Synthesis of Bis (2, 6-dihydroxy-5-oxo-1, 3, 6-cycloheptatrienyl) methane from 2-Alkoxy-5-hydroxytropones and the Electrochemical Properties of Bis (3, 4, 7-trioxo-1, 5-cycloheptadienyl)- methane Derivatives

Mori, Akira
九州大学大学院理工学府物質理工学

Goto, Yasutomo
Institute of Advanced Material Study Kyushu University

Takeshita, Hitoshi
Department of Molecular Science and Technology Graduate School of Engineering Sciences Kyushu University

https://doi.org/10.15017/6512
Synthesis of Bis(2, 6-dihydroxy-5-oxo-1, 3, 6-cycloheptatrienyl) methane from 2-Alkoxy-5-hydroxytropones and the Electrochemical Properties of Bis(3, 4, 7-trioxo-1, 5-cycloheptadienyl) methane Derivatives

Akira MORI, * Yasutomo GOTO, and Hitoshi TAKESHITA*

Bis(2-hydroxy-6-methoxy-5-oxo-1,3,6-cycloheptatrienyl) methane was prepared from 5-hydroxy-2-methoxytropone in a good yield. Its acid treatment gave a bis-demethylated derivative, bis(2,6-dihydroxy-5-oxo-1,3,6-cycloheptatrienyl) methane and a dehydration product, 2,10-dihydroxydicyclohepta[δ, ε]-pyran-3, 9-dione. By TTN- and CAN-oxidations, they yielded bis(3, 3-dimethoxy-4,7-dioxo-1,5-cycloheptadienyl) methane and bis(3,4,7-trioxo-1,5-cycloheptadienyl) methane acetal. This bisacetal was converted to 4-(3,3-dimethoxy-4,7-dioxo-1,5-cycloheptadienyl)methyl-p-tropoquinone by an acid treatment. The CV analysis of these p-tropoquinone derivatives disclosed a parallel substituent effect to that observed in the monofunctional p-tropoquinones.

Introduction

Received August 21, 1987
Preparation of Bis-Tropoquinones

Recently, we have prepared several 3- and 5-arylmethyl tropolones (1 and 2) \(^1\) by the thermal rearrangement of 2-benzyloxytropones (3) via a radical chain reaction. Meanwhile, we noticed a paper by Yamato et al\(^2\), who described a direct alkylation of tropolones with acetals to form mono- and ditropolonyl derivatives (A and B) which were subjects of their biological survey for anti-tumor drugs.\(^3\) In this paper, we will report our own results on the similar C-C bond formation to obtain methylene-linked dimers of \(\rho\)-tropoquinone derivatives, together with their further transformations and cyclic voltammetric (CV) analysis of the electrochemical properties.

Results and Discussion

Preparation and Reactions of Bis(troponyl)methanes. When 5-hydroxy-2-methoxytropone (4) \(^4\) was heated at 60 °C with a mixture of formaldehyde (5), dimethylamine (6), and acetic acid\(^5\) or with a mixture of 5 and aqueous potassium hydroxide,\(^6\) yellow crystals (7) separated out from the mixture in 85 and 55%, respectively. Its \(\text{1}\text{H}\) NMR spectrum showed only four singlets at \(\delta = 4.41\) (6H), 4.80 (2H), 8.16 (4H), and 8.76 (2H). The mass spectral determination of molecular weight, 316, deduced its structure to be a 2:1-condensate, bis(2-hydroxy-6-methoxy-5-oxo-1,3,6-cycloheptatrienyl) methane. Similarly, 5-hydroxy-2-(2-hydroxyethoxy)tropone (8) gave the corresponding ditropolonylmethane (9) in 27% yield. Structure of 9 was also clarified by NMR analysis.
Next, heating 7 in refluxing conc hydrobromic acid in acetic acid gave two hydrolyzed products (10 and 11) in 82 and 1% yields. The 1H NMR spectrum of each hydrolysate showed a methylene signal and a pair of AB-type signals in the aromatic region. From the mass spectra, 10 and 11 were concluded to be bis-demethyl derivatives of 7, bis(2,6-dihydroxy-5-oxo-1,3,6-cycloheptatrienyl)methane and cyclized 2,10-dihydroxydicyclohepta[\textit{b, e}]pyran-3,9-dione. The latter 11 was also formed from either 7 or 10 by reflux in conc hydrobromic acid, in 40 and 72% yields, respectively. When 10 was oxidized in acetone with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), the only product isolated in 29% yield was 11, not bis(3,4,7-trioxo-1,5-cycloheptadienyl)methane (C). On the other hand, the thallium (III) nitrate (TTN)-oxidation7 of 7 in anhydrous methanol gave two products (12 and 13) in 59 and 22% yields, respectively. The 12 was the desired bis(3,3-dimethoxy-4,7-dioxo-1,5-cycloheptadienyl)methane from the spectral evidence. That is, the 1H NMR spectrum showed four methoxyl groups on sp3 carbons, a methylene signal, and six aromatic protons. The 13C NMR spectrum of 12 was consistent to its formulation. In the 1H NMR of 13, two methoxyl groups on sp3 carbons and a pair of AB-type signals appeared in the aliphatic region, and two pairs of AB-type signals and two singlets in the aromatic region.

Therefore, the structure of 13 was deduced to be a spiro derivative as shown in Scheme 1. These products (12 and 13) were also obtained from the cerium (IV) ammonium nitrate (CAN)-oxidation of 7 in methanol.9 The TTN oxidation of 9 gave bis-diacetal (14) in 35% yield which was also obtained from the TTN-oxidation of 7 in 1,2-ethanediol. Since its 13C NMR showed twelve lines, 14 must be a diastereomeric mixture.

 Attempted hydrolysis of 12 with perchloric acid in aqueous acetone, however, led to 4-(3,3-dimethoxy-4,7-dioxo-1,5-cycloheptadienyl)methyl-p-tropoquinone (15), but no desired C at all. Probably, C is very reactive under the reaction conditions; this instability might be attributable to the low isolation yield of 15.

Cyclic Voltammetry Measurements. The reduction peak potentials (E_p) of 12 and 15 were determined by cyclic voltammetry (CV). Table 1 summarizes the results together with several reference compounds, 7,7-dimethoxy-1,4-dioxo-2,5-cycloheptadiene (16),7 p-tropoquinone (17),9 and their methyl derivatives (180 and 190); the CV of 12 showed only two reduction peaks at -0.86 and -1.17 V as well as 16 and 18 did around -0.9 and -1.7 V.10 The difference between the introduction potentials of the first and the second electrons and the difference between those of the third and the fourth electrons were both very small in 12, resulting two peaks in the CV. Additionally, the second peak potential of 12 was more positive by ca. 0.5 to 0.7 V than those of 16 and 18. On the other hand, three peaks (E_{p1}, E_{p2}, and E_{p3}) were observed in 15; E_{p1} and E_{p3} (-0.27 and -1.23 V) were similar to the potentials of p-tropoquinone, 17 (-0.28 and -1.24 V), and E_{p2} (-0.92 V) was similar to the first peak potential (-0.87 V) of p-tropoquinone dimethyl acetal (16). The enhancement and
the small difference of reduction potentials in the \(p \)-tropoquinone acetal moieties of 12 and 15 contrasted to the CV of 3-(3,6-dioxo-1,4-cyclohexadienyl)methyl-\(p \)-tropoquinone (20), which showed four peaks and no potential enhancement compared to 17 and \(p \)-benzoquinone.\(^{11}\)

While the TTN- and CAN-oxidations of 7 gave a spirocyclic compound (13) due to an intramolecular interaction of two rings, similar interaction is conceivable to cause the enhancement of the reduction potentials in \(p \)-tropoquinone acetal moiety of 12 and 15.

Conclusion. Consequently, the procedures described in this paper are evidently versatile, and could be employed for many other types of functionalized bis(troponyl)methane synthesis. Also noteworthy is analysis of the fundamental electrochemical properties of quinone acetals with CV method; this will help a molecular design for functional molecules in both engineering and physiological view points with this class of peculiar compounds.

Table 1. Reduction Peak Potentials (V) of 12, 15, and the Reference \(p \)-Tropoquinones\(^{a}\)

<table>
<thead>
<tr>
<th>compd.</th>
<th>(E_{p1})</th>
<th>(E_{p2})</th>
<th>(E_{p3})</th>
<th>(E_{p4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>-0.27</td>
<td>-0.92</td>
<td>-1.23</td>
<td>-1.23</td>
</tr>
<tr>
<td>12</td>
<td>-0.86</td>
<td>-0.87</td>
<td>-1.68</td>
<td>-1.88</td>
</tr>
<tr>
<td>16(^{b})</td>
<td>-0.93</td>
<td>-1.24</td>
<td>-1.22</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-0.28</td>
<td>-1.24</td>
<td>-1.22</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\) The CV was measured in anhydrous DMF with 0.1 M TBAF using Pyrex glass-sealed Pt-wire as working and counter electrodes, and the standard \(\text{Ag/AgCl} \) as reference electrode at 22-23 °C under \(\text{N}_2 \) with scan rate of 100 mV/s.

\(^{b}\) Additional oxidation peaks; at 0.16 V for 16 and 0.09 V for 18.

Experimental

The elemental analyses were carried out by Miss S. Hirashima, of Institute of Advanced Material Study, Kyushu University. The NMR spectra were measured by a JEOL FX 100 Spectrometer in CDCl\(_3\) solution, unless otherwise specified, and the chemical shifts expressed were in \(\delta \) unit. The mass spectra were measured with a JEOL OISG-2 Spectrometer. The IR spectra were taken as KBr disks or as a liquid film inserted between NaCl plates using a Jasco IR-A 102 Spectrometer.

Preparation of 7.
\(^{a}\) Glacial \(\text{AcOH} \) solution (1 cm\(^3\)) of 4 (162.6 mg) and 6 (50\%, 0.2 cm\(^3\)) was treated with 5 (37\%, 0.8 cm\(^3\)) at 60 °C for 2.5 h under \(\text{N}_2 \) atmosphere. The resultant crystals were collected by filtration, washed with MeOH to give 7 (yellow crystals, mp 191-194°C (decomp), 135.1 mg; 80\%). Found: \(m/z \), 316.0945 (M\(^+\)). Calcd for C\(_{17}\)H\(_{16}\)O\(_6\) : 316.0945. \(^1\)H NMR (CF\(_3\)COOD) \(\delta = 4.41 \) (6H, s), 4.80 (2H, s), 8.16 (4H, s), and 8.76 (2H, s). \(^{13}\)C NMR
\[(\text{CF}_3\text{COOD}) \delta = 45.6, 59.8 \text{ (2C)}, 135.6 \text{ (4C)}, 143.7 \text{ (4C)}, 159.9 \text{ (2C)}, 165.2 \text{ (2C)}, \text{ and } 169.5 \text{ (2C)}. \]

\[\text{IR } \nu : 1625, 1521, 1394, 1255, \text{ and } 1162 \text{ cm}^{-1}. \]

b) A 50%-aqueous KOH solution (0.4 cm\(^3\)) of 4 (197 mg) and 5 (37%, 0.4 cm\(^3\)) was stirred at 60 °C for 45 min under \(N_2\) atmosphere. After an addition of water, the mixture was acidified with dil H\(_2\)SO\(_4\) to precipitate yellow crystalline 7 [111.7 mg; 55%].

Preparation of 9. Glacial AcOH solution (1 cm\(^3\)) of 8 (100.7 mg) and 6 (50%, 0.2 cm\(^3\)) was treated with 5 (37%, 0.8 cm\(^3\)) at 60 QC for 6 h under \(N_2\) atmosphere. The mixture was heated in vacuo to remove the solvent, and the residue was again diluted with water, and the resultant precipitates were collected by filtration, washed with MeOH to give 9 [yellow crystals, mp 135.5 °C (decomp), 27.9 mg; 27%]. Found: m/z, 376.1111 (M\(^+\)). Calcd for C\(_{19}\)H\(_{20}\)O\(_8\): 376.1156. \(^1\)H NMR (CD\(_3\)OD) \(\delta = 3.8-3.9 \text{ (2H, m)}, 4.0-4.1 \text{ (8H, m)}, 7.25 \text{ (4H, s)}, \text{ and } 7.66 \text{ (2H, s)}. \)

\(^1\)C NMR (DMSO-d\(_6\) at 100 QC) \(\delta = 38.2, 59.5 \text{ (2C)}, 79.2 \text{ (2C)}, 128.4 \text{ (2C)}, 132.8 \text{ (2C)}, 133.5 \text{ (2C)}, 133.8 \text{ (2C)}, 151.5 \text{ (2C)}, 164.6 \text{ (2C)}, \) and 168.7 \text{ (2C)}. IR \(\nu : 1621, 1520, 1258, \text{ and } 1155 \text{ cm}^{-1}\].

Preparation of 10 and 11 from 7. An AcOH solution (5 cm\(^3\)) of 7 (514.6 mg) and 48% HBr (20 cm\(^3\)) was refluxed for 1 h. The mixture was then diluted with water, and the precipitates were collected by filtration to give, after silica-gel column chromatography, 10 [yellow crystals, mp 186-189 °C (decomp), 383.9 mg; 82%]. Found: C, 62.22; H, 4.14 %. Calcd for C\(_{15}\)H\(_{12}\)O\(_6\): C, 62.50; H, 4.20%. \(^1\)H NMR (CD\(_3\)OD) \(\delta = 4.65 \text{ (2H, s)}, 8.00 \text{ (2H, d, } J = 12 \text{ Hz)}, 8.20 \text{ (2H, d, } J = 12 \text{ Hz}), \text{ and } 8.63 \text{ (2H, s)}. \)

\(^1\)C NMR (CD\(_3\)OD) \(\delta = 43.7, 132.8 \text{ (2C)}, 135.5 \text{ (2C)}, 140.0 \text{ (2C)}, 145.2 \text{ (2C)}, 160.8 \text{ (2C)}, 161.7 \text{ (2C)}, \text{ and } 169.4 \text{ (2C)}. \) IR \(\nu : 1620, 1378, 1268, \text{ and } 1200 \text{ cm}^{-1}\] and 11 [greenish yellow crystals, mp 179-182 °C (decomp), 6.2 mg; 1%]. Found: m/z, 270.0493 (M\(^+\)). Calcd for C\(_{15}\)H\(_{10}\)O\(_5\): 270.0528. \(^1\)H NMR (CD\(_3\)OD) \(\delta = 4.66 \text{ (2H, s)}, 8.02 \text{ (2H, d, } J = 12.5 \text{ Hz)}, 8.26 \text{ (2H, d, } J = 12.5 \text{ Hz}), \) and 8.67 \text{ (2H, s)}. \(^1\)C NMR (CD\(_3\)OD) \(\delta = 37.6, 133.0 \text{ (2C)}, 135.9 \text{ (2C)}, 139.1 \text{ (2C)}, 157.0 \text{ (2C)}, 159.5 \text{ (2C)}, 166.0 \text{ (2C)}, \) and 168.7 \text{ (2C)}. IR \(\nu : 1618, 1548, 1460, 1418, \text{ and } 1262 \text{ cm}^{-1}\].

An HBr-Treatment of 7. A 48%-HBr solution (5 cm\(^3\)) of 7 (109.6 mg) was refluxed for 8 h to give 11 [37.5 mg; 40%].

An HBr-Dehydration of 10 to 11. A suspension of 10 (32.9 mg) in conc HBr (48%, 2 cm\(^3\)) was refluxed for 4 h. The mixture was diluted with water, and the resultant crystals were collected by filtration to give 11 [22.3 mg; 72%].

The DDQ-Oxidation of 10. An acetone suspension (3 cm\(^3\)) of 10 (35.2 mg) and DDQ (60 mg) was stirred for 20 h at room temperature. The resultant precipitates were collected by filtration to give 11 [9.6 mg; 29%].

TTN-Oxidation of 7 in MeOH. To a suspension of 7 (101 mg) in anhydrous MeOH (3 cm\(^3\)) was added TTN (300.6 mg) at -20 °C. The mixture was stirred at -20 °C for 10 min, then at room temperature for 1 h. The mixture was diluted with water and extracted with
Preparation of Bis-Tropoquinones

CHCl₃. The organic extract was washed with aq NaHCO₃, and evaporated in vacuo, and chromatographed on a silica-gel column to give 12 [yellow crystals, mp 114 °C (decomp), 70.2 mg; 59%. Found: C, 60.35; H, 5.37%. Calcd for C₁₉H₂₀O₈: C, 60.63; H, 5.36%. ¹H NMR δ = 3.24 (12H, s), 3.34 (2H, t, J = 1.5 Hz), 6.08 (2H, t, J = 1.5 Hz), 6.34 (2H, d, J = 12.5 Hz), and 6.52 (2H, d, J = 12.5 Hz). ¹³C NMR δ = 36.9, 50.6 (4C), 102.9 (2C), 132.3 (2C), 134.4 (2C), 138.3 (2C), 148.0 (2C), 192.3 (2C), and 192.8 (2C). IR ν: 1712, 1665, and 1065 cm⁻¹.]

and 13 [yellow crystals, mp 123 °C (decomp), 22 mg; 22%. Found: C, 64.82; H, 4.54%. Calcd for C₁₇H₁₄O₆: C, 64.96; H, 4.49%. ¹H NMR δ = 3.28 (1H, d, J = 17 Hz), 3.68 (3H, s), 3.88 (3H, s), 4.24 (1H, d, J = 17 Hz), 5.47 (1H, s), 6.52 (1H, d, J = 13 Hz), 6.61 (1H, s), 6.70 (1H, d, J = 13 Hz), 6.98 (1H, d, J = 13 Hz), and 7.18 (1H, d, J = 13 Hz). ¹³C NMR δ = 43.7, 56.2, 56.3, 89.1, 107.2, 109.8, 121.5, 124.9, 133.0, 137.2, 137.8, 153.9, 156.9, 161.5, 178.5, 186.2, and 192.2. IR ν: 1700, 1628, 1565, 1555, and 1510 cm⁻¹].

TTN-Oxidation of 7 in 1,2-Ethanediol. To a suspension of 7 (97.1 mg) in 1,2-ethanediol (3 cm³) was added TTN (608.7 mg) at −20 °C. After stirring at room temperature for 30 min, the mixture was diluted with water, and extracted with AcOEt, washed with aq NaHCO₃, and evaporated in vacuo. The residue was purified with silica-gel column chromatography to give 14 [colorless crystals, mp 175–176 °C, 44.5 mg; 33%. Found: C, 57.71; H, 5.51%. Calcd for C₂₁H₂₄O₁₀: C, 57.79; H, 5.54%. ¹H NMR (CD₃OD) δ = 3.10 (6H, s), 3.4–3.6 (4H, m), 3.8–4.5 (6H, m), 5.88 (2H, d, J = 13 Hz). 6.14 (2H, t, J = 1.5 Hz), and 6.22 (2H, d, J = 13 Hz). ¹³C NMR (CD₃OD) δ = 36.5, 59.6 (2C), 59.9 (2C), 93.9 (2C), 98.9 (2C), 130.2 (2C), 140.6, 140.8, 141.1 (2C), 145.5 (2C), 192.2, and 193.1. IR ν: 3600–3200, 1625, 1150, 1085, and 1002 cm⁻¹].

CAN-Oxidation of 7. To a suspension of 7 (74.3 mg) in anhydrous MeOH (2 cm³) was added CAN (280 mg) at 0 °C. The mixture was stirred for 20 min at 0 °C and at room temperature for 1 h. The mixture was then diluted with water, extracted with CHCl₃, washed with aq NaHCO₃, and evaporated in vacuo. The residue was purified with silica-gel column chromatography to give 12 [30.7 mg; 35%] and 13 [19.6 mg; 27%].

TTN-Oxidation of 9. To an anhydrous MeOH solution (2 cm³) of 9 (41.3 mg) was added TTN (205.7 mg) at −20 °C. The mixture was stirred at −20 °C for 10 min, then at room temperature for 1.5 h. The mixture was then diluted with water, extracted with CHCl₃ and AcOEt, washed with aq NaHCO₃, and evaporated in vacuo. Preparative thin-layer (silica-gel) chromatography of the residue yielded 14 [16.8 mg; 85%].

Acid-Hydrolysis of 12. Formation of 15. An MeOH solution (8 cm³) of 12 (107.9 mg) and aq HClO₄ (2 M, 8 cm³) was stirred at room temperature for 2 h. The mixture was diluted with water and extracted with CHCl₃. The organic extract was evaporated in vacuo and the residue was chromatographed on a silica-gel column to give 15 [a yellow oil, 15.9 mg; 24%. Found: m/z, 330.0746 (M⁺). Calcd for C₁₇H₁₄O₇: 330.0739. ¹H NMR δ = 3.26 (6H, s), 3.56
(2H, t, $J = 1.5$ Hz), 6.24 (1H, t, $J = 1.5$ Hz), 6.38 (1H, d, $J = 13$ Hz), 6.56 (1H, d, $J = 13$ Hz), 6.74 (1H, d, $J = 13$ Hz), 6.76 (1H, t, $J = 1.5$ Hz), and 6.90 (1H, d, $J = 13$ Hz). 13C NMR $\delta = 37.4, 50.8$ (2C), 103.0, 133.0, 133.5, 134.1, 136.5, 138.4, 140.2, 142.2, 148.7, 185.4, 186.1, 187.4, 192.5, and 192.8] along with the recovered 12 [33.7 mg; 31%]

Acknowledgement: The authors wish to thank The Ministry of Education, Science, and Culture for a financial assistance, a Grant-in-Aid for Scientific Research, to A. M. (No. 60470025).

References

10) The CV of monocyclic acetals will be discussed elsewhere.