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Abstract In this paper, we propose an adaptive extensible processor in which custom instructions are generated and added 

after chip-fabrication. A reconfigurable functional unit is utilized to support this feature. The proposed reconfigurable 

functional unit is based on a matrix of functional units which is multi-cycle with the capability of conditional execution. A 

quantitative approach is utilized to fix the constraints of the architecture. Unlike previously proposed custom instructions, ours 

include multiple exits. Conditional execution has been added to support the multi-exit feature of custom instructions. 

Experimental results show that multi-exit custom instructions enhance the performance by an average of 46% compared to 

custom instructions limited to one basic block. A maximum speedup of 2.89, compared to a 4-issue in-order RISC processor, 

and an average speedup of 1.66 was achieved on MiBench benchmark suite.  
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1. Introduction 

General Purpose Processors (GPPs), Application Specific 

Integrated Circuits (ASICs), Application Specific 

Instruction-set Processors (ASIPs), and extensible 

processors are well-known approaches for designing an 

embedded System-on-Chip (SoC). Although availability 

of tools, programmability, and rapid deployability in 

embedded systems are good reasons for common use, 

GPPs usually do not offer the necessary performance 

required. ASICs have much higher performance and lower 

power consumption though they are inflexible and have 

an expensive and time consuming design process. ASIPs 

have greater flexibility than ASICs and more potential to 

meet the challenging high-performance demands of 

embedded applications compared to GPPs. However, the 

synthesis of ASIPs traditionally involves the generation 

of a complete instruction set architecture (ISA) for the 

targeted application. This full-custom solution is too 

expensive and has a long design turnaround time. 

Another method for providing enhanced performance 

is application-specific instruction set extension. By 

creating application-specific extensions to an instruction 

set, the critical portions of an application’s dataflow 

graph (DFG) can be accelerated by mapping them to 

custom functional units. Custom instructions (CIs) reduce 

the latency of critical paths and number of intermediate 

results written to the register file. Though not as effective 

as ASICs, instruction set extension improves performance 

and decreases energy consumption of processors by 

reducing access to the instruction cache (dynamic energy) 

and execution time (static energy). Instruction set 

extension also maintains a degree of system 

programmability, which enables them to be utilized with 

more flexibility. The main problem with this method is 

the significant non-recurring engineering costs associated 

with implementation. The addition of instruction set 

extensions to a baseline processor for each application 

brings many of the issues associated with initially 

designing a new processor. 

To reduce time-to-market and non-recurring 

engineering cost, an ADaptive EXtensible processOR 

(ADEXOR) is proposed in which CIs are generated and 

added after chip-fabrication. Generating and adding CIs 

are done fully automatically and transparently according 

to the behavior of target applications. Custom functional 

units are replaced with a reconfigurable functional unit 

(referred in this paper as CRFU) to support this capability. 

Using a reconfigurable functional unit also aids in 

supporting additional CIs. In proposing a proper 

architecture for the CRFU, a systematic quantitative 

approach was followed. Our CRFU is a coarse grain 

accelerator based on a matrix of functional units (FUs). It 

is tightly coupled with the base processor.  

Both  [4] [4] and  [5] [5] show that a higher speedup can 

be obtained by extending CIs over basic blocks. In 

addition,   a new method is used to relax CIs over basic 

blocks. Unlike other proposed CIs which are single entry 

and single exit, ours are single entry but multiple exits. 



 

 

Multi-exit custom instructions (MECIs) are generated by 

linking hot basic blocks (HBBs). An HBB is a basic block 

with a greater execution frequency than a given threshold.  

This paper has the following organization: A general 

overview of ADEXOR architecture is presented in Section 

2. Section 3 discusses the algorithms for generating 

MECIs. The design methodology and quantitative 

approach for the proposed CRFU architecture are 

explained in Section 4. The experimental results are given 

in Section 5. The paper closes with conclusions and future 

work. 

 

2. General Overview of Processor Architecture 

ADEXOR, targeted for embedded systems, is composed 

of four main components: i) a base processor, ii) a coarse 

grain reconfigurable functional unit (CRFU) with 

functions and connections controlled by configuration bits, 

iii) a configuration memory for keeping the configuration 

bits of the CRFU for each MECI, and iv) counters for 

controlling the read/write signals of the register file and 

selecting between processor functional units and the 

CRFU (Fig. 1).  

The base processor is a 4-issue in-order RISC processor 

that supports MIPS instruction set. The CRFU is parallel 

with other functional units of the processor (PFU). It is 

based on a matrix of functional units (FUs) with multiple 

inputs and outputs. The CRFU reads (writes) from (to) the 

register file. Each FU of the CRFU can support all 

fixed-point instructions of the base processor except 

multiply, divide, and load. Multiply and divide were 

excluded due to their low execution frequency and the 

large area that is needed for hardware implementation, 

and loads were ignored because of the cache misses and 

long memory access time which makes the execution 

latency unpredictable. Current implementation can 

support MECIs including one store. The CRFU is 

multi-cycle which requires execution cycles to be 

determined according to the depth of the DFG of each 

MECI and the clock frequency of the base processor. The 

number of execution cycles has to be recorded as part of 

the configuration data. Configuration memory also is used 

to update the program counter (PC) and find the valid exit 

point after executing each MECI. The architecture 

(numbers of inputs, outputs, FUs, etc.) is determined 

using a quantitative approach at design phase (Fig. 2).  

 

 

Fig. 1.  Integrating the base processor with the augmented 

hardware. 

The counters are used for controlling the register 

read/write signals of the register file and switching 

between PFUs and the CRFU. They are activated as soon 

as a MECI is detected. At this time, the required number 

of clock cycles for executing the corresponding MECI are 

loaded from the configuration memory into the counters. 

During the specified clock cycles, the counters select the 

configuration bits for choosing the input and output 

registers of the MECI for the CRFU while simultaneously 

selecting the CRFU outputs. 

There are two phases when using ADEXOR: the 

configuration phase and the normal phase (Fig. 2). The 

configuration phase is done offline. In this phase, target 

applications are run on an instruction set simulator (ISS) 

and profiled. Then, the start addresses of hot basic blocks 

(HBBs) are detected  [6] [6]. MECIs are generated by 

linking the HBBs. Mapping the MECIs to generate 

configuration bits for the CRFU is done in this phase as 

well. To support the execution of MECIs, the object code 

is modified in the configuration phase. In the normal 

phase, the CRFU, configuration memory, counters, and 

new object code are employed for executing MECIs. 

 

 

Fig. 2. Different phases for designing and using ADEXOR 

The ISS is modified to profile two points of the 

processor: i) program counter (PC), and ii) committed 

instructions. There is a table for each profiler. The PC 



 

 

profiler uses the same profiler as the one proposed in  [6] 

and is used to detect the start address of the HBBs. The 

Instructions Profiler monitors the committed instructions 

and looks for branches to find the execution frequency 

and the taken counts. The instruction profiler table has 

three fields for each entry: i) address of branch 

instruction, ii) a counter for branch frequency, and iii) a 

counter to record the taken counts of branches. 

 

3. Generating Multi-Exit Custom Instructions 

3.1. Tool Chain Utilized for Generating MECIs 

Fig. 3 shows the chain of main functions and tools that 

are used for generating MECIs. First, the applications are 

run on an instruction set simulator and profiled. Using the 

profiling data, the HBBs are detected, read from object 

code, and linked to make a hot instruction sequence (HIS). 

MECIs should not cross loop boundaries. Therefore, hot 

loops are detected and sorted from the innermost loop to 

the outermost in the ascending order considering the start 

addresses. To generate a HIS, the start address of the first 

HBB of the loop is passed and checked if it has been 

covered by previous MECIs. If it has not been covered, 

the HBB is read from the object code and added to the 

current HIS. An HBB reading terminates when a control 

instruction is encountered. Then the function in Fig. 4 is 

applied to the last instruction of the HBB. 

Fig. 3. Tool chain for generating MECIs 

This process is repeated for each new added HBB until 

HIS reaches to the end (terminal) points in all directions. 

When HIS generation is completed for the loops, the 

process is continued for the remaining HBBs. First, the 

remaining HBBs are sorted in ascending order according 

to the start address and then HIS generation starts from 

the smallest address to the largest using a similar 

algorithm. The usual length of a HIS is around 15 to 60 

instructions. 

 

Function MAKE_HIS (objfile, HIS, start_addr) 

1 if (HBB with start_addr is not included in 

previous MECIs) then read_add_HBB2HIS (objfile, 

HBB(start_addr), HIS) else return; 

2 switch last_instruction(HBB) 

3 case (indirect jump, return or call):  return; 

4 case (direct jump): MAKE_HIS(objfile, HIS, 

target address of jump);  

5 case (branch):  

5-1 if (it is hot backward) then return; 

5-2 elsif (not-taken direction is hot) then 

MAKE_HIS(objfile, HIS, target address of 

not-taken direction) else return; 

5-3 if (taken direction is hot) then 

MAKE_HIS(objfile, HIS, target address of taken 

direction) else return; 

6 default: return; 

Fig. 4. Function for checking the control (last) instruction of an 

HBB   

The control dataflow graph (CDFG) is then generated 

for each HIS. In the CDFG, each input of nodes can have 

more than one source due to the different paths generated 

by the branches. Therefore, in the CDFG, all possible 

sources are generated for each input in addition to the 

effective branches used to select the sources. Then the 

CDFG is passed to the MECI generator. 

3.2. Generating MECIs 

In the current implementation, each MECI includes 

only fixed-point instructions except multiply, divide, and 

load. It can support only a single store instruction and up 

to five branches. 

Our MECI generator gets the control flow graph (CFG) 

of each HIS called Gc(V, Ec)(where V is the set of nodes 

which denote primitive operations or instructions of the 

base processor, and edges in Ec represent the control 

dependencies)  as input and looks for the largest valid 

convex subgraph Gc’(V’, Ec’) in the Gc. Next, the same 

set of V’ in the corresponding DFG of the HIS called 

Gd(V, Ed) (where V is the set of nodes denoting primitive 

operations or instructions of the base processor, and edges 

in Ed represent the data dependencies) is specified and 

named as Gd’(V’, Ed’). Then, by moving instructions in 

the object code, we try to add valid nodes to the entry and 

exit nodes of V’ in Gc’ using the following algorithm. As 

previously mentioned, HIS has a single entry node but can 

have multiple exit nodes. 

For the entry node v i ∈V’ in Gc’(V’, Ec), we look for a 

v j  in Gc(V, Ec) so that level(v j)= level(v i)-1. If v j exists 

and is not valid, it is added to the moving_node_list set. 

The moving_node_list is the list of nodes that should be 



 

 

moved in the object code. If v j is valid then the flow- and 

anti-dependence between v j and ∀  vk ∈  

moving_node_list are checked. If a dependency does not 

exist then v j can be moved and added to the V’ as a new 

entry node. The corresponding part of the object code, 

where the moving  instructions will occur, should be 

checked whether it is a target of branch instructions 

before adding v j to V’. If that section of code is a target of 

branch instructions then the moving instructions should 

be canceled. If v j can not be added to V’ due to the 

existence of dependencies then ∀  vm ∈  V’ and ∀  vk 

∈  moving_node_list flow- and anti-dependence are 

checked.  If there is no dependency, then V’ is moved 

and added to v j if the corresponding part of object code is 

not a target of branches. In both cases, moving should not 

cause instructions to cross over basic block boundaries. 

This process is continued for the new entry node v i of the 

updated list V’ until level(v j)= -1, for v j  in Gc(V, Ec). A 

similar idea is applied for all existing exit nodes.  

In the current version, a MECI can have up to four exit 

points. The types of exit points are: i) branch with only 

one hot direction, ii) indirect jump and return, iii) call, 

iv) hot backward branch and v) an instruction whose 

descendant instruction is not valid (i.e. floating point, 

divide, multiply and load). Exit point addresses of a 

MECI are detected and saved as part of its configuration 

data. They are used to select a valid exit point when the 

MECI is executed on the CRFU. The instructions that 

have been moved should be rewritten in the object code 

and the CFG and the DFG of the HIS need to be updated 

as well. MECIs with |V’ | ≤ 5 are ignored. 

After collapsing a subgraph as a MECI and overwriting 

the object code for moved instructions, the entry node of 

the subgraph of each MECI is then rewritten by a mtc1 

(move to coprocessor) instruction in the object code. mtc1 

is used to flag the subgraph as a MECI. The operand of 

the mtc1 specifies the index to the configuration memory 

of the CRFU. The CRFU has a variable delay for each 

MECI which is dependent on the DFG depth of the MECI 

and the base processor clock frequency. To support this 

feature, in the normal mode, when a mtc1 is using its 

operand as an index for configuration memory, the 

counters controlling the select signals of multiplexers 

(muxes) are loaded from the configuration memory for the 

corresponding MECI with the required execution clock 

cycles. In addition, the configuration is simultaneously 

loaded to the CRFU. The counters select the configuration 

bits to enable the required input/output registers from the 

register file for the MECI.  They also select the CRFU 

output instead of PFU outputs. This causes the execution 

currently being carried out on the PFUs to switch to the 

CRFU for the specified clock cycles. When the execution 

of a MECI on the CRFU finishes, the counters force the 

muxes to switch to the decoder signals (to control the 

enable signals of registers) and PFUs (to execute the 

remaining of the application) (Fig. 1). Meanwhile, 

according to the results of the branches, the next PC is 

loaded from the configuration memory by a valid exit 

address and execution continues after the exit node. 

 

4. Proposing an Architecture for the CRFU 

4.1. Supporting Conditional Execution 

In the DFG of CIs, the nodes (instructions) receive 

their input from a single source whereas, in the CDFG of 

a MECI, nodes can have multiple sources corresponding 

to the different paths generated by branches. The correct 

source is selected at run time according to the results of 

branches. Therefore, the CRFU should have some 

facilities to support conditional execution and generate 

valid output data and exit point. 

We propose conditional data selection muxes for 

controlling selectors of muxes used for FU inputs, outputs 

of the CRFU, and exit point switches. Figure 5 (a) shows 

an example of a CRFU (with 5 FUs) without supporting 

conditional execution. In this architecture, the selection 

bits for input muxes of FU4 and FU5 are controlled by 

configuration bits. 

To support conditional data selection, we have 

modified the hardware as shown in Figure 10 (b). In the 

proposed architecture, the selector signals of muxes used 

for choosing data for FU inputs (the Data-Selection-Mux), 

along with the CRFU output and exit point (not shown in 

the figure) are each controlled by another mux (the 

Selector-Mux). The inputs of Selector-Mux (one-bit 

width) originate from the FUs (which execute branches) 

of the upper rows and the configuration memory in order 

to control the selector signals conditionally, as well as 

unconditionally. The selectors of Selector-Mux are 

controlled by configuration bits. It should be noted the 

outputs of FUs are only applied to the Selector-Muxes in 

the lower-level rows, not in the same or upper rows. A 

similar structure is used for selecting the valid output 

data of the CRFU. To select the final exit point, a mux 

with four exit addresses as inputs is used. The selectors of 

this mux are controlled identically by the Selector-Mux. 

 



 

 

 

        

Fig. 5. Adding more hardware to the CRFU (a) to support 

conditional execution (b) 

4.2. Proposed Architecture for the CRFU 

 

We use the tool chain in Fig. 3 for the proposed 

quantitative approach to determine architecture 

parameters of the CRFU such as number of inputs, 

outputs, FUs, width, depth and etc. 

Our simulation environment is based on Simplescalar 

(PISA configuration)  [2]. 22 applications of Mibench  [1] 

were selected as inputs for our quantitative approach. In 

this paper, the term mapping rate refers to the percentage 

of generated MECIs for 22 applications that could be 

mapped on the CRFU to the total number of generated 

MECIs for 22 applications. The execution frequency of 

MECIs was considered while calculating the mapping rate. 

All 22 applications of Mibench executed to completion. 

Since execution time varies for each application, a weight 

was assumed for each to equalize the execution time for 

comparison. 

To determine the proper numbers for the CRFU inputs 

and outputs, all generated MECIs for 22 applications were 

mapped on the CRFU without considering any constraints 

(infinite number of inputs, outputs, FUs, depth, width, 

etc). By examining the mapping rate for different numbers 

of inputs, outputs and FUs, we achieved the curves shown 

in Fig. 6 and Fig. 7. These diagrams show that by 

choosing 8, 6 and 16, respectively for the number of 

inputs, outputs, and FUs, a high percentage (88.21%) of 

generated MECIs (for 22 applications) can be mapped on 

the CRFU. 
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Fig. 6. The effect of different number of inputs, outputs on the 

mapping rate for 22 applications 
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Fig. 7. The effect of different number of FUs on the mapping 

rate for 22 applications 

We performed the same procedure to fix the 

architecture of the CRFU. The final architecture of the 

CRFU is shown in Figure 8.  

 

Fig. 8. Proposed architecture for the CRFU 

The VHDL code of the proposed architecture was 

developed and synthesized using Synopsys tools and 

Hitachi 0.18 µm. The area of the CRFU is 2.1 mm2. Since 

each FU output can be accessed directly via the output 

ports of the CRFU and also the depth (length of critical 

path in the DFG) of each MECI is known after mapping, 

we can have a CRFU with variable latency which depends 

on the depth of each MECI. The delay of the CRFU for 
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MECIs with various depths from 1 to 5 are 2.2 ns, 4.2 ns, 

6.1 ns, 7.9 ns and 9.8 ns, respectively. The required clock 

cycles for executing each MECI is determined according 

to these numbers, depth of DFG and base processor clock 

frequency. The CRFU needs 375 bits for control signals 

and 240 bits for immediate values and exit points. So 

each MECI needs 615 bits in total for its configuration. 

 

5. Experimental Results 

The configuration of the base processor is in Table 2. 

Table. 2. Base processor configuration 

Issue 4-way 

L1- I cache 32K, 2 way, 1 cycle lat. 

L1- D cache 32K, 4 way, 1 cycle lat. 

Unified L2  1M, 6 cycle latency 

Execution units 4 Integer, 4 FP 

RUU & Fetch queue size 64 

Branch predictor bimodal 

Branch prediction table 

size 

2048 

Extra branch 

misprediction latency 

3 

 

To see the effect of base processor clock frequency on 

the speedup obtained using MECIs, five different 

frequencies were tried (Fig. 9). The speedup diminishes in 

higher frequencies since clock period becomes smaller 

but the CRFU delay remains unchanged. The high 

speedup obtained for adpcm  is due to the main loop with 

56 instructions, including 12 branches. Both taken and 

not-taken are hot for 7 of these branches which result in 

misprediction for 27% of the branches. Therefore, a large 

number of the executed clock cycles are due to the 

mispredicted branches (18%). The MECIs include both 

hot directions on a branch if present and hence, the CRFU 

architecture eliminates cycles of mispredicted branches. 
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Fig. 9. Effect of the clock frequency on speedup 

6. Experimental Results 

To address the time-to-market and non-recurring 

engineering costs of extensible processors, an adaptive 

extensible processor was proposed in which custom 

instructions are generated and added after fabrication. An 

approach was presented for generating and executing 

custom instructions including multiple basic blocks. 

These custom instructions can include branch instructions 

and have multiple exits. Using a quantitative approach, a 

coarse grain reconfigurable functional unit was designed 

with conditional execution capability to support the 

multi-exit custom instructions. The experimental results 

show that by extending custom instructions over multiple 

hot basic blocks (HBBs), a maximum speedup of 2.89, 

compared to a 4-issue in-order RISC processor, and an 

average speedup of 1.66 was achieved on MiBench 

benchmark suite. 

Our future works focus on energy evaluation of the 

proposed architecture and also exploring the design space 

for the CRFU considering area, performance and energy 

consumption. 
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