九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Asymptotic behavior of solutions to the compressible Navier－Stokes equation in a cylindrical domain
Kagei，Yoshiyuki
Faculty of Mathematics，Kyushu University

Nukumizu，Takumi
Faculty of Mathematics，Kyushu University
https：／／hdl．hand le．net／2324／6478

出版情報：2007－08－09．九州大学大学院数理学研究院
バージョン：
権利関係：

MHF Preprint Series

Kyushu University
21st Century COE Program
Development of Dynamic Mathematics with High Functionality

Asymptotic behavior of solutions to the compressible Navier-Stokes equation in a cylindrical domain

Y. Kagei \& T. Nukumizu

MHF 2007-15
(Received August 9, 2007)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN

Asymptotic behavior of solutions to the compressible Navier-Stokes equation in a cylindrical domain

Yoshiyuki Kagei and Takumi Nukumizu

Abstract

Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a given constant state is investigated on a cylindrical domain in \mathbf{R}^{3}, under the no slip boundary condition for the velocity field. The L^{2} decay estimate is established for the perturbation from the constant state. It is also shown that the time-asymptotic leading part of the perturbation is given by a function satisfying a 1 dimensional heat equation. The proof is based on an energy method and asymptotic analysis for the associated linearized semigroup.

Key words : compressible Navier-Stokes equation, asymptotic behavior, cylindrical domain.

1. Introduction

This paper studies the initial boundary value problem for the compressible Navier-Stokes equation in a cylindrical domain Ω :

$$
\begin{gather*}
\partial_{t} \rho+\operatorname{div}(\rho v)=0 \tag{1.1}\\
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)+\nabla P(\rho)=\mu \Delta v+\left(\mu+\mu^{\prime}\right) \nabla \operatorname{div} v \tag{1.2}\\
\left.v\right|_{\partial \Omega}=0,\left.\quad \rho\right|_{t=0}=\rho_{0}(x),\left.\quad v\right|_{t=0}=v_{0}(x) \tag{1.3}
\end{gather*}
$$

Here Ω is a cylindrical domain in \mathbf{R}^{3} that is defined by

$$
\Omega=\left\{x=\left(x^{\prime}, x_{n}\right) ; x^{\prime}=\left(x_{1}, x_{2}\right) \in D, x_{3} \in \mathbf{R}\right\}
$$

where D is a bounded domain in \mathbf{R}^{2} with smooth boundary; $\rho=\rho(x, t)$ and $v=\left(v^{1}(x, t), v^{2}(x, t), v^{3}(x, t)\right)$ denote the unknown density and velocity at time $t \geq 0$ and position $x \in \Omega$, respectively ; $P=P(\rho)$ is the pressure ; μ and μ^{\prime} are the viscosity coefficients that satisfy $\mu>0, \frac{2}{3} \mu+\mu^{\prime} \geq 0$.

[^0]Our main concern is the large time behavior of solutions to problem (1.1)(1.3) when the initial value $\left\{\rho_{0}, v_{0}\right\}$ is sufficiently close to a given constant state $\left\{\rho_{*}, 0\right\}$, where ρ_{*} is a given positive number.

Matsumura and Nishida [15, 16] proved the global in time existence of solutions to the Cauchy problem for (1.1)-(1.2) on the whole space \mathbf{R}^{3} around $\left(\rho_{*}, 0\right)$ and obtained the optimal L^{2} decay rate of the perturbation $u(t)=\left\{\rho(t)-\rho_{*}, v(t)\right\}$. Kawashima, Matsumura and Nishida [11] then showed that the leading part of $u(t)$ is given by the solution of the linearized problem. (See [10] for the case of a general class of quasilinear hyperbolic-parabolic systems.) The solution of the linearized problem exhibits a hyperbolic-parabolic aspect of system (1.1)-(1.2), a typical property of system (1.1)-(1.2). Its asymptotically leading part in large time is given by the sum of two terms, one is given by the convolution of the heat kernel and the fundamental solution of the wave equation, which is the so-called diffusion wave, and the other is the solution of the heat equation. Hoff and Zumbrun [2, 3] showed that there appears some interesting interaction of hyperbolic and parabolic aspects of the system in the decay properties of L^{p} norms with $1 \leq p \leq \infty$. (See also [14].) Such an interaction phenomena also appears in the exterior domain problem $[12,13]$ and the half space problem [7, 8].

On the other hand, solutions on the infinite layer $\mathbf{R}^{n-1} \times(0,1)$ behave in a manner different from the ones on the domains mentioned above. It was shown in [6] that the leading part of the solution on the infinite layer is given by a solution of an $n-1$ dimensional heat equation and any hyperbolic feature does not appear in the leading part. This is due to the fact that the infinite layer has an infinite extent in $n-1$ unbounded directions and the remaining one direction has a finite thickness. In this paper we will prove that an analogues result holds for solutions on the cylindrical domain Ω that has one unbounded direction x_{3} and two dimensional bounded cross section D. We will show that under suitable assumptions on the initial value, $u(t)=\left\{\rho(t)-\rho_{*}, v(t)\right\}$ satisfies

$$
\begin{equation*}
\|u(t)\|_{L^{2}}=O\left(t^{-1 / 4}\right), \quad\left\|u(t)-u^{(0)}(t)\right\|_{L^{2}}=O\left(t^{-3 / 4} \log t\right) \tag{1.4}
\end{equation*}
$$

as $t \rightarrow \infty$. Here $u^{(0)}=\left\{\phi^{(0)}\left(x_{3}, t\right), 0\right\}$ with $\phi^{(0)}\left(x_{3}, t\right)$ satisfying

$$
\partial_{t} \phi^{(0)}-\kappa \partial_{x_{3}}^{2} \phi^{(0)}=0,\left.\quad \phi^{(0)}\right|_{t=0}=\frac{1}{|D|} \int_{D}\left(\rho_{0}\left(x^{\prime}, x_{3}\right)-\rho_{*}\right) d x^{\prime}
$$

where κ is a positive constant and $|D|$ denotes the Lebesgue measure of D. We will also establish the decay estimate $\left\|\partial_{x} u(t)\right\|_{L^{2}}=O\left(t^{-3 / 4}\right)$. As in the case of the infinite layer, the leading part of $u(t)$ is given by a solution of the

1 dimensional heat equation and no hyperbolic feature appears in the leading part. We also note that any effect from the nonlinearity does not appear in the leading part.

The proof of (1.4) is based on the H^{3} energy estimate and the asymptotic analysis for the linearized semigroup. The H^{3} energy estimate is obtained by the energy method in [17], which also gives the global solvability for the problem (1.1)-(1.3). To prove the asymptotic properties in (1.4), we analyze the linearized resolvent problem, which takes the form (after some transformation)

$$
\begin{equation*}
(\lambda+L) u=f \tag{1.5}
\end{equation*}
$$

Here $u={ }^{T}(\rho, v)$ (the superscript ${ }^{T}$ stands for the transposition), and L is the operator with domain $D(L)$ defined by

$$
L=\left(\begin{array}{cc}
0 & \gamma \operatorname{div} \\
\gamma \nabla & -\nu \Delta I_{3}-\widetilde{\nu} \nabla \operatorname{div}
\end{array}\right), \quad D(L)=H^{1}(\Omega) \times\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right],
$$

where I_{3} denotes the 3×3 identity matrix, and $\nu, \widetilde{\nu}$ and γ are suitable positive constants. The resolvent problem will be considered through the Fourier transform in x_{3} variable that leads to the problem of the form:

$$
\begin{equation*}
\left(\lambda+\widehat{L}_{\xi}\right) \widehat{u}=\widehat{f} \tag{1.6}
\end{equation*}
$$

Here $\xi \in \mathbf{R}$ denotes the dual variable, $\widehat{u}=\widehat{u}\left(x^{\prime}, \xi\right)$ and $\widehat{f}=\widehat{f}\left(x^{\prime}, \xi\right)$ are functions in $x^{\prime} \in D$, and \widehat{L}_{ξ} is the operator with $\partial_{x_{3}}$ replaced by $i \xi$ in L. As in the case of the infinite layer [5], the spectrum of $-\widehat{L}_{\xi}$ for $|\xi| \ll 1$ can be regarded as a perturbation from the one with $\xi=0$, and we show that the spectrum near the origin is given by a simple eigenvalue $\lambda_{0}(\xi)=-\kappa \xi^{2}+O\left(\xi^{4}\right)$ as $\xi \rightarrow 0$. On the other hand, as for $|\xi| \gg 1$, an explicit integral formula for $\left(\lambda+\widehat{L}_{\xi}\right)^{-1}$ was used to obtain the L^{p} estimates in the case of the infinite layer. Such an explicit integral formula cannot be expected to be obtained in the case of the cylindrical domain Ω, and, so, as a first step of the analysis, we employ an energy method to obtain the L^{2} estimates for $|\xi| \gg 1$.

This paper is organized as follows. In section 2 we state our main results of this paper : asymptotic behavior of solutions of the linearized and nonlinear problems. In this paper we will give a proof only for the linearized problem, since the nonlinear problem can be treated in a similar argument to that given in [6], based on the linearized analysis and the energy method in [17]. In section 3 we study the resolvent problem (1.6) for $|\xi| \gg 1$. Section 4 is devoted to the analysis of (1.6) for $|\xi| \ll 1$. We then investigate the asymptotic behavior of the linearized semigroup in section 5 .

2. Main Result

We first introduce some notation which will be used throughout the paper. We denote by $L^{2}(\Omega)$ the usual Lebesgue space of all square summable functions on Ω and its norm is denoted by $\|\cdot\|_{2}$. Let ℓ be a nonnegative integer. The symbol $H^{\ell}(\Omega)$ denotes the ℓ-th order L^{2} Sobolev space on Ω with norm $\|\cdot\|_{H^{\ell}} . C_{0}^{\ell}(\Omega)$ stands for the set of all C^{ℓ} functions which have compact support in Ω. We denote by $H_{0}^{1}(\Omega)$ the completion of $C_{0}^{1}(\Omega)$ in $H^{1}(\Omega)$.

We simply denote by $L^{2}(\Omega)$ (resp., $H^{\ell}(\Omega)$) the set of all vector fields $v=\left(v^{1}, v^{2}, v^{3}\right)$ on Ω with $v^{j} \in L^{2}(\Omega)$ (resp., $\left.H^{\ell}(\Omega)\right), j=1,2,3$, and its norm is also denoted by $\|\cdot\|_{2}$ (resp., $\|\cdot\|_{H^{\ell}}$). We will frequently consider column vectors ${ }^{T}\left(v^{1}, v^{2}, v^{3}\right)$, and, for simplicity, the set of all column vectors ${ }^{T}\left(v^{1}, v^{2}, v^{3}\right)$ with $v^{j} \in L^{2}(\Omega)$ (resp., $\left.H^{\ell}(\Omega)\right), j=1,2,3$, is also denoted by $L^{2}(\Omega)$ (resp., $\left.H^{\ell}(\Omega)\right)$ and its norm is also denoted by $\|\cdot\|_{2}$ (resp., $\|\cdot\|_{H^{\ell}}$). Here and in what follows ${ }^{T}$. stands for the transposition. For $u={ }^{T}(\phi, v)$ with $\phi \in H^{k}(\Omega)$ and $v=\left(v^{1}, v^{2}, v^{3}\right) \in H^{\ell}(\Omega)$, we define $\|u\|_{H^{k} \times H^{\ell}}$ by $\|u\|_{H^{k} \times H^{\ell}}=$ $\|\phi\|_{H^{k}}+\|v\|_{H^{\ell}}$. When $k=\ell$, we simply write $\|u\|_{H^{k} \times H^{k}}=\|u\|_{H^{k}}$.

Similarly, we define the function spaces on D, namely, $L^{2}(D)$ and $H^{\ell}(D)$; and their norms are denoted by $|\cdot|_{2}$ and $|\cdot|_{H^{\ell}}$, respectively.

We define $L_{x_{3}}^{1}\left(\mathbf{R} ; L^{2}(D)\right)$ by

$$
L_{x_{3}}^{1}\left(\mathbf{R} ; L^{2}(D)\right)=\left\{u=^{T}\left(\phi\left(x^{\prime}, x_{3}\right), v\left(x^{\prime}, x_{3}\right)\right) ;\left\||u|_{2}\right\|_{L_{x_{3}}^{1}}<\infty\right\}
$$

where

$$
\left\||u|_{2}\right\|_{L_{x_{3}}^{1}}=\int_{\mathbf{R}}\left|u\left(\cdot, x_{3}\right)\right|_{2} d x_{3}=\int_{\mathbf{R}}\left(\int_{D}\left|u\left(x^{\prime}, x_{3}\right)\right|^{2} d x^{\prime}\right)^{1 / 2} d x_{3} .
$$

Similarly, we define $L_{x_{3}}^{1}\left(\mathbf{R} ; H^{1}(D) \times L^{2}(D)\right)$ and $\left\||u|_{H^{1} \times L^{2}}\right\|_{L_{x_{3}}^{1}}$.
The inner product of $L^{2}(D)$ is denoted by

$$
(f, g)=\int_{D} f\left(x^{\prime}\right) \overline{g\left(x^{\prime}\right)} d x^{\prime}, \quad f, g \in L^{2}(D)
$$

Here \bar{g} denotes the complex conjugate of g. Furthermore, we define $\langle\cdot, \cdot\rangle$ and $\langle\cdot\rangle$ by

$$
\langle f, g\rangle=\frac{1}{|D|}(f, g) \text { and }\langle f\rangle=\langle f, 1\rangle=\frac{1}{|D|} \int_{D} f\left(x^{\prime}\right) d x^{\prime}
$$

for $f, g \in L^{2}(D)$, respectively.
Partial derivatives of a function u in x, x^{\prime}, x_{3} and t are denoted by $\partial_{x} u$, $\partial_{x^{\prime}} u, \partial_{x_{3}} u$ and $\partial_{t} u$, respectively. We also write higher order partial derivatives of u in x as $\partial_{x}^{k} u=\left(\partial_{x}^{\alpha} u ;|\alpha|=k\right)$.

We denote the $n \times n$ identity matrix by I_{n}. We define 4×4 diagonal matrices Q_{0}, \widetilde{Q} and Q^{\prime} by

$$
Q_{0}=\operatorname{diag}(1,0,0,0), \widetilde{Q}=\operatorname{diag}(0,1,1,1), Q^{\prime}=\operatorname{diag}(0,1,1,0) .
$$

We then have, for $u={ }^{T}(\phi, v) \in \mathbf{R}^{4}, v=\left(v^{1}, v^{2}, v^{3}\right)$,

$$
Q_{0} u=\binom{\phi}{0}, \quad \widetilde{Q} u=\binom{0}{v}, \quad Q^{\prime} u=\left(\begin{array}{c}
0 \\
v^{1} \\
v^{2} \\
0
\end{array}\right)
$$

For a function $f=f\left(x_{3}\right)\left(x_{3} \in \mathbf{R}\right)$, we denote its Fourier transform by \widehat{f} or $\mathscr{F} f$:

$$
\widehat{f}(\xi)=(\mathscr{F} f)(\xi)=\int_{\mathbf{R}} f\left(x_{3}\right) e^{-i \xi x_{3}} d x_{3} \quad(\xi \in \mathbf{R})
$$

The inverse Fourier transform is denoted by \mathscr{F}^{-1} :

$$
\left(\mathscr{F}^{-1} f\right)\left(x_{3}\right)=(2 \pi)^{-1} \int_{\mathbf{R}} f(\xi) e^{i \xi x_{3}} d \xi \quad\left(x_{3} \in \mathbf{R}\right)
$$

We denote the resolvent set of a closed operator A by $\rho(A)$ and the spectrum of A by $\sigma(A)$. For $\Lambda \in \mathbf{R}$ and $\theta \in\left(\frac{\pi}{2}, \pi\right)$ we will denote

$$
\Sigma(\Lambda, \theta)=\{\lambda \in \mathbf{C} ;|\arg (\lambda-\Lambda)| \leq \theta\} .
$$

We next rewrite problem (1.1)-(1.3). We set $\phi=\rho-\rho_{*}$. Then problem (1.1)-(1.3) is reduced to finding $u=\{\phi, v\}$ that satisfies

$$
\begin{gather*}
\partial_{t} \phi+v \cdot \nabla \phi+\rho \operatorname{div} v=0 \tag{2.1}\\
\rho\left(\partial_{t} v+v \cdot \nabla v\right)-\mu \Delta v-\left(\mu+\mu^{\prime}\right) \nabla \operatorname{div} v+P^{\prime}(\rho) \nabla \phi=0, \tag{2.2}\\
\left.v\right|_{\partial \Omega}=0 ;\left.\quad u\right|_{t=0}=u_{0} \tag{2.3}
\end{gather*}
$$

where $\rho=\phi+\rho_{*}$ and

$$
u_{0}=\left\{\phi_{0}, v_{0}\right\}, \quad \phi_{0}=\rho_{0}-\rho_{*} .
$$

Here (1.1) is used to obtain (2.2).

We first consider the linearized problem. Substituting $\rho=\phi+\rho_{*}$ in (2.1)(2.3) and omitting the terms $O\left(|\phi|^{2}+|v|^{2}\right)$, we have the linearized problem

$$
\begin{aligned}
& \partial_{t} \phi+\operatorname{div} v=0 \\
& \partial_{t} v-\nu \Delta v-\widetilde{\nu} \operatorname{div} \nabla v+p_{1} \nabla \phi=0, \\
& \left.v\right|_{\partial \Omega}=0,\left.\quad \phi\right|_{t=0}=\phi_{0},\left.\quad v\right|_{t=0}=v_{0}
\end{aligned}
$$

where $p_{1}=P^{\prime}\left(\rho_{*}\right)$. By transforming $\phi \mapsto \sqrt{\rho_{*} / p_{1}} \phi$, the problem is reduced to

$$
\partial_{t} u+L u=0,\left.\quad u\right|_{t=0}=u_{0} .
$$

Here $u={ }^{T}(\phi, v), u_{0}={ }^{T}\left(\phi_{0}, v_{0}\right)$ and L is the operator defined in (1.5) with $\nu=\mu / \rho_{*}, \widetilde{\nu}=\left(\mu+\mu^{\prime}\right) / \rho_{*}$ and $\gamma=\sqrt{p_{1} / \rho_{*}}$.

As for the linearized problem, we have the following result.
Theorem 2.1. The operator $-L$ generates an analytic semigroup $e^{-t L}$ on $H^{1}(\Omega) \times L^{2}(\Omega)$. Furthermore, if $u_{0}={ }^{T}\left(\phi_{0}, v_{0}\right) \in\left(H^{1}(\Omega) \times L^{2}(\Omega)\right) \cap L^{1}(\Omega) \cap$ $L_{x_{3}}^{1}\left(\mathbf{R} ; H^{1}(D) \times L^{2}(D)\right)$, then $e^{-t L} u_{0}$ is written as :

$$
e^{-t L} u_{0}=\mathscr{U}_{0}(t) u_{0}+\mathscr{U}_{1}(t) u_{0}+\mathscr{R}(t) u_{0}
$$

where each term on the right has the following properties.
(i) $\mathscr{U}_{0}(t) u_{0}$ has the form

$$
\mathscr{U}_{0}(t) u_{0}=\binom{\phi^{(0)}(t)}{0}
$$

where $\phi^{(0)}=\phi^{(0)}\left(x_{3}, t\right)$ satisfies the following heat equation

$$
\partial_{t} \phi^{(0)}-\kappa \partial_{x_{3}}^{2} \phi^{(0)}=0,\left.\quad \phi^{(0)}\right|_{t=0}=\left\langle\phi_{0}\right\rangle
$$

with a positive constant κ. Furthermore, $\mathscr{U}_{0}(t) u_{0}$ satisfies the estimates

$$
\left\|\partial_{x}^{\ell} \mathscr{U}_{0}(t) u_{0}\right\|_{2} \leq C t^{-\frac{1}{4}-\frac{\ell}{2}}, \quad \ell=0,1,2 .
$$

(ii) $\mathscr{U}_{1}(t) u_{0}$ satisfies the estimates

$$
\begin{gathered}
\left\|\mathscr{U}_{1}(t) u_{0}\right\|_{H^{1}} \leq C t^{-\frac{3}{4}}\left\|\left|\widetilde{Q} u_{0}\right|_{H^{1} \times L^{2}}\right\|_{L_{x_{3}}^{1}}, \\
\left\|\partial_{x} \mathscr{U}_{1}(t) \widetilde{Q} u_{0}\right\|_{2} \leq C t^{-\frac{5}{4}}\left\|\left|\widetilde{Q} u_{0}\right|_{2}\right\|_{L_{x_{3}}^{1}}, \\
\left\|\mathscr{U}_{1}(t)\left[\partial_{x} \widetilde{Q} u_{0}\right]\right\|_{2} \leq C t^{-\frac{3}{4}}\left\|\left|\widetilde{Q} u_{0}\right|_{2}\right\|_{L_{x_{3}}^{1}}+C t^{-\frac{5}{4}}\left\|\left|\partial_{x} \widetilde{Q} u_{0}\right|_{2}\right\|_{L_{x_{3}}^{1}} .
\end{gathered}
$$

(iii) $\mathscr{R}(t) u_{0}$ satisfies the estimate

$$
\left\|\mathscr{R}(t) u_{0}\right\|_{H^{1}} \leq C e^{-c_{0} t}\left\|u_{0}\right\|_{H^{1} \times L^{2}}
$$

for some positive constant c_{0}.
We next state our results on the nonlinear problem (2.1)-(2.3). We will look for the solution $u=\{\phi, v\} \in \cap_{j=0}^{\left[\frac{s}{2}\right]} C\left([0, \infty) ; H^{s-2 j}(\Omega)\right)$ for $s=2,3$. We therefore mention the compatibility condition for the initial value. By the boundary condition $\left.v\right|_{\partial \Omega}=0$ in (2.3), we have to require $v_{0} \in H_{0}^{1}$ for $s=2,3$. In addition to this, we will require

$$
\begin{equation*}
v_{0} \cdot \nabla v_{0}+\frac{1}{\rho_{0}} \nabla P\left(\rho_{0}\right)-\frac{1}{\rho_{0}} \mu \Delta v_{0}-\frac{1}{\rho_{0}}\left(\mu+\mu^{\prime}\right) \nabla \operatorname{div} v_{0} \in H_{0}^{1} \tag{2.4}
\end{equation*}
$$

for $s=3$, where $\rho_{0}=\phi_{0}+\rho_{*}$.
We first state the global in time existence of strong solutions.
Theorem 2.2. Let $s=2,3$. Let $P^{\prime}\left(\rho_{*}\right)>0$. Assume that $u_{0}=\left\{\phi_{0}, v_{0}\right\} \in$ $H^{s}(\Omega)$ and $v_{0} \in H_{0}^{1}(\Omega)$. Assume also that u_{0} satisfies (2.4) when $s=3$. Then there exists a positive number $\varepsilon_{0}>0$ such that if

$$
\inf \rho_{0} \geq-\frac{1}{2} \rho_{*}, \quad\left\|u_{0}\right\|_{H^{s}} \leq \varepsilon_{0}
$$

then there exists a unique solution $u(t)=\{\phi(t), v(t)\} \in \cap_{j=0}^{\left[\frac{s}{2}\right]} C\left([0, \infty) ; H^{s-2 j}(\Omega)\right)$ of (2.1)-(2.3). Furthermore, $u(t)$ satisfies the following estimate:

$$
\|u(t)\|_{H^{s}}^{2}+\int_{0}^{t}\left\|\partial_{x} v\right\|_{H^{s}}^{2}+\left\|\partial_{x} \rho\right\|_{H^{s-1}}^{2} d \tau \leq C\left\|u_{0}\right\|_{H^{s}}^{2}
$$

for all $t \geq 0$.
In addition to the assumptions for $s=3$ of Theorem 2.2, if $u_{0} \in L^{1}(\Omega) \cap$ $\cap L_{x_{3}}^{1}\left(\mathbf{R} ; H^{1}(D) \times L^{2}(D)\right)$, we have the following asymptotic behavior.

Theorem 2.3. In addition to the assumptions for $s=3$ of Theorem 2.2, assume also that $u_{0} \in L^{1}(\Omega) \cap L_{x_{3}}^{1}\left(\mathbf{R} ; H^{1}(D) \times L^{2}(D)\right)$. Then there hold the following estimates :

$$
\begin{gather*}
\left\|\partial_{x}^{\ell} u(t)\right\|_{2}=O\left(t^{-\frac{1}{4}-\frac{\ell}{2}}\right) \quad(\ell=0,1) \tag{i}\\
\left\|u(t)-\mathscr{U}_{0}(t) u_{0}\right\|_{2}=O\left(t^{-\frac{3}{4}} \log t\right)
\end{gather*}
$$

as $t \rightarrow \infty$, provided that $\left\|u_{0}\right\|_{H^{3}}+\left\|u_{0}\right\|_{1}+\left\|\left|u_{0}\right|_{H^{1} \times L^{2}}\right\|_{L_{x_{3}}^{1}}$ is sufficiently small. Here $\mathscr{U}(t) u_{0}$ is the function given in Theorem 2.1 (i).

Remark. Since $\left\|\phi^{(0)}(t)\right\|_{2}=O\left(t^{-\frac{1}{4}}\right)$, the estimate (ii) of Theorem 2.2 shows that the asymptotic leading part of $u(t)$ is given by $\mathscr{U}_{0}(t) u_{0}$.

We omit the proof of Theorem 2.2 since it is proved by the energy method in the same way as given in [17]. Theorem 2.3 is proved by combining the estimates in Theorems 2.1 and 2.2. We also omit the proof of Theorem 2.3 since it is proved in a similar manner to the argument given in [6], which is based on the energy estimate and the linearized analysis. Therefore, in this paper we give a proof of Theorem 2.1 only.

3. Resolvent problem I

In this and next sections we consider the resolvent for the linearized problem, which leads to the asymptotic properties of the semigroup $e^{-t L}$ in Theorem 2.1.

We will first show that L is a sectorial operator on $H^{1}(\Omega) \times L^{2}(\Omega)$. We will then investigate the resolvent in detail by using the Fourier transform with respect to x_{3} variable.

Let us consider the resolvent problem

$$
\begin{equation*}
(\lambda+L) u=f \tag{3.1}
\end{equation*}
$$

where $u={ }^{T}(\phi, v), f={ }^{T}\left(f^{0}, g\right)$, and L is the operator with domain $D(L)$ defined by

$$
L=\left(\begin{array}{cc}
0 & \gamma \operatorname{div} \\
\gamma \nabla & -\nu \Delta I_{3}-\widetilde{\nu} \nabla \operatorname{div}
\end{array}\right), \quad D(L)=H^{1}(\Omega) \times\left[H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right]
$$

with $\nu=\mu / \rho_{*}, \widetilde{\nu}=\left(\mu+\mu^{\prime}\right) / \rho_{*}$ and $\gamma=\sqrt{p_{1} / \rho_{*}}$.
The following proposition shows that $-L$ generates an analytic semigroup $e^{-t L}$ on $H^{1}(\Omega) \times L^{2}(\Omega)$.

Proposition 3.1. There exist constants $\Lambda_{0}>0$ and $\theta_{0} \in(\pi / 2, \pi)$ such that the following assertions hold: if $\lambda \in \Sigma\left(\Lambda_{0}, \theta_{0}\right)$, then for any $f={ }^{T}\left(f^{0}, g\right) \in$ $H^{1}(\Omega) \times L^{2}(\Omega)$, there exists a unique solution $u={ }^{T}(\phi, v) \in D(L)$ of (3.1), and $u=(\lambda+L)^{-1} f$ satisfies

$$
|\lambda|\left\|(\lambda+L)^{-1} f\right\|_{H^{1} \times L^{2}}+\sum_{k=1}^{2}|\lambda|^{1-2 / k}\left\|\partial_{x}^{k} \widetilde{Q}(\lambda+L)^{-1} f\right\|_{2} \leq C\|f\|_{H^{1} \times L^{2}}
$$

Proof. In this proof we denote by (f, g) the inner product of f and g in $L^{2}(\Omega)$.

We first give a proof of the estimate for $u=(\lambda+L)^{-1} f$.
We write (3.1) as

$$
\begin{gather*}
\lambda \phi+\gamma \operatorname{div} v=f^{0} \tag{3.2}\\
\lambda v-\nu \Delta v-\widetilde{\nu} \nabla \operatorname{div} v+\gamma \nabla \phi=g,\left.\quad v\right|_{\partial \Omega}=0 \tag{3.3}
\end{gather*}
$$

Assume that $\lambda \neq 0$. Then it follows from (3.2) that

$$
\begin{equation*}
\phi=\frac{1}{\lambda}\left\{f^{0}-\gamma \operatorname{div} v\right\} . \tag{3.4}
\end{equation*}
$$

Substituting (3.4) into (3.3), we have

$$
\begin{equation*}
\lambda v-\nu \Delta v-\widetilde{\nu} \nabla \operatorname{div} v=F,\left.\quad v\right|_{\partial \Omega}=0 \tag{3.5}
\end{equation*}
$$

where

$$
F=g-\frac{\gamma}{\lambda} \nabla f^{0}+\frac{\gamma^{2}}{\lambda} \nabla \operatorname{div} v .
$$

Since $B=-\nu \Delta v-\widetilde{\nu} \nabla \operatorname{div} v$ is strongly elliptic, there exist constants $\Lambda_{0}>0$ and $\theta_{0} \in(\pi / 2, \pi)$ such that if $\lambda \in \Sigma\left(\Lambda_{0}, \theta_{0}\right)$, then

$$
\sum_{k=0}^{2}|\lambda|^{1-k / 2}\left\|\partial_{x}^{k} v\right\|_{2} \leq C\|F\|_{2}
$$

Since $\|F\|_{2} \leq C\left\{\|f\|_{H^{1} \times L^{2}}+\left\|\partial_{x}^{2} v\right\|_{2} /|\lambda|\right\}$, taking Λ_{0} larger if necessary, we obtain

$$
\sum_{k=0}^{2}|\lambda|^{1-k / 2}\left\|\partial_{x}^{k} v\right\|_{2} \leq C\|f\|_{H^{1} \times L^{2}}
$$

This, together with (3.4), gives

$$
\|\phi\|_{H^{1}} \leq \frac{C}{|\lambda|}\left\{\left\|f^{0}\right\|_{H^{1}}+\|\operatorname{div} v\|_{H^{1}}\right\} \leq \frac{C}{|\lambda|}\|f\|_{H^{1} \times L^{2}}
$$

for $\lambda \in \Sigma\left(\Lambda_{0}, \theta_{0}\right)$. We thus obtain the desired estimate.
We next consider the existence of solutions. Let us assume $\lambda>1$. We first look for a weak solution of (3.5) for $\lambda>1$. Set $G=g-\gamma \nabla f^{0} / \lambda$ and consider the problem to find $v \in H_{0}^{1}(\Omega)$ satisfying

$$
\begin{equation*}
a(v, w)=(G, w) \quad\left(\forall w \in H_{0}^{1}(\Omega)\right) . \tag{3.6}
\end{equation*}
$$

Here

$$
a(v, w)=\lambda(v, w)+\nu(\nabla v, \nabla w)+\left(\widetilde{\nu}+\frac{\gamma^{2}}{\lambda}\right)(\operatorname{div} v, \operatorname{div} w)
$$

It is easy to see that

$$
\begin{gathered}
|a(v, w)| \leq C\|v\|_{H^{1}}\|w\|_{H^{1}} \\
\operatorname{Re} a(v, w) \geq \lambda\|v\|_{2}^{2}+\nu\|\nabla v\|_{2}^{2}+\left(\widetilde{\nu}+\frac{\gamma^{2}}{\lambda}\right)\|\operatorname{div} v\|_{2}^{2} \geq c\|v\|_{H^{1}}^{2}
\end{gathered}
$$

for some positive constants c and C. The Lax-Milgram theorem then implies that for any $G \in L^{2}(\Omega)$ there exists a unique solution $v \in H_{0}^{1}(\Omega)$ of (3.6). Since $B_{\lambda}=-\nu \Delta v-\left(\widetilde{\nu}+\gamma^{2} / \lambda\right) \nabla \operatorname{div} v$ is strongly elliptic for $\lambda>1$, we see that $v \in H^{2}(\Omega)$. For this v we define ϕ by (3.4). Then $\phi \in H^{1}(\Omega)$, and, therefore, $u={ }^{T}(\phi, v)$ is a solution of (3.1) belonging to $D(L)$. The existence of solutions for other $\lambda \in \Sigma\left(\Lambda_{0}, \theta_{0}\right)$ follows from the estimate already obtained above and the standard perturbation argument. This completes the proof.

Proposition 3.1 shows that $-L$ generates an analytic semigroup $e^{-t L}$ on $H^{1}(\Omega) \times L^{2}(\Omega)$, which is represented as

$$
e^{-t L}=\frac{1}{2 \pi i} \int_{\Gamma_{0}} e^{\lambda t}(\lambda+L)^{-1} d \lambda
$$

where $\Gamma_{0}=\left\{\lambda \in \mathbf{C} ;\left|\arg \left(\lambda-\Lambda_{0}\right)\right|=\theta_{0}\right\}$ with Λ_{0} and θ_{0} given in Proposition 3.1.

To investigate the asymptotic behavior of $e^{-t L}$ as $t \rightarrow \infty$, we consider the Fourier transform of the resolvent with respect to x_{3} variable.

In what follows we denote

$$
x=\binom{x^{\prime}}{x_{3}}, x^{\prime}=\binom{x_{1}}{x_{2}} \in D, \nabla^{\prime}=\binom{\partial_{x_{1}}}{\partial_{x_{2}}}, \Delta^{\prime}=\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}
$$

We also write

$$
v=\binom{v^{\prime}}{v^{3}}, v^{\prime}=\binom{v^{1}}{v^{2}}, g=\binom{g^{\prime}}{g^{3}}, g^{\prime}=\binom{g^{1}}{g^{2}} .
$$

We take the Fourier transform of (3.2) and (3.3) in x_{3} to obtain

$$
\left\{\begin{array}{l}
\lambda \widehat{\phi}+\gamma \nabla^{\prime} \cdot \widehat{v}^{\prime}+i \gamma \xi \widehat{v}^{3}=\widehat{f}^{0}, \tag{3.7}\\
\lambda \widehat{v}^{\prime}-\nu \triangle^{\prime} \widehat{v}^{\prime}+\nu \xi^{2} \widehat{v}^{\prime}-\widetilde{\nu} \nabla^{\prime}\left(\nabla^{\prime} \cdot \widehat{v}^{\prime}+i \xi \widehat{v}^{3}\right)+\gamma \nabla^{\prime} \widehat{\phi}=\widehat{g}^{\prime} \\
\lambda \widehat{v}^{3}-\nu \triangle^{\prime} \widehat{v}^{3}+\nu \xi^{2} \widehat{v}^{3}-i \widetilde{\nu} \xi\left(\nabla^{\prime} \cdot \widehat{v}^{\prime}+i \xi \widehat{v}^{3}\right)+i \gamma \xi \widehat{\phi}=\widehat{g}^{3} \\
\left.\widehat{v}\right|_{\partial D}=0
\end{array}\right.
$$

For simplicity in notation we omit "^" in (3.7), and so, the problem under consideration is written as

$$
\begin{gather*}
\lambda \phi+\gamma \nabla^{\prime} \cdot v^{\prime}+i \gamma \xi v^{3}=f^{0}, \tag{3.8}\\
\lambda v^{\prime}-\nu \triangle^{\prime} v^{\prime}+\nu \xi^{2} v^{\prime}-\widetilde{\nu} \nabla^{\prime}\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)+\gamma \nabla^{\prime} \phi=g^{\prime} \tag{3.9}\\
\lambda v^{3}-\nu \triangle^{\prime} v^{3}+\nu \xi^{2} v^{3}-i \widetilde{\nu} \xi\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)+i \gamma \xi \phi=g^{3}, \tag{3.10}\\
\left.v\right|_{\partial D}=0 \tag{3.11}
\end{gather*}
$$

Here f^{0}, g^{\prime}, g^{3} are given functions on D with values in \mathbf{C} and ϕ, v^{\prime}, v^{3} are unknown functions on D with values in \mathbf{C}. Problem (3.8)-(3.11) is also written as

$$
\begin{equation*}
\lambda u+\widehat{L}_{\xi} u=f \tag{3.12}
\end{equation*}
$$

where $f={ }^{T}\left(f^{0}, g^{\prime}, g^{3}\right), u={ }^{T}\left(\phi, v^{\prime}, v^{3}\right)$ and \widehat{L}_{ξ} is the operator on $H^{1}(D) \times$ $L^{2}(D)$ with domain $D\left(\widehat{L}_{\xi}\right)$ defined by

$$
\begin{gathered}
\widehat{L}_{\xi}=\left(\begin{array}{ccc}
0 & \gamma^{T} \nabla^{\prime} & i \gamma \xi \\
\gamma \nabla^{\prime} & -\nu \Delta^{\prime} I_{2}+\nu \xi^{2} I_{2}-\widetilde{\nu} \nabla^{T} \nabla^{\prime} & -i \widetilde{\nu} \xi \nabla^{\prime} \\
i \gamma \xi & -i \widetilde{\nu} \xi^{T} \nabla^{\prime} & -\nu \Delta^{\prime}+(\nu+\widetilde{\nu}) \xi^{2}
\end{array}\right), \\
D\left(\widehat{L}_{\xi}\right)=H^{1}(D) \times\left[H^{2}(D) \times H_{0}^{1}(D)\right] .
\end{gathered}
$$

In the remaining of this section we investigate the Fourier transform of the resolvent $u=\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f$ for $|\xi| \geq r>0$, where r is any fixed positive number. We will show that for any $r>0$ there are numbers $\Lambda_{1}>0$ and $\theta_{1} \in(\pi / 2, \pi)$ such that $\Sigma\left(-\Lambda_{1}, \theta_{1}\right) \subset \rho\left(-\widehat{L}_{\xi}\right)$ for $|\xi| \geq r$ and that $(\lambda+$ $\left.\widehat{L}_{\xi}\right)^{-1}$ satisfies suitable estimates. The proof is given by an L^{2}-type energy method similar to that for the nonlinear problem given by Matsumura and Nishida [17]. There are several steps different from the one in [17], since the computations are done for any fixed ξ. Among them, Proposition 3.11 is one of the key steps.

In the following we denote by $u=\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f$ the solution of (3.12) belonging to $D\left(\widehat{L}_{\xi}\right)$.

Proposition 3.2 There holds the estimate

$$
\begin{aligned}
& \left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}\right)|u|_{2}^{2}+\nu|\xi|^{2}|v|_{2}^{2}+\frac{\nu}{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\frac{\widetilde{\nu}}{2}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2} \\
& \quad \leq \varepsilon|\phi|_{2}^{2}+C_{\varepsilon}\left|f^{0}\right|_{2}^{2}+C|g|_{2}^{2}
\end{aligned}
$$

for any $\varepsilon \in(0,1]$.
Proof. Taking the inner product of (3.12) with u and integrating by parts we have

$$
\begin{align*}
& \lambda|u|_{2}^{2}+\nu|\xi|^{2}|v|_{2}^{2}+\nu\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\widetilde{\nu}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2} \\
& \quad+\gamma\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}, \phi\right)-\gamma\left(\phi, \nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right) \tag{3.13}\\
& \quad=(f, u) .
\end{align*}
$$

Since

$$
\gamma\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}, \phi\right)-\gamma\left(\phi, \nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)=2 i \gamma \operatorname{Im}\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}, \phi\right)
$$

we see from (3.13) that

$$
\begin{gather*}
\operatorname{Re} \lambda|u|_{2}^{2}+\nu|\xi|^{2}|v|_{2}^{2}+\nu\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\widetilde{\nu}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}=\operatorname{Re}(f, u), \tag{3.14}\\
\operatorname{Im} \lambda|u|_{2}^{2}+2 \gamma \operatorname{Im}\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}, \phi\right)=\operatorname{Im}(f, u) . \tag{3.15}
\end{gather*}
$$

By (3.15), we have

$$
\begin{aligned}
|\operatorname{Im} \lambda|^{2}|u|_{2}^{4} & =\left|\operatorname{Im}(f, u)-2 \gamma \operatorname{Im}\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}, \phi\right)\right|^{2} \\
& \leq C\left\{\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}+|f|_{2}^{2}\right\}|u|_{2}^{2},
\end{aligned}
$$

and whence,

$$
\begin{equation*}
|\operatorname{Im} \lambda|^{2}|u|_{2}^{2} \leq C\left\{\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}+|f|_{2}^{2}\right\} . \tag{3.16}
\end{equation*}
$$

It follows from (3.14) and (3.16) that for any $\eta>0$ and $\varepsilon>0$, there holds the estimate

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}\right)|u|_{2}^{2}+\nu|\xi|^{2}|v|_{2}^{2}+\nu\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\frac{\widetilde{\nu}}{2}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2} \\
& \quad \leq C\left\{|(f, u)|+|f|_{2}^{2}\right\} \tag{3.17}\\
& \quad \leq C_{\eta}|g|_{2}^{2}+\eta|v|_{2}^{2}+C_{\varepsilon}\left|f^{0}\right|_{2}^{2}+\varepsilon|\phi|_{2}^{2}
\end{align*}
$$

Since $\left|\partial_{x^{\prime}} v\right|_{2}^{2} \geq C|v|_{2}^{2}$ by Poincaré's inequality, we obtain the desired estimate by taking $\eta>0$ suitably small in (3.17). This complete the proof.

Proposition 3.3. There holds the estimate

$$
\begin{aligned}
& \left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}\right)|u|_{2}^{2}+(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+c)\left\{|\xi|^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\}+c|\lambda|^{2}|v|_{2}^{2} \\
& \quad \leq \varepsilon|\phi|_{2}^{2}+C_{\varepsilon}\left|f^{0}\right|_{2}^{2}+C|g|_{2}^{2}
\end{aligned}
$$

for any $\varepsilon \in(0,1]$.
Proof. We compute the inner products ((3.9), $\left.\lambda v^{\prime}\right)$ and ((3.10), $\left.\lambda v^{3}\right)$, and then add the resulting identities to have

$$
\begin{align*}
& |\lambda|^{2}|v|_{2}^{2}+\nu \bar{\lambda}\left(|\xi|^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right) \\
& \quad+\widetilde{\nu} \bar{\lambda}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}-\gamma \bar{\lambda}\left(\phi, \nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right) \tag{3.18}\\
& \quad=\bar{\lambda}(g, v)
\end{align*}
$$

Assume that $\lambda \neq 0$. It then follows from (3.8) that

$$
\phi=-\frac{\gamma}{\lambda}\left\{\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right\}+\frac{1}{\lambda} f^{0}
$$

We thus obtain

$$
\gamma \bar{\lambda}\left(\phi, \nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)=-\gamma^{2} \frac{(\bar{\lambda})^{2}}{|\lambda|^{2}}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}+\gamma \frac{(\bar{\lambda})^{2}}{|\lambda|^{2}}\left(f^{0}, \nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)
$$

Substituting this into (3.18), we have

$$
\begin{aligned}
& |\lambda|^{2}|v|_{2}^{2}+\bar{\lambda}\left\{\nu|\xi|^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\widetilde{\nu}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}\right\} \\
& \quad=-\gamma^{2} \frac{(\bar{\lambda})^{2}}{|\lambda|^{2}}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}+\gamma \frac{(\bar{\lambda})^{2}}{|\lambda|^{2}}\left(f^{0}, \nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)+\bar{\lambda}(g, v)
\end{aligned}
$$

It then follows that (3.19)

$$
\begin{aligned}
& |\lambda|^{2}|v|_{2}^{2}+\operatorname{Re} \lambda\left\{\nu|\xi|^{2}|v|_{2}^{2}+\nu\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\widetilde{\nu}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}\right\} \\
& \quad=\operatorname{Re}\left\{-\gamma^{2} \frac{(\bar{\lambda})^{2}}{|\lambda|^{2}}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}+\gamma \frac{(\bar{\lambda})^{2}}{|\lambda|^{2}}\left(f^{0}, \nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)+\bar{\lambda}(g, v)\right\}
\end{aligned}
$$

$$
\begin{align*}
& -\operatorname{Im} \lambda\left\{\nu|\xi|^{2}|v|_{2}^{2}+\nu\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\widetilde{\nu}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}\right\} \tag{3.20}\\
& \quad=\operatorname{Im}\left\{-\gamma^{2} \frac{(\bar{\lambda})^{2}}{|\lambda|^{2}}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}+\gamma \frac{(\bar{\lambda})^{2}}{|\lambda|^{2}}\left(f^{0}, \nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)+\bar{\lambda}(g, v)\right\}
\end{align*}
$$

Since

$$
\begin{aligned}
& \left.\left|-\gamma^{2} \frac{(\bar{\lambda})^{2}}{|\lambda|^{2}}\right| \nabla^{\prime} \cdot v^{\prime}+\left.i \xi v^{3}\right|_{2} ^{2}+\gamma \frac{(\bar{\lambda})^{2}}{|\lambda|^{2}}\left(f^{0}, \nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)+\bar{\lambda}(g, v) \right\rvert\, \\
& \quad \leq \gamma^{2}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}+\gamma\left|f^{0}\right|_{2}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}+|\lambda||g|_{2}|v|_{2} \\
& \leq C\left\{|\xi|^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}+|f|_{2}^{2}\right\}+\frac{1}{4}|\lambda|^{2}|v|_{2}^{2},
\end{aligned}
$$

we deduce from (3.19) and (3.20) that

$$
\begin{aligned}
& (\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+c)\left\{\nu|\xi|^{2}|v|_{2}^{2}+\nu\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\widetilde{\nu}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}\right\}+c|\lambda|^{2}|v|_{2}^{2} \\
& \quad \leq C\left\{|\xi|^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}+|f|_{2}^{2}\right\}
\end{aligned}
$$

This, together with Proposition 4.2, yields the desired estimate. In case $\lambda=0$, the desired estimate is nothing but the one obtained in Proposition 4.2. This completes the proof.

We next establish the estimates for higher order derivatives near the boundary ∂D. For this purpose, we introduce a local curvilinear coordinate system. Let $\bar{x}^{\prime} \in \partial D$. Since ∂D is smooth, there are an open neighborhood \mathcal{O} of \bar{x}^{\prime}, a ball B of \mathbf{R}^{2} with center 0 , and a smooth map $\Phi={ }^{T}\left(\Phi_{1}, \Phi_{2}\right): \mathcal{O} \rightarrow B$ with the following properties.
(3.21) $\operatorname{det}\left(\nabla_{x^{\prime}} \Phi\right) \neq 0$ on $\overline{\mathcal{O}}, \Phi$ and Φ^{-1} are C^{∞} maps.
(3.22) $\Phi\left(\bar{x}^{\prime}\right)=0, \Phi(D \cap \mathcal{O})=\left\{y^{\prime}={ }^{T}\left(y_{1}, y_{2}\right) \in B ; y_{1}>0\right\}, \Phi(\partial D \cap \mathcal{O})=$ $\left\{y^{\prime}={ }^{T}\left(y_{1}, y_{2}\right) \in B ; y_{1}=0\right\}$.

By the implicit function theorem we may assume that there is a smooth function ψ on an open interval ω such that $\bar{x}^{\prime}={ }^{T}\left(\psi\left(\bar{y}_{2}\right), \bar{y}_{2}\right)$ and $x^{\prime} \in \partial D \cap \mathcal{O}$ is represented as $x^{\prime}={ }^{T}\left(\psi\left(y_{2}\right), y_{2}\right)\left(y_{2} \in \omega\right)$ by taking \mathcal{O} smaller if necessary. Set

$$
\begin{cases}a_{1}\left(y_{2}\right)=\frac{\nabla_{x^{\prime}} \Phi_{1}\left(x^{\prime}\right)}{\left|\nabla_{x^{\prime}} \Phi_{1}\left(x^{\prime}\right)\right|} & \left(x^{\prime}={ }^{T}\left(\psi\left(y_{2}\right), y_{2}\right)\right) \tag{3.23}\\ a_{2}\left(y_{2}\right)=\frac{\widetilde{a}_{2}\left(y_{2}\right)}{\left|\widetilde{a}_{2}\left(y_{2}\right)\right|}, & \widetilde{a}_{2}\left(y_{2}\right)=^{T}\left(\dot{\psi}\left(y_{2}\right), y_{2}\right)\end{cases}
$$

where $\dot{\psi}=\frac{d \psi}{d y_{2}}$. Then $a_{1}\left(y_{2}\right)$ and $a_{2}\left(y_{2}\right)$ are the unit inner normal vector and a unit tangent vector at $x^{\prime}={ }^{T}\left(\psi\left(y_{2}\right), y_{2}\right) \in \partial D$, respectively. Note that by the orthonormality of $\left\{a_{1}\left(y_{2}\right), a_{2}\left(y_{2}\right)\right\}$ there holds the relation

$$
\binom{\dot{a}_{1}\left(y_{2}\right)}{\dot{a}_{2}\left(y_{2}\right)}=\left(\begin{array}{cc}
0 & k\left(y_{2}\right) \\
-k\left(y_{2}\right) & 0
\end{array}\right)\binom{a_{1}\left(y_{2}\right)}{a_{2}\left(y_{2}\right)}
$$

for some $k\left(y_{2}\right)$. The tubular neighborhood theorem then implies that there exists a positive number such that $x^{\prime} \in D \cap \mathcal{O}$ is represented as

$$
\begin{equation*}
x^{\prime}=y_{1} a_{1}\left(y_{2}\right)+\binom{\psi\left(y_{2}\right)}{y_{2}} \quad\left(y^{\prime}={ }^{T}\left(y_{1}, y_{2}\right) \in \widetilde{\mathcal{O}}, y_{1}>0\right) \tag{3.24}
\end{equation*}
$$

for some open neighborhood $\widetilde{\mathcal{O}}$ of $\bar{y}^{\prime}={ }^{T}\left(0, \bar{y}_{2}\right)$ by changing \mathcal{O} suitably if necessary. It then follows that

$$
\frac{\partial x^{\prime}}{\partial y^{\prime}}=\left(a_{1}\left(y_{2}\right), J\left(y_{1}, y_{2}\right) a_{2}\left(y_{2}\right)\right)
$$

where $J\left(y_{1}, y_{2}\right)=\left|\widetilde{a}_{2}\left(y_{2}\right)\right|+k\left(y_{2}\right) y_{1}$. We may assume that $J=J\left(y_{1}, y_{2}\right)>0$ by changing \mathcal{O} suitably if necessary. We thus obtain

$$
\nabla_{x^{\prime}}=A\left(y_{1}, y_{2}\right) \nabla_{y^{\prime}}=a_{1}\left(y_{2}\right) \partial_{y_{1}}+\frac{1}{J\left(y_{1}, y_{2}\right)} a_{2}\left(y_{2}\right) \partial_{y_{2}}
$$

and, by using the orthonormality,

$$
\nabla_{y^{\prime}}=\left(A\left(y_{1}, y_{2}\right)\right)^{-1} \nabla_{x^{\prime}}=a_{1}\left(y_{2}\right) \partial_{x_{1}}+J\left(y_{1}, y_{2}\right) a_{2}\left(y_{2}\right) \partial_{x_{2}}
$$

We write

$$
\left(A\left(y_{1}, y_{2}\right)\right)^{-1}=\left(\begin{array}{ll}
a^{11}\left(x^{\prime}\right) & a^{12}\left(x^{\prime}\right) \\
a^{21}\left(x^{\prime}\right) & a^{22}\left(x^{\prime}\right)
\end{array}\right) .
$$

Then $a^{j k}\left(x^{\prime}\right)$ is smooth and

$$
\partial_{y_{j}}=a^{j 1}\left(x^{\prime}\right) \partial_{x_{1}}+a^{j 2}\left(x^{\prime}\right) \partial_{x_{2}} \quad(j=1,2)
$$

We note that $\partial_{y_{1}}$ is the inward normal derivative at $x^{\prime}={ }^{T}\left(\psi\left(y_{2}\right), y_{2}\right) \in \partial D$ and $\partial_{y_{2}}$ is the tangential derivative at $x^{\prime}={ }^{T}\left(\psi\left(y_{2}\right), y_{2}\right) \in \partial D$. In what follows we denote the normal and tangential derivatives by ∂_{n} and ∂, respectively, i.e.,

$$
\begin{array}{r}
\partial_{n}=\partial_{y_{1}}=a^{11}\left(x^{\prime}\right) \partial_{x_{1}}+a^{12}\left(x^{\prime}\right) \partial_{x_{2}}, \\
\partial=\partial_{y_{2}}=a^{21}\left(x^{\prime}\right) \partial_{x_{1}}+a^{22}\left(x^{\prime}\right) \partial_{x_{2}} .
\end{array}
$$

If $v \in H^{2}(D)$, then $\left.v\right|_{\partial D}=0$ implies that $\left.\partial^{k} v\right|_{\partial D \cap \mathcal{O}}=0(k=0,1)$. We also note that

$$
\partial^{k} v=\sum_{|\alpha|=0}^{k} a^{\alpha}\left(x^{\prime}\right) \partial_{x^{\prime}}^{\alpha} v
$$

with some smooth $a^{\alpha}\left(x^{\prime}\right)$.
In the following we will denote by $[A, B]$ the commutator of A and B, i.e., $[A, B]=A B-B A$.

We fix a function $\chi \in C_{0}^{\infty}(\mathcal{O})$.
Lemma 3.4. There hold the following estimates.
(i) $\left|\left(\chi\left[\partial, \partial_{x^{\prime}}\right] v, \chi \partial v\right)\right| \leq C\left|\chi \partial_{x^{\prime}} v\right|_{2}^{2}$.
(ii) $\left|\left(\chi\left[\partial, \partial_{x^{\prime}}^{2}\right] v, \chi \partial v\right)\right| \leq \eta\left|\chi \partial_{x^{\prime}} \partial v\right|_{2}^{2}+C_{\eta}\left|\partial_{x^{\prime}} v\right|_{L^{2}(D \cap \mathcal{O})}^{2}$ for all $\eta>0$ and $v \in H^{2}(D)$ with $\left.\partial v\right|_{\partial D \cap \mathcal{O}}=0$.

Proof. The estimate (i) follows from a direct computation. As for (ii), we have

$$
\begin{aligned}
{\left[\partial, \partial_{x^{\prime}}^{2}\right] v } & =-\sum_{k=1}^{2} \partial_{x^{\prime}}^{2} a^{2 k}\left(x^{\prime}\right) \partial_{x_{k}} v-2 \sum_{k=1}^{2} \partial_{x^{\prime}} a^{2 k}\left(x^{\prime}\right) \partial_{x_{k}} \partial_{x^{\prime}} v \\
& =\sum_{k=1}^{2} \partial_{x^{\prime}}^{2} a^{2 k}\left(x^{\prime}\right) \partial_{x_{k}} v-2 \sum_{k=1}^{2} \partial_{x^{\prime}}\left(\partial_{x^{\prime}} a^{2 k}\left(x^{\prime}\right) \partial_{x_{k}} v\right) \\
& \equiv I_{1}+I_{2}
\end{aligned}
$$

As for I_{1}, we easily see $\left|\left(\chi I_{1}, \chi \partial v\right)\right| \leq C\left|\chi \partial_{x^{\prime}} v\right|_{2}^{2}$. As for I_{2}, by integrating by parts, we have

$$
\begin{aligned}
& \left|\left(\chi I_{2}, \chi \partial v\right)\right| \\
& \quad \leq C \sum_{k=1}^{2}\left|\left(\chi \partial_{x^{\prime}} a^{2 k}\left(x^{\prime}\right) \partial_{x_{k}} v, \chi \partial_{x^{\prime}} \partial v\right)-2\left(\partial_{x^{\prime}} \chi \partial_{x^{\prime}} a^{2 k}\left(x^{\prime}\right) \partial_{x_{k}} v, \chi \partial v\right)\right| \\
& \quad \leq \eta\left|\chi \partial_{x^{\prime}} \partial v\right|_{2}^{2}+C_{\eta}\left|\partial_{x^{\prime}} v\right|_{L^{2}(D \cap \mathcal{O})}^{2} .
\end{aligned}
$$

This completes the proof.
We derive the estimate for ∂u similar to that in Proposition 3.2.
Proposition 3.5. There holds the estimate

$$
\begin{aligned}
& (\operatorname{Re} \lambda+c \varepsilon|\operatorname{Im} \lambda|)|\chi \partial u|_{2}^{2}+c\left\{|\xi|^{2}|\chi \partial v|_{2}^{2}+\left|\chi \partial_{x^{\prime}} \partial v\right|_{2}^{2}\right\} \\
& \quad \leq \varepsilon|\chi \partial \phi|_{2}^{2}+C_{\varepsilon}\left\{\left|\chi \partial f^{0}\right|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\}+C|\chi g|_{2}^{2}
\end{aligned}
$$

for any $\varepsilon \in(0,1]$.
Proof. Applying ∂ to (3.8)-(3.11), we have

$$
\begin{equation*}
\lambda\left(\partial v^{3}\right)-\nu \triangle^{\prime} \partial v^{3}+\nu \xi^{2} \partial v^{3}-i \widetilde{\nu} \xi\left(\nabla^{\prime} \cdot \partial v^{\prime}+i \xi \partial v^{3}\right)+i \gamma \xi \partial \phi=G^{3} \tag{3.27}
\end{equation*}
$$

$$
\begin{equation*}
\left.\partial v\right|_{\partial D \cap \mathcal{O}}=0 \tag{3.28}
\end{equation*}
$$

Here

$$
\begin{aligned}
& F^{0}=\partial f^{0}-\gamma\left[\partial, \nabla^{\prime} \cdot\right] v^{\prime} \\
& G^{\prime}=\partial g^{\prime}+\nu\left[\partial, \triangle^{\prime}\right] v^{\prime}+\widetilde{\nu}\left[\partial, \nabla^{\prime} \nabla^{\prime} \cdot\right] v^{\prime}+i \widetilde{\nu} \xi\left[\partial, \nabla^{\prime}\right] v^{3}-\gamma\left[\partial, \nabla^{\prime}\right] \phi, \\
& G^{3}=\partial g^{3}+\nu\left[\partial, \triangle^{\prime}\right] v^{3}+i \widetilde{\nu} \xi\left[\partial, \nabla^{\prime} \cdot\right] v^{\prime} .
\end{aligned}
$$

In the following we set $F={ }^{T}\left(F^{0}, G^{\prime}, G^{3}\right), G={ }^{T}\left(G^{\prime}, G^{3}\right)$.
We compute the inner products $(\chi(3.25), \chi \partial \phi),\left(\chi(3.26), \chi \partial v^{\prime}\right)$ and $\left(\chi(3.27), \chi \partial v^{3}\right)$, and add the resulting identities, as in the proof of Proposition 3.2, to obtain

$$
\begin{aligned}
& \lambda|\chi \partial u|_{2}^{2}+\nu|\xi|^{2}|\chi \partial v|_{2}^{2}+\nu\left|\chi \partial_{x^{\prime}} \partial v\right|_{2}^{2} \\
&+\widetilde{\nu}\left|\chi\left(\nabla^{\prime} \cdot \partial v^{\prime}+i \xi \partial v^{3}\right)\right|_{2}^{2}+2 i \gamma \operatorname{Im}\left(\chi \nabla^{\prime} \cdot \partial v^{\prime}+i \xi \partial v^{3}, \chi \partial \phi\right) \\
&=(\chi F, \chi \partial u)+\gamma\left(\partial \phi, \nabla^{\prime}\left(\chi^{2}\right) \partial v^{\prime}\right)-\nu\left(\nabla^{\prime} \partial v, \nabla^{\prime}(\chi)^{2} \partial v\right) \\
&-\widetilde{\nu}\left(\nabla^{\prime} \cdot \partial v^{\prime},+i \xi \partial v^{3}, \nabla^{\prime}(\chi)^{2} \partial v^{\prime}\right) .
\end{aligned}
$$

By Young's inequality, we have

$$
\left|\operatorname{Im}\left(\chi\left(\nabla^{\prime} \cdot \partial v^{\prime}+i \xi \partial v^{3}\right), \chi \partial \phi\right)\right| \leq \frac{\varepsilon}{2}|\chi \partial \phi|_{2}^{2}+\frac{C}{\varepsilon}\left\{\left|\chi \nabla^{\prime}(\partial v)\right|_{2}^{2}+\xi^{2}|\chi \partial v|_{2}^{2}\right\}
$$

for any $\varepsilon>0$. Using Lemma 3.4 and Young's inequality, we obtain

$$
\left|\operatorname{Im}\left(\chi F^{0}, \partial u\right)\right| \leq \frac{\varepsilon}{2}|\chi \partial \phi|_{2}^{2}+\frac{C}{\varepsilon}\left\{\left|\chi \partial f^{0}\right|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{L^{2}(D \cap \mathcal{O})}^{2}\right\}
$$

for any $\varepsilon>0$. Furthermore, by integration by parts, we have

$$
\begin{aligned}
& \left|\operatorname{Im}\left\{(\chi G, \chi \partial v)-\nu\left(\nabla^{\prime} \partial v, \nabla^{\prime}\left(\chi^{2}\right) \partial v\right)-\widetilde{\nu}\left(\nabla^{\prime} \cdot \partial v^{\prime}+\xi \partial v^{3}, \nabla^{\prime}\left(\chi^{2}\right) \partial v^{\prime}\right)\right\}\right| \\
& \quad \leq \eta\left\{\left|\chi \nabla^{\prime}(\partial v)\right|_{2}^{2}+\xi^{2}|\chi \partial v|_{2}^{2}\right\}+C_{\eta}\left\{|\chi g|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{L^{2}(D \cap O)}^{2}\right\}
\end{aligned}
$$

for any $\eta>0$. It then follows that

$$
\begin{align*}
\mid \operatorname{Im} \lambda & \|\left.\chi \partial u\right|_{2} ^{2} \\
\leq & \varepsilon|\chi \partial \phi|_{2}^{2}+\eta\left\{\left|\chi \nabla^{\prime}(\partial v)\right|_{2}^{2}+\xi^{2}|\chi \partial v|_{2}^{2}\right\} \\
& +\frac{C}{\varepsilon}\left\{\left|\chi \nabla^{\prime}(\partial v)\right|_{2}^{2}+\xi^{2}|\chi \partial v|_{2}^{2}+\left|\nabla^{\prime} \partial f^{0}\right|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{L^{2}(D \cap \mathcal{O})}^{2}\right\} \tag{3.29}\\
& +C_{\eta}\left\{|\chi g|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{L^{2}(D \cap \mathcal{O})}^{2}\right\} .
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
& \operatorname{Re} \lambda|\chi \partial u|_{2}^{2}+\frac{\nu}{2}\left\{\left|\chi \nabla^{\prime}(\partial v)\right|_{2}^{2}+\xi^{2}|\chi \partial v|_{2}^{2}\right\} \\
& \leq \quad \varepsilon|\chi \partial \phi|_{2}^{2}+C_{\varepsilon}\left\{\left|\chi \partial f^{0}\right|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{L^{2}(D \cap \mathcal{O})}^{2}\right\} \tag{3.30}\\
& \quad+C|\chi g|_{2}^{2}+C_{\eta}\left|\partial_{x^{\prime}} v\right|_{L^{2}(D \cap \mathcal{O})}^{2}+\eta\left\{\left|\chi \nabla^{\prime}(\partial v)\right|_{2}^{2}+\xi^{2}|\chi \partial v|_{2}^{2}\right\} .
\end{align*}
$$

For $0<\varepsilon \leq 1$, adding (3.29) $\times \varepsilon \nu /(4 C)$ and (3.30), we obtain the desired estimate by taking $\eta>0$ suitably small. This completes the proof.

We next estimate the normal derivative of ϕ.
Proposition 3.6. There holds the estimate

$$
\begin{aligned}
& \left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}+c\right)\left|\chi \partial_{n} \phi\right|_{2}^{2}+c\left\{\left|\lambda+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\right|^{2}\left|\chi \partial_{n} \phi\right|_{2}^{2}+\left|\chi \partial_{n}\left(\nabla^{\prime} \cdot v^{\prime}\right)\right|_{2}^{2}\right\} \\
& \quad \leq C\left\{\left|\chi \partial_{x^{\prime}} f^{0}\right|_{2}^{2}+|\chi g|_{2}^{2}+|\lambda|^{2}|\chi v|_{2}^{2}+\xi^{2}\left|\chi \partial_{x^{\prime}} v\right|_{2}^{2}\right. \\
& \left.\quad+\xi^{4}|\chi v|_{2}^{2}+\left|\chi \partial_{x^{\prime}} \partial v\right|_{2}^{2}+\left|\chi \partial_{x^{\prime}} v\right|_{2}^{2}\right\} .
\end{aligned}
$$

Proof. We set $\widetilde{\phi}\left(y^{\prime}\right)=\phi\left(x^{\prime}\right)$ with $x^{\prime} \in D \cap \mathcal{O}$ and $y^{\prime} \in \widetilde{\mathcal{O}} \cap\left\{y_{1}>0\right\}$ given in (3.24). Then our aim here is to estimate $\partial_{y_{1}} \widetilde{\phi}$ on $\widetilde{\mathcal{O}} \cap\left\{y_{1}>0\right\}$.

Let us derive an useful identity for $\partial_{y_{1}} \widetilde{\phi}$. We transform $v^{\prime}\left(x^{\prime}\right)$ into $\widetilde{v}^{\prime}\left(y^{\prime}\right)$ as $v^{\prime}\left(x^{\prime}\right)=E^{\prime}\left(y^{\prime}\right) \widetilde{v}^{\prime}\left(y^{\prime}\right)$, where $E^{\prime}\left(y^{\prime}\right)$ is an orthogonal matrix defined by $E^{\prime}\left(y^{\prime}\right)=\left(a_{1}\left(y_{2}\right), a_{2}\left(y_{2}\right)\right)$ with $a_{1}\left(y_{2}\right)$ and $a_{2}\left(y_{2}\right)$ given in (3.23). We also define $\widetilde{v}^{3}\left(y^{\prime}\right)$ by $\widetilde{v}^{3}\left(y^{\prime}\right)=v^{3}\left(x^{\prime}\right)$ with y^{\prime} and x^{\prime} as above. We will derive the equations for $\widetilde{\phi}\left(y^{\prime}\right)$ and ${ }^{T}\left(\widetilde{v}^{\prime}\left(y^{\prime}\right), \widetilde{v}^{3}\left(y^{\prime}\right)\right)$.

For a moment, we denote by $\phi(x)$ and $v(x)={ }^{T}\left(v^{1}(x), v^{2}(x), v^{3}(x)\right)(x \in$ $\Omega)$ the functions satisfying the original problem (3.2)-(3.3).

We make a transformation of the vector field $v(x)$. We transform $v(x)$ as $v(x)=E(y) \widetilde{v}(y)$, where $x={ }^{T}\left(x^{\prime}, x_{3}\right)$ and $y={ }^{T}\left(y^{\prime}, y_{3}\right)$ with $x^{\prime} \in D \cap \mathcal{O}$ and $y^{\prime} \in \widetilde{\mathcal{O}} \cap\left\{y_{1}>0\right\}$ as above and $y_{3}=x_{3} \in \mathbf{R}$, and $E(y)$ is an orthogonal matrix defined by $E(y)=\left(e_{1}\left(y_{2}\right), e_{2}\left(y_{2}\right), e_{3}\right)$ with $e_{j}\left(y_{2}\right)={ }^{T}\left(a_{j}\left(y_{2}\right), 0\right)(j=1,2)$ and $e_{3}={ }^{T}(0,0,1)$. We also define $\widetilde{\phi}(y)$ by $\widetilde{\phi}(y)=\phi(x)$ with x and y as above. Under these transformations, problem (3.2)-(3.3) is transformed into the following one on $\widetilde{\mathcal{O}} \cap\left\{y_{1}>0\right\}$:

$$
\left\{\begin{array}{l}
\lambda \widetilde{\phi}+\gamma \operatorname{div}_{y} \widetilde{v}=\widetilde{f}^{0} \tag{3.31}\\
\lambda \widetilde{v}+\nu \operatorname{rot}_{y} \operatorname{rot}_{y} \widetilde{v}-(\nu+\widetilde{\nu}) \nabla_{y} \operatorname{div}_{y} \widetilde{v}+\gamma \nabla_{y} \widetilde{\phi}=\widetilde{g} \\
\left.\widetilde{v}\right|_{\widetilde{\mathcal{O}} \cap\left\{y_{1}=0\right\}}=0
\end{array}\right.
$$

Here $f^{0}(x)=\widetilde{f}^{0}(y)$ and $g(x)=E(y) \widetilde{g}(y)$ with x, y and $E(y)$ as above, and $\nabla_{y}, \operatorname{div}_{y}$ and rot_{y} denote the gradient, divergence and rotation in the curvilinear coordinates y which are written as

$$
\begin{aligned}
\nabla_{y} \widetilde{\phi} & =e_{1} \partial_{y_{1}} \widetilde{\phi}+\frac{1}{J} e_{2} \partial_{y_{2}} \widetilde{\phi}+e_{3} \partial_{y_{3}} \widetilde{\phi} \\
\operatorname{div} \widetilde{v} & =\frac{1}{J}\left(\partial_{y_{1}}\left(J \widetilde{v}^{1}\right)+\partial_{y_{2}} \widetilde{v}^{2}+\partial_{y_{3}}\left(J \widetilde{v}^{3}\right)\right) \\
\operatorname{rot}_{y} \widetilde{v} & =\left(\operatorname{rot}_{y} \widetilde{v}\right)^{1} e_{1}+\left(\operatorname{rot}_{y} \widetilde{v}\right)^{2} e_{2}+\left(\operatorname{rot}_{y} \widetilde{v}\right)^{3} e_{3}
\end{aligned}
$$

where $\left(\operatorname{rot}_{y} \widetilde{v}\right)^{i}$ is defined by

$$
\begin{gathered}
\left(\operatorname{rot}_{y} \widetilde{v}\right)^{1}=\frac{1}{J}\left(\partial_{y_{2}} \widetilde{v}^{3}-\partial_{y_{3}}\left(J \widetilde{v}^{2}\right)\right), \quad\left(\operatorname{rot}_{y} \widetilde{v}\right)^{2}=\partial_{y_{3}} \widetilde{v}^{1}-\partial_{y_{1}} \widetilde{v}^{3}, \\
\left(\operatorname{rot}_{y} \widetilde{v}\right)^{3}=\frac{1}{J}\left(\partial_{y_{1}}\left(J \widetilde{v}^{2}\right)-\partial_{y_{2}} \widetilde{v}^{1}\right), \\
\left(\operatorname{rot}_{y} \operatorname{rot}_{y} \widetilde{v}\right)^{1}=\frac{1}{J}\left\{\partial_{y_{2}}\left(\operatorname{rot}_{y} \widetilde{v}\right)^{3}-\partial_{y_{3}}\left(J\left(\operatorname{rot}_{y} \widetilde{v}\right)^{2}\right)\right\} \\
\left(\operatorname{rot}_{y} \operatorname{rot}_{y} \widetilde{v}\right)^{2}=\partial_{y_{3}}\left(\operatorname{rot}_{y} \widetilde{v}\right)^{1}-\partial_{y_{1}}\left(\operatorname{rot}_{y} \widetilde{v}\right)^{3} \\
\left(\operatorname{rot}_{y} \operatorname{rot}_{y} \widetilde{v}\right)^{3}
\end{gathered}=\frac{1}{J}\left\{\partial_{y_{1}}\left(J\left(\operatorname{rot}_{y} \widetilde{v}\right)^{2}\right)-\partial_{y_{2}}\left(\operatorname{rot}_{y} \widetilde{v}\right)^{1}\right\} .
$$

To obtain (3.31), we used $\Delta v=-\operatorname{rot} \operatorname{rot} v+\nabla \operatorname{div} v$.
We now take the Fourier transform of (3.31) in y_{3}. Then in the resulting equations we replace the Fourier transforms $\mathscr{F} \widetilde{\phi}$ and ${ }^{T}\left(\mathscr{F} \widetilde{v}^{\prime}, \mathscr{F} \widetilde{v}^{3}\right)$ by $\widetilde{\phi}\left(y^{\prime}\right)$ and ${ }^{T}\left(\widetilde{v}^{\prime}\left(y^{\prime}\right), v^{3}\left(y^{\prime}\right)\right)$ to obtain the equations for $\widetilde{\phi}\left(y^{\prime}\right)$ and ${ }^{T}\left(\widetilde{v}^{\prime}\left(y^{\prime}\right), v^{3}\left(y^{\prime}\right)\right)$:

$$
\begin{gather*}
\lambda \widetilde{\phi}+\gamma \mathscr{F}\left(\operatorname{div}_{y} \widetilde{v}\right)=\widetilde{f^{0}}, \tag{3.32}\\
\lambda \widetilde{v}^{1}+\nu \mathscr{F}\left(\operatorname{rot}_{y} \operatorname{rot}_{y} \widetilde{v}\right)^{1}-(\nu+\widetilde{\nu}) \mathscr{F}\left(\nabla_{y} \operatorname{div}_{y} \widetilde{v}\right)^{1}+\gamma \partial_{y_{1}} \widetilde{\phi}=\widetilde{g^{1}}, \\
\lambda \widetilde{v}^{2}+\nu \mathscr{F}\left(\operatorname{rot}_{y} \operatorname{rot}_{y} \widetilde{v}\right)^{2}-(\nu+\widetilde{\nu}) \mathscr{F}\left(\nabla_{y} \operatorname{div}_{y} \widetilde{v}\right)^{2}+\frac{\gamma}{J} \partial_{y_{2}} \widetilde{\phi}=\widetilde{g}^{2}, \\
\lambda \widetilde{v}^{3}+\nu \mathscr{F}\left(\operatorname{rot}_{y} \operatorname{rot}_{y} \widetilde{v}\right)^{3}-(\nu+\widetilde{\nu}) \mathscr{F}\left(\nabla_{y} \operatorname{div}_{y} \widetilde{v}\right)^{3}+i \gamma \xi \widetilde{\phi}=\widetilde{g}^{3}
\end{gather*}
$$

Here $\mathscr{F}\left(\operatorname{div}_{y} \widetilde{v}\right), \mathscr{F}\left(\operatorname{rot}_{y} \operatorname{rot}_{y} \widetilde{v}\right)^{1}, \cdots$, stand for the functions with $\partial_{y_{3}}$ replaced by $i \xi$ in the functions $\operatorname{div}_{y} \widetilde{v},\left(\operatorname{rot}_{y} \operatorname{rot}_{y} \widetilde{v}\right)^{1}, \cdots$, respectively. These equations are the desired equations for $\widetilde{\phi}\left(y^{\prime}\right)$ and ${ }^{T}\left(\widetilde{v}^{\prime}\left(y^{\prime}\right), v^{3}\left(y^{\prime}\right)\right)$.

Since equation (3.33) is written as

$$
\begin{equation*}
\lambda \widetilde{v}^{1}+\nu \mathscr{F}\left(\operatorname{rot}_{y} \operatorname{rot}_{y} \widetilde{v}\right)^{1}-(\nu+\widetilde{\nu}) \partial_{y_{1}} \mathscr{F}\left(\operatorname{div}_{y} \widetilde{v}\right)+\gamma \partial_{y_{1}} \widetilde{\phi}=\widetilde{g}^{1} \tag{3.34}
\end{equation*}
$$

we add $\partial_{y_{1}}(3.32)$ and $\frac{\gamma}{\nu+\widetilde{\nu}} \times(3.34)$ to obtain

$$
\begin{equation*}
\left(\lambda+\frac{\gamma^{2}}{\nu+\widetilde{\nu}}\right) \partial_{y_{1}} \widetilde{\phi}=\partial_{y_{1}} \widetilde{f}^{0}+h \tag{3.35}
\end{equation*}
$$

Here

$$
\begin{equation*}
h=\frac{\gamma}{\nu+\widetilde{\nu}}\left\{\widetilde{g}^{1}-\lambda \widetilde{v}^{1}-\nu \mathscr{F}\left(\operatorname{rot}_{y} \operatorname{rot}_{y} \widetilde{v}\right)^{1}\right\} . \tag{3.36}
\end{equation*}
$$

Therefore, considering $\int_{\widetilde{\mathcal{O}} \cap\left\{y_{1}>0\right\}} \widetilde{\chi} \times(3.35) \times \widetilde{\chi} \overline{\partial_{y_{1}} \widetilde{\phi}} J d y^{\prime}$ with $\widetilde{\chi}\left(y^{\prime}\right)=\chi\left(x^{\prime}\right)$, we see that

$$
\left(\lambda+\frac{\gamma^{2}}{\nu+\widetilde{\nu}}\right)\left|\widetilde{\chi} \partial_{y_{1}} \widetilde{\phi}\right|_{2}^{2}=\left(\widetilde{\chi} \partial_{y_{1}} \widetilde{f}^{0}, \widetilde{\chi} \partial_{y_{1}} \widetilde{\phi}\right)-\left(\widetilde{\chi} h, \widetilde{\chi} \partial_{y_{1}} \widetilde{\phi}\right)
$$

This implies that

$$
\begin{align*}
\left|\lambda+\frac{\gamma^{2}}{\nu+\widetilde{\nu}}\right|\left|\widetilde{\chi} \partial_{y_{1}} \widetilde{\phi}\right|_{2} \leq & C\left\{\left|\widetilde{\chi} \partial_{y_{1}} \widetilde{f}^{0}\right|_{2}+|\widetilde{\chi} \widetilde{g}|_{2}+|\lambda||\widetilde{\chi} \widetilde{v}|_{2}\right. \tag{3.37}\\
& \left.+|\xi|\left|\widetilde{\chi} \partial_{y_{1}} \widetilde{v}\right|_{2}+\xi^{2}|\widetilde{\chi} \widetilde{v}|_{2}+\left|\widetilde{\chi} \partial_{y_{2}}\left(\left(\operatorname{rot}_{y} \widetilde{v}\right)^{3}\right)\right|_{2}\right\}
\end{align*}
$$

and

$$
\begin{align*}
(\operatorname{Re} \lambda & \left.+|\operatorname{Im} \lambda|^{2}+\frac{\gamma^{2}}{2(\nu+\widetilde{\nu})}\right) \mid \widetilde{\chi} \partial_{y_{1}} \widetilde{\phi_{2}^{2}} \\
\leq & C\left\{\left|\widetilde{\chi} \partial_{y_{1}} \widetilde{f}^{0}\right|_{2}^{2}+|\widetilde{\chi} \widetilde{g}|_{2}^{2}+|\lambda|^{2}|\widetilde{\chi} \widetilde{v}|_{2}^{2}\right. \tag{3.38}\\
& \left.+\xi^{2}\left|\widetilde{\chi} \partial_{y_{1}} \widetilde{v}\right|_{2}^{2}+\xi^{4}|\widetilde{\chi} \widetilde{v}|_{2}^{2}+\left|\widetilde{\chi} \partial_{y_{2}}\left(\left(\operatorname{rot}_{y} \widetilde{v}\right)^{3}\right)\right|_{2}^{2}\right\} .
\end{align*}
$$

Since $\mathscr{F}\left(\operatorname{div}_{y} \widetilde{v}\right)=\left(\operatorname{div}_{y^{\prime}} \widetilde{v^{\prime}}\right)+i \gamma \xi \widetilde{v}^{3}$, we see from (3.32) that

$$
\gamma \mathscr{F}\left(\operatorname{div}_{y^{\prime}} \widetilde{v^{\prime}}\right)=\widetilde{f^{0}}-\lambda \widetilde{\phi}-i \gamma \xi \widetilde{v}^{3}
$$

We thus obtain

$$
\begin{align*}
& \left|\widetilde{\chi} \partial_{y_{1}} \mathscr{F}\left(\operatorname{div}_{y^{\prime}} \widetilde{v}^{\prime}\right)\right|_{2}^{2} \tag{3.39}\\
& \quad \leq C\left\{\left|\widetilde{\chi} \partial_{y_{1}} \widetilde{f}^{0}\right|_{2}^{2}+\left|\lambda+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\right|^{2}\left|\widetilde{\chi} \partial_{y_{1}} \widetilde{\phi}\right|_{2}^{2}+\left|\widetilde{\chi} \partial_{y_{1}} \widetilde{\phi}\right|_{2}^{2}+\xi^{2}\left|\widetilde{\chi} \partial_{y_{1}} \widetilde{v}^{3}\right|_{2}^{2}\right\} .
\end{align*}
$$

The desired estimate follows from (3.37), (3.38) and (3.39) by inverting to the original coordinates x^{\prime} and noting $\partial_{y_{2}}=\partial$. This completes the proof.

We next derive the estimate for the derivative of $\nabla^{\prime} \cdot v^{\prime}$.

Proposition 3.7. There holds the estimate

$$
\begin{aligned}
(\operatorname{Re} \lambda & +c \varepsilon|\operatorname{Im} \lambda|)|\chi \partial u|_{2}^{2}+\left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}+c\right)\left|\chi \partial_{n} \phi\right|_{2}^{2} \\
& +c\left\{\xi^{2}|\chi \partial v|_{2}^{2}+\left|\chi \partial_{x^{\prime}} \partial v\right|_{2}^{2}+\left|\lambda+\frac{\gamma^{2}}{+\tilde{\nu}}\right|^{2}\left|\chi \partial_{n} \phi\right|_{2}^{2}+\left|\chi \partial_{x^{\prime}}\left(\nabla^{\prime} \cdot v^{\prime}\right)\right|_{2}^{2}\right\} \\
\leq & \varepsilon|\chi \partial \phi|_{2}^{2}+C_{\varepsilon}\left\{\left|\chi \partial_{x^{\prime}} f^{0}\right|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\} \\
& +C\left\{|\lambda|^{2}|\chi v|_{2}^{2}+\xi^{2}\left|\chi \partial_{x^{\prime}} v\right|_{2}^{2}+\xi^{4}|\chi v|_{2}^{2}+|\chi g|_{2}^{2}\right\}
\end{aligned}
$$

for any $\varepsilon \in(0,1]$.
Proof. By Lemma 3.4 we have

$$
\begin{aligned}
\left|\chi \partial\left(\nabla^{\prime} \cdot v^{\prime}\right)\right|_{2}^{2} & \leq C\left\{\left|\chi\left(\nabla^{\prime} \cdot \partial v^{\prime}\right)\right|_{2}^{2}+\left|\chi\left[\partial, \nabla^{\prime} \cdot\right] v^{\prime}\right|_{2}^{2}\right\} \\
& \leq C\left\{\left|\chi\left(\nabla^{\prime} \cdot \partial v^{\prime}\right)\right|_{2}^{2}+\left|\chi \partial_{x^{\prime}} v\right|_{2}^{2}\right\} .
\end{aligned}
$$

This, together with Propositions 3.5 and 3.6, implies that

$$
\begin{aligned}
(\operatorname{Re} \lambda & +c \varepsilon|\operatorname{Im} \lambda|)|\chi \partial u|_{2}^{2}+\left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}+c\right)\left|\chi \partial_{n} \phi\right|_{2}^{2} \\
& +c\left\{\xi^{2}|\chi \partial v|_{2}^{2}+\left|\chi \partial_{x^{\prime}} \partial v\right|_{2}^{2}+\left|\lambda+\frac{\gamma^{2}}{\nu+\bar{\nu}}\right|^{2}\left|\chi \partial_{n} \phi\right|_{2}^{2}\right. \\
& \left.+\left|\chi \partial\left(\nabla^{\prime} \cdot v^{\prime}\right)\right|_{2}^{2}+\left|\chi \partial_{n}\left(\nabla^{\prime} \cdot v^{\prime}\right)\right|_{2}^{2}\right\} \\
\leq & \varepsilon|\chi \partial \phi|_{2}^{2}+C_{\varepsilon}\left\{\left|\chi \partial_{x^{\prime}} f^{0}\right|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{L^{2}(D \cap \mathcal{O})}^{2}\right\} \\
& +C\left\{|\lambda|^{2}|\chi v|_{2}^{2}+\xi^{2}\left|\chi \partial_{x^{\prime}} v\right|_{2}^{2}+\xi^{4}|\chi v|_{2}^{2}+|\chi g|_{2}^{2}\right\} .
\end{aligned}
$$

Since

$$
\left|\chi \partial_{x^{\prime}}\left(\nabla^{\prime} \cdot v^{\prime}\right)\right|_{2}^{2} \leq C\left\{\left|\chi \partial\left(\nabla^{\prime} \cdot v^{\prime}\right)\right|_{2}^{2}+\left|\chi \partial_{n}\left(\nabla^{\prime} \cdot v^{\prime}\right)\right|_{2}^{2}\right\},
$$

we have the desired estimate. This completes the proof.
We next derive the interior estimate for the derivative of ϕ. We fix a function $\chi_{0} \in C_{0}^{\infty}(D)$.

Proposition 3.8. There holds the estimate

$$
\begin{aligned}
& \left(\left|\lambda+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\right|^{2}+\operatorname{Re} \lambda+|\operatorname{Im} \lambda|^{2}+\frac{\gamma^{2}}{2(\nu+\widetilde{\nu})}\right)\left\{\left|\chi_{0} \partial_{x^{\prime}} \phi\right|_{2}^{2}+\xi^{2}\left|\chi_{0} \phi\right|_{2}^{2}\right\} \\
& \leq C\left\{\left|\partial_{x^{\prime}} f^{0}\right|_{2}^{2}+|g|_{2}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}+|\lambda|^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\xi^{2}|v|_{2}^{2}\right\} .
\end{aligned}
$$

Proof. We compute

$$
\begin{aligned}
& \left(\chi_{0} \nabla^{\prime}(3.8), \chi_{0} \nabla^{\prime} \phi\right)+\left(\chi_{0} i \xi(3.8), \chi_{0} i \xi \phi\right) \\
& \quad+\frac{\gamma}{\nu+\widetilde{\nu}}\left\{\left(\chi_{0}(3.9), \chi_{0} \nabla^{\prime} \phi\right)+\left(\chi_{0}(3.10), \chi_{0} i \xi \phi\right)\right\}
\end{aligned}
$$

By integration by parts, we have

$$
\begin{aligned}
& \left(\chi_{0}\left(\Delta^{\prime} v^{\prime}-\xi^{2} v^{\prime}\right), \chi_{0} \nabla^{\prime} \phi\right)+\left(\chi_{0}\left(\Delta^{\prime} v^{3}-\xi^{2} v^{3}\right), \chi_{0} i \xi \phi\right) \\
& =\left(\chi_{0} \nabla^{\prime}\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right), \chi_{0} \nabla^{\prime} \phi\right)+\left(\chi_{0} i \xi\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right), \chi_{0} i \xi \phi\right) \\
& \quad-\left({ }^{T} \nabla^{\prime}\left(\chi_{0}^{2}\right) \nabla^{\prime} v^{\prime}, \nabla^{\prime} \phi\right)+\left(\nabla^{\prime} v^{\prime} \nabla^{\prime}\left(\chi_{0}^{2}\right), \nabla^{\prime} \phi\right)-\left(\nabla^{\prime}\left(\chi_{0}^{2}\right) \cdot \nabla^{\prime} v^{3}, i \xi \phi\right) \\
& \quad+\left(\nabla^{\prime}\left(\chi_{0}^{2}\right) \cdot i \xi v^{\prime}, i \xi \phi\right),
\end{aligned}
$$

where $\nabla^{\prime} v^{\prime}$ is the 2×2 matrix $\left(\partial_{k} v^{j}\right)$. Noting this fact, we see that the term

$$
\gamma\left\{\left(\chi_{0} \nabla^{\prime}\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right), \chi_{0} \nabla^{\prime} \phi\right)+\left(\chi_{0} i \xi\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right), \chi_{0} i \xi \phi\right)\right\}
$$

vanishes. We thus obtain

$$
\left(\lambda+\frac{\gamma^{2}}{\nu+\widetilde{\nu}}\right)\left\{\left|\chi_{0} \nabla^{\prime} \phi\right|_{2}^{2}+\left|\chi_{0} i \xi \phi\right|_{2}^{2}\right\}=F
$$

Here

$$
\begin{aligned}
F= & \left(\chi_{0} \nabla^{\prime} f^{0}, \chi_{0} \nabla^{\prime} \phi\right)+\left(\chi_{0} i \xi f^{0}, \chi_{0} i \xi \phi\right)+\frac{\gamma}{\nu+\widetilde{\nu}}\left\{\left(\chi_{0} g, \chi_{0} \nabla^{\prime} \phi\right)+\left(\chi_{0} g^{3}, \chi_{0} i \xi \phi\right)\right\} \\
& -\frac{\gamma}{\nu+\widetilde{\nu}}\left\{\lambda\left(\chi_{0} v^{\prime}, \chi_{0} \nabla^{\prime} \phi\right)+\lambda\left(\chi_{0} v^{3}, \chi_{0} i \xi \phi\right)+\left({ }^{T} \nabla^{\prime}\left(\chi_{0}^{2}\right) \nabla^{\prime} v^{\prime}, \nabla^{\prime} \phi\right)\right. \\
& \left.-\left(\nabla^{\prime} v^{\prime} \nabla^{\prime}\left(\chi_{0}^{2}\right), \nabla^{\prime} \phi\right)+\left(\nabla^{\prime}\left(\chi_{0}^{2}\right) \cdot \nabla^{\prime} v^{3}, i \xi \phi\right)-\left(\nabla^{\prime}\left(\chi_{0}^{2}\right) \cdot i \xi v^{\prime}, i \xi \phi\right)\right\} .
\end{aligned}
$$

Since F is estimated as

$$
\begin{aligned}
|F| \leq & C\left\{\left|\chi_{0} \nabla^{\prime} \phi\right|_{2}+\left|\chi_{0} i \xi \phi\right|_{2}\right\} \\
& \times\left\{\left|\partial_{x^{\prime}} f^{0}\right|_{2}+\xi^{2}\left|f^{0}\right|_{2}+|g|_{2}+|\lambda||v|_{2}+\left|\partial_{x^{\prime}} v\right|_{2}+|\xi||v|_{2}\right\} \\
\leq & \frac{\gamma^{2}}{8(\nu+\widetilde{\nu})}\left\{\left|\chi_{0} \nabla^{\prime} \phi\right|_{2}^{2}+\left|\chi_{0} i \xi \phi\right|_{2}^{2}\right\} \\
& +\left\{\left|\partial_{x^{\prime}} f^{0}\right|_{2}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}+|g|_{2}^{2}+|\lambda|^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\xi^{2}|v|_{2}^{2}\right\}
\end{aligned}
$$

we obtain the desired estimate. This completes the proof.
We next derive the interior estimate for the derivative of $\nabla^{\prime} \cdot v^{\prime}$.

Proposition 3.9. For λ satisfying $\operatorname{Re} \lambda+|\operatorname{Im} \lambda|+\frac{\gamma^{2}}{4(\nu+\tilde{\nu})} \geq 0$, there holds the estimate

$$
\left|\chi_{0} \partial_{x^{\prime}}\left(\nabla^{\prime} \cdot v^{\prime}\right)\right|_{2}^{2} \leq C\left\{\left|\partial_{x^{\prime}} f^{0}\right|_{2}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}+|\lambda|^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\} .
$$

Proof. Since $\gamma>0$, we see from (3.8) that

$$
\nabla^{\prime} \cdot v^{\prime}=\frac{1}{\gamma}\left\{f^{0}-\lambda \phi-i \gamma \xi v^{3}\right\} .
$$

It follows from Proposition 3.8 that if $\operatorname{Re} \lambda+|\operatorname{Im} \lambda|+\frac{\gamma^{2}}{4(\nu+\widetilde{\nu})} \geq 0$, then

$$
\begin{aligned}
& \left|\chi_{0} \partial_{x^{\prime}}\left(\nabla^{\prime} \cdot v^{\prime}\right)\right|_{2}^{2} \\
& \quad \leq C \quad\left\{\left|\partial_{x^{\prime}} f^{0}\right|_{2}^{2}+|\lambda|^{2}\left|\chi_{0} \partial_{x^{\prime}} \phi\right|_{2}^{2}+\xi^{2}\left|\chi_{0} \partial_{x^{\prime}} v^{3}\right|_{2}^{2}\right\} \\
& \quad \leq C\left\{\left|\partial_{x^{\prime}} f^{0}\right|_{2}^{2}+\left|\lambda+\frac{\gamma^{2}}{(\nu+\widetilde{\nu})}\right|^{2}\left|\chi_{0} \partial_{x^{\prime}} \phi\right|_{2}^{2}+\left(\frac{\gamma^{2}}{(\nu+\widetilde{\nu})}\right)^{2}\left|\chi_{0} \partial_{x^{\prime}} \phi\right|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\} \\
& \quad \leq C\left\{\left|\partial_{x^{\prime}} f^{0}\right|_{2}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}+|g|_{2}^{2}+|\lambda|^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\xi^{2}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\} .
\end{aligned}
$$

This completes the proof.
Proposition 3.10. Let λ satisfying $\operatorname{Re} \lambda+|\operatorname{Im} \lambda|+\frac{\gamma^{2}}{4(\nu+\tilde{\nu})} \geq 0$. Then there holds the estimate

$$
\begin{aligned}
& \left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}\right)|u|_{2}^{2}+(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+c)\left\{\xi^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} u\right|_{2}^{2}\right\} \\
& \quad+c\left\{|\lambda|^{2}|v|_{2}^{2}+\left|\lambda+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\right|^{2}\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}+\left|\partial_{x^{\prime}}^{2} v^{\prime}\right|_{2}^{2}\right\} \\
& \quad \leq\left.\varepsilon|\phi|\right|_{2}+C_{\varepsilon}\left|f^{0}\right|_{2}+C\left\{\left|\partial_{x^{\prime}} f^{0}\right|_{2}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}+|g|_{2}^{2}+\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\}
\end{aligned}
$$

for any $\varepsilon \in(0,1]$.
Proof. We see from (3.9) that

$$
\left\{\begin{array}{l}
-\nu \triangle^{\prime} v^{\prime}+\gamma \nabla^{\prime} \phi=g^{\prime}-\left\{\lambda v^{\prime}+\nu \xi^{2} v^{\prime}-\widetilde{\nu} \nabla^{\prime}\left(\nabla^{\prime} \cdot v^{\prime}\right)-i \widetilde{\nu} \xi \nabla^{\prime} v^{3}\right\} \\
\left.v^{\prime}\right|_{\partial D}=0
\end{array}\right.
$$

Applying the regularity estimates for the Stokes equations on bounded domains (e.g.,[1]), we have

$$
\begin{aligned}
& \left|\partial_{x^{\prime}}^{2} v^{\prime}\right|_{2}^{2}+\left|\partial_{x^{\prime}} \phi\right|_{2}^{2} \\
& \quad \leq C\left\{\left|g^{\prime}\right|_{2}^{2}+\left|\nabla^{\prime} \cdot v^{\prime}\right|_{H^{1}}^{2}+|\lambda|^{2}|v|_{2}^{2}+\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\} .
\end{aligned}
$$

This, together with Proposition 3.3, implies that

$$
\begin{align*}
(\operatorname{Re} \lambda & \left.+c|\operatorname{Im} \lambda|^{2}\right)|u|_{2}^{2}+(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+c)\left\{\xi^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\} \\
& +c\left\{\left|\partial_{x^{\prime}}^{2} v^{\prime}\right|_{2}^{2}+\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}+|\lambda|^{2}|v|_{2}^{2}\right\} \tag{3.40}\\
\leq & \varepsilon|\phi|_{2}^{2}+C_{\varepsilon}\left|f^{0}\right|_{2}^{2}+C\left\{|g|_{2}^{2}+\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\left|\nabla^{\prime} \cdot v^{\prime}\right|_{H^{1}}^{2}\right\} .
\end{align*}
$$

Let us estimate $\left|\nabla^{\prime} \cdot v^{\prime}\right|_{H^{1}}$ on the right of (3.40). We take an open covering $\left\{\mathcal{O}_{m}\right\}_{m=0}^{N}$ of D, a partition of unity $\left\{\chi_{m}\right\}_{m=0}^{N}$ subordinate to $\left\{\mathcal{O}_{m}\right\}_{m=0}^{N}$, and C^{∞} maps $\left\{\Phi_{m}\right\}_{m=1}^{N}$ with the following properties.
(i) $\overline{\mathcal{O}_{0}} \subset D, D \cap \mathcal{O}_{m} \neq \emptyset(m=1, \cdots, N)$.
(ii) $\sum_{m=0}^{N} \chi_{m} \equiv 1$ on $D, \chi_{m} \in C_{0}^{\infty}\left(\mathcal{O}_{m}\right)(m=0,1, \cdots, N)$.
(iii) For each $m=1, \cdots, N, \mathcal{O}_{m}$ and Φ_{m} have the properties as those of \mathcal{O} and Φ stated in (3.21) and (3.22) so that there exists a local curvilinear coordinate system on \mathcal{O}_{m} such as $y^{\prime}=^{T}\left(y_{1}, y_{2}\right) \in \widetilde{\mathcal{O}}$ given in (3.24).

Note that the estimate in Proposition 3.7 holds for $\mathcal{O}=\mathcal{O}_{m}$ and $\chi=\chi_{m}$ $(m=1, \cdots, N)$ with constants c and C uniformly in $m=1, \cdots, N$.

Combining Propositions $3.7-3.9$ with (3.40), we see that if $\operatorname{Re} \lambda+|\operatorname{Im} \lambda|+$ $\frac{\gamma^{2}}{4(\nu+\widetilde{\nu})} \geq 0$, then

$$
\begin{aligned}
& \left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}\right)|u|_{2}^{2}+(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+c)\left\{\xi^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} u\right|_{2}^{2}\right\} \\
& \\
& \quad+c\left\{\left|\lambda+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\right|^{2}\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}+\left|\partial_{x^{\prime}}^{2} v^{\prime}\right|_{2}^{2}+|\lambda|^{2}|v|_{2}^{2}\right\} \\
& \leq \\
& \\
& \quad \varepsilon_{1}\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}+\varepsilon|\phi|_{2}^{2}+C_{\varepsilon}\left|f^{0}\right|_{2}^{2}+C_{\varepsilon_{1}}\left\{\left|\partial_{x^{\prime}} f^{0}\right|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\} \\
& \\
& \quad+C\left\{\xi^{2}\left|f^{0}\right|_{2}^{2}+|g|_{2}^{2}+\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\} .
\end{aligned}
$$

Taking $\varepsilon_{1}>0$ sufficiently small and estimating $\left|\partial_{x^{\prime}} v\right|_{2}^{2}$ by Proposition 3.3, we obtain the desired estimate. This completes the proof.

The following proposition is a key step to obtain a dissipative estimate for $|\phi|_{2}$. We make use of an orthogonal decomposition of ϕ. We decompose ϕ as

$$
\phi=\phi_{0}+\phi_{1}, \quad \phi_{0}=\langle\phi\rangle=\frac{1}{|D|} \int_{D} \phi\left(x^{\prime}\right) d x^{\prime} .
$$

As for this decomposition, the following relations hold:

$$
|\phi|_{2}^{2}=\left|\phi_{0}\right|_{2}^{2}+\left|\phi_{1}\right|_{2}^{2}, \quad\left|\phi_{1}\right|_{2} \leq C\left|\partial_{x^{\prime}} \phi_{1}\right|_{2}=C\left|\partial_{x^{\prime}} \phi\right|_{2}
$$

Here ,the latter inequality follows from Poincaré's inequality, since ϕ_{1} satisfies $\int_{D} \phi_{1}\left(x^{\prime}\right) d x^{\prime}=0$.

Proposition 3.11. Let $r>0$. Then there are positive constants $C_{1}=C_{1}(r)$ and $C_{2}=C_{2}(r)$ such that the following estimates hold uniformly for $|\xi| \geq r$.
$\left(\operatorname{Re} \lambda+|\operatorname{Im} \lambda|^{2}\right)|\phi|_{2}^{2}+C_{1}\left|\phi_{0}\right|_{2}^{2} \leq C_{2}\left\{|\lambda|^{2}|v|_{2}^{2}+\xi^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}+|f|_{2}^{2}\right\}$.

Proof. We define an operator A with domain $D(A)$ by $A \varphi=-\nu \triangle^{\prime} \varphi$ for $\varphi \in D(A)=H^{2}(D) \cap H_{0}^{1}(D)$. By (3.10), we have

$$
v^{3}=-\left(\xi^{2}+A\right)^{-1}\left\{\lambda v^{3}-i \widetilde{\nu} \xi\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)+i \gamma \xi \phi-g^{3}\right\} .
$$

Substituting this into (3.8), we arrive at

$$
\begin{equation*}
\lambda \phi+\gamma^{2} \xi^{2}\left(\xi^{2}+A\right)^{-1} \phi=h \tag{3.41}
\end{equation*}
$$

Here

$$
h=-\gamma \nabla^{\prime} \cdot v^{\prime}+f^{0}+i \gamma \xi\left(\xi^{2}+A\right)^{-1}\left\{\lambda v^{3}-i \widetilde{\nu} \xi\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)-g^{3}\right\} .
$$

As for A, it is well-known that the following inequalities hold:

$$
\begin{gather*}
(A \varphi, \varphi) \geq C|\varphi|_{2}^{2} \quad(\forall \varphi \in D(A)) \tag{3.42}\\
\left|(\mu+A)^{-1} h\right|_{2} \leq \frac{C}{\mu+1}|h|_{2} \quad(\forall \mu \geq 0) \tag{3.43}\\
\left|(\mu+A)^{-1 / 2} h\right|_{2}^{2}=\left((\mu+A)^{-1} h, h\right) \leq \frac{C}{\mu+1}|h|_{2} \quad(\forall \mu \geq 0) . \tag{3.44}
\end{gather*}
$$

Taking the inner product of (3.41) with ϕ we have

$$
\begin{equation*}
\lambda|\phi|_{2}^{2}+\gamma^{2} \xi^{2}\left|\left(\xi^{2}+A\right)^{-1 / 2} \phi\right|_{2}^{2}=(h, \phi) . \tag{3.45}
\end{equation*}
$$

By (3.43) we obtain

$$
\begin{equation*}
|(h, \phi)| \leq C\left\{\left.\left|\lambda \||v|_{2}+|\xi|\right| v\right|_{2}+\left|\partial_{x^{\prime}} v\right|_{2}+|f|_{2}\right\}|\phi|_{2} . \tag{3.46}
\end{equation*}
$$

Using (3.44) we see that

$$
\begin{align*}
\xi^{2}\left|\left(\xi^{2}+A\right)^{-1 / 2} \phi\right|_{2}^{2}= & \xi^{2}\left\{\left|\left(\xi^{2}+A\right)^{-1 / 2} \phi_{0}\right|_{2}^{2}+\left|\left(\xi^{2}+A\right)^{-1 / 2} \phi_{1}\right|_{2}^{2}\right. \\
& \left.+2 \operatorname{Re}\left(\left(\xi^{2}+A\right)^{-1 / 2} \phi_{0},\left(\xi^{2}+A\right)^{-1 / 2} \phi_{1}\right)\right\} \\
\geq & \frac{1}{2} \xi^{2}\left|\left(\xi^{2}+A\right)^{-1 / 2} \phi_{0}\right|_{2}^{2}-C\left|\phi_{1}\right|_{2}^{2} \tag{3.47}\\
\geq & \frac{1}{2} \xi^{2}\left|\left(\xi^{2}+A\right)^{-1 / 2} \phi_{0}\right|_{2}^{2}-C\left|\partial_{x^{\prime}} \phi_{1}\right|_{2}^{2} .
\end{align*}
$$

We now apply the following fact : for any $r>0$ there exists a positive constant $C(r)$ such that

$$
\begin{equation*}
\mu\left|(\mu+A)^{-1 / 2} \cdot 1\right|_{2}^{2} \geq C(r) \quad\left(\forall \mu \geq r^{2}\right) \tag{3.48}
\end{equation*}
$$

We will give a proof of (3.48) later.
It follows from (3.48) that if $|\xi| \geq r$, then

$$
\begin{align*}
\xi^{2}\left|\left(\xi^{2}+A\right)^{-1 / 2} \phi_{0}\right|_{2}^{2} & =\xi^{2}\left|\phi_{0}\right|^{2}\left|\left(\xi^{2}+A\right)^{-1 / 2} \cdot 1\right|_{2}^{2} \tag{3.49}\\
& \geq C(r)\left|\phi_{0}\right|_{2}^{2}
\end{align*}
$$

Here we note that ϕ_{0} is a constant. From (3.45)-(3.47) and (3.49) we see that

$$
\begin{aligned}
& \left(\operatorname{Re} \lambda+|\operatorname{Im} \lambda|^{2}\right)|\phi|_{2}^{2}+C(r) \gamma^{2}\left|\phi_{0}\right|_{2}^{2} \\
& \quad \leq \delta\left|\phi_{0}\right|_{2}^{2}+C\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}+C_{\delta}\left\{|\lambda|^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\xi^{2}|v|_{2}^{2}+|f|_{2}^{2}\right\}
\end{aligned}
$$

for any $\delta>0$. Taking $\delta>0$ as $\delta<C(r) \gamma^{2} / 2$, we obtain the desired estimate.
We finally prove (3.48). By (3.48), we have

$$
\mu\left|(\mu+A)^{-\frac{1}{2}} \cdot 1\right|_{2}^{2}=\mu\left((\mu+A)^{-1} \cdot 1,1\right)=\left(\left(1+\mu^{-1} A\right)^{-1} \cdot 1,1\right)
$$

Since A is sectorial, we have

$$
\left(\left(1+\mu^{-1} A\right)^{-1} \cdot 1,1\right) \longrightarrow(1,1)=|D| \quad(\mu \rightarrow \infty)
$$

and, therefore, there exists a positive number R such that

$$
\begin{equation*}
\mu\left|(\mu+A)^{-\frac{1}{2}} \cdot 1\right|_{2}^{2} \geq \frac{1}{2}|D|, \quad \forall \mu \geq R \tag{3.50}
\end{equation*}
$$

Since $\left|(\mu+A)^{-\frac{1}{2}} \cdot 1\right|_{2}^{2}$ is continuous in $\mu \geq 0$, and, furthermore, since

$$
\left|(\mu+A)^{-\frac{1}{2}} \cdot 1\right|_{2}^{2}>0, \quad \forall \mu \geq 0
$$

we see that there exists a positive number $\widetilde{C}(R)$ such that

$$
\begin{equation*}
\left|(\mu+A)^{-\frac{1}{2}} \cdot 1\right|_{2}^{2} \geq \widetilde{C}(R), \quad 0 \leq \forall \mu \leq R \tag{3.51}
\end{equation*}
$$

Combining (3.50) and (3.51) we obtain (3.48). This completes the proof.
Proposition 3.12. There holds the estimate

$$
\begin{aligned}
& (\operatorname{Re} \lambda+c \varepsilon|\operatorname{Im} \lambda|) \xi^{2}|u|_{2}^{2}+c\left\{\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\xi^{2}\left|\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right|_{2}^{2}\right\} \\
& \quad \leq \varepsilon \xi^{2}|\phi|_{2}^{2}+C_{\varepsilon} \xi^{2}\left|f^{0}\right|_{2}^{2}+C|g|_{2}^{2}
\end{aligned}
$$

for any $\varepsilon \in(0,1]$.
Proof. We see from (3.15) that

$$
\begin{equation*}
|\operatorname{Im} \lambda| \xi^{2}|u|_{2}^{2} \leq \varepsilon \xi^{2}|\phi|_{2}^{2}+\frac{C}{\varepsilon}\left\{\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}\right\}+C_{\eta}|g|_{2}^{2}+\eta \xi^{4}|v|_{2}^{2} \tag{3.50}
\end{equation*}
$$

for any $\eta>0$ and $\varepsilon>0$. We also have

$$
\begin{equation*}
\xi^{2}|\operatorname{Re}(f, u)| \leq C_{\eta}|g|_{2}^{2}+\eta|\xi|^{4}|v|_{2}^{2}+\frac{C}{\varepsilon} \xi^{2}\left|f^{0}\right|_{2}^{2}+\varepsilon \xi^{2}|\phi|_{2}^{2} \tag{3.51}
\end{equation*}
$$

for any $\eta>0$ and $\varepsilon>0$. Combining (3.14), (3.50) and (3.51), and taking $\eta>0$ suitably small, we obtain the desired estimate. This completes the proof.

Proposition 3.13. Let $r>0$. Then there exists a positive constant $C_{1}=$ $C_{1}(r)$ such that If $|\xi| \geq r$ and $\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+C_{1}(r) \geq 0$, then

$$
\begin{aligned}
& \left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}+C_{1}(r)\right)|u|_{2}^{2}+(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+c)\left\{\xi^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} u\right|_{2}^{2}\right\} \\
& \quad+c\left\{\left|\lambda+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\right|^{2}\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}+\left|\partial_{x^{\prime}}^{2} v^{\prime}\right|_{2}^{2}+|\lambda|^{2}|v|_{2}^{2}\right\} \\
& \leq C\left\{\left|f^{0}\right|_{H^{1}}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}+|g|_{2}^{2}+\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\}
\end{aligned}
$$

Proof. By Propositions 3.10 and 3.11, we have

$$
\begin{aligned}
(\operatorname{Re} \lambda & \left.+c|\operatorname{Im} \lambda|^{2}\right)|u|_{2}^{2}+\left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}\right)|\phi|_{2}^{2}+\widetilde{C}_{1}(r)\left|\phi_{0}\right|_{2}^{2} \\
& +(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+c)\left\{\xi^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} u\right|_{2}\right\} \\
& +c\left\{\left|\lambda+\frac{\gamma^{2}}{\nu+\widetilde{\nu}}\right|^{2}\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}+\left.\left|\partial_{x^{\prime}}^{2}\right|^{\prime}\right|_{2} ^{2}+|\lambda|^{2}|v|_{2}^{2}\right\} \\
\leq & \varepsilon|\phi|_{2}+C_{\varepsilon}\left|f^{0}\right|_{2}^{2}+C\left\{\left|\partial_{x^{\prime}} f^{0}\right|_{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}+|g|_{2}^{2}+\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\} .
\end{aligned}
$$

Since $\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}=\left|\partial_{x^{\prime}} \phi_{1}\right|_{2}^{2} \geq C\left|\phi_{1}\right|_{2}^{2}$ by Poincaré inequality, the left-hand side of (3.52) is bounded from below by

$$
\begin{aligned}
& \left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}\right)|u|_{2}^{2}+\left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}+C_{1}(r)\right)|\phi|_{2}^{2} \\
& \quad+(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+c)\left\{\xi^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} u\right|_{2}^{2}\right\} \\
& \quad+c\left\{\left|\lambda+\frac{\gamma^{2}}{\nu+\widetilde{\nu}}\right|^{2}\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}+\left|\partial_{x^{\prime}}^{2}\right|_{2}^{2}+|\lambda|^{2}|v|_{2}^{2}\right\}
\end{aligned}
$$

The desired estimate now follows by taking ε suitably small. This completes the proof.

We now deduce the following two propositions on $\left(\lambda+\widehat{L}_{\xi}\right)^{-1}$.
Proposition 3.14. Let $0<r<\infty$. Then there exist constants $\Lambda_{1}>0$ and $\theta_{1} \in(\pi / 2, \pi)$ such that for any ξ with $|\xi| \geq r$ problem (3.12) has a unique solution $u \in H^{1}(D) \times\left[H^{2}(D) \cap H_{0}^{1}(D)\right]$ for any $f \in H^{1}(D) \times L^{2}(D)$, provided that $\lambda \in \Sigma\left(-\Lambda_{1}, \theta_{1}\right)$. Furthermore, $u=\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f$ satisfies the estimate

$$
\begin{aligned}
(\operatorname{Re} \lambda & \left.+c|\operatorname{Im} \lambda|^{2}+c\right)\left|\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{2}^{2} \\
& +(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+c)\left\{\xi^{2}\left|\widetilde{Q}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{2}^{2}+\left|\partial_{x^{\prime}}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{2}^{2}\right\} \\
& +c\left\{\left|\lambda+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\right|\left|\partial_{x^{\prime}} Q_{0}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{2}^{2}\right. \\
& \left.+\left|\partial_{x^{\prime}}^{2} Q^{\prime}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{2}^{2}+|\lambda|^{2}\left|\widetilde{Q}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{2}^{2}\right\} \\
\leq & C\left(1+\xi^{4}\right)\left\{\left|f^{0}\right|_{H^{1}}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}\right\} .
\end{aligned}
$$

Here c and C are some constants depending on r.
Proof. Proposition 3.14 follows from Propositions 3.12 and 3.13. We omit the details.

Proposition 3.15. Let $0<r<\infty$ and let $\Lambda_{1}>0$ and $\theta_{1} \in(\pi / 2, \pi)$ be the numbers given in Proposition 3.14. Then there holds the estimate

$$
\begin{aligned}
& \left|\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{H^{1}}^{2}+\xi^{2}\left|\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{2}^{2}+\sum_{k+\ell=2} \xi^{2 k}\left|\partial_{x^{\prime}}^{\ell} \widetilde{Q}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{2}^{2} \\
& \quad \leq C\left\{|f|_{H^{1} \times L^{2}}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}\right\}
\end{aligned}
$$

uniformly for $|\xi| \geq r$ and $\lambda \in \Sigma\left(-\Lambda_{1}, \theta_{1}\right) \cap\left\{\lambda ;|\lambda| \geq \Lambda_{1} / 2\right\}$. Here C is a positive constant depending on r.

Proof. Let $u={ }^{T}(\phi, v)=\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f$. By Propositions 3.12 and 3.13, there exists a constant $C_{1}=C_{1}(r)>0$ such that if $|\xi| \geq r$ and $\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+$ $C_{1}(r) \geq 0$, then the following estimate holds :

$$
\begin{align*}
& \left(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|^{2}+C_{1}(r)\right)|u|_{2}^{2}+(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+c)\left\{\xi^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} u\right|_{2}^{2}\right\} \tag{3.53}\\
& \quad+c\left\{|\lambda|^{2}|v|_{2}^{2}+\left|\lambda+\frac{\gamma^{2}}{\nu+\widetilde{\nu}}\right|^{2}\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}+\left|\partial_{x^{\prime}}^{2} v^{\prime}\right|_{2}^{2}+\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\} \\
& \leq \\
& \quad \varepsilon \xi^{2}|\phi|_{2}^{2}+C\left\{|f|_{H^{1} \times L^{2}}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}\right\} .
\end{align*}
$$

By (3.8), we have

$$
\begin{equation*}
|\lambda|^{2} \xi^{2}|\phi|_{2} \leq C\left\{\xi^{2}\left|f^{0}\right|_{2}^{2}+\xi^{2}\left|\nabla^{\prime} \cdot v^{\prime}\right|_{2}^{2}+\xi^{4}\left|v^{3}\right|_{2}^{2}\right\} \tag{3.54}
\end{equation*}
$$

It follows from (3.53) and (3.54) that if $\lambda \neq 0$, then

$$
\begin{aligned}
(\operatorname{Re} \lambda & \left.+c|\operatorname{Im} \lambda|^{2}+C_{1}(r)\right)|u|_{2}^{2}+(\operatorname{Re} \lambda+c|\operatorname{Im} \lambda|+c)\left\{\xi^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} u\right|_{2}^{2}\right\} \\
& +c\left\{|\lambda|^{2}|v|_{2}^{2}+\left|\lambda+\frac{\gamma^{2}}{\nu+\tilde{\nu}}\right|^{2}\left|\partial_{x^{\prime}} \phi\right|_{2}^{2}+\left|\partial_{x^{\prime}}^{2} v^{\prime}\right|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\xi^{4}\left|\partial_{x^{\prime}} v\right|_{2}^{2}\right\} \\
\leq & \varepsilon \frac{C}{|\lambda|^{2}}\left\{\xi^{2}\left|\nabla^{\prime} \cdot v^{\prime}\right|_{2}^{2}+\xi^{4}\left|v^{3}\right|_{2}^{2}\right\}+C_{\varepsilon}\left\{|f|_{H^{1} \times L^{2}}^{2}+\left(1+\frac{1}{|\lambda|^{2}}\right) \xi^{2}\left|f^{0}\right|_{2}^{2}\right\} .
\end{aligned}
$$

Since $|\lambda| \geq \Lambda_{1} / 2$ and $\lambda \in \Sigma\left(-\Lambda_{1}, \theta_{1}\right)$, taking ε suitably small, we have

$$
\begin{align*}
& |u|_{2}^{2}+\xi^{2}|v|_{2}^{2}+\left|\partial_{x^{\prime}} u\right|_{2}^{2}+\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\left.\left|\partial_{x^{\prime}}^{2} v_{2}^{2}+|\lambda|^{2}\right| v\right|_{2} ^{2} \tag{3.55}\\
& \quad \leq C\left\{|f|_{H^{1} \times L^{2}}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}\right\} .
\end{align*}
$$

It follows from (3.54) and (3.55) that

$$
\xi^{2}|\phi|_{2}^{2} \leq C\left\{|f|_{H^{1} \times L^{2}}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}\right\} .
$$

We finally consider the estimate for $\left|\partial_{x^{\prime}}^{2} v^{3}\right|_{2}$. By (3.10), v^{3} satisfies the elliptic problem

$$
-\nu \triangle^{\prime} v^{3}=-\left\{\lambda v^{3}+\nu \xi^{2} v^{3}-i \widetilde{\nu} \xi\left(\nabla^{\prime} \cdot v^{\prime}+i \xi v^{3}\right)+i \gamma \xi \phi-g^{3}\right\},\left.\quad v^{3}\right|_{\partial D}=0
$$

so, the regularity theory for the elliptic problem gives

$$
\begin{aligned}
\left|\partial_{x^{\prime}}^{2} v^{3}\right|_{2}^{2} & \leq C\left\{|\lambda|^{2}|v|_{2}^{2}+\xi^{4}|v|_{2}^{2}+\xi^{2}\left|\partial_{x^{\prime}} v\right|_{2}^{2}+\xi^{2}|\phi|_{2}^{2}+|g|_{2}^{2}\right\} \\
& \leq C\left\{|f|_{H^{1} \times L^{2}}^{2}+\xi^{2}\left|f^{0}\right|_{2}^{2}\right\},
\end{aligned}
$$

which is the desired estimate. This completes the proof.

4. Resolvent problem II

In this section we investigate $\left(\lambda+\widehat{L}_{\xi}\right)^{-1}$ for $|\xi| \ll 1$. We will show that if $|\xi| \ll 1$, then $\rho\left(-\widehat{L_{0}}\right) \supset\left\{\lambda \neq 0, \operatorname{Re} \lambda+C_{3}|\operatorname{Im} \lambda|+C_{4} \geq 0\right\}$ and $\sigma\left(-\widehat{L_{\xi}}\right) \cap\left\{|\lambda| \leq C_{4} / 2\right\}=\left\{\lambda_{0}(\xi)\right\}$ for some $C_{3}, C_{4}>0$, where $\lambda_{0}(\xi)$ is a simple eigenvalue of $-\widehat{L}_{\xi}$, which satisfies

$$
\lambda_{0}(\xi)=-\frac{a_{1} \gamma}{\nu} \xi^{2}+O\left(\xi^{4}\right) \quad(\xi \rightarrow 0)
$$

with some positive constant a_{1}.
We set $\xi=0$ in (3.8)-(3.11) to obtain

$$
\left\{\begin{array}{l}
\lambda \phi+\gamma \nabla^{\prime} \cdot v^{\prime}=f^{0} \tag{4.1}\\
\lambda v^{\prime}-\nu \triangle^{\prime} v^{\prime}-\widetilde{\nu} \nabla^{\prime}\left(\nabla^{\prime} \cdot v^{\prime}\right)+\gamma \nabla^{\prime} \phi=g^{\prime} \\
\lambda v^{3}-\nu \triangle^{\prime} v^{3}=g^{3} \\
\left.v\right|_{\partial D}=0
\end{array}\right.
$$

Let $\phi=\phi_{0}+\phi_{1}$ be the orthogonal decomposition of ϕ defined in Proposition 3.11. Similarly we decompose f^{0} as

$$
f^{0}=f_{0}^{0}+f_{1}^{0}, f_{0}^{0}=\left\langle f^{0}\right\rangle=\frac{1}{|D|} \int_{D} f d x^{\prime}, f_{1}^{0}=f^{0}-f_{0}^{0}
$$

It then follows that (4.1) is rewritten as

$$
\begin{gather*}
\lambda \phi_{0}=f_{0}^{0} \tag{4.2}\\
\lambda \phi_{1}+\gamma \nabla^{\prime} \cdot v^{\prime}=f_{1}^{0} \tag{4.3}\\
\lambda v^{\prime}-\nu \triangle^{\prime} v^{\prime}-\widetilde{\nu} \nabla^{\prime}\left(\nabla^{\prime} \cdot v^{\prime}\right)+\gamma \nabla \phi_{1}=g^{\prime},\left.\quad v^{\prime}\right|_{\partial D}=0, \tag{4.4}\\
\lambda v^{3}-\nu \triangle^{\prime} v^{3}=g^{3},\left.\quad v^{3}\right|_{\partial D}=0 \tag{4.5}
\end{gather*}
$$

We consider the solvability of each of (4.2), (4.3)-(4.4), and (4.5).
As for (4.2), if $\lambda \neq 0$, then (4.2) has a unique solution $\phi_{0}=\frac{1}{\lambda} f_{0}^{0}$. We also see that $\lambda=0$ is a simple eigenvalue with eigenfunction $\phi_{0}=1$.

As for (4.5), it is well-known that there exists a sequence $\left\{\lambda_{j}\right\}_{j=1}^{\infty}\left(\lambda_{j}<\right.$ $\left.0,\left|\lambda_{1}\right|<\left|\lambda_{2}\right| \leq\left|\lambda_{3}\right| \leq \cdots \rightarrow \infty\right)$ that has the following properties. Each λ_{j} is a semi-simple eigenvalue and for any $\lambda \notin\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ (4.5) has a unique solution $v^{3} \in H^{2}(D) \cap H_{0}^{1}(D)$. Furthermore, if $\left|\arg \left(\lambda-\frac{1}{2} \lambda_{1}\right)\right| \leq \pi-\varepsilon(\varepsilon>0)$, then there holds the estimate

$$
|\lambda|\left|v^{3}\right|_{2}+|\lambda|^{1 / 2}\left|\partial_{x^{\prime}} v^{3}\right|_{2}+\left|\partial_{x^{\prime}} v^{3}\right|_{2} \leq C_{\varepsilon}\left|g^{3}\right|_{2} .
$$

As for the solvability of (4.3)-(4.4), we have the following result.
Proposition 4.1. There are positive constants C_{3} and C_{4} such that If $\operatorname{Re} \lambda+$ $C_{3}|\operatorname{Im} \lambda|+C_{4} \geq 0$, then for any ${ }^{T}\left(f_{1}^{0}, g^{\prime}\right) \in H^{1}(D) \times L^{2}(D)$ with $\int_{D} f_{1}^{0} d x^{\prime}=0$
there exists a unique solution ${ }^{T}\left(\phi_{1}, v^{\prime}\right) \in H^{1}(D) \times\left[H^{2}(D) \cap H_{0}^{1}(D)\right]$ of (4.3)(4.4) with $\int_{D} \phi_{1} d x^{\prime}=0$. Furthermore, there holds the estimate

$$
\begin{aligned}
(\operatorname{Re} \lambda & \left.+C_{3}|\operatorname{Im} \lambda|^{2}+C_{4}\right)\left\{\left|\phi_{1}\right|_{2}^{2}+\left|v^{\prime}\right|_{2}^{2}+\left|\partial_{x^{\prime}} \phi_{1}\right|_{2}^{2}\right\} \\
& +\left(\operatorname{Re} \lambda+C_{3}|\operatorname{Im} \lambda|+C_{4}\right)\left\{\left|\partial_{x^{\prime}} \phi_{1}\right|_{2}^{2}+\left|\partial_{x^{\prime}} v^{\prime}\right|_{2}\right\} \\
& +c\left\{\left|\partial_{x^{\prime}}^{2} v^{\prime}\right|_{2}+|\lambda|^{2}\left|v^{\prime}\right|_{2}^{2}\right\}+c\left|\lambda+\frac{\gamma}{\nu+\widetilde{\nu}}\right|^{2}\left\{\left|\phi_{1}\right|_{2}^{2}+\left|\partial_{x^{\prime}} \phi_{1}\right|_{2}^{2}\right\} \\
\leq & C\left\{\left|f_{0}^{1}\right|_{H^{1}}^{2}+\left|g^{\prime}\right|_{2}^{2}\right\} .
\end{aligned}
$$

Proof. The existence of solution can be proved as in the proof of Proposition 3.1. It is not difficult to see that the estimate in Proposition 3.10 also holds for $\xi=0$ and $\phi=\phi_{1}$. We thus have

$$
\begin{aligned}
(\operatorname{Re} \lambda & \left.+C_{3}|\operatorname{Im} \lambda|^{2}\right)\left\{\left|\phi_{1}\right|_{2}^{2}+\left|v^{\prime}\right|_{2}^{2}\right\} \\
& +\left(\operatorname{Re} \lambda+C_{3}|\operatorname{Im} \lambda|+C_{4}\right)\left\{\left|\partial_{x^{\prime}} \phi_{1}\right|_{2}^{2}+\left|\partial_{x^{\prime}} v^{\prime}\right|_{2}^{2}\right\} \\
& +c\left\{\left|\partial_{x^{\prime}}^{2} v^{\prime}\right|_{2}+|\lambda|^{2}\left|v^{\prime}\right|_{2}^{2}+\left|\lambda+\frac{\gamma}{\nu+\tilde{\nu}}\right|^{2}\left|\partial_{x^{\prime}} \phi_{1}\right|_{2}^{2}\right\} \\
\leq & \varepsilon^{2}\left|\phi_{1}\right|_{2}^{2}+C_{\varepsilon}\left|f_{0}^{1}\right|_{H^{1}}^{2}+\left|g^{\prime}\right|_{2}^{2}
\end{aligned}
$$

Since $\int_{D} \phi_{1} d x^{\prime}=0$ and $\left.v^{\prime}\right|_{\partial D}=0$, the Poincaré inequality gives

$$
\left|\partial_{x^{\prime}} \phi_{1}\right|_{2} \geq C\left|\phi_{1}\right|_{2},\left|\partial_{x^{\prime}} v^{\prime}\right|_{2} \geq C\left|v^{\prime}\right|_{2}
$$

Taking $\varepsilon>0$ suitably small, we obtain the desired estimate. This completes the proof.

In what follows we represent \widehat{L}_{ξ} as

$$
\widehat{L}_{\xi}=\widehat{L}_{0}+\xi \widehat{L}^{(1)}+\xi^{2} \widehat{L}^{(2)}
$$

Here \widehat{L}_{0} is the operator with domain $D\left(\widehat{L}_{0}\right)$ defined by

$$
\begin{gathered}
\widehat{L}_{0}=\left(\begin{array}{ccc}
0 & \gamma^{T} \nabla^{\prime} & 0 \\
\gamma \nabla^{\prime} & -\nu \triangle^{\prime} I_{2}-\widetilde{\nu} \nabla^{T} \nabla^{\prime} & 0 \\
0 & 0 & -\nu \triangle^{\prime}
\end{array}\right), \\
D\left(\widehat{L}_{0}\right)=H^{1}(D) \times\left[H^{2}(D) \cap H_{0}^{1}(D)\right],
\end{gathered}
$$

and

$$
\widehat{L}^{(1)}=\left(\begin{array}{ccc}
0 & 0 & i \gamma \\
0 & 0 & -i \widetilde{\nu} \nabla^{\prime} \\
i \gamma & -i \widetilde{\nu}^{T} \nabla^{\prime} & 0
\end{array}\right), \quad \widehat{L}^{(2)}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \nu I_{2} & 0 \\
0 & 0 & \nu+\widetilde{\nu}
\end{array}\right) .
$$

From the above observations on (4.2)-(4.5), we deduce the following results on $\left(\lambda+\widehat{L}_{0}\right)^{-1}$.

Proposition 4.2. (i) There are positive constants C_{3} and C_{4} such that

$$
\Sigma_{1} \equiv\left\{\lambda \neq 0, \operatorname{Re} \lambda+C_{3}|\operatorname{Im} \lambda|+C_{4} \geq 0\right\} \subset \rho\left(-\widehat{L}_{0}\right)
$$

Furthermore, if $\lambda \in \Sigma_{1}$, then

$$
\begin{gathered}
\left|\left(\lambda+\widehat{L}_{0}\right)^{-1} f\right|_{H^{1} \times L^{2}} \leq \frac{C}{|\lambda|+1}\left\{\left|f_{0}^{1}\right|_{H^{1}}+|g|_{2}\right\}+\frac{C}{|\lambda|}\left|f_{0}^{0}\right|_{2}, \\
\left|\partial_{x^{\prime}}^{\ell} \widetilde{Q}\left(\lambda+\widehat{L}_{0}\right)^{-1} f\right|_{2} \leq \frac{C}{(|\lambda|+1)^{1-\frac{\ell}{2}}}\left\{\left|f_{0}^{1}\right|_{H^{1}}+|g|_{2}\right\} \quad(\ell=1,2) .
\end{gathered}
$$

(ii) $\lambda=0$ is a simple eigenvalue of $-\widehat{L}_{0}$, and the associated eigenprojection \widehat{P}_{0} is given by

$$
\widehat{P}_{0} u=\binom{\langle\phi\rangle}{ 0} \quad \text { for } \quad u=\binom{\phi}{v^{\prime}} .
$$

We next investigate the resolvent set $\rho\left(-\widehat{L}_{\xi}\right)$ and the spectrum $\left(\lambda+\widehat{L}_{\xi}\right)^{-1}$ for $|\xi| \ll 1$.

Proposition 4.3. There exists a positive number r_{1} such that if $|\xi| \leq r_{1}$, then

$$
\Sigma_{1} \cap\left\{|\lambda| \geq C_{4} / 2\right\} \subset \rho\left(-\widehat{L}_{\xi}\right)
$$

Furthermore, if $\lambda \in \Sigma_{1} \cap\left\{|\lambda| \geq C_{4} / 2\right\}$, then

$$
\begin{gathered}
\left|\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{H^{1} \times L^{2}} \leq \frac{C}{|\lambda|+1}|f|_{H^{1} \times L^{2}} \\
\left|\partial_{x^{\prime}}^{\ell} \widetilde{Q}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{2} \leq \frac{C}{(|\lambda|+1)^{1-\frac{\ell}{2}}}|f|_{H^{1} \times L^{2}} \quad(\ell=1,2) .
\end{gathered}
$$

Proof. We have $\widehat{L}^{(1)} u={ }^{T}\left(i \gamma v^{3},-\widetilde{\nu} \nabla^{\prime} v^{3}, i \gamma \phi-i \widetilde{\nu} \nabla^{\prime} \cdot v^{\prime}\right)$ for $u={ }^{T}(\phi, v)$. Setting $u=\left(\lambda+\widehat{L}_{0}\right)^{-1} f$ and noting that $|\lambda| \geq C_{4} / 2$, we see from Proposition 4.2 that

$$
\begin{gathered}
\left|\widehat{L}^{(1)} u\right|_{2} \leq C\left\{|\phi|_{2}+|v|_{H^{1}}\right\} \leq \frac{C}{(|\lambda|+1)^{\frac{1}{2}}}|f|_{H^{1} \times L^{2}}, \\
\left|\partial_{x^{\prime}} Q_{0} \widehat{L}^{(1)} u\right|_{2} \leq C\left|\partial_{x^{\prime}} v^{3}\right|_{2} \leq \frac{C}{(|\lambda|+1)^{\frac{1}{2}}}|f|_{H^{1} \times L^{2}}
\end{gathered}
$$

Since $\widehat{L}^{(2)} u={ }^{T}\left(0, \nu v^{\prime},(\nu+\widetilde{\nu}) v^{3}\right)$, we similarly obtain by Proposition 4.2

$$
\left|\widehat{L}^{(2)} u\right|_{2} \leq C|v|_{2} \leq \frac{C}{|\lambda|+1}|f|_{H^{1} \times L^{2}}, \quad \partial_{x^{\prime}} Q_{0} \widehat{L}^{(2)} u=0
$$

Therefore, there exists a positive number r_{1} such that

$$
\left|\left(\xi \widehat{L}^{(1)}+\xi^{2} \widehat{L}^{(2)}\right)\left(\lambda+\widehat{L}_{0}\right)^{-1} f\right|_{H^{1} \times L^{2}} \leq \frac{1}{2}|f|_{H^{1} \times L^{2}} \quad\left(\forall|\xi| \leq r_{1}\right) .
$$

This implies that $\Sigma_{1} \cap\left\{|\lambda| \geq C_{4} / 2\right\} \subset \rho\left(-\widehat{L}_{\xi}\right)$, and we have the Neumann series expansion

$$
\begin{equation*}
\left(\lambda+\widehat{L}_{\xi}\right)^{-1}=\left(\lambda+\widehat{L}_{0}\right)^{-1} \sum_{N=0}^{\infty}(-1)^{N}\left[\left(\xi \widehat{L}^{(1)}+\xi^{2} \widehat{L}^{(2)}\right)\left(\lambda+\widehat{L}_{0}\right)^{-1}\right]^{N} \tag{4.6}
\end{equation*}
$$

and $\left(\lambda+\widehat{L}_{\xi}\right)^{-1}$ is estimated as

$$
\left|\left(\lambda+\widehat{L}_{\xi}\right)^{-1}\right|_{H^{1} \times L^{2}} \leq \frac{C}{|\lambda|+1} \sum_{N=0}^{\infty}\left(\frac{1}{2}\right)^{N}|f|_{H^{1} \times L^{2}} \leq \frac{C}{|\lambda|+1}|f|_{H^{1} \times L^{2}}
$$

Similarly we find that

$$
\begin{aligned}
& \left|\partial_{x^{\prime}} \widetilde{Q}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{2} \\
& \quad=\left|\partial_{x^{\prime}} \widetilde{Q}\left(\lambda+\widehat{L}_{0}\right)^{-1} \sum_{N=0}^{\infty}(-1)^{N}\left[\left(\xi \widehat{L}^{(1)}+\xi^{2} \widehat{L}^{(2)}\right)\left(\lambda+\widehat{L}_{0}\right)^{-1}\right]^{N} f\right|_{2} \\
& \quad \leq \frac{C}{(|\lambda|+1)^{\frac{1}{2}}} \sum_{N=0}^{\infty}\left|\left[\left(\xi \widehat{L}^{(1)}+\xi^{2} \widehat{L}^{(2)}\right)\left(\lambda+\widehat{L}_{0}\right)^{-1}\right]^{N} f\right|_{H^{1} \times L^{2}} \\
& \quad \leq \frac{C}{(|\lambda|+1)^{\frac{1}{2}}} \sum_{N=0}^{\infty}\left(\frac{1}{2}\right)^{N}|f|_{H^{1} \times L^{2}} \leq \frac{C}{(|\lambda|+1)^{\frac{1}{2}}}|f|_{H^{1} \times L^{2}}, \\
& \left|\partial_{x^{\prime}}^{2} \widetilde{Q}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} f\right|_{2} \\
& \quad=\left|\partial_{x^{\prime}}^{2} \widetilde{Q}\left(\lambda+\widehat{L}_{0}\right)^{-1} \sum_{N=0}^{\infty}(-1)^{N}\left[\left(\xi \widehat{L}^{(1)}+\xi^{2} \widehat{L}^{(2)}\right)\left(\lambda+\widehat{L}_{0}\right)^{-1}\right]^{N} f\right|_{2} \\
& \quad \leq C \sum_{N=0}^{\infty}\left|\left[\left(\xi \widehat{L}^{(1)}+\xi^{2} \widehat{L}^{(2)}\right)\left(\lambda+\widehat{L}_{0}\right)^{-1}\right]^{N} f\right|_{H^{1} \times L^{2}} \\
& \quad \leq C|f|_{H^{1} \times L^{2} .}
\end{aligned}
$$

This completes the proof.

Remark. It is easy to see that Propositions 4.1-4.3 are also valid for the adjoint problem $\left(\lambda+\widehat{L}_{\xi}^{*}\right) w=f$, since \widehat{L}_{ξ}^{*} has the following form :

$$
\begin{gathered}
\widehat{L}_{\xi}^{*}=\widehat{L}_{0}^{*}+\xi \widehat{L}^{(1) *}+\xi^{2} \widehat{L}^{(2) *}, \quad D\left(\widehat{L}_{\xi}^{*}\right)=H^{1}(D) \times\left[H^{2}(D) \cap H_{0}^{1}(D)\right] \\
\widehat{L}_{0}^{*}=\left(\begin{array}{ccc}
0 & -\gamma^{T} \nabla^{\prime} & 0 \\
-\gamma \nabla^{\prime} & -\nu \Delta^{\prime} I_{2}-\widetilde{\nu} \nabla^{T} \nabla^{\prime} & 0 \\
0 & 0 & -\nu \Delta^{\prime}
\end{array}\right), \\
\widehat{L}^{(1) *}=\left(\begin{array}{ccc}
0 & 0 & -i \gamma \\
0 & 0 & -i \widetilde{\nu} \nabla^{\prime} \\
-i \gamma & -i \widetilde{\nu}^{T} \nabla^{\prime} & 0
\end{array}\right), \quad \widehat{L}^{(2) *}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \nu I_{2} & 0 \\
0 & 0 & \nu+\widetilde{\nu}
\end{array}\right) .
\end{gathered}
$$

As for the spectrum of $\sigma\left(-\widehat{L}_{\xi}\right)$, we have the following result.
Proposition 4.4. There exists a positive number r_{2} such that if $|\xi| \leq r_{2}$, then there holds

$$
\sigma\left(-\widehat{L_{\xi}}\right) \cap\left\{|\lambda| \leq C_{4} / 2\right\}=\left\{\lambda_{0}(\xi)\right\}
$$

Here C_{4} is the constant given in Proposition 4.2, and $\lambda_{0}(\xi)$ is a simple eigenvalue of $-\widehat{L}_{\xi}$, which satisfies

$$
\lambda_{0}(\xi)=-\frac{a_{1} \gamma}{\nu} \xi^{2}+O\left(\xi^{4}\right) \quad(\xi \rightarrow 0)
$$

for some positive constant a_{1}. Furthermore, the associated eigenprojection $\widehat{P}_{0}(\xi)$ takes the form

$$
\widehat{P}_{0}(\xi)=\widehat{P}_{0}+\xi \widehat{P}_{1}+\widehat{P}_{2}(\xi)
$$

Here the right members have the following properties:

$$
\begin{gathered}
\widehat{P}_{0} u=\widehat{P}_{0}\binom{\phi}{v}=\binom{\langle\phi\rangle}{ 0}, \\
\left|\widehat{P}_{1} u\right|_{H^{1} \times L^{2}}+\sum_{\ell=1}^{2}\left|\partial_{x^{\prime}}^{\ell} \widetilde{Q} \widehat{P}_{1} u\right|_{2} \leq C|u|_{H^{1} \times L^{2}}, \\
\partial_{x^{\prime}} \widehat{P}_{1} \widetilde{Q} u=0, \\
\left|\widehat{P}_{2}(\xi) u\right|_{H^{1} \times L^{2}}+\sum_{\ell=1}^{2}\left|\partial_{x^{\prime}}^{\ell} \widetilde{Q} \widehat{P}_{2}(\xi) u\right|_{2} \leq C \xi^{2}|u|_{H^{1} \times L^{2}} .
\end{gathered}
$$

Proof. By Proposition 4.3 we see that if $|\lambda|=C_{4} / 2$, then $\lambda \in \rho\left(-\widehat{L}_{\xi}\right)$ for $|\xi| \leq r_{1}$. In particular,

$$
\widehat{P}_{0}(\xi)=\frac{1}{2 \pi i} \int_{|\lambda|=\frac{C_{4}}{2}}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} d \lambda
$$

is the eigenprojection for the eigenvalues lying inside the circle $|\lambda|=C_{4} / 2$. The continuity of $\left(\lambda+\widehat{L}_{\xi}\right)^{-1}$ in (λ, ξ) then implies that

$$
\operatorname{dim} R\left(\widehat{P}_{0}(\xi)\right)=\operatorname{dim} R\left(\widehat{P}_{0}\right)=1
$$

Therefore, $\sigma\left(-\widehat{L}_{\xi}\right) \cap\left\{|\lambda| \leq C_{4} / 2\right\}$ consists of only one point, say, $\left\{\lambda_{0}(\xi)\right\}$, and $\lambda_{0}(\xi)$ is a simple eigenvalue. Furthermore, it follows from (4.6) that

$$
\left(\lambda+\widehat{L}_{\xi}\right)^{-1}=\left(\lambda+\widehat{L}_{0}\right)^{-1}+\xi \widehat{\mathcal{R}}^{(1)}(\lambda)+\widehat{\mathcal{R}}^{(2)}(\lambda, \xi) .
$$

Here

$$
\begin{aligned}
& \widehat{\mathcal{R}}^{(1)}(\lambda)=-\left(\lambda+\widehat{L}_{0}\right)^{-1} \widehat{L}^{(1)}\left(\lambda+\widehat{L}_{0}\right)^{-1} \\
\widehat{\mathcal{R}}^{(2)}(\lambda, \xi)= & -\xi^{2}\left(\lambda+\widehat{L}_{0}\right)^{-1} \widehat{L}^{(2)}\left(\lambda+\widehat{L}_{0}\right)^{-1} \\
& +\left(\lambda+\widehat{L}_{0}\right)^{-1} \sum_{N=2}^{\infty}(-1)^{N}\left[\left(\xi \widehat{L}^{(1)}+\xi^{2} \widehat{L}^{(2)}\right)\left(\lambda+\widehat{L}_{0}\right)^{-1}\right]^{N}
\end{aligned}
$$

We thus deduce that $\widehat{P}_{0}(\xi)$ is written as

$$
\widehat{P}_{0}(\xi)=\widehat{P}_{0}+\xi \widehat{P}_{1}+\widehat{P}_{2}(\xi)
$$

where

$$
\widehat{P}_{1}=\frac{1}{2 \pi i} \int_{|\lambda|=\frac{C_{4}}{2}} \widehat{\mathcal{R}}^{(1)}(\lambda) d \lambda=-\widehat{S} \widehat{L}^{(1)} \widehat{P}_{0}-\widehat{P}_{0} \widehat{L}^{(1)} \widehat{S}
$$

with

$$
\widehat{S}=\left[\left(I-\widehat{P}_{0}\right) \widehat{L}_{0}\left(I-\widehat{P}_{0}\right)\right]^{-1}
$$

and

$$
\widehat{P}_{2}(\xi)=\frac{1}{2 \pi i} \int_{|\lambda|=\frac{C_{4}}{2}} \widehat{\mathcal{R}}^{(2)}(\lambda, \xi) d \lambda .
$$

Applying Proposition 4.3 we see that

$$
\left|\widehat{P}_{2}(\xi) u\right|_{H^{1} \times L^{2}}+\sum_{\ell=1}^{2}\left|\partial_{x^{\prime}}^{\ell} \widetilde{Q} \widehat{P}_{2}(\xi) u\right|_{2} \leq C \xi^{2}|u|_{H^{1} \times L^{2}}
$$

Since $\widehat{P}_{0} \widetilde{Q} u=0$ and $\partial_{x^{\prime}} \widehat{P}_{0} u=0$, we have

$$
\partial_{x^{\prime}} \widehat{P}_{1} \widetilde{Q} u=-\partial_{x^{\prime}}\left[\widehat{P}_{0} \widehat{L}^{(1)} \widehat{S} \widetilde{Q} u\right]=0
$$

We next prove the asymptotic formula for $\lambda_{0}(\xi)$ as $\xi \rightarrow 0$. By the analytic perturbation theory $([9]), \lambda_{0}(\xi)$ is written as

$$
\lambda_{0}(\xi)=\lambda^{(0)}+\xi \lambda^{(1)}+\xi^{2} \lambda^{(2)}+\xi^{3} \lambda^{(3)}+O\left(\xi^{4}\right) \quad(\xi \rightarrow 0)
$$

Here $\lambda^{(0)}=0$. Furthermore, we have $\lambda^{(1)}=\lambda^{(3)}=0$. This follows from a symmetry. In fact, it holds $\widehat{L}_{ \pm \xi}=T_{ \pm}^{-1} \widehat{L}_{ \pm \xi} T_{ \pm}$for $T_{ \pm}=\operatorname{diag}(1,1,1, \pm 1)$, which implies that $\lambda_{0}(\xi)=\lambda_{0}(-\xi), \lambda_{0}(\xi) \in \mathbf{R}$, since $\lambda_{0}(\xi)$ is simple. We thus see that $\lambda^{(1)}=\lambda^{(3)}=0$.

Let us next compute $\lambda^{(2)}$. Since $\sigma\left(-\widehat{L}_{0}^{*}\right)=\sigma\left(-\widehat{L}_{0}\right)$ and $\lambda=0$ is a simple eigevalue with eigenfunction $u^{(0)}={ }^{T}(1,0)$, we see that

$$
\lambda^{(2)}=-\left\langle\widehat{L}^{(2)} u^{(0)}, u^{(0)}\right\rangle+\left\langle\widehat{L}^{(1)} \widehat{S} \widehat{L}^{(1)} u^{(0)}, u^{(0)}\right\rangle .
$$

Since $\widehat{L}^{(2)} u^{(0)}=0$, we have $\left\langle\widehat{L}^{(2)} u^{(0)}, u^{(0)}\right\rangle=0$. A direct computation shows $\widehat{L}^{(1)} u^{(0)}={ }^{T}(0,0, i \gamma)$, from which we have $\widehat{S} \widehat{L}^{(1)} u^{(0)}=^{T}\left(0,0, \frac{i \gamma}{\nu}\left(-\triangle^{\prime}\right)^{-1} \cdot 1\right)$, and ,therefore,

$$
\widehat{L}^{(1)} \widehat{S} \widehat{L}^{(1)} u^{(0)}=\left(\begin{array}{c}
-\frac{\gamma^{2}}{\nu}\left(-\triangle^{\prime}\right)^{-1} \cdot 1 \\
\frac{\tilde{\tau} \gamma}{\nu}\left(-\triangle^{\prime}\right)^{-1} \cdot 1 \\
0
\end{array}\right)
$$

We thus conclude that

$$
\lambda^{(2)}=\left\langle\widehat{L}^{(1)} \widehat{S} \widehat{L}^{(1)} u^{(0)}, u^{(0)}\right\rangle=-\frac{a_{1} \gamma^{2}}{\nu} .
$$

Here $a_{1}=\frac{1}{|D|} \int_{D}\left(-\triangle^{\prime}\right)^{-1} \cdot 1 d x^{\prime}>0$. As a result we obtain

$$
\lambda_{0}(\xi)=-\frac{a_{1} \gamma^{2}}{\nu} \xi^{2}+O\left(\xi^{4}\right)
$$

This completes the proof.
5. Proof of Theorem 2.1: asymptotic behavior of $e^{-t L}$

In this section we prove Theorem 2.1.
Proof of Theorem 2.1. Let $\chi_{1}(\xi) \in C_{0}^{\infty}(\mathbf{R})$ be a smooth cut-off function satisfying $0 \leq \chi_{1} \leq 1, \chi_{1}(\xi)=1$ for $|\xi| \leq r_{2} / 2$ and $\chi_{1}(\xi)=1$ for $|\xi|>r_{2} / 2$. Here r_{2} is the positive number given in Proposition 4.4.

We set $\chi_{\infty}=1-\chi_{1}$. We then decompose $e^{-t L}$ as

$$
e^{-t L}=U_{1}(t)+U_{\infty}(t)
$$

Here

$$
\begin{gathered}
U_{1}(t)=\mathscr{F}^{-1}\left[\chi_{1}(\xi) e^{-t \hat{L}_{\xi}}\right] \\
U_{\infty}(t)=\mathscr{F}^{-1}\left[\chi_{\infty}(\xi) e^{-t \hat{L}_{\xi}}\right] \\
e^{-t \hat{L}_{\xi}}=\frac{1}{2 \pi i} \int_{\Gamma_{0}} e^{\lambda t}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} d \lambda
\end{gathered}
$$

where $\Gamma_{0}=\left\{\lambda=\Lambda_{0}+\eta e^{ \pm \theta_{0}}, \eta \geq 0\right\}$ with some $\Lambda_{0}>0$ and $\theta_{0} \in(\pi / 2, \pi)$ that are taken in such a way that $\Gamma_{0} \subset \rho\left(-\widehat{L}_{\xi}\right)$ for all $\xi \in \mathbf{R}$.

We first estimate $U_{\infty}(t)$. By Proposition 3.14, we see that if $|\xi| \geq r_{2} / 2$, then $\Sigma\left(-\Lambda_{1}, \theta_{1}\right) \subset \rho\left(-\widehat{L}_{\xi}\right)$ for some $\Lambda_{1}>0$ and $\theta_{1} \in(\pi / 2, \pi)$, and, furthermore, $\left|\left(\lambda+\widehat{L_{\xi}}\right)^{-1} u_{0}\right|_{H^{1} \times L^{2}} \leq C_{\xi}\left|u_{0}\right|_{H^{1} \times L^{2}}$ uniformly in $\lambda \in \Sigma\left(-\Lambda_{1}, \theta_{1}\right)$. (Here C_{ξ} depends on ξ.) We can thus deform the contour Γ_{0} into $\Gamma_{1} \equiv$ $\left\{\lambda ;\left|\arg \left(\lambda+\Lambda_{1}\right)\right|=\theta_{1}\right\}$ to obtain

$$
\widehat{U}_{\infty}(t) \widehat{u}_{0}=\frac{1}{2 \pi i} \int_{\Gamma_{1}} \chi_{\infty} e^{\lambda t}\left(\lambda+\widehat{L}_{\xi}\right)^{-1} \widehat{u}_{0} d \lambda
$$

Furthermore, Proposition 3.15 implies that there exists a positive number C such that

$$
\begin{equation*}
\left|\left(\lambda+\widehat{L}_{\xi}\right)^{-1} \widehat{u}_{0}\right|_{H^{1}}+|\xi|\left|\left(\lambda+\widehat{L}_{\xi}\right)^{-1} \widehat{u_{0}}\right|_{2} \leq C\left\{\left|\widehat{u}_{0}\right|_{H^{1} \times L^{2}}+|\xi|\left|Q_{0} \widehat{u_{0}}\right|_{2}\right\} \tag{5.1}
\end{equation*}
$$

for all $|\xi| \geq r_{2} / 2$ and $\lambda \in \Gamma_{1}$.
It then follows from (5.1) that

$$
\begin{aligned}
\left\|U_{\infty}(t) u_{0}\right\|_{H^{1}} & \leq C\left\{\left\|\left|\widehat{U}_{\infty}(t) \widehat{u}_{0}\right|_{H^{1}}\right\|_{L_{\xi}^{2}}+\left\|\left|\xi \widehat{U}_{\infty}(t) \widehat{u}_{0}\right|_{2}\right\|_{L_{\xi}^{2}}\right\} \\
& \leq C \int_{0}^{\infty} e^{\left(-\Lambda_{1}+\eta \cos \theta_{1}\right) t}\left\{\left\|\left|\widehat{u}_{0}\right|_{H^{1} \times L^{2}}\right\|_{2}+\left\||\xi|\left|Q_{0} \widehat{u}_{0}\right|_{2}\right\|_{2}\right\} d \eta \\
& \leq C_{\theta_{1}} e^{-\Lambda_{1} t}\left\|u_{0}\right\|_{H^{1} \times L^{2}}
\end{aligned}
$$

for all $t \geq 1$.
We next consider $U_{1}(t)$. By Propositions 4.3 and 4.4, there are constants $\Lambda_{2}>0$ and $\theta_{2} \in(\pi / 2, \pi)$ such that if $|\xi| \leq r_{2}$, then

$$
\left\{\lambda ;\left|\arg \left(\lambda+\Lambda_{2}\right)\right| \leq \theta_{2}\right\} \cap\left\{\lambda ;|\lambda| \geq \Lambda_{2} / 2\right\} \subset \rho\left(-\widehat{L}_{\xi}\right)
$$

and

$$
\left\{\lambda ;|\lambda| \leq \Lambda_{2} / 2\right\} \cap \sigma\left(-\widehat{L}_{\xi}\right)=\left\{\lambda_{0}(\xi)\right\}
$$

We deform the contour Γ_{0} into $\Gamma_{2} \equiv\left\{\lambda ;\left|\arg \left(\lambda+\Lambda_{2}\right)\right|=\theta_{2}\right\}$ to obtain, with the aid of the residue theorem,

$$
\widehat{U}_{1}(t)=\chi_{1}(\xi) e^{\lambda_{0}(\xi) t} \widehat{P}_{0}(\xi)+\frac{1}{2 \pi i} \int_{\Gamma_{2}} e^{\lambda t} \chi_{1}(\xi)\left(\lambda+\widehat{L}_{\xi}\right)^{-1} d \lambda .
$$

We write $\widehat{U}_{1}(t)$ as

$$
\widehat{U}_{1}(t)=\widehat{\mathcal{U}}_{0}(t)+\sum_{j=1}^{5} \widehat{U}_{1}^{j}(t) .
$$

Here

$$
\begin{gathered}
\widehat{\mathscr{U}}_{0}(t)=e^{-\kappa \xi^{2} t} \widehat{P}_{0}, \quad \widehat{U}_{1}^{(1)}(t)=\chi_{\infty}(\xi) e^{-\kappa \xi^{2} t} \widehat{P}_{0}, \quad \widehat{U}_{1}^{(2)}(t)=\chi_{1}(\xi) \xi e^{-\kappa \xi^{2} t} \widehat{P}_{1} \\
\widehat{U}_{1}^{(3)}(t)=\chi_{1}(\xi) e^{-\kappa \xi^{2} t} \widehat{P}_{2}(\xi), \quad \widehat{U}_{1}^{(4)}(t)=\chi_{1}(\xi)\left(e^{\lambda_{0}(\xi) t}-e^{-\kappa \xi^{2} t}\right) \widehat{P}_{0} \\
\widehat{U}_{1}^{(5)}(t)=\frac{1}{2 \pi i} \int_{\Gamma_{1}} e^{\lambda t} \chi_{1}(\xi)\left(\lambda+\widehat{L}_{\xi}\right)^{-1} d \lambda .
\end{gathered}
$$

Here $\kappa=a_{1} \gamma^{2} / \nu$. Furthermore, we set

$$
\mathscr{U}_{0}(t) u_{0}=\mathscr{F}^{-1}\left[\widehat{\mathscr{U}}_{0}(t) \widehat{u}_{0}\right], \quad U_{1}^{(j)}(t) u_{0}=\mathscr{F}^{-1}\left[\widehat{U}_{1}^{(j)}(t) \widehat{u}_{0}\right] .
$$

$U_{1}^{(5)}(t)$ can be estimated as $U_{\infty}(t)$, and we have

$$
\left\|U_{1}^{(5)}(t) u_{0}\right\|_{H^{1}} \leq C e^{-\Lambda_{2} t}\left\|u_{0}\right\|_{H^{1} \times L^{2}} .
$$

It is easy to see that $\mathscr{U}_{0}(t) u_{0}$ is the function given in Theorem 2.1 (i) and satisfies the heat equation, and, thus, it satisfies the estimate $\left\|\partial_{x_{3}}^{\ell} \mathscr{U}_{0}(t) u_{0}\right\|_{2} \leq$ $C t^{-\frac{1}{4}-\frac{\ell}{2}}\left\|Q_{0} u_{0}\right\|_{1}$. Since $\partial_{x^{\prime}} \widehat{P}_{0} u_{0}=0$, we have $\partial_{x^{\prime}} \mathscr{U}_{0}(t) u_{0}=0$.

Let us estimate $U_{1}^{(2)}(t)$. For $\ell=0,1$, we see from Proposition 4.4 that

$$
\begin{aligned}
\left\|\partial_{x^{\prime}}^{\ell} U_{1}^{(2)}(t) u_{0}\right\|_{2} & \leq C\left(\int_{0}^{\infty} \xi^{2} e^{-2 \kappa \xi^{2} t}\left|\widehat{u}_{0}\right|_{H^{1} \times L^{2}}^{2} d \xi\right)^{\frac{1}{2}} \\
& \leq C\left(\int_{0}^{\infty} \xi^{2} e^{-2 \kappa \xi^{2} t} d \xi\right)^{\frac{1}{2}} \sup _{\xi}\left|\widehat{u}_{0}\right|_{H^{1} \times L^{2}} \\
& \leq C t^{-\frac{3}{4}}\left\|\left|u_{0}\right|_{H^{1} \times L^{2}}\right\|_{L_{x_{3}}^{1}},
\end{aligned}
$$

and

$$
\begin{align*}
\left\|\partial_{x_{3}} U_{1}^{(2)}(t) u_{0}\right\|_{2} & \leq C\left(\int_{0}^{\infty} \xi^{4} e^{-2 \kappa \xi^{2} t}\left|\widehat{u}_{0}\right|_{2}^{2} d \xi\right)^{\frac{1}{2}} \tag{5.2}\\
& \leq C t^{-\frac{5}{4}}\left\|\left|u_{0}\right|_{2}\right\|_{L_{x_{3}}^{1}} .
\end{align*}
$$

Similarly we can estimate $U_{1}^{(3)}(t)$ to obtain

$$
\begin{equation*}
\left\|U_{1}^{(3)}(t) u_{0}\right\|_{H^{1}} \leq C t^{-\frac{5}{4}}\left\|\left|u_{0}\right|_{H^{1} \times L^{2}}\right\|_{L_{x_{3}}^{1}} . \tag{5.3}
\end{equation*}
$$

As for $U_{1}^{(4)}(t)$, since $\lambda_{0}(\xi)=-\kappa \xi^{2}+\lambda^{(4)}(\xi)$ with $\lambda^{(4)}(\xi)=O\left(\xi^{4}\right)$, taking r_{2} smaller if necessary, we have

$$
\left|\lambda^{(4)}(\xi)\right| \leq C \xi^{4} \leq \frac{\kappa}{4} \xi^{2}, \quad|\xi| \leq r_{2} .
$$

This implies that

$$
\begin{aligned}
\left|e^{\lambda_{0}(\xi) t}-e^{-\kappa \xi^{2} t}\right| & =\left|\lambda^{(4)}(\xi) t e^{-\kappa \xi^{2} t} \int_{0}^{1} e^{\theta \lambda^{(4)}(\xi) t} d \theta\right| \\
& \leq C \xi^{2} e^{\left(-\frac{\kappa}{2} \xi^{2}+\left|\lambda^{(4)}(\xi)\right|\right) t} \\
& \leq C \xi^{2} e^{-\frac{\kappa}{4} \xi^{2} t} .
\end{aligned}
$$

Therefore, as in the estimate of $U_{1}^{(2)}(t)$, we obtain

$$
\begin{equation*}
\left\|U_{1}^{(4)}(t) u_{0}\right\|_{H^{1}} \leq C t^{-\frac{5}{4}}\left\|\left|u_{0}\right|_{H^{1} \times L^{2}}\right\|_{L_{x_{3}}^{1}} . \tag{5.4}
\end{equation*}
$$

We now set

$$
\mathscr{U}_{1}(t)=U_{1}^{(1)}(t)+U_{1}^{(2)}(t)+U_{1}^{(3)}(t)+U_{1}^{(4)}(t)
$$

and

$$
\mathscr{R}(t)=U_{1}^{(5)}(t)+U_{\infty}(t) .
$$

Then we obtain the desired estimates in Theorem 2.1 (ii) and (iii) for $\left\|\mathscr{U}_{1}(t) u_{0}\right\|_{H^{1}}$ and $\left\|\mathscr{R}(t) u_{0}\right\|_{H^{1}}$.

We next consider $\left\|\partial_{x} \mathscr{U}_{1}(t) \widetilde{Q} u_{0}\right\|_{2}$. Since $\partial_{x} U_{1}^{(1)}(t) \widetilde{Q} u_{0}=0$ and $\partial_{x} U_{1}^{(2)}(t) \widetilde{Q} u_{0}=$ 0 , we see from (5.2)-(5.4) that

$$
\left\|\partial_{x} \mathscr{U}_{1}(t) \widetilde{Q} u_{0}\right\|_{2} \leq C t^{-\frac{4}{5}}\left\|\left|\widetilde{Q} u_{0}\right|_{2}\right\|_{L_{x_{3}}^{1}} .
$$

We finally estimate $\left\|\mathscr{U}_{1}(t)\left[\partial_{x} \widetilde{Q} u_{0}\right]\right\|_{2}$. We here estimate only $U_{1}^{(2)}(t)\left[\partial_{x} \widetilde{Q} u_{0}\right]$. In view of the above argument, it is not difficult to see that the other terms can be bounded by $C t^{-\frac{5}{4}}\left\|\left|\partial_{x} \widetilde{Q} u_{0}\right|_{2}\right\|_{L_{x_{3}}^{1}}$.

Let $\Psi={ }^{T}(\Phi, V) \in C_{0}^{\infty}(D)$. Since $\widehat{P}_{1}=-\widehat{S} \widehat{L}^{(1)} \widehat{P}_{0}-\widehat{P}_{0} \widehat{L}^{(1)} \widehat{S}$ and $\widehat{P}_{0} \widetilde{Q}=0$, we have

$$
\left(\widehat{P}_{1}\left(\partial_{x^{\prime}} \widetilde{Q} u_{0}\right), \Psi\right)=-\left(\widehat{P}_{0} \widehat{L}^{(1)} \widehat{S}\left(\partial_{x^{\prime}} \widetilde{Q} u_{0}\right), \Psi\right)=-\left(\partial_{x^{\prime}} \widetilde{Q} u_{0}, \widehat{S}^{*} \widehat{L}^{(1) *} \widehat{P}_{0} \Psi\right)
$$

Here $\widehat{S}^{*}=\left[\left(I-\widehat{P}_{0}\right) \widehat{L}_{0}^{*}\left(I-\widehat{P}_{0}\right)\right]^{-1}$. Since $\widehat{L}^{(1) *} \widehat{P}_{0} \Psi=-i \gamma^{T}(0,0,\langle\Phi\rangle)$, we have

$$
\widehat{S}^{*} \widehat{L}^{(1) *} \widehat{P}_{0} \Psi=-\frac{i \gamma}{\nu}\left(\begin{array}{c}
0 \tag{5.5}\\
0 \\
\left(-\triangle^{\prime}\right)^{-1}\langle\Phi\rangle
\end{array}\right)
$$

Since $\left.\widehat{S}^{*} \widehat{L}^{(1) *} \widehat{P}_{0} \Psi\right|_{\partial D}=0$, integrating by parts, we see from (5.5) that

$$
\begin{aligned}
\left|\left(\widehat{P}_{1}\left(\partial_{x^{\prime}} \widetilde{Q} u_{0}\right), \Psi\right)\right| & \leq\left|\left(\widetilde{Q} u_{0}, \partial_{x^{\prime}} \widehat{S}^{*} \widehat{L}^{(1) *} \widehat{P_{0}} \Psi\right)\right| \\
& \leq\left|\widetilde{Q} u_{0}\right|_{2}\left|\partial_{x^{\prime}} \widehat{S}^{*} \widehat{L}^{(1) *} \widehat{P}_{0} \Psi\right|_{2} \\
& \leq C\left|\widetilde{Q} u_{0}\right|_{2}|\Psi|_{2}
\end{aligned}
$$

By duality we have $\left|\widehat{P}_{1}\left(\partial_{x^{\prime}} \widetilde{Q} u_{0}\right)\right|_{2} \leq C\left|\widetilde{Q} u_{0}\right|_{2}$, from which we obtain

$$
\left\|U_{1}^{(2)}(t)\left[\partial_{x^{\prime}} u_{0}\right]\right\|_{2} \leq C t^{-\frac{3}{4}}\left\|\left|\widetilde{Q} u_{0}\right|_{2}\right\|_{L_{x_{3}}^{1}}
$$

Since $U_{1}^{(2)}(t)\left[\partial_{x_{3}} \widetilde{Q} u_{0}\right]=\partial_{x_{3}} U_{1}^{(2)}(t)\left[\widetilde{Q} u_{0}\right]$, we have

$$
\left\|U_{1}^{(2)}(t)\left[\partial_{x_{3}} \widetilde{Q} u_{0}\right]\right\|_{2} \leq C t^{-\frac{5}{4}}\left\|\left|\widetilde{Q} u_{0}\right|_{2}\right\|_{L_{x_{3}}^{1}} .
$$

This completes the proof.

References

[1] G. P. Galdi, An Introduction to the Mathematical Theory of the NavierStokes Equations, Vol. 1, Springer-Verlag, New York (1994).
[2] D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), pp. 604-676.
[3] D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys., 48 (1997), pp. 597-614.
[4] Y. Kagei, Resolvent estimates for the linearized compressible NavierStokes equation in an infinite layer, Funkcial. Ekvac., 50 (2007), pp. 287-337.
[5] Y. Kagei, Asymptotic behavior of the semigroup associated with the linearized compressible Navier-Stokes equation in an infinite layer, MHF Preprint Series, Kyushu University, MHF 2006-23, accepted for publication in Publ. Res. Inst. Math. Sci.
[6] Y. Kagei, Large time behavior of solutions to the compressible NavierStokes equation in an infinite layer, preprint, MHF Preprint Series, Kyushu University, MHF 2007-11.
[7] Y. Kagei and T. Kobayashi, On large time behavior of solutions to the Compressible Navier-Stokes Equations in the half space in \mathbf{R}^{3}, Arch. Rational Mech. Anal., 165 (2002), pp. 89-159.
[8] Y. Kagei, and T. Kobayashi, Asymptotic behavior of solutions to the compressible Navier-Stokes equations on the half space, Arch. Rational Mech. Anal., 177 (2005), pp. 231-330.
[9] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New York (1980).
[10] S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Ph. D. Thesis, Kyoto University (1983).
[11] S. Kawashima, A. Matsumura and T. Nishida, On the fluid-dynamical approximation to the Boltzmann equation at the level of the NavierStokes equation, Comm. Math. Phys., 70 (1979), pp. 97-124.
[12] T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in \mathbf{R}^{3}, J. Differential Equations, 184 (2002), pp. 587-619.
[13] T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \mathbf{R}^{3}, Comm. Math. Phys., 200 (1999), pp. 621-659.
[14] T. Kobayashi and Y. Shibata, Remarks on the rate of decay of solutions to linearized compressible Navier-Stokes equations, Pacific J. Math., 207 (2002), pp. 199-234.
[15] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A, 55 (1979), pp. 337-342.
[16] A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), pp. 67-104.
[17] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids, Comm. Math. Phys., 89 (1983), pp. 445-464.
Y. Kagei

Faculty of Mathematics,
Kyushu University,
Fukuoka 812-8581, Japan,
E-mail: kagei@math.kyushu-u.ac.jp
T.Nukumizu

Nihon Jyoho Create Co.,Ltd, Kanada-chou 2063, Miyaknojyo, Miyazaki 885-0001, Japan

List of MHF Preprint Series, Kyushu University
 21st Century COE Program
 Development of Dynamic Mathematics with High Functionality

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle
MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI \& Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI \& Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions
MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA \& Yasuhiko YAMADA
Construction of hypergeometric solutions to the q - Painlevé equations
MHF2005-7 Hiroki MASUDA
Simple estimators for non-linear Markovian trend from sampled data:
I. ergodic cases

MHF2005-8 Hiroki MASUDA \& Nakahiro YOSHIDA
Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models
MHF2005-9 Masayuki UCHIDA
Approximate martingale estimating functions under small perturbations of dynamical systems

MHF2005-10 Ryo MATSUZAKI \& Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations

MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI \& Masayuki UCHIDA Estimation for a discretely observed small diffusion process with a linear drift

MHF2005-12 Masayuki UCHIDA \& Nakahiro YOSHIDA
AIC for ergodic diffusion processes from discrete observations

MHF2005-13 Hiromichi GOTO \& Kenji KAJIWARA
Generating function related to the Okamoto polynomials for the Painlevé IV equation

MHF2005-14 Masato KIMURA \& Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift

MHF2005-15 Daisuke TAGAMI \& Masahisa TABATA
Numerical computations of a melting glass convection in the furnace
MHF2005-16 Raimundas VIDŪNAS
Normalized Leonard pairs and Askey-Wilson relations
MHF2005-17 Raimundas VIDŪNAS
Askey-Wilson relations and Leonard pairs
MHF2005-18 Kenji KAJIWARA \& Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation
MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields
MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets in \mathbb{R}^{d}

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani's extension of Yor's formula
MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA \& Mark YOR
Wiener integrals for centered powers of Bessel processes, I
MHF2005-23 Masahisa TABATA \& Satoshi KAIZU
Finite element schemes for two-fluids flow problems
MHF2005-24 Ken-ichi MARUNO \& Yasuhiro OHTA
Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation

MHF2005-25 Alexander V. KITAEV \& Raimundas VIDŪNAS
Quadratic transformations of the sixth Painlevé equation
MHF2005-26 Toru FUJII \& Sadanori KONISHI
Nonlinear regression modeling via regularized wavelets and smoothing parameter selection

MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI \& Yasuo KAWAHARA
On reversible cellular automata with finite cell array

Cyclic cubic field with explicit Artin symbols
MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO \& Kaori NAGATOU
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

MHF2005-30 Kaori NAGATOU, Kouji HASHIMOTO \& Mitsuhiro T. NAKAO
Numerical verification of stationary solutions for Navier-Stokes problems
MHF2005-31 Hidefumi KAWASAKI
A duality theorem for a three-phase partition problem
MHF2005-32 Hidefumi KAWASAKI
A duality theorem based on triangles separating three convex sets
MHF2005-33 Takeaki FUCHIKAMI \& Hidefumi KAWASAKI
An explicit formula of the Shapley value for a cooperative game induced from the conjugate point

MHF2005-34 Hideki MURAKAWA
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem

MHF2006-1 Masahisa TABATA
Numerical simulation of Rayleigh-Taylor problems by an energy-stable finite element scheme

MHF2006-2 Ken-ichi MARUNO \& G R W QUISPEL
Construction of integrals of higher-order mappings
MHF2006-3 Setsuo TANIGUCHI
On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase function

MHF2006-4 Kouji HASHIMOTO, Kaori NAGATOU \& Mitsuhiro T. NAKAO
A computational approach to constructive a priori error estimate for finite element approximations of bi-harmonic problems in nonconvex polygonal domains

MHF2006-5 Hidefumi KAWASAKI
A duality theory based on triangular cylinders separating three convex sets in R^{n}

MHF2006-6 Raimundas VIDŪNAS
Uniform convergence of hypergeometric series
MHF2006-7 Yuji KODAMA \& Ken-ichi MARUNO
N-Soliton solutions to the DKP equation and Weyl group actions

MHF2006-8 Toru KOMATSU

Potentially generic polynomial

MHF2006-9 Toru KOMATSU

Generic sextic polynomial related to the subfield problem of a cubic polynomial
MHF2006-10 Shu TEZUKA \& Anargyros PAPAGEORGIOU
Exact cubature for a class of functions of maximum effective dimension
MHF2006-11 Shu TEZUKA
On high-discrepancy sequences
MHF2006-12 Raimundas VIDŪNAS
Detecting persistent regimes in the North Atlantic Oscillation time series
MHF2006-13 Toru KOMATSU
Tamely Eisenstein field with prime power discriminant
MHF2006-14 Nalini JOSHI, Kenji KAJIWARA \& Marta MAZZOCCO
Generating function associated with the Hankel determinant formula for the solutions of the Painlevé IV equation

MHF2006-15 Raimundas VIDŪNAS
Darboux evaluations of algebraic Gauss hypergeometric functions
MHF2006-16 Masato KIMURA \& Isao WAKANO
New mathematical approach to the energy release rate in crack extension
MHF2006-17 Toru KOMATSU
Arithmetic of the splitting field of Alexander polynomial
MHF2006-18 Hiroki MASUDA
Likelihood estimation of stable Lévy processes from discrete data
MHF2006-19 Hiroshi KAWABI \& Michael RÖCKNER
Essential self-adjointness of Dirichlet operators on a path space with Gibbs measures via an SPDE approach

MHF2006-20 Masahisa TABATA
Energy stable finite element schemes and their applications to two-fluid flow problems

MHF2006-21 Yuzuru INAHAMA \& Hiroshi KAWABI
Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths

MHF2006-22 Yoshiyuki KAGEI
Resolvent estimates for the linearized compressible Navier-Stokes equation in an infinite layer

MHF2006-23 Yoshiyuki KAGEI
Asymptotic behavior of the semigroup associated with the linearized compressible Navier-Stokes equation in an infinite layer

MHF2006-24 Akihiro MIKODA, Shuichi INOKUCHI, Yoshihiro MIZOGUCHI \& Mitsuhiko FUJIO
The number of orbits of box-ball systems
MHF2006-25 Toru FUJII \& Sadanori KONISHI
Multi-class logistic discrimination via wavelet-based functionalization and model selection criteria

MHF2006-26 Taro HAMAMOTO, Kenji KAJIWARA \& Nicholas S. WITTE Hypergeometric solutions to the q-Painlevé equation of type $\left(A_{1}+A_{1}^{\prime}\right)^{(1)}$

MHF2006-27 Hiroshi KAWABI \& Tomohiro MIYOKAWA
The Littlewood-Paley-Stein inequality for diffusion processes on general metric spaces

MHF2006-28 Hiroki MASUDA
Notes on estimating inverse-Gaussian and gamma subordinators under highfrequency sampling

MHF2006-29 Setsuo TANIGUCHI
The heat semigroup and kernel associated with certain non-commutative harmonic oscillators

MHF2006-30 Setsuo TANIGUCHI
Stochastic analysis and the KdV equation
MHF2006-31 Masato KIMURA, Hideki KOMURA, Masayasu MIMURA, Hidenori MIYOSHI, Takeshi TAKAISHI \& Daishin UEYAMA
Quantitative study of adaptive mesh FEM with localization index of pattern
MHF2007-1 Taro HAMAMOTO \& Kenji KAJIWARA
Hypergeometric solutions to the q-Painlevé equation of type $A_{4}^{(1)}$
MHF2007-2 Kouji HASHIMOTO, Kenta KOBAYASHI \& Mitsuhiro T. NAKAO
Verified numerical computation of solutions for the stationary Navier-Stokes equation in nonconvex polygonal domains

MHF2007-3 Kenji KAJIWARA, Marta MAZZOCCO \& Yasuhiro OHTA A remark on the Hankel determinant formula for solutions of the Toda equation

MHF2007-4 Jun-ichi SATO \& Hidefumi KAWASAKI
Discrete fixed point theorems and their application to Nash equilibrium
MHF2007-5 Mitsuhiro T. NAKAO \& Kouji HASHIMOTO
Constructive error estimates of finite element approximations for non-coercive elliptic problems and its applications

A preconditioned method for saddle point problems
MHF2007-7 Christopher MALON, Seiichi UCHIDA \& Masakazu SUZUKI
Mathematical symbol recognition with support vector machines
MHF2007-8 Kenta KOBAYASHI
On the global uniqueness of Stokes' wave of extreme form
MHF2007-9 Kenta KOBAYASHI
A constructive a priori error estimation for finite element discretizations in a non-convex domain using singular functions

MHF2007-10 Myoungnyoun KIM, Mitsuhiro T. NAKAO, Yoshitaka WATANABE \& Takaaki NISHIDA
A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh-Bénard problems

MHF2007-11 Yoshiyuki KAGEI
Large time behavior of solutions to the compressible Navier-Stokes equation in an infinite layer

MHF2007-12 Takashi YANAGAWA, Satoshi AOKI and Tetsuji OHYAMA
Human finger vein images are diverse and its patterns are useful for personal identification

MHF2007-13 Masahisa TABATA
Finite element schemes based on energy-stable approximation for two-fluid flow problems with surface tension

MHF2007-14 Mitsuhiro T. NAKAO \& Takehiko KINOSHITA
Some remarks on the behaviour of the finite element solution in nonsmooth domains

MHF2007-15 Yoshiyuki KAGEI \& Takumi NUKUMIZU
Asymptotic behavior of solutions to the compressible Navier-Stokes equation in a cylindrical domain

[^0]: 2000 Mathematics Subject Classification : 35Q30, 76N15.

