the fast growth of 

the outward heat flux and the evacuation of the plasma 

energy induce by ELMs. 




