
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Energy Management Techniques for SoC Design

Yasuura, Hiroto
System LSI Research Center, Kyushu University

Ishihara, Tohru
System LSI Research Center, Kyushu University

Muroyama, Masanori
System LSI Research Center, Kyushu University

https://hdl.handle.net/2324/6346

出版情報：Essential Issues in SOC Design: Designing Complex Systems-on-Chip, pp.177-223, 2006-
09. Springer
バージョン：
権利関係：

Chapter 6

ENERGY MANAGEMENT TECHNIQUES FOR
SOC DESIGN

Hiroto YASUURA, Tohru ISHIHARA, Masanori MUROYAMA
System LSI Research Center, Kyushu University, 3-8-33, Momochihama, Sawara-ku,
Fukuoka, 814-0001, JAPAN

Abstract: One of the biggest problems in complicated and high-performance SoC design
is management of energy and/or power consumption. In this chapter, we
present energy management techniques in system design including HW and
SW, SoC architecture and logic design. Dynamic power consumption is the
major factor of energy consumption in the current CMOS digital circuits. The
dynamic power consumption is affected by supply voltage, load capacitance
and switching activity. We present approaches to controlling supply voltage,
load capacitance and switching activity dynamically and statically in system
architecture and algorithm design levels. We also discuss on the memory
architecture for reducing power and energy in HW and SW co-design of SoC.
In the future CMOS technology, leakage power consumption becomes
dominant, because the threshold voltages are scaled as the transistor size
shrinks. We summarize the techniques for reducing leakage power in system
architecture design. The contents of the chapter include the following issues;
(1) power and energy consumptions in SoC design, (2) tradeoff between
energy and performance, (3) tradeoff among energy, QoS (i.e., latency and
computational precision), reliability, and flexibility (4) techniques for reducing
dynamic power consumption, and (5) leakage power reduction techniques.

Key words: Energy consumption, Power consumption, Reliability, Quality of service, HW
and SW co-design

1. INTRODUCTION

In past years, the most serious concerns for the VLSI designer were
performance, cost, and reliability. Recently, however, this paradigm has

2 Chapter 6

shifted. More specifically, reducing power and/or energy consumption has
become one of the most important themes in SoC design. The driving factors
of the paradigm shift include the followings.
• Popularization of portable electronic devices
• Raising demand for reliable and stable computer systems
• Worldwide environmental destruction

One of the biggest factors which motivate the need for low power SoC is
the popularization of portable electronics. The typical power consumption
for a portable multimedia terminal is around the range of 10-50 [W] when
employed chips are not optimized for low-power. Assuming a battery
yielding around 65 watt-hours per kilogram is used, the terminal would
require unacceptable six kilograms of batteries for ten hours operation
between recharges. If we use 500 grams of batteries, the terminal operates
only one hour without recharges. Therefore, it is clear that the power
consumption has a strong impact on a value of the portable electronic
products.

The second need for low power comes from a strong pressure for
designers of high-end products to reduce their temperature. In [Black69],
Black mentioned that the Mean Time To Failure (MTTF) of aluminum
interconnects exponentially decreases as the temperature of a chip increases.
Therefore, cooling down the chip temperature is essential for a reliable and
stable operation of computer systems. Contemporary performance-optimized
microprocessors dissipate as much as 15-50W at 100-200MHz clock rates.
The leakage power issue makes this situation worse, because the leakage
power increases exponentially as the temperature of the chip increases. In
the future, it is expected that a 10 cm2 microprocessor with 500MHz clock
frequency consumes about 300W. The cost for cooling such chips is huge.
Consequently, there is a clear advantage to reducing the power consumed in
computer systems. Especially for consumer products whose sales are
strongly affected by its price, lowering the power is indispensable.

 Worldwide environmental destruction drives the strong need for low
power electronic devices. Although the power consumption of each
electronic device is small (around the range of 10-50W), they are used
anywhere and anytime in today’s highly information oriented society.
Assuming coverage of such electronic devices in the world is 50%, 3.3
billions of people waste 500 billions of watts of power. In addition, rising IT
population accelerates this situation. If we reduce the energy consumption of
the electronic devices by 10%, we can save 65 mega tons of oil used in gas
turbine power plants per a year or can reduce 50 nuclear power units. In 10-
20 years from now, we need to come up with innovative solutions which
drastically save the energy of the electronic devices with accelerating the
growth of IT population.

6. Energy Management Techniques for SoC Design 3

Recently, many energy reduction techniques at various levels of
abstraction, such as at device, circuit, layout, architectural, and software
levels are proposed. Regarding the physical design, energy optimization
techniques are well studied. However, there is much scope left to study in
the system level such as architectural, algorithm, or software level. In this
chapter, we present system level energy reduction techniques which might
be an essential in SoC design.

The rest of the chapter is organized in the following way. In Section 2,
we explain mechanisms of power and energy dissipations in CMOS circuits
and summarize basic strategy for reducing power and energy consumptions.
Section 3 presents techniques for lowering supply voltage statically or
dynamically considering several design tradeoffs. Section 4 presents
techniques for reducing switching activity without sacrificing quality of
services (QoS). In Section 5, we present techniques for reducing the product
of switching activity and load capacitance. Section 6 presents strategies for
reducing leakage power and shows several examples in detail. Section 7
summarizes techniques for reducing energy consumption by customizing
hardware for the target application. Section 8 concludes this chapter.

2. POWER AND ENERGY CONSUMPTIONS IN
SOC

The energy consumption of a system, E, can be defined as the summation
of both spatial and temporal power consumption of circuits [Weste93] as
shown in (1) and (2).

Po
w

er
 C

on
su

m
pt

io
n

Location of Gates

Hot point

Cool point

Figure 6-1. Local Power Dissipation

4 Chapter 6

add r1 r2,r1
sub r2 r2,r1
jmp #1024

Po
w

er
 C

on
su

m
pt

io
n

Time

Figure 6-2. Power Dissipation vs. Energy Dissipation

∑
∈

+⋅⋅=+=
Gg

leakDDleakdynamic gPgVgCLgSAPPP)()()()(2 (2.1)

∫=
t

PdtE
0

 (2.2)

P: Power consumption of the target system
Pdynamic: Dynamic power consumption of the target system
Pleak: Leakage power consumption of the target system
SA(g): switching activity of gate g (expected number of 0->1 transitions
per second)
CL(g): load capacitance of g
VDD(g): operation voltage of g
t: Execution time of an application program

We treat the energy consumption, E, as an objective function to be

optimized, because the energy consumption is close related to the heat and
reliability of chips, battery life time of portable devices, and the number of
nuclear and gas turbine power stations required. The main approach is
detecting a spatial and temporal hot spot and reducing the power
consumption of the spot. Since the power consumption, P, dynamically
changes according to the behavior of the software running on a chip and a
location of the logic gate on the chip as shown in figures 6-1 and 6-2, both
the software and the hardware should be taken into account for reducing the
energy consumption of a SoC chip. As one can see from Equations (2.1) and
(2.2), we can reduce the energy consumption of the SoC chip by lowering
SA(g), CL(g), VDD(g), Pleak(g) and t. However, lowering these parameters
sometimes causes an increase of the execution time, a degradation of
computational quality, system reliability and design flexibility. The key
point of the energy reduction in SoC design is considering design tradeoffs

6. Energy Management Techniques for SoC Design 5

among energy consumption, performance, computational quality, system
reliability and design flexibility. The goal is minimizing the energy
consumption under the constraint of performance, computational quality,
system reliability and/or design flexibility.

There is a third source of power consumption, short-circuit power, which
results from a short-circuit current-path between the power supply and
ground during switching. Short-circuit power is projected to be constant
around 10% of total power consumption for succeeding technologies
[Chatterjee96]. We ignore it throughout this chapter.

There are many techniques proposed for reducing the execution time t,
and some of them are very effective for reducing the energy consumption of
the SoC chip. In this chapter, however, we do not focus on the techniques
which mainly aim to reduce the execution time. Instead, we summarize
techniques which consider the execution time as a design constraint. In this
chapter, we will make a brief survey on approaches to reducing SA(g), CL(g),
VDD(g), and Pleak(g) in SoC design. We will also clarify the basic strategy
underlying the approaches and show several examples in detail.

3. TECHNIQUES FOR LOWERING OPERATING
VOLTAGE

Since energy dissipation is quadratically proportional to supply voltage
(see equation (2.1)), lowering the VDD has a strong impact on the energy
reduction. However, the following drawbacks should be taken into account;
1. loss of compatibility to external voltage standards,
2. performance degradation, and
3. reliability issues (very low voltage).

3.1 Compatibility of different voltage standards

Whenever one circuit has to drive an input of another circuit operating at
a higher supply voltage, a level conversion is needed at the interface.
Suppose we have two different voltages, VDH and VDL (VDH > VDL). If the
output of a circuit operating at VDL is connected directly to the input of a
circuit operating at VDH, the static current flows in the input cells operating at
VDH, because the PMOS of the input cells cannot be cut-off as shown in
Figure 6-3.

In these days, it is common to have level shifting cells in a cell library for
accepting multiple signal levels on a chip. Usami et al. proposed a clustered
voltage scaling technique which assumes two different voltages available
and finds the optimal voltage assignment to each cell considering the

6 Chapter 6

overhead of level shifting cells [Usami95]. Johnson et al. proposed a
multiple voltage scheduling technique for reducing the energy consumption
of a data path circuit considering an energy overhead of level shifting
circuits [Johnson97].

VDH

PMOS

VDL

VDL

cannot
cut-off

Figure 6-3. Static Current in Low Voltage Circuits

3.2 Power-Delay Tradeoff

Although lowering the supply voltage is the most effective way for
reducing the energy consumption of SoC chip, this causes an increase of
circuit delay, τ, which determines the maximum clock frequency of
synchronous circuits. The delay τ of a CMOS circuit can be approximately
formulated as (3.1),

()
 1

2
DDthDD

DD

VVV
V

≅
−

∝τ (3.1)

where Vth is the threshold voltage of CMOS transistors used in the circuit.
Basically, we have the following three ways for lowering the operating

voltage without sacrificing the performance of the system.

1. Parallelize tasks so that the performance does not degrade even in a low
voltage operation. We refer this approach as static voltage scaling.

2. Use the maximum available supply voltage for gates on a critical-path
and use a lower supply voltage for the other gates. We refer this approach
as multiple voltage assignment.

3. Lower the clock frequency and operating voltage when the maximum
performance is not needed. We refer this approach as dynamic voltage
scaling

6. Energy Management Techniques for SoC Design 7

3.2.1 Static Voltage Scaling

Suppose we have four sequential tasks as shown in Figure 6-4 (a) and we
have two processing units each of which can complete each task per a unit
time TUNIT when 5.0V is used. If the tasks can be concurrently run on the
processing units as shown in Figure6-4 (b), the clock frequency and
operating voltage of the processing units can be reduced by half without
degradation of system performance. Although switching activities per a unit
time may increase up to twice, we can reduce the number of cycles and VDD
by half. As a result, energy consumption can be quarter without performance
degradation.

o1

o2

o3

o4

t2

t3

t4

t1

t0

o1

o2

o3

o4

5.0V

5.0V

5.0V

5.0V

2.5V 2.5V

2.5V 2.5V

(a) sequential (b) parallel

Energy = 100J Energy = 25J

Figure 6-4. Energy Reduction by Parallel Computation

A lot of researchers have proposed methods that incorporate
architectural-level voltage scaling. Chandrakasan et al. proposed HYPER-LP
which optimizes dataflow graph generated from a target application program
for reducing the power consumption of data-path circuits [Chandrakasan95].
Other methods try to transform the target circuit during scheduling, module
selection, resource binding, etc., for minimizing power consumption
[Raghunathan94][Raghunathan95][Coodby94][Kumar95][Martin95]. All of
the methods mentioned above try to exploit parallelism in the algorithm to
shorten critical paths so that lower supply voltage can be used. Although this
is a very attractive approach, parallelization of the computation is generally
difficult because some computations are inherently sequential.

8 Chapter 6

3.2.2 Multiple Voltage Assignment

Most voltage scaling techniques assume that the circuit operates at a
single supply voltage. Although substantial energy savings can be achieved
with a single minimum supply voltage, one cannot always take full
advantage of available schedule slack to reduce the supply voltage. Since
path delays in the circuit are not uniform, supply voltage of gates on a non-
critical path can be lowered until the path delay meets with the clock period.
When there are nun-uniform path delays, the critical path delay determines
the clock period. In this case, non-critical paths use only part of a clock
period. The slack time within these clock periods goes to waste. Additional
voltages make it possible to use the entire clock period. The basic idea is to
assign lower VDDs to the non-critical paths in a way that the delays of the
paths meet with the clock period as shown in Figure6-5.

Low VDD

High VDDCritical Path

Level Converters

Figure 6-5. An Example of the Multiple Voltage Assignment

Usami et al. proposed a voltage assignment algorithm which finds the
optimal voltage assignment to each cell considering a level shifting cell
between different voltages [Usami95]. The algorithm performs backward
graph-traversal for a given netlist from the primary outputs toward the
primary inputs using the Depth-First-Search (DFS) algorithm. Each time the
algorithm visits a cell and tries to replace a high VDD cell with low VDD cell.
If the timing constraint is still met even after the replacement, the cell is
replaced. This process is repeated until all the cells are visited. Their
experiments demonstrated that the energy consumption can be reduced by
20% using two voltages 5V and 3V.

The idea can be extended to a multiple voltage datapath scheduling
technique in high level synthesis. The main idea is to minimize energy

6. Energy Management Techniques for SoC Design 9

consumption by assigning operations to time steps with various supply
voltages under a given time or resource, or both constraints. We use Figure
6-6 to illustrate the multiple-voltage scheduling technique. Assume the
energy consumption of an addition operation is 1.0 at 1.2V and 2.0 at 1.7V.
It requires 2 time steps at 1.2V but only 1 step is sufficient when 1.7V is
applied. The area required for the adder module is 1.0. Similarly, the energy
consumption of a multiplication operation is 2.0 at 1.2V and 4.0 at 1.7V. It
requires 2 time steps and 1 step at 1.2V and 1.7V, respectively. The area
required is 2.0. Suppose we have a control flow graph as shown in Figure 6-
6 (a). It needs 3 steps and the energy consumption is 14. Since we can share
the resources, we only need one adder circuit and one multiplier circuit in
this case. As a result, the area required is 3. Since operations *1 and +2 are
not located on a critical path, we can assign lower voltage to them as shown
in Figure 6-6 (d). In this case, energy consumption can be reduced to 11. If
we relax the time constraint to 5, we can reduce the energy consumption to 8
as shown in Figure 6-6 (b). This idea is extended in the following papers
[Johnson97][Raje95][Lin97][Chang96] so as to fit with more practical
situations.

+1

*2

+3

*1

+2 Adder at 1.2V

Multiplier at 1.2V

1.0
2.0

2.0
2.0

1.0
2.0

Module Area (A) Delay (D) Energy (E)

Adder at 1.7V

Multiplier at 1.7V

1.0
2.0

1.0
1.0

2.0
4.0

1 step

A: 3

(a)

(b) (c) (d)

D: 3
E: 14

+1

*2

+3

*1

+2

A: 6
D: 4
E: 9 +1

*2

+3

*1 +2

A: 6
D: 3
E:11

+1

*2

+3

*1

+2

A: 4
D: 5
E: 8

Figure 6-6. Multiple-Voltage Scheduling in High Level Synthesis

Raje et al. proposed a datapath scheduling technique which schedules the
datapath operations, selects voltages from a predetermined set of voltages
and assigns the voltages to the datapath operations simultaneously so as to

10 Chapter 6

minimize power consumption [Raje95]. Lin et al. used and integer linear
programming approach to schedule datapath operations, choose voltages
from a list of candidates, and assign voltages to each operations considering
timing and resource constraints together [Lin97]. Johnson et al. used an
integer linear programming approach to choose voltages from a list of
candidates, schedule datapath operations, and assign voltages to each
operations considering the energy overhead of level converters [Johnson97].
Chang et al. proposed a dynamic programming approach to optimize non-
pipelined datapaths and modified list scheduler to handle functionally
pipelined datapaths [Chang96].

3.2.3 Dynamic Voltage Scaling

More aggressive approach is dynamic voltage scaling. Since the
computational load is not constant during the execution of given tasks, we
can control computational power according to the computational load. The
basic idea is assigning different operating voltages to the tasks in a way that
any of the tasks does not violate a timing constraint. The assignment can be
done statically or dynamically.

1000M cycle

40MHz

Time constraint

2.5

5.0

50MHz

25J

32.5J

time[sec]

2510 time[sec]

2

201550

2510 201550

2510 201550

2

time[sec]

4.02

40J

50MHz

750M cycle

1000M cycle

5.02

En
er

gy
 C

on
su

m
pt

io
n

(

 V
)

2 D
D

(A)

(B)

(C)
5.02

25MHz
250M cycle

Figure 6-7. Motivational Example

6. Energy Management Techniques for SoC Design 11

Figure 6-7 shows motivational example of the dynamic voltage scaling.
Suppose we have a processor which uses three different supply voltages,
5.0V, 4.0V, and 2.5V. A task which takes 1 billion cycles to complete runs
on the processor. The energy consumptions for the task are 10nJ/cycle,
25nJ/cycle and 40nJ/cycle at 2.5V, 4.0V and 5.0V, respectively. The
computational speeds of the processor at 5.0V, 4.0V, and 2.5V are 50
million cycles per second, 40 million cycles per second, and 25 million
cycles per second, respectively. This assumption follows the Equations (2.1),
(2.2) and (3.1).

In Figure 6-7 (A), the processor uses the maximum supply voltage, 5.0V,
for the entire execution of the task. In this case, the total energy consumption
is 40J. If the processor uses 2.5V and 5.0V in a way that the completion time
of the task meets with a given time constraint, the energy consumption can
be reduced to 32.5J as shown in Figure 6-7 (B). Figure 6-7 (C) shows the
best case of this example. If the processor uses a single supply voltage which
adjusts the completion time just to the time constraint, the total energy
consumption is minimized.

In [Ishihara98], Ishihara and Yasuura proved the following theorem; if
the processor uses a voltage, videal, and completes a given task just at a timing
constraint Tconst, the videal is the ideal voltage which minimizes energy
consumption for the task. The example shown in Figure 6-7 demonstrates
that reducing the energy consumption of the processor is fundamentally
equivalent to exploiting idle intervals of the processor. Thus, we should first
identify sources of idle intervals to efficiently reduce the power consumption
of the processor. There are three major sources as follows;

1. The first one occurs when a system is not tightly designed for a given

processor. In other words, there is a room for design change or
improvement such as introducing more tasks, replacing certain tasks with
their version ups, using lower performance processors and so on.

2. The second source comes from a nature of a fixed-priority scheduling.
The idle intervals inhere in the fixed-priority scheduling, because the
priorities statically assigned to the tasks are not always optimal for the
tasks.

3. The third source comes from run-time variation of execution time. Since
most of tasks complete its execution much earlier than the worst case
execution time, the slack time will be yielded depending on input data for
the task.

Consider the three tasks given in Table in Figure 6-8. Ti, Di and Ci denote

period, deadline and the worst case execution time (WCET) of each task,
respectively. Priorities are assigned in row order as shown in the fifth

12 Chapter 6

column of the table. Assume all tasks are released simultaneously at time 0.
A typical schedule, which assumes that tasks run at their WCETs (Ci), is
shown in Figure 6-8 (a). Note that this system is designed to meet its
schedulability. For example, if τ2 takes a little longer to complete, τ3 would
miss its deadline at time 100. Even though the system is tightly designed,
there are still some idle time intervals, as shown in Figure 6-8 (a). At time
160 in the figure, when the request for τ2 arrives, the run-time task scheduler
knows that there will be no requests for any tasks until time 200, which is
the time when requests for τ2 and τ3 will arrive. As a consequence, we can
save power by reducing the speed of the processor by lowering the clock
frequency and supply voltage. When tasks are completed earlier than their
WCET, we have more chances to apply the same mechanism. For the
example of Figure 6-8 (b), we can slow down the processor at time 50
because the first instances of τ2 and τ3 complete their execution earlier than
the second request for τ1 arrives. Since the execution time of each task
frequently deviates from its WCET during the operation of the system, we
have many chances to slow down the processor as shown in Figure 6-8.

τ 1

Ti

τ 2

τ 3

50

80

100

Di

50

80

100

Ci

10

20

40

Priority

1

2

3

(a)

(b)

100

80 160 240 320

0

0

200 300

100 200 30050 150 250

80 160 240 320

100 200 30050 150 250

100 200 300

Figure 6-8. An Example of Task Scheduling on a Variable Voltage Processor

Weiser et al. proposed a scheduling method for dynamically variable
voltage processors [Weiser94]. Yao et al. proposed real-time task scheduling

6. Energy Management Techniques for SoC Design 13

methods for the dynamically variable voltage processors [Yao95]. Both of
them assume a fixed amount of execution time and exploit the first source of
idle intervals only.

In [Shin99], Shin et al. proposed a fixed-priority scheduling method
which exploits the second and third sources of idle intervals mentioned
above. They extended this work and proposed off-line and on-line
algorithms for exploiting all of idle intervals mentioned above [Shin00]. The
off-line algorithm finds the lowest possible voltage which guarantees time
constraints of all tasks. The on-line algorithm dynamically varies the
processor speed along with the supply voltage in order to exploit execution
time variations and idle intervals.

In [Okuma99], Okuma et al. proposed a real-time task scheduling
algorithms for the dynamically variable voltage processor. Their approach
based on the Earliest Deadline First (EDF) algorithm. Similar to [Shin00],
their approach exploits the first and third sources of the idle intervals
mentioned above. However they assume to choose voltages from a limited
number of candidates, while [Shin00] assumes to use continuous values of
voltage and clock frequency which is practically impossible.

3.3 Power-Reliability Tradeoff

Since the voltage scaling technique reduces voltage margins, it is
impossible to discuss about low-power design techniques without
considering reliability issues. Most circuit designers have to determine
supply voltage of the target circuit to ensure that all circuits operate correctly
even in the worst-case operating environment. There are three measure
voltage margins as follows [Austin04].

1. Process Margin

This ensures that performance uncertainties resulting from manufacturing
variations in transistor do not prevent slower devices from completing
computation within a clock period.

2. Ambient Margin
This ensures correct operation at the worst-case temperature.

3. Noise Margin
This protects against a variety of noise sources that introduce uncertainty
in supply and signal voltage levels, such as di/dt noise in the supply
voltage and cross-coupling noise in logic signals.

The sum of these voltages defines the minimum supply voltage that

ensures correct circuit operation even in the worst-case condition. As
mentioned before, the energy consumption of CMOS circuit is quadratically

14 Chapter 6

proportional to the supply voltage. Therefore, it is clear that there is a trade-
off between reliability and energy consumption.

Controller

vchFch

FIFO

Sender ReceiverEn
co

de
r

D
ec

od
er

vch

Error rates

Error
Detector

Figure 6-9. Dynamic Voltage Scaling for Reliable Data Transmission

Worm et al. proposed an interconnect system which uses low-swing
signaling, error detection codes, and a retransmission scheme [Worm02].
This technique optimally finds the interconnect voltage swing and frequency
with subject to workload requirements and signal to noise conditions. The
most straightforward way to reduce the energy consumption for the
communication is lowering the voltage swing of signals propagated through
interconnects. This however causes an increase of sensitivity to noise
sources because of the decreased noise margins. Their technique monitors bit
error rates of the interconnect on the fly as shown in Figure 6-9 and
dynamically finds the optimal swing level which minimizes energy
consumption while satisfying the reliability constraint. Their simulation
results show that the energy consumption can be reduced by 56% over a
conventional interconnect with more robustness to large variations in actual
workload, noise and technology quality.

Bertozzi et al. evaluated energy efficiency of several error resilient
techniques such as error correcting codes, a data retransmission technique
and so on [Bertozzi02]. Their experiments demonstrated that retransmission
strategies are more effective than the error-correction-based technique in
terms of energy efficiency.

Austin et al. proposed Razor, a voltage scaling technique based on
dynamic detection and correction of circuit timing errors [Austin04]. The
technique eliminates unnecessary voltage margins that the traditional worst-
case design methodologies require. In some cases, computations may fail
and require additional time and energy for recovery. However, the overall

6. Energy Management Techniques for SoC Design 15

computation consumes significantly less energy than traditional worst-case
design.

3.4 Commercial Products

There has been a lot of power management software released before.
Early power management software used the BIOS to determine whether a
device had been idle long enough to shift a sleep state. With the introduction
of Advanced Power Management (APM) the OS began to control the power
settings and timings. With the Advanced Configuration and Power Interface
(ACPI) specification, all power management moved from the BIOS to the
hardware and operating system. In today’s low-power oriented computer
systems, chipsets support ACPI power and thermal management functions to
control various system-level and processor-level power and sleep states, and
they also still support APM. However, neither APM nor ACPI supports
dynamic voltage scaling of chipsets. Recently, many computer systems
including laptop PCs, PDAs, cellular phones, and etc. introduced the
dynamic voltage scaling technique. The following power management
software support dynamic voltage scaling.

• SpeedStepTM, Extended SpeedStepTM (Intel)
• PowerNow! TM (AMD)
• LongHaulTM (VIA Technologies)
• LongRunTM, LongRun2TM (Transmeta)
• SmartReflexTM (TI)
• IEMTM (ARM)

Most of the above software products are based on the dynamic voltage
scaling techniques mentioned in this section. Some of them also support a
dynamic body biasing technique which can dynamically control the
threshold voltage of transistors for reducing the leakage power consumption
of a chip. The detailed explanation of the dynamic body biasing technique
will be provided in Section 6.

3.5 Conclusions

In this section we addressed several techniques for lowering supply
voltage of chips considering voltage compatibility, a power-delay tradeoff
and a power-reliability tradeoff. As mentioned above, lowering supply
voltage has the biggest impact on power reduction. The techniques can be
applied to many kinds of SoC implementations like multi-chip module
(MCM), network on chip (NoC), system in package (SiP), chip multi

16 Chapter 6

processor (CMP) and so on. However, it becomes more difficult in future to
control supply voltage due to the reliability issues. Breakthrough will be
appeared if we can tolerate negative effects of process variations,
temperature variations, soft errors and noises even in ultra low-voltage
operation.

4. TECHNIQUES FOR REDUCING SWITCHING
ACTIVITY

Lowering the switching activity is a very promising way of decreasing the
power consumption. There are numerous researches on this issue. In this
section, we introduce system level approaches for reducing the switching
activity. System level switching activity reduction can be categorized as
follows:
• Turn off unused HW modules.
• Adjust datapath, the bit width of buses and operational units in a system.
• Trade precision for low power (Use narrow bit width).
• Compiler based instruction scheduling

Practical strategies we pick up in this section are shutting down unused
modules, adjusting datapath width to minimize power consumption and
compiler optimization techniques for reducing the switching activity.

There are two main shutting down strategies: clock gating and power
gating as summarized in Figure 6-10. Power gating is mainly used for
reducing leakage power. Section 6 describes the power gating in more detail.
The best-known technique for reducing the switching activity is clock gating.
Clock network power can account for as much as 75 percent of the total
switching power of a chip, and sequential cells driven by clocks can account
for as much as 70 percent of the total clock power. Clock gating essentially
disables the clock to a circuit to save power by both preventing unnecessary
activity in logic modules and by eliminating power dissipation on clock
network. Using a simple AND or OR gate (depending on the edge on which
flip-flops are triggered) with the enable and clock signals as inputs produces
a gated clock as output. One can also employ a level-sensitive latch to hold
the enable signal from the active edge until the inactive edge of the clock.
Clock gating can be applied in either fine-grained or coarse-grained manner.
Fine-grained allows us to reach miscellaneous small units in clock sinks and
aggressively save their dynamic power even for a few cycles. Coarse-grained
gating saves power from higher level of the clock tree by removing all clock
switching from its down-stream units.

6. Energy Management Techniques for SoC Design 17

LargeModerateEnergy efficiency

LargeSmallOverhead (delay)

LargeSmallOverhead (power & area)

DifficultEasyHardware support

Power GatingClock Gating

Power GatingClock Gating

PLL DC-DC

 MTCMOS
(sleep transistor)

Figure 6-10. Comparison of Clock Gating and Power Gating

 Another strategy for reducing switching activity is datapath width
adjustment. Since datapath width, the bit width of buses and operational
units in a system, strongly affects the size of circuits and memories in a
system, the power consumption of a system also depends on the width of the
datapath. In design of embedded systems and System-On-a-Chip (SOC),
designers have to consider the trade off among system performance, cost and
power consumption. Bitwidth of data, the length of data, computed in the
system is one of the most important design parameters related with
performance, cost and power of the system. The bitwidth of datapath and the
size of memories strongly depend on the bitwidth of data. Providing more
datapath width for computation than required, will consume more dynamic
power and leakage power than necessary by the extra bits.

Typical algorithms defined in C/C++ or SystemC will initially not contain
definitions of the actual bit width for operations and storage elements. For
algorithm selection, the design team often relies on floating point and
straight integer calculations. Based on the stimulus which is applied to the
design under optimization users can assess the minimum and maximum
values on specific operations and then choose the optimal bit width
accordingly. This allows users to understand the impact of bit width on
energy and is a step towards trade offs between quality, which may be higher
in a video application using higher bit width, vs. energy which decreases
with lower bit width in the operations. In quality driven design, both higher
and lower bits of data can be reduced. From the requirements on the output

18 Chapter 6

quality, lower bits of data may be omitted in the datapath width adjustment
(See Figure 6-11). This means that there is potential for further energy
reduction by decreasing computation accuracy.

int func(v1, v2)

{

 int x0, x1, x2, x3, x3;

 char xdfgp, leergre;

 x0 = v1 + v2;

 x1 = v2 – v1;

 df 0 * 1

Variables

Datapath

D/A

Output

ALU

Upper lower

Program

Figure 6-11. Datapath Adjustment

 In this section, we describe dynamic power management by using the
shutting down strategy, the datapath width adjustment strategy, and
instruction scheduling.

4.1 Dynamic power management (DPM)

System level dynamic power management (DPM) has gained considerable
attention in recent years as a way to save energy in devices that can be
turned on and off. DPM dynamically reconfigures systems to provide the
requested services and performance levels with a minimum number of active
components or a minimum load on such components. The fundamental
premise for the applicability of DPM is that systems and their components
experience non-uniform workload during operation time and that it is
possible predict, with a certain degree of confidence, the fluctuations of
workload. There are two power reduction methodologies when idle modes:
voltage scaling with frequency scaling and clock gating. Only clock gating
methodology is introduced.

The control procedure is often called policy. An example of a simple
policy, ubiquitously used for laptops and palmtops, is the timeout policy,
which shuts down components after a fixed inactivity time, under the
assumption that it is highly likely that a component remains idle if it has
been idle for the timeout time. Power could be shut off or gated to functional

6. Energy Management Techniques for SoC Design 19

blocks when operating in a standby mode and restored as needed. The gated
circuit would not dissipate any power when turned off. Additional circuit
would be required to monitor the need for these functional blocks. A
problem with power gating is the latency between when the signal to turn a
unit on arrives and when the unit is ready to operate. Retention flip-flops on
an isolated power supply could be used to save the logic state of all
sequential elements when a chip is powered down, eliminating the need to
reinitialize the device when it comes out of standby mode. Some products
support multiple levels of standby (soft off, nap and sleep) which differ in
terms of the amount of power saving and latency (See Figure 6-12).

Active
mode

Standby
(Idle)
mode

Sleep
mode

Power: 400mW Wait for interrupt
Power: 50mW

Wait for wake-up event
Power: 0.16mW

10us

10us

160us

90us

90us

Figure 6-12. Dynamic Power Managament

4.2 Datapath width adjustment (Bit-width optimization)

Processor-based systems treat various data with different bit width. It is
efficient in power reduction not only to determine datapath width statically
but also to control the active datapath width dynamically.

First, we introduce static optimization, which adjusts datapath width. Bit-
width analysis is performed to extract information on the required bit width
of variables in programs and algorithms. For hardware design, using the
result of bit-width analysis, one can determine the length of registers, the

20 Chapter 6

size of operation units, and the width of memory words on the datapath of a
system to minimize the meaningless power consumption by the useless bits.
Shorter registers and operation units reduce switching activity and the
leakage of extra bits on the datapath. However, the trade-off between power
consumption and execution time needs to be resolved. Generally, narrowing
the datapath width reduces the area and power of the processor, but degrades
the performance. The number of execution cycles increases, since some
single-precision operations should be replaced with double or more precision
operations in order to preserve the accuracy of the computation. Single-
precision operations are those whose precision is smaller than that of the
datapath width. For example, an addition of two 32-bit data is a single-
precision operations whose datapath width is equal to or greater than 32 bits,
while it is a double precision operation on 16-bit processors. Changing the
datapath width affects the size of data memory (RAM) and instruction
memory, which is mostly implemented by ROM in embedded systems. Let
us consider a program including two variables x and y, and assume that two
variables x and y require at most 18 bits and 26 bits, respectively (see Figure
6-13). When the datapath width is 32 bits, two words are required to store
these two variables, and the amount of the data memory is 64 bits. Since the
minimum bit size required to store the variables is only 44 bits (18+26), 20
bits of the memory (about 30%) are unused. By reducing the datapath width
to 26 bits, one can reduce the unused bits to 8 bits. Unused bits, however,
increase to 31 bits, if a 25-bit datapath is adopted, because y requires two
words. When the datapath width is 9 bits, two words and three words are
required for x and y, respectively, and the unused area is only 1 bit. Many
unused bits in the data memory can be eliminated by datapath-width
optimization.

6. Energy Management Techniques for SoC Design 21

main()
{
 int18 x;
 int26 y;

}

32 bits x 2 words = 64 bits

26 bits x 2 words = 52 bits

9 bits x 5 words = 45 bits

Datapath width is 32

Datapath width is 26

Datapath width is 9

Figure 6-13. An Example of Datapath Width Adjustment

Second, dynamic approach, which control active datapath width, is

introduced. This approach is called value-based clock gating. There is a fact
that “narrow-width” data is common not only in multimedia codes, but also
in more general workloads. For example, over half the integer operation
executions require 16 bits or less on a 64-bit processor. Basic mechanism to
reduce power consumption is operand-value-based clock gating to turn off
portions of memories, buses, and arithmetic units that will be unused by
narrow-width operations. This optimization results in around 50% reductions
in the data bus and integer unit power consumption. By Appling this for data
memory, 80% power reduction can be achieved. However, this approach
requires hardware cost for detecting dynamically operation widths and
turning off the unused units. As shown in Figure 6-14, if there is a 7-bit
width data, only the lower data memory (D0) is accessed.

22 Chapter 6

Figure 6-14. A Data Memory Example Using Operand Based Clock Gating

4.3 Compiler Optimization

Compiler optimization is also effective for reducing the switching. In
[Tomiyama1998], they proposed an instruction scheduling technique to
reduce power consumption due to off-chip driving. Their technique reduces
transitions on a data bus between an on-chip cache and a main memory, and
as a result, power consumed by off-chip drives in the main memory is
reduced. Let us consider an example in Figure 6-15, and assume 8-bit
instruction width and 32-bit cache line size. There are four instructions (a)-
(d) in the memory block. When the memory block is sent to the cache, the
instruction (a) is sent first. At the time, four bits switch from high- to low-
level. At the next cycle, (b) is sent to the cache and six bits switch to
opposite level. As a result, the cache miss invokes twenty four transitions
totally in the data bus. If changing the positions of two instructions (b) and
(c) keeps the meaning of the program, it reduces bus transitions by 25%,
from twenty four to eighteen bus transitions (See Figure 6-15). Thus the
instruction scheduling can reduce transitions on the bus. Tomiyama et al.
reported that the scheduling algorithm achieves significant reduction in
transitions on the data bus, up to 28% of reduction, and runs efficiently.

6. Energy Management Techniques for SoC Design 23

Figure 6-15. An Example of Instruction Scheduling for Low Power

4.4 Commercial Products

The Pentium 4 processor uses the clock gating technology. Every unit on

the chip has a power reduction plan, and almost every functional unit block
contains clock gating logic.

4.5 Conclusions

In this section, we summarized system level switching activity reduction
strategies. The basic strategies are clock gating and datapath width
adjustment. Analyzing statically and dynamically system requirements,
unnecessary switching activity reduction can be achieved.

5. TECHNIQUES FOR REDUCING THE PRODUCT
OF SWITCHING ACTIVITY AND A LOAD
CAPACITANCE

A major contributor to the system budget is the memory-processor
interface. Ko et al. mentioned that the power dissipation of an external
memory access is at least an order of magnitude higher than that of an on-
chip access [Liu94][Ko98]. For this reason, a lot of techniques for reducing

24 Chapter 6

)

energy consumption of the off-chip buses have been proposed. The basic
idea is reducing the switching activities (SA) of hardware modules whose
load capacitance (CL) is large even if the SAs of low-CL modules are
increased. Suppose we have a processor system including a CPU core, cache
memories, an off-chip memory, and a processor-memory interface as shown
in Figure 6-16. The energy dissipation of the memory-processor interface,
Einterface, can be expressed by (5.1),

(overheadmemorydataaddressinterface EEEENE +++⋅= (5.1)

where N, Eaddress, Edata, Ememory, and Eoverhead, represent the number of memory
accesses, the energy dissipation in address buses per access, that in data
buses per access, that in a memory module per access and energy overhead
per access, respectively. There may exist the energy overhead if the
memory-processor interface is modified for reducing the energy
consumption in off-chip buses. As one can see, we can reduce the energy
dissipation of the processor-memory interface by decreasing N, Eaddress, Edata,
Ememory, and Eoverhead. The problem of minimizing the total energy
consumption of the processor system is basically equivalent to finding the
best tradeoff point between on-chip computational energy and off-chip
communication energy.

CPU
core

D-Cache
Memory

Eaddress

Ebuses

Ememory

Eoverhead

I-Cache

Figure 6-26. Energy Dissipation of Processor-Memory Interface

There are the following three major approaches for reducing the energy
required for the communication between a memory and a processor.
• Cache miss reduction
• Bus encoding
• Code compression

6. Energy Management Techniques for SoC Design 25

5.1 Cache Miss Reduction

Since cache miss rate is associated with the number of off-chip memory
access, reducing cache miss rate leads to a reduction of the energy
dissipation for the off-chip memory accesses. The most straightforward way
for reducing the cache miss rate is to employ larger cache memory on a chip.
Many techniques have been proposed for optimizing cache configuration
considering tradeoff between energy consumption of off-chip memory and
cache memory [Su95][Hicks97][Li98][Shine99][Malik00]. All these
techniques are based on the fact that while a bigger cache consumes more
energy per access, it can reduce the number of cache misses and as a result
can reduce the energy consumption for the off-chip accesses. Suppose we
have a processor with on-chip cache memory which can be resized for the
target application as shown in Figure 6-17.

Caches

CPU core Program Memory
 (Flash Memory)

Resizable Cache

Processor

Figure 6-17. An Example of Resizable Cache

If we optimize the cache size for the target application, the energy
consumption for memory accesses can be drastically reduced. For example,
based on the experiment in [Ishihara05], the optimal cache size for the
SPEC95 benchmark program, “Compress”, is 2kB as shown in Figure 6-18.
If we use the 4kB cache instead of 2kB power consumption of the cache
becomes very large. Conversely, if the 1kB cache is used, the power
consumption of off-chip memory becomes huge due to the large number of
cache misses. In the optimal case, the power consumption can be reduced by
85% compared to the result for 1kB cache memory. Note that the leakage
power of the cache memory is assumed to be 10% of its dynamic power
consumption.

26 Chapter 6

0

5

10

15

20

25

16 8 4 2 1
Instrucation Cache Size [kB]

Po
w

er
 c

on
su

m
pt

io
n

[m
W

]

Leakage power
of cache memory
Dynamic power
of cache memory
Power dissipation
of main memory

Figure 6-18. Cache Optimization for Low Power

Li and Henkel proposed Avalanche framework which simultaneously
evaluates the tradeoffs of energy dissipations of caches and main memory
[Li98]. The trade-off between system performance and energy dissipation is
also explored in the framework. Their experiments demonstrated significant
improvements (up to 95% energy saving) in energy dissipation.

Another approach to reducing the number of cache misses is a compiler-
based approach [McFarling89][Hwu89][Tomiyama96][Panda96]
[Hashemi97][Ghosh99]. The idea is to modify the place of basic blocks,
procedures, or global variables in the address space so that the number of
cache conflict misses is minimized. This can significantly reduce the number
of cache misses and energy consumption of memory subsystems. We first
explain the idea behind the typical code and data placement technique.
Consider a direct-mapped cache of size C (= 2m words) whose cache line
size is L words, i.e., L consecutive words are fetched from the main memory
on a cache read miss. In a direct-mapped cache, the cache line containing a
word located at memory address M can be calculated by (⎣M/L⎦ mod C/L).
Therefore, two memory locations Mi and Mj will be mapped onto the same
cache line if the following condition holds,

0 mod =⎟
⎠

⎞
⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢−⎥⎦

⎥
⎢⎣
⎢

L
C

L
M

L
M ji

 (5.1)

Several code and data placement techniques have used the above formula
[5.6-5.13]. Assume a direct mapped instruction cache with 4 cache-lines,

6. Energy Management Techniques for SoC Design 27

where each cache-line is 32 bytes as shown in Figure 6-19. Functions A, B,
C and D are placed in the main memory as shown in the left side of Figure 6-
19. If functions A, B, and D are accessed in a loop, conflict misses occur
because A and D are mapped onto the same cache line. If the locations of C
and D are swapped as shown in the right side of Figure 6-19, the cache
conflict is resolved. Code placement techniques modify the placement of
basic blocks or functions in the address space so that the total number of
cache conflict misses is minimized. Similar to the code placement techniques,
data placement techniques modify the placement of global variables in the
address space so as to reduce the number of data cache misses.

......

cache line memory block
(32 bytes)

A function
(104 bytes)

(L=32 bytes)

S=4

main memoryI-cache

conflict misses
in cache-line 1

Figure 6-19. An Example of Code Placement

Kulkarni et al. proposed a data placement algorithm which finds the
optimal locations of global variables in the main memory [Kulkarni01]. The
algorithm also explores different cache sizes considering trade-offs among
performance, energy consumption and chip area. In the first step, they
measure the cache miss rates for different cache sizes. Once the miss rates
are obtained, the algorithm performs data placement for each cache size and
estimate the energy consumption including energies for on-chip accesses and
off-chip accesses. Depending on the design constraints, the designer can
either choose a lower power solution with some overhead in size and vice
versa. Their experiments demonstrated that the total energy consumption can
be reduced by 10.6% with 26% performance overhead and 7% area overhead.

 Scratchpad memory can be used as a design alternative for the on-chip
cache memory. Current embedded processors particularly in the area of
multimedia applications and graphic controllers have on-chip scratchpad
memories. In cache memory systems, the mapping of program elements is

28 Chapter 6

done during runtime, while in scratchpad memory systems this is done by
the programmer or the compiler. Unlike the cache memory, the scratchpad
memory does not need tag search operations and, as a result, it is more
power efficient than the cache memory if programmers or compilers can
optimally allocate code and data on the scratchpad memory.

Ishihara and Yasuura proposed a code allocation technique which finds a
size of an on-chip scratchpad memory and a code allocation to the
scratchpad memory simultaneously so as to minimize the total energy
required for fetching instructions [Ishihara00]. Their experiments showed
that the energy consumption for the instruction fetching can be reduced by
50%. Benini et al. presented a novel solution for the design hierarchy of low-
power embedded systems [Benini00]. The idea is mapping the most
frequently accessed data onto a small memory, called application-specific
memory (ASM) which is placed vary close to the processor. The
experimental results on a set of typical embedded programs have shown that
the energy consumption can be reduced by 68% with respect to equivalent
caches having different sizes, organizations and configurations. Banakar et al.
proposed an approach for selection of on-chip memory configuration from
various sizes of cache and scratch pad memories [Bankar02]. Their
experiments show that scratchpad based compile-time memory outperforms
cache-based run-time memory on almost all aspects. For example, the total
energy consumption of scratchpad based systems is less than that of cache-
based systems by 40% on an average.

5.2 Bus Encoding

Bus encoding techniques reduce communication power by changing the
format of the information in a way that the total communication power is
minimized. The basic strategy is to reduce switching activity of off-chip
buses by encoding data transmitted between a processor and a memory. We
have to consider a tradeoff between the energy consumed in buses and the
energy overhead of encoding and decoding circuits. Suppose we have an
original data format, Format-A, and low-switching format, Format-B as
shown in Figure 6-20. Energy consumption for sending data using Format-
A and Format-B is EA and EB, respectively. The energy overhead for
encoding and decoding (i.e., translating Format-A into Format-B and vice
versa) is Eoverhead. Bus encoding techniques are effective only when the
following inequality holds,

overheadEEBEA +> .

6. Energy Management Techniques for SoC Design 29

EncoderEncoder DecoderDecoder

Format-A Format-AFormat-B Format-B

Sender
off-chip

Receiver

Figure 6-30. Low-Power Bus Encoding

The bus-invert coding is one of the most popular approaches [Stan95]. In
the bus-invert coding, if the Hamming distance (the number of switched bits)
between the new pattern to be transferred and the old one currently on the
bus is larger than half the bus width, the new pattern is transferred with each
bit inverted. An additional invert bit is used to inform the receiver side
whether the pattern is inverted or not. The experiments demonstrated that the
bus-invert coding technique decreases the I/O peak power dissipation by
50% and the I/O average power dissipation by 25%.

For instruction address patterns, where consecutive patterns are often
sequential, the Cray code is efficient [Su94]. The Gray code has only one-bit
difference in consecutive number for addressing. Due to locality of program
reference, Gray code addressing can significantly reduce the number of bit
switches. The experimental results showed that for typical programs running
on a RISC microprocessor, using Gray code addressing reduce the switching
activity at the address lines by 30-50% compared to conventional binary
code addressing.

In the T0 code [Benini97], the bus transitions are further reduced by
freezing the address lines when consecutive patterns are detected to be
sequential. An extra bus line is employed to inform the receiver side whether
or not the current pattern is sequential.

In special purpose applications, where the information about the
sequence of patterns is available a priori, the characteristics of patterns can
be exploited to efficiently reduce bus transitions. The Beach Solution
[Benini97-2] makes clusters of bus lines based on statistical information of
address patterns and then generates an encoding function for each cluster
such that the encoded version of each cluster results in less transitions.

For data address patterns which are less sequential than instruction
address patterns and less random than data patterns, the Partial Bus-Invert
code [Shin98] performs better. It applies the bus-invert coding to a pre-
defined sub-group of bus lines thereby avoiding unnecessary inversion of
relatively inactive and/or uncorrelated bus lines. The experiments on
benchmark examples indicate that the partial bus-invert coding reduces the
total bus transitions by 62.6% on the average, compared to that of the
unencoded patterns.

30 Chapter 6

5.3 Code Compression

An alternative approach to bus encoding is code compression. The basic
strategy is to use narrow instruction codes for reducing the switching activity
when the instructions are transmitted from a program memory to a CPU.

One of the best known instruction compression approaches is the
“Thumb” instruction set of the ARM microprocessor family [Segars95].
ARM cores can be programmed using a reduced set of 16-bit instructions
instead of standard 32-bit RISC instructions, which reduces required
instruction memory occupation and bandwidth by a factor of 2.

Yoshida et al. proposed a code compression technique as depicted in
Figure 6-21 [Yoshida97]. Suppose we have an object code and the number
of distinct instructions appeared in the code is N. In this case, we can express
all those instruction codes using ⎡ -bit binary patterns. Since the
firmware running on a given embedded processor normally uses only a small
subset of the instructions supported by the processor, a

⎤Nlog

⎡ ⎤Nlog -bit is much
smaller than original instruction width. As a result, we can reduce the energy
consumption for fetching instruction. According to this idea, the object code
is stored in memory in compressed format, i.e., each instruction is replaced
with a ⎡ -bit binary pattern which is in one-to-one correspondence
with the original instruction. Every time an instruction is fetched from the
program memory, it is decompressed (i.e., the original format is restored)
using an instruction decompression table (IDT) and then passed to the
processor’s decoding logic. This architecture is motivated by the fact that
software programs normally use only a subset of all possible instructions
offered by the processor’s instruction set. Since

⎤Nlog

⎡ ⎤Nlog (where N is the
number of distinct instructions) is usually much smaller than the original
instruction width, this approach reduces both memory energy and bus power
consumption.

Memory

Core

32bits

Addresses

32

Memory

bits

Addresses

IDT

32

logN

Core

logN

Figure 6-21. An Example of Code Compression

Although, in principle, the solution depicted above offers good
opportunities for energy reduction, it often happens that the number of

6. Energy Management Techniques for SoC Design 31

distinct instructions, N, used by a program is not small. In such a situation,
the size of the Instruction Decompression Table (IDT) becomes very large,
and therefore area and power dissipation of the IDT would be very large as
well. As a solution of the problem, Benini et al. proposed a selective
instruction compressing technique [Benini99]. Their idea is to compress only
a subset of fixed cardinality (256 elements) of the instructions used by a
program, namely, those that are executed more often. This approach is
motivated by the observation that the 256 most frequently used instructions
are always executed for at least 50% and up to 99.99% of the time. The idea
can be implemented as shown in Figure 6-22. This approach guarantees a
fixed and limited size for the IDT and reduces energy and area overhead for
decompressing the instructions.

Memory

Core

32bits

Addresses

32

Memory

8 bits

Addresses

32

CNTR

IDT

32

8

0
1

Core

Figure 6-22. Selective Code Compression

5.4 Conclusions

We addressed several techniques for lowering switching activity of off-
chip buses considering tradeoff between the power consumption for on-chip
computation and that for off-chip communication. Other than the techniques
addressed in this section, there has been proposed a lot of techniques which
reduce switching activity of high capacitance nodes. Specifically, circuit
level approaches like logic synthesis techniques, placing and routing
techniques, and high-level synthesis techniques which reduce transitions of
high capacitance modules are well studied. On the other hand, there is much
scope left to study on source-level design techniques which modify an
application program in a way that power-hungry hardware components are
less frequently used without sacrificing performance, computational quality
and system reliability.

32 Chapter 6

6. TECHNIQUES FOR REDUCING REAKAGE

POWER

For mobile/portable devices with a high standby-to-active ratio, leakage
current may be the dominant factor in determining overall battery life. The
three primary sources of leakage current (See Figure 6-23) are sub-threshold
(Isub) or source-to-drain leakage current which grows exponential with
lowering Vt and increasing temperature, reverse bias junction band-to-band
tunneling current (Ib-b), and gate oxide tunneling current (Igate). Reducing of
gate oxide thickness results in an increase in the field across the oxide. The
high electric field coupled with low oxide thickness results in tunneling of
electrons from substrate to gate and also from gate to substrate through the
gate oxide, resulting in the gate oxide tunneling current. Most of the interests
have focused on the leakage caused by sub-threshold current and gate oxide
tunneling current in terms of system level leakage management. Due to the
leakage mechanisms described above, leakage current increases dramatically
in the scaled devices. Particularly, with reduction of threshold voltage to
achieve high performance, leakage power becomes a significant component
of the total power consumption in both active and standby modes of
operation. Since in the sleep mode Igate will likely be dominant, two
approaches may be considered: (1) reduce the threshold voltage of the sleep
device somewhat (e.g. 100mV) to minimize the delay penalty associated
with an extra series device; this allows the use of smaller sleep devices to
simultaneously reduce Igate, dynamic power, and layout area while not
penalizing standby mode leakage since Isub << Igate or (2) incorporate a multi-
Tox process was proposed.

A key difference between the state dependence of Isub and Igate is that the
magnitude of Isub primarily depends of the number of on vs. off transistors in
a stack, while Igate also depends strongly on the position of the on/off
transistors.

6. Energy Management Techniques for SoC Design 33

Figure 6-23. Sources of Leakage Current

Leakage power can be expressed as follows [6-2]:

DDleakleak VInP ⋅⋅= , (6-1))e)(V/V(I THDD V/V
TTHleak

−−∝ 1α

where n indicates the number of transistors, VT denotes thermal voltage
which is about 25mV at room temperature and increases linearly as
temperature increases. According to this relationship, leakage current and
therefore power dissipation increases exponentially with decreasing
threshold voltage (VTH) and with increasing temperature. Equation (6-1)
suggests two ways to reduce Pleak. First, we could turn off the supply voltage.
That is, set VDD to zero so that the factor in parentheses also becomes zero.
Second, we could increase the threshold voltage, which (because it appears
as a negative exponent) can have a dramatic effect in even small increments.
Of course using high-VT transistors will degrade performance. A solution is
to have mixture of high and low VT transistors. Use low VT transistors on
timing-critical paths and high Vt transistors on non-critical paths. This
approach is referred to as dual VT design. Multi-Threshold CMOS
(MTCMOS) cells can be used to control leakage power (See Figure 6-24).
Low VT transistors are used to implement gates for high speed, while high
VT transistors are added to form virtual rails. These high VT transistors
suppress the leakage current when the sleep signal is activated. Of course,
there needs to be a sleep control mechanism.

34 Chapter 6

Figure 6-24. Multi-Threshold CMOS (MTCMOS)

Variable Threshold CMOS (VTCMOS) is a body biasing technique that
controls effective threshold voltage by applying substrate bias to MOS
transistors (See Figure 6-25). This technique is applicable at runtime. In the
active mode, a zero body bias is applied. In standby mode, the effective
threshold voltage is made to be larger by applying a reverse substrate bias to
block the leakage current. Transistor performance in the active mode is kept
the same as that in the conventional design by utilizing low VDD and low VT .
However, triple well technology is required.

Figure 6-25. Variable-Threshold CMOS (VTCMOS)

In addition to above approaches, area reduction also reduces leakage
power. Datapath width adjustment described in Section 6.4 is also effective
for reducing the leakage power. The power dissipation of the whole system
not only dynamic power but also leakage power is drastically reduced by

6. Energy Management Techniques for SoC Design 35

tuning the parameters of processors and memories tailored for the
applications.

Reducing the number of transistors and controlling power supply voltage,
VT , or temperature dynamically can reduce the leakage. Basic strategies are
shown below. Some system level methodologies related using the strategies
are shown in this section.

 using high threshold voltage for non-critical paths
 shifting the circuit to the low leakage mode
 cooling high temperature parts,
 reducing the number of transistors.

Many techniques [Ishihara2002, Kaxiras2000, Powell2000, Sato2004]
proposed to address leakage power have focused on cache memory that is a
major leakage consumer of the entire system because leakage power is a
function of the number of transistors. For example, StrongARM processor
uses 60% of the die area for cache memories [Manne1998].

6.1 Multiple Vth CMOS and Dual Vth techniques

One way to increase the threshold voltage is to use Multiple Threshold
Circuits with sleep transistors [Calhoun2003]. This involves isolating a leaky
circuit element by connecting it to a pair of virtual power supplies that are
linked to its actual power supplies through sleep transistors (Figure 6-24).
When the circuit is active, the sleep transistors are activated, connecting the
circuit to its power supplies. However, when the circuit is inactive, the sleep
transistors are deactivated, thus disconnecting the circuit from its power
supplies. In this inactive state, almost no leakage passes through the circuit
because the sleep transistors have high threshold voltages. This technique
effectively confines the leakage to one part of the circuit, but is tricky to
implement for several reasons. The sleep transistors must be sized properly
to minimize the overhead of activating them. They cannot be turned on and
off too frequently. Moreover, this technique does not readily apply to
memories, because memories lose data when their power supplies are cut.

 Another way to increase the threshold is to employ dual threshold
circuits. Dual threshold circuits [Liu2004, Wei1998, Ho2004] reduce
leakage by using high threshold (low leakage) transistors on non-critical
paths and leakage by using low threshold transistors on critical paths, the
idea being that non-critical paths can execute instructions more slowly
without impairing performance.

36 Chapter 6

6.2 Dynamic Power Management for Reducing Leakage

Adaptive body biasing technique [Seta1995, Kobayashi1994,Nose2002]
is a runtime technique that reduces leakage power by dynamically adjusting
the threshold voltages of circuits depending on whether the circuits are
active. When a circuit is not active, the technique increases its threshold
voltage, thus saving leakage power exponentially, although at the expense of
a delay in circuit operation. When the circuit is active, the technique
decreases the threshold voltage to avoid slowing it down. To adjust the
threshold voltage, adaptive body biasing applies a voltage to the transistor’s
body known as a body bias voltage (Figure 6-25). Vt is dynamically
controlled through software depending on the workload of a processor. The
Vth-hopping scheme [Nose2002] can achieve 82% power saving compared
with the fixed low-Vth circuits. In order to suppress efficiently the leakage
power, combining the adaptive body biasing technique and the dual Vt
technique could be useful (See Figure 6-26). In this case, the adaptive body
biasing is used only in the critical paths. On the other hand, Vt of the non-
critical paths gates is set to a considerably higher value (high-Vt), which is
not changed for the entire time.

6. Energy Management Techniques for SoC Design 37

Figure 6-26. Combining VTCMOS and Dual Vth Technologies

6.3 Thermal Management

Several cooling techniques have been developed since the 1960s. Some
below cold air into the circuit, while others refrigerate the processor
[Schmidt2002], sometimes even by costly means such as circulating
cryogenic fluids like liquid nitrogen [Krane1988]. These techniques have
three advantages. First, they significantly reduce subthreshold leakage. In
fact, a recent study [Schmidt2002] showed that cooling a memory cell by 50
degrees Celsius reduces the leakage power by five times. Second, these
techniques allow a circuit to work faster because electricity encounters less
resistance at lower temperatures. Third, cooling eliminates some negative
effects of high temperatures, namely the degradation of a chip’s reliability

38 Chapter 6

and life expectancy. Recently, the reliability is a much more significant issue
in design. Despite these advantages, there are issues to consider, such as the
costs of the hardware used to cool the circuit. Moreover, cooling techniques
are insufficient if they result in wide temperature variations in different parts
of a circuit. Rather, one needs to prevent “hotspots” by distributing heat
evenly throughout a chip.

Reliability and leakage power are both strongly affected by system
temperature. In [Simunic], they proposed a joint reliability and power
management optimization. Their approach achieved a significant
improvement in energy consumption (40%) in tandem with meeting
reliability constraint for all operating temperatures.

Another thermal management is a temperature aware task scheduling
[Hung2005], which is task scheduling such that the temperature of HW is
minimized.

6.4 Bitwidth Optimization for Reducing Leakage

Cao et. al. [Cao2002] reported a bitwidth optimization technique for
reducing not only dynamic and leakage power at system level design. For
Lempel-Ziv algorithm, they got dynamic power saving of 59.2% and leakage
power saving of 64.3 a the optimal datapath width of 15bits; for ADPCM
encoder, dynamic power saving is 44.2% and leakage power saving is 4.74%
at the optimal datapath width of 19bits; for MPEG-2 AAC audio decoder,
the dynamic power saving is 14.5% and leakage power saving is 18.1% at
the optimal datapath width of 24bits and MPEG2 video decoder, the
dynamic power saving is 18.3% and leakage power is 19.1% at optimal
datapath width of 28bits. For different application, the number of variables is
different and the effective size of variables is also different, therefore the
optimal datapath width of minimal power is different. Note that this is under
the assumption ActTime : InactTime = 1 : 1. ActiTime is the application
execution time, which is called active time and InactTime is the idle time,
which is called inactive time.

6.5 Commercial Products

In [Mutoh1996], they presented power management processor, which
uses MTCMOS technology.

Toshiba used the mixed MTCMOS and Dual VT method to reduce the
leakage power in a DSP core for W-CDMA cell phones. Cell phones spend a
significant amount of time in the standby mode. Toshiba also presented a
low power single-chip MPEG4 video-phone LSI. The VTCMOS technology

6. Energy Management Techniques for SoC Design 39

is employed to reduce a standby leakage current, which is only 17% of the
conventional CMOS design [ISSCC A 60MHz 240mW MPEG-4 video-
phone LSI with 16Mbit embedded DRAM].

6.6 Conclusions

This section describes leakage power reduction methodologies. There are

four basic strategies: using high-VT on non-critical paths, shifting low
leakage mode, cooling high temperature parts, and reducing the number of
transistors.

7. POWER REDUCTION TECHNIQUES USING
APPLICATION SPECIFIC HARDWARE

The ultimate way for energy reduction is creating application-specific
integrated circuits (ASICs) that implement their algorithms directly in
dedicated, fixed-function logic. The most energy-efficient type of processor
core is the "application-specific instruction processor" (ASIP). These
processors are custom designed for the application at hand. Today, however,
a few companies offer automated tools that generate ASIPs based on
parameters supplied by the system designer. ASIC designers can also
achieve good energy efficiency by starting with a processor core and then
customizing the core to the needs of their application. The processor cores
offered by ARC and Tensilica are specifically designed for customization by
the system designer. Both companies' offerings allow the system designer to
add custom instructions that can produce massive energy efficiency gains.

7.1 Energy-Flexibility Tradeoff

Power consumption heavily depends on an implementation style and its
flexibility [Rabaey00]. In Figure 6-27, the tradeoff between energy
consumption and flexibility for different architectures is shown. As one can
see, the dedicated hardware (ASICs) is 4 orders of magnitude more power
efficient than embedded processors. Therefore, if there is no need for
flexibility, the ASIC implementation is preferred. In practice, however,
many systems require flexibility of the system in order to support not only
existing applications but also upcoming ones.

40 Chapter 6

Dedicated HW
ASICs

Reconfigurable HW

ASIPs, DSPs

Embedded Processors SA110
400MIPS/W

DSP: 3000MOPS/W

10,000 to 50,000 MOPS/W

100,000 to 1,000,000 MOPS/W

Flexibility

MOPS/W

Figure 6-27. Energy-Flexibility Tradeoff

We can broadly categorize system architectures which concurrently
satisfy high flexibility and low energy consumption as follows,

1. A hybrid architecture which consists of embedded processor or DSP and

dedicated hardware, and
2. A configurable processor.

7.2 Hybrid Architecture

A hybrid-architecture consists of a microprocessor core, a set of standard
cores, and a set of application specific cores as shown in Figure 6-28. The
design goal using the hybrid-architecture is to partition a given application
into the microprocessor core and the application specific cores in order to
minimize the total energy consumption.

MPU

Dedicated HW

Dedicated HW

I-Cache

D-Cache

Application

Figure 6-28. An Example of a Hybrid-Architecture

6. Energy Management Techniques for SoC Design 41

Hardware/software partitioning is the process of dividing an application
into software running on a microprocessor and dedicated hardware. This
approach is a well-established design methodology with the goal to increase
the performance and to decrease the energy consumption of a system as
described.

Dave et al. proposed a hardware/software co-design technique, called
COSYN, which targets embedded systems consisting of general-purpose
processors, ASICs and FPGAs [Dave97]. Functions of COSYN include
allocation, scheduling, performance estimation, and power optimization.
COSYN finds hardware/software partitioning based on the performance and
power estimation of a processing element.

Henkel proposed a hardware/software partitioning technique for low-
power core-based systems [Henkel99]. The technique considers the power
consumption of a whole embedded system consisting of a microprocessor
core, application specific cores, cache cores and a memory core. The
technique based on a fine-grained (instruction/operation-level) analysis of
energy consumption. The experimental results demonstrated high reductions
of power consumption between 35% and 94% at the cost of a relatively
small additional hardware overhead.

7.3 Configurable Processor

A configurable processor core is a fully functional processor design that
can be customized or expanded to meet the performance and/or energy
efficiency needs of applications [Wei05]. There are four general ways a
processor can be configured:

• By selecting from standard configuration options, such as bus widths,

interfaces, memories, floating-point units, etc.
• By adding custom instructions that describe new registers, register files

and custom data types, such as 56-bit data for security processing or 256-
bit data types for packet processing.

• By adding custom, high-performance interfaces that exceed the
bandwidth abilities of the more common shared-bus architectures of
conventional RISC and DSP cores.

Configurable processors are typically delivered as synthesizable RTL

code, and can be easily mapped onto an FPGA or SoC design. Some
configurable processors are provided with automatically tailored software-
development tools (the compiler, assembler, debugger, linker, and profiler),
EDA synthesis scripts, and verification test benches that reflect the designer-

42 Chapter 6

defined architectural extensions so that no additional effort is required to
ready the configured core for SoC development.

The ability to add custom instructions of any width allows an SoC
designer to use a configurable processor core to implement datapath
operations that closely match the abilities of a manually designed RTL block.
Since the configurable processor does not have a feature for dynamically
reconfiguring the structure of the processor, it is more energy efficient than a
reconfigurable processor. In the configurable processor core, the datapaths
are implemented using the base processor's integer pipeline, plus additional
execution units, registers, and other functions added by the chip architect or
SoC designer for a target application.

Energy efficiency of the configurable processor typically comes from the
following three features [Wei05],

1. Configuration of the instruction set permits a much closer fit of the

processor to the target application,
2. Configuring the processor removes unneeded hardware features like

larger cache memories than needed, unused register files and extra bits of
datapath [Inoue00], and

3. Automatic processor generation tools enable logic optimization, signal
switching activity reduction, and seamless mapping into low-voltage
circuits.

A lot of configurable processors and their optimization methodologies

are proposed. However, only a few of them focus on methodologies for
lowering energy consumption.

In [Inoue00], Inoue et al. proposed a flexible SoC architecture and its
optimization framework, called FlexSys, which allows system designers to
customize datapath width and memory size for a target application. A key of
the FlexSys technology is that it allows designers to customize the core
processor for the target application by replacing a few photomasks used for
via layers only, which results in a low-cost customization of the processor
for a target application. The experiments using DSPstone benchmark
programs demonstrated that the energy consumption can be reduced by 54%
compared to the normal RISC processor-based system which has a CPU core
with 32-bit datapath and the fixed number of memory words.

7.4 Conclusions

In this section we introduced a concept of energy-flexibility tradeoff. We
showed that system designers can drastically reduce energy consumption by

6. Energy Management Techniques for SoC Design 43

trading flexibility for energy consumption. However, in practice, it is very
important to preserve system flexibility in case of future upgrade or
modification in a target application. Therefore, we have to find the best
compromising point between high flexibility and low energy consumption.
We can broadly categorize system-level methodologies which satisfy high
flexibility with low energy consumption as follows,
1. hardware/software partitioning for a hybrid architecture which consists of

a microprocessor core and dedicated hardware and
2. exploiting customizability of configurable processors.

These strategies allow system designers to explore SoC architectures

considering tradeoff between flexibility and energy consumption. As a result,
system designers can find the best tradeoff point which compromises
between high flexibility and low energy consumption.

8. SUMMARY

This chapter addressed several key methodologies for reducing power
and/or energy consumption of SoCs which consist of hardware and software
running on it. Each of those methodologies takes design tradeoffs into
consideration. In Section 3, we introduced an energy-delay tradeoff and an
energy-reliability tradeoff in SoC design. Section 4 discussed on a tradeoff
between energy consumption and quality of services (QoS). The QoS, in this
chapter includes precision (or computational quality) and latency (or
response time). In section 5, a tradeoff between computational energy and
communication energy is considered. Section 6 summarized several leakage
reduction techniques considering the energy-delay tradeoff and the energy-
QoS tradeoff. In Section 7, we introduced an energy-flexibility tradeoff. The
key point of the energy reduction techniques is to take the tradeoffs into
consideration according to a design objective and design constraints.

The problem of how to model and evaluate complicated SoCs in terms of
energy, performance, QoS, reliability and flexibility becomes more attractive
to tackle. As the supply voltage and threshold voltage of chips is lowered
down along with the transistor scaling, sensitivity to temperature variation,
process variation, sources of soft error and noise sources is increased. This
results in model uncertainty and makes evaluation of SoC difficult.
Increasing size, complexity, and functionality integrated on SoC becomes
this problem more difficult. In near future, modeling and evaluation of SoC
dynamically and/or statically taking the model uncertainty into account is
one of the most important themes for low-energy SoC design.

44 Chapter 6

REFERENCE

[Black69] J. R. Black, “Electromigration Failure Modes in Aluminum Metallization for
Semiconductor Devices, ” in Proc. of IEEE, vol. 57, no. 9, pp.1587-1594, Sep. 1969.

[Weste93] N. Weste and K. Eshraghian, “Principles of CMOS VLSI design”, Addison-
Wesley, 1993.

[Chatterjee96] A. Chatterjee, M. Nandakumar, and I. Chen, “An Investigation of the Impact
of Technology Scaling on Power Wasted as Short-Circuit Current in Low Voltage Static
CMOS Circuits,” in Proc. ISLPED, pp.145-150, Aug. 1996.

[Usami95] K. Usami, and M. Horowitz, “Clustered Voltage Scaling Techniue for Low-Power
Design”, in Proc. of Int’l Symposium on Low Power Design, pp.3-8, April, 1995.

[Johnson97] M. C. Johnson and K. Roy, “Datapath Scheduling with Multiple Supply Voltages
and Level Converters,” ACM TODAES, vol.2, no.3, pp.227-248, July, 1997.

[Chandrakasan95] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R. W.
Brodersen, “Optimizing Power Using Transformations,” IEEE Trans. on CAD, vol.14,
no.1, pp.12-31, Jan., 1995.

[Raghunathan94] A. Raghunathan and H. K. Jha, “Behavioral Synthesis for Low Power”, in
Proc. of Int’l Conference on Computer Design, pp.318-322, Oct., 1994.

[Raghunathan95] A. Raghunathan and H. K. Jha, “An Iterative Improvement Algorithm for
Low Power Data Path Synthesis”, in Proc. of Int’l Conference on Computer Aided Design,
pp.597-602, Nov., 1995.

[Goodby94] L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitectural Synthesis of
Performance-Constrained Low-Power VLSI Designs”, In Proc. of Int’l Conference on
Computer Design, pp.323-326, Oct., 1994.

[Kumar95] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Profile-Driven Behavioral
Synthesis for Low-Power VLSI Systems”, IEEE Design & Test, vol.12, no.3, pp.70-84,
Fall, 1995.

[Martin95] R. S. Martin, and J. P. Knight, “Power-Profiler: Optimizing ASICs Power
Consumption at the Behavioral Level”, In Proc. of Design Automation Conference, pp.42-
47, June, 1995.

[Raje95] S. Raje, and M. Sarrafzadeh, “Variable Voltage Scheduling”, in Proc. of Int’l
Symposium on Low Power Design, pp.9-14, April, 1995.

[Lin97] Y. R. Lin, C. T. Hwang and A. C.-H. Wu, “Scheduling Techniques for Variable
Voltage Low Power Designs”, ACM TODAES, vol.2, no.2, pp.81-97, April, 1997.

[Chang96] J. Chang and M. Pedram, “Energy Minimization Using Multiple Supply Voltages”,
in Proc. of Int’l Symposium on Low Power Electronics and Design, pp.157-162, Aug.,
1996.

[Ishihara98] T. Ishihara, and H. Yasuura, “Voltage Scheduling Problem for Dynamically
Variable Voltage Processors”, in Proc. of Int’l Symposium on Low Power Electronics and
Design, pp. 197-202, Aug. 1998.

[Weiser94] M. Weiser, B. Welch, A. Demers and S. Shenker, “Scheduling for Reduced CPU
Energy”, in Proc. of Symposium on Operating Systems Design and Imprementation,
pp.13-23, Nov., 1994.

[Yao95] F. Yao, A. Demers and S. Shenker, “A Scheduling Model for Reduced CPU Energy”,
in Proc. of Symposium on Faundations of Cumputer Science, pp. 374-382, Oct., 1995.

[Shin99] Y. Shin and K. Choi, “Power Conscious Fixed Priority Scheduling for Hard Real-
Time Systems”, in Proc. of Design Automation Conference, pp.134-139, June, 1999.

[Shin00] Y. Shin, K. Choi and T. Sakurai, “Power Optimization of Real-Time Embedded
Systems on Variable Speed Processors”, in Proc. of Int’l Conference on Computer Aided
Design, pp.365-368, Nov., 2000.

6. Energy Management Techniques for SoC Design 45

[Okuma99] T. Okuma, T. Ishihara, and H. Yasuura, “Real-Time Task Scheduling for a

Variable Voltage Processor”, in Proc. of Int’l Symposium on System Synthesis, pp.24-29,
Nov., 1999.

[Austin04] T. Austin, D. Blaauw, T. Mudge and K. Flautner, “Making Typical Silicon Matter
with Razor”, IEEE Computer Magazien, pp.57-65, March 2004.

[Bertozzi02] D. Bertozzi, L. Benini and G. De Micheli, “Low-Power Error-Resilient
Encoding for On-Chip Data Busses”, in Proc of Dasign Automation and Test in Europe
Conference, pp.102-109, March, 2002.

[Worm02] F. Worm, P. Lenne, P. Thiran and G. De Micheli, “An adaptive low-power
transmission scheme for on-chip networks”, Proc. of Int’l symposium on system synthesis,
pp.92-100, Oct. 2002

[Cao2003] Y. Cao, and H. Yasuura, “Quality-Driven Design by Bitwidth Optimization for

Video Applications,” in Proc. Asia and South Pacific Design Automation Conference, pp.,
2003.

[Alalusi2000] S. Alalusi, and B. Victor, “Variable Word Width Computation for Low
Power,” CS 252 Computer Architecture, 2000.

[Sstephenson2000] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth Analysis with
Application to Silicon Compilation,” in Proc. ACM SIGPLAN 2000 Conference on
Programming language design and implementation, pp.198-120, 2000.

[Canal2000] R. Canal, A. Gonzalez, and J. E. Smith, “Very Low Power Pipelines using
Significance Compression,” in Proc. of International Symposium on Microarchitecture,
pp.181-190, 2000.

[Brooks2000] D. Brooks, and M. Martonosi, “Value-Based Clock Gating and Operation
Packing: Dynamic Strategies for Improving Processor Power and Performance,” in ACM
Transactions on Computer Systems, vol. 18, no. 2, pp.89-126, May 2000.

[Bhunia2003] H. Li, S. Bhunia, Y. Chen, T. N. Vijaykumar, and K. Roy, “Deterministic
Clock Gating for Microprocessor Power Reduction,” in Proc. of International Symposium
on High-Performance Computer Architecture, pp.113, 2003.

[Bellas1999] N. Bellas, I. Haji, and C. Polychronopoulos, “Using Dynamic Cache
Management Techniques to Reduce Energy in a High-Performance Processor,” in Proc. of
International Symposium on Low Power Electronics and Design, pp.64-69, 1999.

[Benini1998] L. Benini, A. Bogliolo, S. Cavallucci, and B. Ricco, “Monitoring Systems
Activity or OS-Directed Dynamic Power Management,” in Proc. of International
Symposium on Low Power Electronics and Design, pp.185-190, 1998.

[Wong2004] J. L. Wong, G. Qu, and M. Potkonjak, “Power Minimization in QoS Sensitive
Systems,” in IEEE Transactions on Very Large Scale Integration Systems, vol. 12, no. 6,
pp.553-561, 2004.

[Qiu2001] Q. Qiu, Q. Wu, and M. Pedram, “Dynamic Power Management in a Mobile
Multimedia System with Guaranteed Quality-of-Service,” in Proc of Design Automation
Conference, pp.834-839, 2001.

[Yardi2005] S. M. Yardi, M. S. Hsiao, T. L. Martin, and D. S. Ha, “Quality-Driven Proactive
Computation Elimination for Power-Aware Multimedia Processing,” in Proc of DATE,
pp.340-345 , 2005.

[Pokam2004] G. Pokam, O. Rochecouste, A. Seznec, and F. Bodin, “Speculative Software
Management of Datapath-width for Energy Optimization,” in Proc. of LCTES, pp.78-87,
2004.

[Sinha2002] A. Sinha, A. Wang, and A. Chandrakasan,”Energy Scalable System Design,” in
IEEE Transactions on Very Large Scale Integration Systems, vol. 10, no. 2, 2002.

46 Chapter 6

[Bellosa1999] F. Bellosa, “OS-Directed Throttling of Processor Activity for Dynamic Power

Management,” Tech. Report, 1999.
[Muroyama2003] M. Muroyama, A. Hyodo, T. Okuma, and H. Yasuura, “A Power Reduction

Scheme for Data Buses by Dynamic Detection of Active Bits,” in Proc. of Euromicro
Symposium on Digital System Design - Architectures, Methods and Tools -, pp.408-415,
2003.

[Okuma2002] T. Okuma, Y. Cao, M. Muroyama, and H. Yasuura, “Reducing Access Energy
of On-Chip Data Memory Considering Active Data Bitwidth,” in Proc. of International
Symposium on Low Power Electronics and Design, pp.88-91, 2002.

[Xanthopoulos2000] T. Xanthopoulos, and A. P. Chandrakasan, “A Low-Power DCT Core
Using Adaptive Bitwidth and Arithmetic Activity Exploiting Signal Correlations and
Quantization,” in IEEE Jounal of Solid-State Circuits, vol. 5, no. 5, 2000.

[Liu94] D. Liu and C. Svensson, “Power Consumption Estimation in CMOS VLSI Chips,”

IEEE Journal of Solid-State Circuits, vol.29, no.6, pp.663-670, June 1994.
[Ko98] U. Ko, P. T. Balsara, and A. K. Nanda, “Energy Optimization of Multilevel Cache

Architectures for RISC and CISC Processors,” IEEE Trans. on VLSI Systems, vol.6, no.2,
pp.299-308, June 1998.

[Su95] C. L. Su and A. M. Despain, “Cache Design Trade-offs for Power and Performance
Optimization: A Case Study”, In Proc. of ISLPED, pp.63-68, August 1995.

[Hicks97] P. Hicks, M. Walnock, and R. M. Owens, “Analysis of Power Consumption in
Memory Hierarchies”, In Proc. of ISLPED, pp.239-242, August 1997.

[Li98] Y. Li, and J. Henkel, “A Framework for Estimating and Minimizing Energy
Dissipation of Embedded HW/SW Systems”, In Proc. of DAC, pp.188-193, June, 1998.

[Shine99] W. T. Shine, and C. Chacrabarti, “Memory Exploration for Low Power, Embedded
Systems”, In Proc. of DAC, pp.140-145, June, 1999.

[Malik00] A. Malik, B. Moyer and D. Cermak, “A Low Power Unified Cache Architecture
Providing Power and Performance Flexibility”, In Proc. of ISLPED, pp.241-243, July
2000.

[Ishihara05] T. Ishihara and F. Fallah, “A Non-Uniform Cache Architecture for Low Power
System Design”, in Proc. of ISLPED, pp.363-368, Aug., 2005.

[McFarling89] S. McFarling, “Program Optimization for Instruction Caches”, In Proc. of Int’l
Conference on Architecture Support for Programming Languages and Operating Systems,
pp.183-191, April 1989.

[Hwu89] W. W. Hwu and P. P. Chang, “Achieving High Instruction Cache Performance with
an Optimizing Compiler”, In Proc. of ISCA, pp.242-251, May 1989.

[Tomiyama96] H. Tomiyama and H. Yasuura, “Optimal Code Placement of Embedded
Software for Instruction Caches”, In Proc. of European Design and Test Conference,
pp.96-101, March, 1996.

[Panda96] P. Panda, N. Dutt, and A. Nicolau, “Memory Organization for Improved Data
Cache Performance in Embedded Processors”, In Proc. of the 9th Int’l Symposium on
System Synthesis, pp.90-95, November 1996.

[Hashemi97] A. H. Hashemi, D. R. Kaeli, and B. Calder, “Efficient Procedure Mapping
Using Cache Line Coloring”, in Proc. of Programming Language Design and
Implementation, pp.171-182, June, 1997.

[Ghosh99] S. Ghosh, M. Martonosi, and S. Malik, “Cache Miss Equations: A Compiler
Framework for Analyzing and Tuning Memory Behavior”, ACM Trans. on Programming
Languages and Systems, vol.21, no.4, pp.703-746, July, 1999.

6. Energy Management Techniques for SoC Design 47

[Kulkarni01] C. Kulkarni, C. Ghez, M. Miranda, F. Catthoor, H. De Man, “Cache Conscious

Data Layout Organization for Conflict Miss Reduction in Embedded Multimedia
Applications,” Proc. of DATE 2001, pp.686-691, March 2001.

[Bankar02] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad Memory : A Design Alternative for Cache On-Chip Memory in Embedded
Systems”, in Proc. of CODES, pp.73-78, May, 2002.

[Stan95] M. R. Stan and W. P. Burleson, “Bus-Invert Coding for Low-Power I/O,” IEEE
Trans. on VLSI Systems, vol. 3, pp.49-58, March, 1995.

[Su94] C. L. Su, C. Y. Tsui, and A. M. Despain, “Low Power Architecture Design and
Compilation Technique for High-Performance Processors,” in Proc. IEEE COMPCON,
pp.209-214, Feb., 1994.

[Benini97] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano, “Asymptotic Zero-
Transition Activity Encoding for Address Busses in Low-Power Microprocessor-Based
Systems,” in Proc. of Great Lakes Symposium on VLSI, pp.77-82, March, 1997.

[Benini97-2] L. Benini, G. De Micheli, E. Macii, M. Poncino, and S. Quer, “System-Level
Power Optimization of Special Pupose Applications: The Beach Solution,” in Proc. of Int’l
Symposium on Low Power Electronics and Design, pp. 24-29, August, 1997.

[Shin98] Y. Shin, S. Chae, and K. Choi, “Partial Bus-Invert Coding for Power Optimization
of System Level Bus,” in Proc. of Int’l Symposium on Low Power Electronics and Design,
pp.127-129, August, 1998.

[Benini00] L. Benini, A. Macii, E. Macii, and M. Poncino, “Synthesis of Application Specific
Memories for Power Optimization in Embedded Systems”, in Proc. of Design Automation
Conference, pp.300-303, June, 2000.

[Ishihara00] T. Ishihara, and H. Yasuura, “A Power Reduction Technique with Object Code
Merging for Application Specific Embedded Processors”, in Proc. of Design Automation
and Test in Europe Conference, pp.617-623, March, 2000.

[Segars95] S. Segars, K. Clarke, L. Goudge, “Embedded Control Problems, Thumb and the
ARM7TDMI,” IEEE Micro, vol.15, no.5, pp.22-30, Oct., 1995.

[Yoshida97] Y. Yoshida, B. Y. Song, H. Okuhata, T. Onoye, and I. Shirakawa, “An Object
Code Compression Approach to Embedded Processors,” in Proc. of Int’l Symposium on
Low Power Electronics and Design, pp.285-288, August, 1997.

[Benini99] L. Benini, A. Macii, E. Macii, and M. Poncino, “Selective Instruction
Compression for Memory Energy Reduction in Embedded Systems”, in Proc. of Int’l
Symposium on Low Power Electronics and Design, pp.206-211, August, 1997.

[Powell2000] M. D. Powell, S. Yang, B. Falsafi, K. Roy, T. N. Vijaykumar, “Gated-Vdd: A

Circuit Technique to Reduce Leakage in Deep-Submicron Cache Memories,” in Proc. of
International Symposium on Low Power Electronics and Design, pp.90-95, 2000.

[Yan2005] L. Yan, J. Luo, and N. K. Jha, “Joint Dynamic Voltage Scaling and Adaptive
Body Biasing for Heterogeneous Distributed Real-Time Embedded Systems,” IEEE Trans.
on CAD, vol.24, no.7, pp.1030-1041, July 2005.

[Tsai2004] Y.-F. Tsai, D. E. Duarte, N. Vijaykrishnan, and M. J. Irwin, “Characterization and
Modeling of Run-Time Techniques for Leakage Power Reduction,” in IEEE Transactions
on Very Large Scale Integration Systems, vol. 12, no. 11, 2004.

[Cao2002] Y. Cao, and H. Yasuura,”Leakage Power Reduction Using Bitwidth Optimization,
“ In Prof. of the 6th World Multiconference on Systemics, Cybernetics and Informatics.,
2002.

[Li2005] P. Li, Y. Deng, and L. T. Pileggi, “Temperature-Dependent Optimization of Cache
Leakage Power Dissipation,” in Proc. of ICCD, 2005.

[Khouri2002] “Leakage Aware Synthesis,” in Proc. of TVLSI 2002. x

48 Chapter 6

[Ynag2001] P. Yang, C. Wung,...”Energy-Aware Runtime Scheduling for Embedded

Multiprocessor SoCs,” in IEEE Design and Test of Computers, 2001. x
[Ishihara2002] T. Ishihara, and K. Asada, “An architectural level energy reduction technique

for deep-submicron cache memories,” in Proc. of Asia and South Pacific Design
Automation Conference, 2002.

[Kaxiras2000] S. Kaxiras, Z. Hu, G. Narlikar, and R. McLellan, ”Cache-line decay: a
mechanism to reduce cache leakage power,” in Proc. of Workshop on Power Aware
Computer Systems, 2000.

[Manne1998] S. Manne, A. Klauser, and D. Grunwald,”Pipeline gating: speculation control
for energy reduction,” in Proc. of International Symposium on Computer Architecture,
1998.

[Sato2004] H. Sato, and T. Sato, “A Static and Dynamic Energy Reduction Technique for I-
Cache and BTB in Embedded Processors,” in Proc. of Asia South Design Automation
Conference, 2004.

[Schmidt2002] R. Schmidt, and B. Notohardjono, “High-end Server Low-Temperature
Cooling,” in IBM Journal of Research and Development, pp.739-751, 2002.

[Krane1988] R. Krane, J. Parsons, and A. Bar-Cohen, “Design of a candidate thermal control
system for a cryogenically cooled computer,” in IEEE Transactions on Components,
Hybrids, and Manufacturing Technology, vol. 11, no. 4, pp.545-556, 1988.

[Calhoun2003] B. H. Calhoun, F. A. Honore, and A. Chandrakasan, “Design methodology for
fine-grained leakage control in MTCMOS,” In Proc. of International Symposium on Low
Power Electronics and Design, pp.104-109, 2003.

[Liu2004] M. Liu, W.-S. Wang, and M. Orshansky, “Leakage Power Reduction by Dual-Vth
Designs under Probabilistic Analysis of Vth Variation,” In Proc. of International
Symposium on Low Power Electronics and Design, pp.2-7, 2004

[Wei1998] L. Wei, Z. Chen, M. Johnson, K. Roy, and V. De, “Design and Optimization of
Low Voltage High Performance Dual Threshold CMOS Circuits,” in Proc. of Design
Automation Conference, pp.489-494.

[Ho2004] Y.-T Ho, and T.-T. Hwang, “Low Power Design using Dual Threshold Voltage,” in
Proc. of Asia and South Pacific Design Automation Conference, pp.205-208, 2004.

[Seta1995] K. Seta, H. Hara, T. Kuroda, M. Kakumu, and T. Sakurai, “50% Active-Power
Saving without Speed Degradation using Standby Power Reduction (SPR) circuit,” in Proc.
of ISSCC, pp.318-319, 1995.

[Kobayashi1994] Kobayashi, and T. Sakurai, “Self-Adjusting Threshold Voltage Scheme
(SATS) for Low-Voltage High-Speed Operation,” in Proc. of CICC, pp.271-274, 1994.

[Claasen] T. Claasen,... “” in Proc. of ISSCC99.
[Budiu2002] M. Budiu, “Application-Specific Hardware,” in Proc. International Conference

on Field Programmable Logic and Applications, pp.853-863, 2002.
[Ranpara1999] S. Ranpara et al., “A Low-Power Viterbi Decoder Design for Wireless

Communications Applications,” Proc. ASIC, 1999.
[Gilbert2001] F. Gilbert et al. “Low Power Implementation of a Turbo-Decoder on

Programmable Architectures” in Proc. ASP-DAC, 2001.
[Usami] K. Usami et al. “Design Methodology of Ultra Low-power MPEG4 Codec Core

Exploiting Voltage Scaling Techniques”
[Lee2003] R. B. Lee, “Challenges in the Design of Security-Aware Processors,” in Proc.

Application-Specific Systems, Architectures, and Processors, pp. , 2003.
[Udayakumaran2002] S. Udayakumaran, B. Narahari, R. Simha, “Application-Specific

Memory Partitioning for Low Power Consumption,” COLP 2002.

6. Energy Management Techniques for SoC Design 49

[Rabaey00] J. M. Rabaey, “Low Power Silicon Architecture for Wireless Communications,”

in Proc. of Asia South Pacific Design Automation Conference, pp.377-380, January, 2000.
[Wei05] J. Wei, and C. Rowen, “Implementing Low-Power Configurable Processors –

Practical Options and Tradeoffs,” in Proc. of Design Automation Conference, pp.706-711,
June, 2005.

[Dave97] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: Hardware-Software Co-
Synthesis of Embedded Systems,” in Proc. of Design Automation Conference, pp.703-708,
June, 1997.

[Henkel99] J. Henkel, “A Low Power Hardware/Software Partitioning Approach for Core-
based Embedded Systems,” in Proc. of Design Automation Conference, pp.122-127, June,
1999.

[Inoue00] A. Inoue, T. Ishihara, and H. Yasuura, ``Flexible System LSI for Embedded
Systems and Its Optimization Techniques'', In H. Yasuura, editors, Journal of Design
Automation for Embedded Systems, Vol.5, No.2, pp.179-205, Kluwer Academic
Publishers, Jun. 2000.

	1. INTRODUCTION
	2. POWER AND ENERGY CONSUMPTIONS IN SOC
	3. TECHNIQUES FOR LOWERING OPERATING VOLTAGE
	3.1 Compatibility of different voltage standards
	3.2 Power-Delay Tradeoff
	3.2.1 Static Voltage Scaling
	3.2.2 Multiple Voltage Assignment
	3.2.3 Dynamic Voltage Scaling

	3.3 Power-Reliability Tradeoff
	3.4 Commercial Products
	3.5 Conclusions

	4. TECHNIQUES FOR REDUCING SWITCHING ACTIVITY
	4.1 Dynamic power management (DPM)
	4.2 Datapath width adjustment (Bit-width optimization)
	4.3 Compiler Optimization
	4.4 Commercial Products
	4.5 Conclusions

	5. TECHNIQUES FOR REDUCING THE PRODUCT OF SWITCHING ACTIVITY AND A LOAD CAPACITANCE
	5.1 Cache Miss Reduction
	5.2 Bus Encoding
	5.3 Code Compression
	5.4 Conclusions

	6. TECHNIQUES FOR REDUCING REAKAGE POWER
	6.1 Multiple Vth CMOS and Dual Vth techniques
	6.2 Dynamic Power Management for Reducing Leakage
	6.3 Thermal Management
	6.4 Bitwidth Optimization for Reducing Leakage
	6.5 Commercial Products
	6.6 Conclusions

	7. POWER REDUCTION TECHNIQUES USING APPLICATION SPECIFIC HARDWARE
	7.1 Energy-Flexibility Tradeoff
	7.2 Hybrid Architecture
	7.3 Configurable Processor
	7.4 Conclusions

	8. SUMMARY
	REFERENCE

