Regioselective Preparation of Aminomethylphenols by Reduction of Mannich bases of Halophenols with Raney Cu-Al Alloy in 10% Aqueous Sodium Hydroxide

Tashiro, Masashi
Institute of Advanced Material Study Kyushu University

Saeki, Katsunori
Department of Industrial Chemistry Faculty of Engineering Kyushu Sangyo University

Tsuzuki, Hirohisa
Department of Molecular Science and Technology Graduate School of Engineering Sciences Kyushu University

Mataka, Shuntaro
Institute of Advanced Material Study Kyushu University

他

https://doi.org/10.15017/6529
Regioselective Preparation of Aminomethylphenols by Reduction of Mannich bases of Halophenols with Raney Cu-Al Alloy in 10% Aqueous Sodium Hydroxide

Masashi TASHIRO, Katsunori SAEKI*, Hirohisa TSUZUKI**, Shuntaro MATAKA, Taizo HATTA**, and Tadashi YONEMITSU*

Dedicated to Professor Otohiko Tsuge on the occasion of his retirement

It was developed a selective preparative method of aminomethylphenols by reducing Mannich bases of bromophenols with Raney Cu-Al alloy in 10% aqueous sodium hydroxide.

Aminomethylphenols are important as an intermediate for pesticides, fungicides, and drugs. Mannich reaction \(^1\) is useful for introducing an aminomethyl group in the aromatic ring of phenol. But, when ortho- and para-positions are open, all possible mono-substituted isomers and, depending upon the reaction conditions, poly-substituted products are formed.

Recently, we have demonstrated \(^2\) that halogen atoms on aromatic nucleus are easily removed by treatment with Raney alloy in an alkaline media, thus working as a positional protecting group.

We here report regioselective preparation of aminomethylphenols by reduction of Mannich bases of halophenols by Raney alloy in an alkaline solution.

Results and discussion

First, Mannich bases, la \(^3\) and b, of 4-chloro- and 4-bromophenol were treated with Raney Ni-Al, Co-Al, Fe-Al, and Cu-Al alloy in aqueous NaOH and the results are given in Scheme 1 and Table 1.

As expected, Raney Ni alloy removed reductively both chlorine and bromine atom and, at the same time, cleaved C–N bond, giving cresol (2) in a high yield. On the other hand, reductive C–N bond fission did not occur when Cu alloy was used in place of Ni alloy. Furthermore, Cu alloy removed only bromine but not chlorine atom under the above conditions. Raney Co...
Regioselective Preparation of Aminophenols

Table 1. Treatment of la·HCl and lb·HCl with Raney alloy.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Alloy</th>
<th>Alloy/mmol</th>
<th>1 (%)</th>
<th>2 (%)</th>
<th>3a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>la</td>
<td>Ni-Al</td>
<td>200</td>
<td>-</td>
<td>92</td>
<td>-</td>
</tr>
<tr>
<td>la</td>
<td>Ni-Al</td>
<td>100</td>
<td>-</td>
<td>55</td>
<td>-</td>
</tr>
<tr>
<td>la</td>
<td>Ni-Al</td>
<td>75</td>
<td>(1)</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>la</td>
<td>Ni-Al</td>
<td>50</td>
<td>(28)</td>
<td>19</td>
<td>53</td>
</tr>
<tr>
<td>la</td>
<td>Cu-Al</td>
<td>100</td>
<td>84</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>la</td>
<td>Co-Al</td>
<td>100</td>
<td>(73)</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>la</td>
<td>Fe-Al</td>
<td>100</td>
<td>88</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>lb</td>
<td>Ni-Al</td>
<td>100</td>
<td>-</td>
<td>72</td>
<td>-</td>
</tr>
<tr>
<td>lb</td>
<td>Ni-Al</td>
<td>50</td>
<td>(28)</td>
<td>52</td>
<td>14</td>
</tr>
<tr>
<td>lb</td>
<td>Cu-Al</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>lb</td>
<td>Co-Al</td>
<td>200</td>
<td>(10)</td>
<td>4</td>
<td>87</td>
</tr>
<tr>
<td>lb</td>
<td>Fe-Al</td>
<td>200</td>
<td>(51)</td>
<td>1</td>
<td>48</td>
</tr>
</tbody>
</table>

1) Temp: 80°C. Time: 2h. 2) Purity determined by vpc is >99%. 3) Relative yield determined by vpc.

[Diagram 1 and 2]

and Fe alloy gave a mixture of 1, cresol (2), and 2-(1-piperidinylmethyl) phenol (3a). It is noted that Raney Cu alloy removed bromine more effectively than Fe and Co did. From Table 1, it is clear that reductive dehalogenation precedes C–N bond fission (Scheme 2).

From the above results, it is now expected that 2-aminomethylphenols and their chloro derivatives could be prepared by treatment of Mannich bases of bromo- and bromo-chloro-phenols, respectively, with Raney Cu-Al alloy without being contaminated by regioisomers. This is realized in Scheme 3 and Table 2. Aminomethylphenols 3a-b and chloro derivatives 3c-d were
Table 2. Preparation of aminomethylphenol 3.

<table>
<thead>
<tr>
<th>Substrate (R)</th>
<th>Product (3)</th>
<th>R<sup>1</sup></th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb</td>
<td>3a</td>
<td>-(CH<sub>2</sub>)<sub>5</sub>H</td>
<td>57</td>
</tr>
<tr>
<td>lc</td>
<td>3b</td>
<td>-(CH<sub>2</sub>)<sub>20</sub>(CH<sub>2</sub>)<sub>2</sub>H</td>
<td>75</td>
</tr>
<tr>
<td>ld</td>
<td>3c</td>
<td>-(CH<sub>2</sub>)<sub>5</sub>Cl</td>
<td>16</td>
</tr>
<tr>
<td>le</td>
<td>3d</td>
<td>-(CH<sub>2</sub>)<sub>20</sub>(CH<sub>2</sub>)<sub>2</sub>Cl</td>
<td>63</td>
</tr>
</tbody>
</table>

Scheme 3

obtained in the yields shown in Table 2.

Reduction of manich base 1f by Ni alloy gave 2,4-xylenol in 74% yield and the reduction by Cu alloy did 2,4-di(1-morpholinylmethyl)phenol (3e) in 66% yield. Compound 1g is unstable under basic conditions, forming resinous materials. Reduction of 1g with Ni alloy in hydrochloric acid resulted in a recovery of 1g in 80% yield.

Mannich base of diphenylmethane 1h was prepared by the reaction of 2-bromophenol with dimethylamine. From ¹H-nmr data, 1h was elucidated to have 2,2'-dihydroxy- or 4,4'-dihydroxydiphenylmethane skeleton. In order to clarify this, 1h was reduced with Ni alloy, giving 5,5'-dimethyl-2,2'-dihydroxydiphenylmethane (4) whose melting point (mp 115-118°C) is different...
from that (mp 160–161°C) of isomeric 3,3'-dimethyl-4,4'-dihydroxy one 5. Raney Cu alloy reduction afforded the expected 3f in 40% yield.

EXPERIMENTAL

All melting points were determined on a Yanagimoto micro-apparatus and Mitamura-riken MELT–THERMO and are uncorrected. Mass spectra were obtained on a Nippon Denshi JMS–01SG–2 mass spectrometer at 75 eV using a direct inlet system. 1H-nmr spectra were recorded on a Nippon Denshi JEOL FT–100 using TMS as an internal standard.

Preparation of Mannich base (1).

Preparation of Mannich base (1) was carried out according to the reported procedure. Typical procedure is as follows. To a stirred mixture of phenol (10 mmol) and secondary amine (15 mmol) was added dropwise at room temperature 37% aq. formalin (15 mmol) over a period of 30 min. The mixture was stirred at room temperature for 30 min and then in oil bath kept at 100°C for 2 h. After it was cooled to room temperature, ether (50 ml) was added. Organic layer was separated, dried over MgSO₄, and evaporated in vacuo, giving crude 1. Hydrochloride of 1 was obtained as a white solid by introducing dry hydrogen chloride into an ether solution of crude 1.

4-Chloro-2-(1-piperidinylmethyl)phenol (1a): colorless needles, mp 52–54°C (lit., mp 56–57°C). N-(5-chloro-2-hydroxyphenylmethyl)piperidinium chloride (1a·HCl): colorless needles, mp 231–234°C (decomp.), Yield 90%; mass, m/e 227 (M⁺), 225 (M⁺) (Found: C, 55.16; H, 6.57; N, 5.42.
Calcd for $C_{12}H_{17}NOCl$: C, 54.97; H, 6.54 N, 5.34%

4-Bromo-2-(1-piperidinylmethyl)phenol (1b): colorless needles, mp 53–57°C; 1H-nmr (CDCl$_3$) δ 1.40–1.80 (6H, m), 2.30–2.70 (4H, m), 3.60 (2H, s), 6.70 (1H, d, J=8.0Hz), 7.05 (1H, d, J=2.5Hz), 7.23 (1H, dd, J=8.0 and 2.5Hz), 9.40–9.70 (br s, 1H); mass, m/e 271 (M$^+$), 269 (M$^+$).

Found: C, 53.14; H, 5.87; N, 5.04. Calcd for $C_{12}H_{16}NOBr$: C, 53.35; H, 5.97; N, 5.18%.

N-(5-bromo-2-hydroxyphenylmethyl)piperidinium chloride (1b·HCl): colorless needles, mp 245–248°C (decomp), Yield 89%; 1H-nmr (CD$_3$OD) δ 1.40–2.00 (6H, m), 2.80–3.20 (4H, m), 4.25 (2H, s), 6.90 (1H, d, J=8.0Hz), 7.40 (1H, dd, J=8.0 and 2.5Hz), 7.60 (1H, d, J=2.5Hz); mass, m/e 271 (M$^+$), 269 (M$^+$).

Found: C, 46.83; H, 5.48; N, 4.39. Calcd for $C_{12}H_{17}NOBrCl$: C, 47.01; H, 5.59; N, 4.57%.

N-(5-bromo-2-hydroxyphenylmethyl)morpholinium chloride (1c·HCl): colorless crystals, mp 165–180°C (decomp.), Yield 91%; 1H-nmr (CD$_3$OD) δ 3.00–3.50 (4H, m), 4.30 (2H, s), 6.86 (1H, d, J=8.5Hz), 7.45 (1H, dd, J=8.5 and 2.5Hz), 7.59 (1H, d, J=2.5Hz); mass, m/e 273 (M$^+$), 271 (M$^+$).

Found: C, 42.73; H, 5.01; N, 4.72. Calcd for $C_{12}H_{15}NOBrCl$: C, 42.81; H, 4.90; N, 4.54%.

N-(5-bromo-3-chloro-2-hydroxyphenylmethyl)piperidinium chloride (1d·HCl): colorless crystals from hexane, mp 186–192°C (decomp), Yield 91%; 1H-nmr (CD$_3$OD) δ 1.30–2.20 (6H, m), 2.70–3.80 (4H, m), 4.34 (2H, s), 7.61 (1H, d, J=2.5Hz), 7.65 (1H, d, J=2.5Hz); mass, m/e 307 (M$^+$), 305 (M$^+$), 303 (M$^+$).

Found: C, 42.03; H, 4.78; N, 4.14. Calcd for $C_{12}H_{16}NOBrCl$: C, 42.26; H, 4.73; N, 4.11%.

N-(5-bromo-3-chloro-2-hydroxyphenylmethyl)morpholinium chloride (1e·HCl): colorless powder, mp 167–178°C (decomp.), Yield 96%; 1H-nmr (CD$_3$OD) δ 3.06–3.60 (4H, m), 3.62–4.24 (4H, m), 4.88 (2H, s), 7.63 (1H, d, J=2.0Hz), 7.68 (1H, d, J=2.0Hz); mass, m/e 368 (M$^+$), 365 (M$^+$), 363 (M$^+$).

Found: C, 39.09; H, 4.39; N, 4.14. Calcd for $C_{16}H_{28}NOBrCl$: C, 38.51; H, 4.11; N, 4.08%.

2-Bromo-4,6-di(morpholinomethyl)phenol (1f): pale pink plates from ethanol, mp 167–169°C, Yield 81%; 1H-nmr (CDCl$_3$) δ 0.70–1.80 (6H, m), 2.10–2.80 (4H, m), 3.54 (4H, s), 7.14 (2H, s), 9.20–10.20 (1H, br s); mass, m/e 368 (M$^+$), 366 (M$^+$), 365 (M$^+$).

Found: C, 48.65; H, 6.60; N, 6.31. Calcd for $C_{18}H_{32}N_2O_3Br$: C, 49.11; H, 6.64; N, 6.36%.

3,3'-Dibromo-2,2'-dihydroxy-5,5'-di(dimethlyaminomethyl)diphenylmethane (1h): pale yellow needles from hexane, mp 171–175°C (decomp.), Yield 24%; 1H-nmr (CDCl$_3$) δ 2.30 (6H, s), 3.58 (2H, s), 3.66 (1H, s), 6.44 (1H, d, J=2Hz), 7.16 (1H, d, J=2Hz), 10.20–10.50 (1H, br s).

Found: C, 48.28; H, 5.12; N, 5.73. Calcd for $C_{19}H_{24}N_2O_2Br_2$: C, 48.33; H, 5.12; N, 5.93%.
Regioselective Preparation of Aminophenols

Treatment of 1 or 1 HCl with Raney alloy.

Preparation of aminomethylphenol (3) by treatment of 1 or 1 HCl with Raney Cu alloy.

Typical procedure. To a stirred mixture of 1 (5 mmol) and a 10% aqueous NaOH (20 ml) was added at room temperature Raney Cu alloy (500 mg, 100 mg of alloy/1 mmol of 1) in five portions and it was heated in oil bath kept at 80°C for 1 h. Inorganics were filtered and the filtrate was neutralized with concentrated hydrochloric acid. White solid formed was filtered through celite and the filtrate was extracted with chloroform (150 ml), dried over MgSO₄, and evaporated in vacuo to give 3.

2-(1-Piperidinylmethyl)phenol (3a): colorless liquid (lit., bp 150-152°C/12mmHg)³; ¹H-nmr (CDCl₃) δ 1.30-1.80 (6H, m), 2.30-2.60 (4H, m), 3.60 (2H, s), 6.60-7.30 (4H, m), 10.27 (1H, s); mass, m/e 191 (M⁺).

2-(1-Morpholinylmethyl)phenol (3b): colorless needles from hexane, m.p. 85-88°C; ¹H-nmr (CDCl₃) δ 2.40-2.80 (4H, m), 3.50-3.90 (6H, m), 6.70-7.30 (4H, m); mass, m/e 193 (M⁺).

2-Chloro-6-(1-piperidinylmethyl)phenol (3c): colorless needles from hexane, mp 43-45°C (lit., mp 49°C). ⁵)

2-Chloro-6-(1-morpholinylmethyl)phenol (3d): colorless needles from hexane, mp 117-118°C (lit., mp 114°C). ⁵)

2,4-Di(1-morpholinylmethyl)phenol (3e): colorless needles, mp 90-93°C; ¹H-nmr (CDCl₃) δ 2.20-2.70 (8H, m), 3.36 (2H, s), 3.40-3.92 (10H, m), 6.72 (1H, d, J=8Hz), 6.90 (1H, d, J=2Hz), 7.06 (1H, dd, J=8 and 2Hz); mass, m/e 292(M⁺). Found: C, 65.93; H, 8.34; N, 9.56. Calcd for C₁₆H₂₄N₂O₂: C, 65.73; H, 8.27; N, 9.58%.

4,4'-Dihydroxy-3,3'-di(N,N-dimethylaminomethyl)diphenylmethane (3f): colorless needles from hexane, mp 88-91°C; ¹H-nmr (CD₃OD) δ 2.30 (12H, s), 3.59 (4H, s), 3.76 (2H, s), 6.70 (2H, d, J=6Hz), 6.76 (2H, d, J=2Hz), 6.94 (2H, dd, J=6 and 2Hz), 9.40-10.20 (2H, br s); mass, m/e 314 (M⁺). Found: C, 72.66; H, 8.58; N, 8.73. Calcd for C₁₉H₂₆N₂O₂: C, 72.58; H, 8.33; N, 8.91%.

Reduction of 1h

A mixture of 1h (620 mg, 2 mmol) in 10% aq. NaOH (10 ml) was treated with Raney Ni-alloy (1600 mg) as described above, giving 4 (40 mg, 9 %).

4,4'-Dihydroxy-3,3'-dimethyldiphenylmethane (4): colorless needles from hexane, mp 118-121°C; ¹H-nmr (CD₃OD) δ 2.12 (6H, s), 3.66 (2H, s), 6.40-7.00 (6H, m); mass, m/e 228 (M⁺).

Found: C, 78.43; H, 7.13. Calcd for C₁₅H₁₆O₂: C, 78.92; H, 7.06%)

References

