
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Custom Instructions with Multiple Exits:
Generation and Execution

Noori, Hamid
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Mehdipour, Farhad
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Inoue, Koji
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Murakami, Kazuaki
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

他

https://hdl.handle.net/2324/6362

出版情報：情報処理学会研究報告. 2007 (4), pp.109-114, 2007-01. 情報処理学会ARC研究会
バージョン：
権利関係：ここに掲載した著作物の利用に関する注意 本著作物の著作権は（社）情報処理学会に帰属し
ます。本著作物は著作権者である情報処理学会の許可のもとに掲載するものです。ご利用に当たっては
「著作権法」ならびに「情報処理学会倫理綱領」に従うことをお願いいたします。

Custom Instructions with Multiple Exits: Generation and Execution

Hamid Noori
†
 Farhad Mehdipour

†
 Koji Inoue

†
 Kazuaki Murakami

†
 and Maziar Goudarzi

††

†
Department of Informatics, Graduate School of Information Science and Electrical Engineering, Kyushu University,

††
System LSI Research Center, Kyushu University

E-mail: {noori, farhad}@c.csce.kyushu-u.ac.jp, {inoue, murakami}@i.kyushu-u.ac.jp, goudarzi@slrc.kyushu-u.ac.jp

Abstract In this paper, we propose an adaptive extensible processor in which custom instructions are generated and added

after chip-fabrication. A reconfigurable functional unit is utilized to support this feature. The proposed reconfigurable

functional unit is based on a matrix of functional units which is multi-cycle with the capability of conditional execution. A

quantitative approach is utilized to fix the constraints of the architecture. Unlike previously proposed custom instructions, ours

include multiple exits. Conditional execution has been added to support the multi-exit feature of custom instructions.

Experimental results show that multi-exit custom instructions enhance the performance by an average of 46% compared to

custom instructions limited to one basic block. A maximum speedup of 2.89, compared to a 4-issue in-order RISC processor,

and an average speedup of 1.66 was achieved on MiBench benchmark suite.

Keyword Extensible Processor, Conditional Execution, Custom Instruction, Reconfigurable Functional Unit

1. Introduction

General Purpose Processors (GPPs), Application Specific

Integrated Circuits (ASICs), Application Specific

Instruction-set Processors (ASIPs), and extensible

processors are well-known approaches for designing an

embedded System-on-Chip (SoC). Although availability

of tools, programmability, and rapid deployability in

embedded systems are good reasons for common use,

GPPs usually do not offer the necessary performance

required. ASICs have much higher performance and lower

power consumption though they are inflexible and have

an expensive and time consuming design process. ASIPs

have greater flexibility than ASICs and more potential to

meet the challenging high-performance demands of

embedded applications compared to GPPs. However, the

synthesis of ASIPs traditionally involves the generation

of a complete instruction set architecture (ISA) for the

targeted application. This full-custom solution is too

expensive and has a long design turnaround time.

Another method for providing enhanced performance

is application-specific instruction set extension. By

creating application-specific extensions to an instruction

set, the critical portions of an application’s dataflow

graph (DFG) can be accelerated by mapping them to

custom functional units. Custom instructions (CIs) reduce

the latency of critical paths and number of intermediate

results written to the register file. Though not as effective

as ASICs, instruction set extension improves performance

and decreases energy consumption of processors by

reducing access to the instruction cache (dynamic energy)

and execution time (static energy). Instruction set

extension also maintains a degree of system

programmability, which enables them to be utilized with

more flexibility. The main problem with this method is

the significant non-recurring engineering costs associated

with implementation. The addition of instruction set

extensions to a baseline processor for each application

brings many of the issues associated with initially

designing a new processor.

To reduce time-to-market and non-recurring

engineering cost, an ADaptive EXtensible processOR

(ADEXOR) is proposed in which CIs are generated and

added after chip-fabrication. Generating and adding CIs

are done fully automatically and transparently according

to the behavior of target applications. Custom functional

units are replaced with a reconfigurable functional unit

(referred in this paper as CRFU) to support this capability.

Using a reconfigurable functional unit also aids in

supporting additional CIs. In proposing a proper

architecture for the CRFU, a systematic quantitative

approach was followed. Our CRFU is a coarse grain

accelerator based on a matrix of functional units (FUs). It

is tightly coupled with the base processor.

Both [4] [4] and [5] [5] show that a higher speedup can

be obtained by extending CIs over basic blocks. In

addition, a new method is used to relax CIs over basic

blocks. Unlike other proposed CIs which are single entry

and single exit, ours are single entry but multiple exits.

Multi-exit custom instructions (MECIs) are generated by

linking hot basic blocks (HBBs). An HBB is a basic block

with a greater execution frequency than a given threshold.

This paper has the following organization: A general

overview of ADEXOR architecture is presented in Section

2. Section 3 discusses the algorithms for generating

MECIs. The design methodology and quantitative

approach for the proposed CRFU architecture are

explained in Section 4. The experimental results are given

in Section 5. The paper closes with conclusions and future

work.

2. General Overview of Processor Architecture

ADEXOR, targeted for embedded systems, is composed

of four main components: i) a base processor, ii) a coarse

grain reconfigurable functional unit (CRFU) with

functions and connections controlled by configuration bits,

iii) a configuration memory for keeping the configuration

bits of the CRFU for each MECI, and iv) counters for

controlling the read/write signals of the register file and

selecting between processor functional units and the

CRFU (Fig. 1).

The base processor is a 4-issue in-order RISC processor

that supports MIPS instruction set. The CRFU is parallel

with other functional units of the processor (PFU). It is

based on a matrix of functional units (FUs) with multiple

inputs and outputs. The CRFU reads (writes) from (to) the

register file. Each FU of the CRFU can support all

fixed-point instructions of the base processor except

multiply, divide, and load. Multiply and divide were

excluded due to their low execution frequency and the

large area that is needed for hardware implementation,

and loads were ignored because of the cache misses and

long memory access time which makes the execution

latency unpredictable. Current implementation can

support MECIs including one store. The CRFU is

multi-cycle which requires execution cycles to be

determined according to the depth of the DFG of each

MECI and the clock frequency of the base processor. The

number of execution cycles has to be recorded as part of

the configuration data. Configuration memory also is used

to update the program counter (PC) and find the valid exit

point after executing each MECI. The architecture

(numbers of inputs, outputs, FUs, etc.) is determined

using a quantitative approach at design phase (Fig. 2).

Fig. 1. Integrating the base processor with the augmented

hardware.

The counters are used for controlling the register

read/write signals of the register file and switching

between PFUs and the CRFU. They are activated as soon

as a MECI is detected. At this time, the required number

of clock cycles for executing the corresponding MECI are

loaded from the configuration memory into the counters.

During the specified clock cycles, the counters select the

configuration bits for choosing the input and output

registers of the MECI for the CRFU while simultaneously

selecting the CRFU outputs.

There are two phases when using ADEXOR: the

configuration phase and the normal phase (Fig. 2). The

configuration phase is done offline. In this phase, target

applications are run on an instruction set simulator (ISS)

and profiled. Then, the start addresses of hot basic blocks

(HBBs) are detected [6] [6]. MECIs are generated by

linking the HBBs. Mapping the MECIs to generate

configuration bits for the CRFU is done in this phase as

well. To support the execution of MECIs, the object code

is modified in the configuration phase. In the normal

phase, the CRFU, configuration memory, counters, and

new object code are employed for executing MECIs.

Fig. 2. Different phases for designing and using ADEXOR

The ISS is modified to profile two points of the

processor: i) program counter (PC), and ii) committed

instructions. There is a table for each profiler. The PC

profiler uses the same profiler as the one proposed in [6]

and is used to detect the start address of the HBBs. The

Instructions Profiler monitors the committed instructions

and looks for branches to find the execution frequency

and the taken counts. The instruction profiler table has

three fields for each entry: i) address of branch

instruction, ii) a counter for branch frequency, and iii) a

counter to record the taken counts of branches.

3. Generating Multi-Exit Custom Instructions

3.1. Tool Chain Utilized for Generating MECIs

Fig. 3 shows the chain of main functions and tools that

are used for generating MECIs. First, the applications are

run on an instruction set simulator and profiled. Using the

profiling data, the HBBs are detected, read from object

code, and linked to make a hot instruction sequence (HIS).

MECIs should not cross loop boundaries. Therefore, hot

loops are detected and sorted from the innermost loop to

the outermost in the ascending order considering the start

addresses. To generate a HIS, the start address of the first

HBB of the loop is passed and checked if it has been

covered by previous MECIs. If it has not been covered,

the HBB is read from the object code and added to the

current HIS. An HBB reading terminates when a control

instruction is encountered. Then the function in Fig. 4 is

applied to the last instruction of the HBB.

Fig. 3. Tool chain for generating MECIs

This process is repeated for each new added HBB until

HIS reaches to the end (terminal) points in all directions.

When HIS generation is completed for the loops, the

process is continued for the remaining HBBs. First, the

remaining HBBs are sorted in ascending order according

to the start address and then HIS generation starts from

the smallest address to the largest using a similar

algorithm. The usual length of a HIS is around 15 to 60

instructions.

Function MAKE_HIS (objfile, HIS, start_addr)

1 if (HBB with start_addr is not included in

previous MECIs) then read_add_HBB2HIS (objfile,

HBB(start_addr), HIS) else return;

2 switch last_instruction(HBB)

3 case (indirect jump, return or call): return;

4 case (direct jump): MAKE_HIS(objfile, HIS,

target address of jump);

5 case (branch):

5-1 if (it is hot backward) then return;

5-2 elsif (not-taken direction is hot) then

MAKE_HIS(objfile, HIS, target address of

not-taken direction) else return;

5-3 if (taken direction is hot) then

MAKE_HIS(objfile, HIS, target address of taken

direction) else return;

6 default: return;

Fig. 4. Function for checking the control (last) instruction of an

HBB

The control dataflow graph (CDFG) is then generated

for each HIS. In the CDFG, each input of nodes can have

more than one source due to the different paths generated

by the branches. Therefore, in the CDFG, all possible

sources are generated for each input in addition to the

effective branches used to select the sources. Then the

CDFG is passed to the MECI generator.

3.2. Generating MECIs

In the current implementation, each MECI includes

only fixed-point instructions except multiply, divide, and

load. It can support only a single store instruction and up

to five branches.

Our MECI generator gets the control flow graph (CFG)

of each HIS called Gc(V, Ec)(where V is the set of nodes

which denote primitive operations or instructions of the

base processor, and edges in Ec represent the control

dependencies) as input and looks for the largest valid

convex subgraph Gc’(V’, Ec’) in the Gc. Next, the same

set of V’ in the corresponding DFG of the HIS called

Gd(V, Ed) (where V is the set of nodes denoting primitive

operations or instructions of the base processor, and edges

in Ed represent the data dependencies) is specified and

named as Gd’(V’, Ed’). Then, by moving instructions in

the object code, we try to add valid nodes to the entry and

exit nodes of V’ in Gc’ using the following algorithm. As

previously mentioned, HIS has a single entry node but can

have multiple exit nodes.

For the entry node v i ∈V’ in Gc’(V’, Ec), we look for a

v j in Gc(V, Ec) so that level(v j)= level(v i)-1. If v j exists

and is not valid, it is added to the moving_node_list set.

The moving_node_list is the list of nodes that should be

moved in the object code. If v j is valid then the flow- and

anti-dependence between v j and ∀ vk ∈

moving_node_list are checked. If a dependency does not

exist then v j can be moved and added to the V’ as a new

entry node. The corresponding part of the object code,

where the moving instructions will occur, should be

checked whether it is a target of branch instructions

before adding v j to V’. If that section of code is a target of

branch instructions then the moving instructions should

be canceled. If v j can not be added to V’ due to the

existence of dependencies then ∀ vm ∈ V’ and ∀ vk

∈ moving_node_list flow- and anti-dependence are

checked. If there is no dependency, then V’ is moved

and added to v j if the corresponding part of object code is

not a target of branches. In both cases, moving should not

cause instructions to cross over basic block boundaries.

This process is continued for the new entry node v i of the

updated list V’ until level(v j)= -1, for v j in Gc(V, Ec). A

similar idea is applied for all existing exit nodes.

In the current version, a MECI can have up to four exit

points. The types of exit points are: i) branch with only

one hot direction, ii) indirect jump and return, iii) call,

iv) hot backward branch and v) an instruction whose

descendant instruction is not valid (i.e. floating point,

divide, multiply and load). Exit point addresses of a

MECI are detected and saved as part of its configuration

data. They are used to select a valid exit point when the

MECI is executed on the CRFU. The instructions that

have been moved should be rewritten in the object code

and the CFG and the DFG of the HIS need to be updated

as well. MECIs with |V’ | ≤ 5 are ignored.

After collapsing a subgraph as a MECI and overwriting

the object code for moved instructions, the entry node of

the subgraph of each MECI is then rewritten by a mtc1

(move to coprocessor) instruction in the object code. mtc1

is used to flag the subgraph as a MECI. The operand of

the mtc1 specifies the index to the configuration memory

of the CRFU. The CRFU has a variable delay for each

MECI which is dependent on the DFG depth of the MECI

and the base processor clock frequency. To support this

feature, in the normal mode, when a mtc1 is using its

operand as an index for configuration memory, the

counters controlling the select signals of multiplexers

(muxes) are loaded from the configuration memory for the

corresponding MECI with the required execution clock

cycles. In addition, the configuration is simultaneously

loaded to the CRFU. The counters select the configuration

bits to enable the required input/output registers from the

register file for the MECI. They also select the CRFU

output instead of PFU outputs. This causes the execution

currently being carried out on the PFUs to switch to the

CRFU for the specified clock cycles. When the execution

of a MECI on the CRFU finishes, the counters force the

muxes to switch to the decoder signals (to control the

enable signals of registers) and PFUs (to execute the

remaining of the application) (Fig. 1). Meanwhile,

according to the results of the branches, the next PC is

loaded from the configuration memory by a valid exit

address and execution continues after the exit node.

4. Proposing an Architecture for the CRFU

4.1. Supporting Conditional Execution

In the DFG of CIs, the nodes (instructions) receive

their input from a single source whereas, in the CDFG of

a MECI, nodes can have multiple sources corresponding

to the different paths generated by branches. The correct

source is selected at run time according to the results of

branches. Therefore, the CRFU should have some

facilities to support conditional execution and generate

valid output data and exit point.

We propose conditional data selection muxes for

controlling selectors of muxes used for FU inputs, outputs

of the CRFU, and exit point switches. Figure 5 (a) shows

an example of a CRFU (with 5 FUs) without supporting

conditional execution. In this architecture, the selection

bits for input muxes of FU4 and FU5 are controlled by

configuration bits.

To support conditional data selection, we have

modified the hardware as shown in Figure 10 (b). In the

proposed architecture, the selector signals of muxes used

for choosing data for FU inputs (the Data-Selection-Mux),

along with the CRFU output and exit point (not shown in

the figure) are each controlled by another mux (the

Selector-Mux). The inputs of Selector-Mux (one-bit

width) originate from the FUs (which execute branches)

of the upper rows and the configuration memory in order

to control the selector signals conditionally, as well as

unconditionally. The selectors of Selector-Mux are

controlled by configuration bits. It should be noted the

outputs of FUs are only applied to the Selector-Muxes in

the lower-level rows, not in the same or upper rows. A

similar structure is used for selecting the valid output

data of the CRFU. To select the final exit point, a mux

with four exit addresses as inputs is used. The selectors of

this mux are controlled identically by the Selector-Mux.

Fig. 5. Adding more hardware to the CRFU (a) to support

conditional execution (b)

4.2. Proposed Architecture for the CRFU

We use the tool chain in Fig. 3 for the proposed

quantitative approach to determine architecture

parameters of the CRFU such as number of inputs,

outputs, FUs, width, depth and etc.

Our simulation environment is based on Simplescalar

(PISA configuration) [2]. 22 applications of Mibench [1]

were selected as inputs for our quantitative approach. In

this paper, the term mapping rate refers to the percentage

of generated MECIs for 22 applications that could be

mapped on the CRFU to the total number of generated

MECIs for 22 applications. The execution frequency of

MECIs was considered while calculating the mapping rate.

All 22 applications of Mibench executed to completion.

Since execution time varies for each application, a weight

was assumed for each to equalize the execution time for

comparison.

To determine the proper numbers for the CRFU inputs

and outputs, all generated MECIs for 22 applications were

mapped on the CRFU without considering any constraints

(infinite number of inputs, outputs, FUs, depth, width,

etc). By examining the mapping rate for different numbers

of inputs, outputs and FUs, we achieved the curves shown

in Fig. 6 and Fig. 7. These diagrams show that by

choosing 8, 6 and 16, respectively for the number of

inputs, outputs, and FUs, a high percentage (88.21%) of

generated MECIs (for 22 applications) can be mapped on

the CRFU.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12

Number of Inputs/Outputs

M
a
p
p
in
g
 R
a
te

Inputs Outputs

`

Fig. 6. The effect of different number of inputs, outputs on the

mapping rate for 22 applications

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 31 38 58

Number of FUs

M
a
p
p
in
g
 R
a
te

Fig. 7. The effect of different number of FUs on the mapping

rate for 22 applications

We performed the same procedure to fix the

architecture of the CRFU. The final architecture of the

CRFU is shown in Figure 8.

Fig. 8. Proposed architecture for the CRFU

The VHDL code of the proposed architecture was

developed and synthesized using Synopsys tools and

Hitachi 0.18 µm. The area of the CRFU is 2.1 mm2. Since

each FU output can be accessed directly via the output

ports of the CRFU and also the depth (length of critical

path in the DFG) of each MECI is known after mapping,

we can have a CRFU with variable latency which depends

on the depth of each MECI. The delay of the CRFU for

 Select

or-Mux

(

(

MECIs with various depths from 1 to 5 are 2.2 ns, 4.2 ns,

6.1 ns, 7.9 ns and 9.8 ns, respectively. The required clock

cycles for executing each MECI is determined according

to these numbers, depth of DFG and base processor clock

frequency. The CRFU needs 375 bits for control signals

and 240 bits for immediate values and exit points. So

each MECI needs 615 bits in total for its configuration.

5. Experimental Results

The configuration of the base processor is in Table 2.

Table. 2. Base processor configuration

Issue 4-way

L1- I cache 32K, 2 way, 1 cycle lat.

L1- D cache 32K, 4 way, 1 cycle lat.

Unified L2 1M, 6 cycle latency

Execution units 4 Integer, 4 FP

RUU & Fetch queue size 64

Branch predictor bimodal

Branch prediction table

size

2048

Extra branch

misprediction latency

3

To see the effect of base processor clock frequency on

the speedup obtained using MECIs, five different

frequencies were tried (Fig. 9). The speedup diminishes in

higher frequencies since clock period becomes smaller

but the CRFU delay remains unchanged. The high

speedup obtained for adpcm is due to the main loop with

56 instructions, including 12 branches. Both taken and

not-taken are hot for 7 of these branches which result in

misprediction for 27% of the branches. Therefore, a large

number of the executed clock cycles are due to the

mispredicted branches (18%). The MECIs include both

hot directions on a branch if present and hence, the CRFU

architecture eliminates cycles of mispredicted branches.

1

1.5

2

2.5

3

3.5

bi
tc
nt
s

ba
si
cm
at
h

qs
or
t

su
sa
n

cj
pe
g

dj
pe
g
la
m
e

di
jk
st
ra

pa
tri
ci
a

st
rin
gs
ea
rc
h

bl
ow
fis
h

rij
nd
ae
l

sh
a

ad
pc
m

cr
c fft

gs
m

A
ve
ra
ge

S
p
e
e
d
u
p

200 MHz 250 MHz 300 MHz 350 MHz 400 MHz

Fig. 9. Effect of the clock frequency on speedup

6. Experimental Results

To address the time-to-market and non-recurring

engineering costs of extensible processors, an adaptive

extensible processor was proposed in which custom

instructions are generated and added after fabrication. An

approach was presented for generating and executing

custom instructions including multiple basic blocks.

These custom instructions can include branch instructions

and have multiple exits. Using a quantitative approach, a

coarse grain reconfigurable functional unit was designed

with conditional execution capability to support the

multi-exit custom instructions. The experimental results

show that by extending custom instructions over multiple

hot basic blocks (HBBs), a maximum speedup of 2.89,

compared to a 4-issue in-order RISC processor, and an

average speedup of 1.66 was achieved on MiBench

benchmark suite.

Our future works focus on energy evaluation of the

proposed architecture and also exploring the design space

for the CRFU considering area, performance and energy

consumption.

Acknowledgement

This research was supported in part by the

Grant-in-Aid for Creative Basic Research, 14GS0218,

Encouragement of Young Scientists (A), 17680005, and

the 21st Century COE Program. We are grateful for their

support. We also wish to express our gratitude to all

members of System LSI laboratory at Kyushu University

for their helpful advice and material and spiritual support.

Reference

[1] http://www.eecs.umich.edu/mibench/．

[2] http://www.simplescalar.com/．

[3] P. Yu and T. Mitra, Characterizing Embedded
Applications for Instruction-Set Extensible
Processors, DAC 2004.

[4] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and
K. Flautner, “An Architecture Framework for
Transparent Instruction Set Customization in
Embedded Processors”, ISCA 2005.

[5] P. Yu and T. Mitra, “Characterizing Embedded
Applications for Instruction-Set Extensible
Processors”, DAC 2004.

[6] H. Noori, K. Murakami, and K. Inoue, “A General
Overview of an Adaptive Dynamic Extensible
Processor”, Proc. of the Workshop on Introspective
Architectures, 2006.

