
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Energy Management Techniques for SoC Design

Yasuura, Hiroto
System LSI Research Center, Kyushu University

Ishihara, Tohru
System LSI Research Center, Kyushu University

Muroyama, Masanori
System LSI Research Center, Kyushu University

https://hdl.handle.net/2324/6346

出版情報：Essential Issues in SOC Design: Designing Complex Systems-on-Chip, pp.177-223, 2006-
09. Springer
バージョン：
権利関係：



Chapter 6 

ENERGY MANAGEMENT TECHNIQUES FOR 
SOC  DESIGN 
 

Hiroto YASUURA, Tohru ISHIHARA, Masanori MUROYAMA 
System LSI Research Center, Kyushu University, 3-8-33, Momochihama, Sawara-ku, 
Fukuoka, 814-0001, JAPAN 

Abstract:  One of the biggest problems in complicated and high-performance SoC design 
is management of energy and/or power consumption. In this chapter, we 
present energy management techniques in system design including HW and 
SW, SoC architecture and logic design. Dynamic power consumption is the 
major factor of energy consumption in the current CMOS digital circuits. The 
dynamic power consumption is affected by supply voltage, load capacitance 
and switching activity. We present approaches to controlling supply voltage, 
load capacitance and switching activity dynamically and statically in system 
architecture and algorithm design levels.  We also discuss on the memory 
architecture for reducing power and energy in HW and SW co-design of SoC. 
In the future CMOS technology, leakage power consumption becomes 
dominant, because the threshold voltages are scaled as the transistor size 
shrinks.  We summarize the techniques for reducing leakage power in system 
architecture design. The contents of the chapter include the following issues; 
(1) power and energy consumptions in SoC design, (2) tradeoff between 
energy and performance, (3) tradeoff among energy, QoS (i.e., latency and 
computational precision), reliability, and flexibility (4) techniques for reducing 
dynamic power consumption, and (5) leakage power reduction techniques. 
  

Key words:  Energy consumption, Power consumption, Reliability, Quality of service, HW 
and SW co-design 

1. INTRODUCTION 

In past years, the most serious concerns for the VLSI designer were 
performance, cost, and reliability. Recently, however, this paradigm has 
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shifted. More specifically, reducing power and/or energy consumption has 
become one of the most important themes in SoC design. The driving factors 
of the paradigm shift include the followings.  
• Popularization of portable electronic devices 
• Raising demand for reliable and stable computer systems 
• Worldwide environmental destruction 

One of the biggest factors which motivate the need for low power SoC is 
the popularization of portable electronics. The typical power consumption 
for a portable multimedia terminal is around the range of 10-50 [W] when 
employed chips are not optimized for low-power.  Assuming a battery 
yielding around 65 watt-hours per kilogram is used, the terminal would 
require unacceptable six kilograms of batteries for ten hours operation 
between recharges. If we use 500 grams of batteries, the terminal operates 
only one hour without recharges. Therefore, it is clear that the power 
consumption has a strong impact on a value of the portable electronic 
products. 

The second need for low power comes from a strong pressure for 
designers of high-end products to reduce their temperature. In [Black69], 
Black mentioned that the Mean Time To Failure (MTTF) of aluminum 
interconnects exponentially decreases as the temperature of a chip increases.  
Therefore, cooling down the chip temperature is essential for a reliable and 
stable operation of computer systems. Contemporary performance-optimized 
microprocessors dissipate as much as 15-50W at 100-200MHz clock rates. 
The leakage power issue makes this situation worse, because the leakage 
power increases exponentially as the temperature of the chip increases. In 
the future, it is expected that a 10 cm2 microprocessor with 500MHz clock 
frequency consumes about 300W.  The cost for cooling such chips is huge. 
Consequently, there is a clear advantage to reducing the power consumed in 
computer systems. Especially for consumer products whose sales are 
strongly affected by its price, lowering the power is indispensable. 

 Worldwide environmental destruction drives the strong need for low 
power electronic devices. Although the power consumption of each 
electronic device is small (around the range of 10-50W), they are used 
anywhere and anytime in today’s highly information oriented society.  
Assuming coverage of such electronic devices in the world is 50%, 3.3 
billions of people waste 500 billions of watts of power. In addition, rising IT 
population accelerates this situation. If we reduce the energy consumption of 
the electronic devices by 10%, we can save 65 mega tons of oil used in gas 
turbine power plants per a year or can reduce 50 nuclear power units. In 10-
20 years from now, we need to come up with innovative solutions which 
drastically save the energy of the electronic devices with accelerating the 
growth of IT population.  
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Recently, many energy reduction techniques at various levels of 
abstraction, such as at device, circuit, layout, architectural, and software 
levels are proposed. Regarding the physical design, energy optimization 
techniques are well studied. However, there is much scope left to study in 
the system level such as architectural, algorithm, or software level. In this 
chapter, we present system level energy reduction techniques which might 
be an essential in SoC design.  

The rest of the chapter is organized in the following way. In Section 2, 
we explain mechanisms of power and energy dissipations in CMOS circuits 
and summarize basic strategy for reducing power and energy consumptions.  
Section 3 presents techniques for lowering supply voltage statically or 
dynamically considering several design tradeoffs. Section 4 presents 
techniques for reducing switching activity without sacrificing quality of 
services (QoS). In Section 5, we present techniques for reducing the product 
of switching activity and load capacitance. Section 6 presents strategies for 
reducing leakage power and shows several examples in detail. Section 7 
summarizes techniques for reducing energy consumption by customizing 
hardware for the target application. Section 8 concludes this chapter.  

2. POWER AND ENERGY CONSUMPTIONS IN 
SOC 

The energy consumption of a system, E, can be defined as the summation 
of both spatial and temporal power consumption of circuits [Weste93] as 
shown in (1) and (2). 
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Figure 6-1. Local Power Dissipation 
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add  r1  r2,r1
sub  r2  r2,r1
jmp  #1024
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Figure 6-2. Power Dissipation vs. Energy Dissipation 
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P: Power consumption of the target system 
Pdynamic: Dynamic power consumption of the target system 
Pleak: Leakage power consumption of the target system 
SA(g): switching activity of gate g (expected number of 0->1 transitions 
per second) 
CL(g): load capacitance of g 
VDD(g): operation voltage of g 
t: Execution time of an application program 
 
We treat the energy consumption, E, as an objective function to be 

optimized, because the energy consumption is close related to the heat and 
reliability of chips, battery life time of portable devices, and the number of 
nuclear and gas turbine power stations required. The main approach is 
detecting a spatial and temporal hot spot and reducing the power 
consumption of the spot. Since the power consumption, P, dynamically 
changes according to the behavior of the software running on a chip and a 
location of the logic gate on the chip as shown in figures 6-1 and 6-2, both 
the software and the hardware should be taken into account for reducing the 
energy consumption of a SoC chip. As one can see from Equations (2.1) and 
(2.2), we can reduce the energy consumption of the SoC chip by lowering 
SA(g), CL(g), VDD(g), Pleak(g) and t. However, lowering these parameters 
sometimes causes an increase of the execution time, a degradation of 
computational quality, system reliability and design flexibility. The key 
point of the energy reduction in SoC design is considering design tradeoffs 
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among energy consumption, performance, computational quality, system 
reliability and design flexibility. The goal is minimizing the energy 
consumption under the constraint of performance, computational quality, 
system reliability and/or design flexibility.  

There is a third source of power consumption, short-circuit power, which 
results from a short-circuit current-path between the power supply and 
ground during switching. Short-circuit power is projected to be constant 
around 10% of total power consumption for succeeding technologies 
[Chatterjee96]. We ignore it throughout this chapter. 

There are many techniques proposed for reducing the execution time t, 
and some of them are very effective for reducing the energy consumption of 
the SoC chip. In this chapter, however, we do not focus on the techniques 
which mainly aim to reduce the execution time. Instead, we summarize 
techniques which consider the execution time as a design constraint. In this 
chapter, we will make a brief survey on approaches to reducing SA(g), CL(g), 
VDD(g), and Pleak(g) in SoC design. We will also clarify the basic strategy 
underlying the approaches and show several examples in detail. 

3. TECHNIQUES FOR LOWERING OPERATING 
VOLTAGE 

Since energy dissipation is quadratically proportional to supply voltage 
(see equation (2.1)), lowering the VDD has a strong impact on the energy 
reduction. However, the following drawbacks should be taken into account; 
1. loss of compatibility to external voltage standards, 
2. performance degradation, and 
3. reliability issues (very low voltage). 

3.1 Compatibility of different voltage standards 

Whenever one circuit has to drive an input of another circuit operating at 
a higher supply voltage, a level conversion is needed at the interface. 
Suppose we have two different voltages, VDH and VDL (VDH > VDL). If the 
output of a circuit operating at VDL is connected directly to the input of a 
circuit operating at VDH, the static current flows in the input cells operating at 
VDH, because the PMOS of the input cells cannot be cut-off as shown in 
Figure 6-3. 

In these days, it is common to have level shifting cells in a cell library for 
accepting multiple signal levels on a chip. Usami et al. proposed a clustered 
voltage scaling technique which assumes two different voltages available 
and finds the optimal voltage assignment to each cell considering the 
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overhead of level shifting cells [Usami95]. Johnson et al. proposed a 
multiple voltage scheduling technique for reducing the energy consumption 
of a data path circuit considering an energy overhead of level shifting 
circuits [Johnson97]. 
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Figure 6-3. Static Current in Low Voltage Circuits 

3.2 Power-Delay Tradeoff 

Although lowering the supply voltage is the most effective way for 
reducing the energy consumption of SoC chip, this causes an increase of 
circuit delay, τ, which determines the maximum clock frequency of 
synchronous circuits. The delay τ of a CMOS circuit can be approximately 
formulated as (3.1), 
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where Vth is the threshold voltage of CMOS transistors used in the circuit.  
Basically, we have the following three ways for lowering the operating 

voltage without sacrificing the performance of the system. 
 

1. Parallelize tasks so that the performance does not degrade even in a low 
voltage operation. We refer this approach as static voltage scaling. 

2. Use the maximum available supply voltage for gates on a critical-path 
and use a lower supply voltage for the other gates. We refer this approach 
as multiple voltage assignment. 

3. Lower the clock frequency and operating voltage when the maximum 
performance is not needed. We refer this approach as dynamic voltage 
scaling 
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3.2.1 Static Voltage Scaling 

Suppose we have four sequential tasks as shown in Figure 6-4 (a) and we 
have two processing units each of which can complete each task per a unit 
time TUNIT when 5.0V is used. If the tasks can be concurrently run on the 
processing units as shown in Figure6-4 (b), the clock frequency and 
operating voltage of the processing units can be reduced by half without 
degradation of system performance. Although switching activities per a unit 
time may increase up to twice, we can reduce the number of cycles and VDD 
by half. As a result, energy consumption can be quarter without performance 
degradation. 
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Figure 6-4. Energy Reduction by Parallel Computation 

A lot of researchers have proposed methods that incorporate 
architectural-level voltage scaling. Chandrakasan et al. proposed HYPER-LP 
which optimizes dataflow graph generated from a target application program 
for reducing the power consumption of data-path circuits [Chandrakasan95]. 
Other methods try to transform the target circuit during scheduling, module 
selection, resource binding, etc., for minimizing power consumption 
[Raghunathan94][Raghunathan95][Coodby94][Kumar95][Martin95]. All of 
the methods mentioned above try to exploit parallelism in the algorithm to 
shorten critical paths so that lower supply voltage can be used. Although this 
is a very attractive approach, parallelization of the computation is generally 
difficult because some computations are inherently sequential. 
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3.2.2 Multiple Voltage Assignment 

Most voltage scaling techniques assume that the circuit operates at a 
single supply voltage. Although substantial energy savings can be achieved 
with a single minimum supply voltage, one cannot always take full 
advantage of available schedule slack to reduce the supply voltage. Since 
path delays in the circuit are not uniform, supply voltage of gates on a non-
critical path can be lowered until the path delay meets with the clock period. 
When there are nun-uniform path delays, the critical path delay determines 
the clock period. In this case, non-critical paths use only part of a clock 
period. The slack time within these clock periods goes to waste. Additional 
voltages make it possible to use the entire clock period. The basic idea is to 
assign lower VDDs to the non-critical paths in a way that the delays of the 
paths meet with the clock period as shown in Figure6-5.  

Low VDD

High VDDCritical Path

Level Converters

 

Figure 6-5. An Example of the Multiple Voltage Assignment 

Usami et al. proposed a voltage assignment algorithm which finds the 
optimal voltage assignment to each cell considering a level shifting cell 
between different voltages [Usami95]. The algorithm performs backward 
graph-traversal for a given netlist from the primary outputs toward the 
primary inputs using the Depth-First-Search (DFS) algorithm. Each time the 
algorithm visits a cell and tries to replace a high VDD cell with low VDD cell. 
If the timing constraint is still met even after the replacement, the cell is 
replaced. This process is repeated until all the cells are visited. Their 
experiments demonstrated that the energy consumption can be reduced by 
20% using two voltages 5V and 3V. 

The idea can be extended to a multiple voltage datapath scheduling 
technique in high level synthesis. The main idea is to minimize energy 
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consumption by assigning operations to time steps with various supply 
voltages under a given time or resource, or both constraints. We use Figure 
6-6 to illustrate the multiple-voltage scheduling technique. Assume the 
energy consumption of an addition operation is 1.0 at 1.2V and 2.0 at 1.7V. 
It requires 2 time steps at 1.2V but only 1 step is sufficient when 1.7V is 
applied. The area required for the adder module is 1.0. Similarly, the energy 
consumption of a multiplication operation is 2.0 at 1.2V and 4.0 at 1.7V. It 
requires 2 time steps and 1 step at 1.2V and 1.7V, respectively. The area 
required is 2.0. Suppose we have a control flow graph as shown in Figure 6-
6 (a). It needs 3 steps and the energy consumption is 14. Since we can share 
the resources, we only need one adder circuit and one multiplier circuit in 
this case. As a result, the area required is 3. Since operations *1 and +2 are 
not located on a critical path, we can assign lower voltage to them as shown 
in Figure 6-6 (d). In this case, energy consumption can be reduced to 11.  If 
we relax the time constraint to 5, we can reduce the energy consumption to 8 
as shown in Figure 6-6 (b). This idea is extended in the following papers 
[Johnson97][Raje95][Lin97][Chang96] so as to fit with more practical 
situations. 
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Figure 6-6. Multiple-Voltage Scheduling in High Level Synthesis 

Raje et al. proposed a datapath scheduling technique which schedules the 
datapath operations, selects voltages from a predetermined set of voltages 
and assigns the voltages to the datapath operations simultaneously so as to 
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minimize power consumption [Raje95]. Lin et al. used and integer linear 
programming approach to schedule datapath operations, choose voltages 
from a list of candidates, and assign voltages to each operations considering 
timing and resource constraints together [Lin97]. Johnson et al. used an 
integer linear programming approach to choose voltages from a list of 
candidates, schedule datapath operations, and assign voltages to each 
operations considering the energy overhead of level converters [Johnson97]. 
Chang et al. proposed a dynamic programming approach to optimize non-
pipelined datapaths and modified list scheduler to handle functionally 
pipelined datapaths [Chang96]. 

3.2.3 Dynamic Voltage Scaling 

More aggressive approach is dynamic voltage scaling. Since the 
computational load is not constant during the execution of given tasks, we 
can control computational power according to the computational load. The 
basic idea is assigning different operating voltages to the tasks in a way that 
any of the tasks does not violate a timing constraint. The assignment can be 
done statically or dynamically. 
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Figure 6-7. Motivational Example 
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Figure 6-7 shows motivational example of the dynamic voltage scaling. 
Suppose we have a processor which uses three different supply voltages, 
5.0V, 4.0V, and 2.5V. A task which takes 1 billion cycles to complete runs 
on the processor. The energy consumptions for the task are 10nJ/cycle, 
25nJ/cycle and 40nJ/cycle at 2.5V, 4.0V and 5.0V, respectively. The 
computational speeds of the processor at 5.0V, 4.0V, and 2.5V are 50 
million cycles per second, 40 million cycles per second, and 25 million 
cycles per second, respectively. This assumption follows the Equations (2.1), 
(2.2) and (3.1). 

In Figure 6-7 (A), the processor uses the maximum supply voltage, 5.0V, 
for the entire execution of the task. In this case, the total energy consumption 
is 40J. If the processor uses 2.5V and 5.0V in a way that the completion time 
of the task meets with a given time constraint, the energy consumption can 
be reduced to 32.5J as shown in Figure 6-7 (B). Figure 6-7 (C) shows the 
best case of this example. If the processor uses a single supply voltage which 
adjusts the completion time just to the time constraint, the total energy 
consumption is minimized. 

In [Ishihara98], Ishihara and Yasuura proved the following theorem; if 
the processor uses a voltage, videal, and completes a given task just at a timing 
constraint Tconst, the videal is the ideal voltage which minimizes energy 
consumption for the task. The example shown in Figure 6-7 demonstrates 
that reducing the energy consumption of the processor is fundamentally 
equivalent to exploiting idle intervals of the processor. Thus, we should first 
identify sources of idle intervals to efficiently reduce the power consumption 
of the processor. There are three major sources as follows; 

 
1. The first one occurs when a system is not tightly designed for a given 

processor. In other words, there is a room for design change or 
improvement such as introducing more tasks, replacing certain tasks with 
their version ups, using lower performance processors and so on.  

2. The second source comes from a nature of a fixed-priority scheduling. 
The idle intervals inhere in the fixed-priority scheduling, because the 
priorities statically assigned to the tasks are not always optimal for the 
tasks.  

3. The third source comes from run-time variation of execution time. Since 
most of tasks complete its execution much earlier than the worst case 
execution time, the slack time will be yielded depending on input data for 
the task. 

 
Consider the three tasks given in Table in Figure 6-8. Ti, Di and Ci denote 

period, deadline and the worst case execution time (WCET) of each task, 
respectively. Priorities are assigned in row order as shown in the fifth 
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column of the table. Assume all tasks are released simultaneously at time 0. 
A typical schedule, which assumes that tasks run at their WCETs (Ci), is 
shown in Figure 6-8 (a). Note that this system is designed to meet its 
schedulability. For example, if τ2 takes a little longer to complete, τ3 would 
miss its deadline at time 100. Even though the system is tightly designed, 
there are still some idle time intervals, as shown in Figure 6-8 (a). At time 
160 in the figure, when the request for τ2 arrives, the run-time task scheduler 
knows that there will be no requests for any tasks until time 200, which is 
the time when requests for τ2 and τ3 will arrive. As a consequence, we can 
save power by reducing the speed of the processor by lowering the clock 
frequency and supply voltage. When tasks are completed earlier than their 
WCET, we have more chances to apply the same mechanism. For the 
example of Figure 6-8 (b), we can slow down the processor at time 50 
because the first instances of τ2 and τ3 complete their execution earlier than 
the second request for τ1 arrives. Since the execution time of each task 
frequently deviates from its WCET during the operation of the system, we 
have many chances to slow down the processor as shown in Figure 6-8. 
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Figure 6-8. An Example of Task Scheduling on a Variable Voltage Processor 

Weiser et al. proposed a scheduling method for dynamically variable 
voltage processors [Weiser94]. Yao et al. proposed real-time task scheduling 
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methods for the dynamically variable voltage processors [Yao95]. Both of 
them assume a fixed amount of execution time and exploit the first source of 
idle intervals only.  

In [Shin99], Shin et al. proposed a fixed-priority scheduling method 
which exploits the second and third sources of idle intervals mentioned 
above. They extended this work and proposed off-line and on-line 
algorithms for exploiting all of idle intervals mentioned above [Shin00]. The 
off-line algorithm finds the lowest possible voltage which guarantees time 
constraints of all tasks. The on-line algorithm dynamically varies the 
processor speed along with the supply voltage in order to exploit execution 
time variations and idle intervals.  

In [Okuma99], Okuma et al. proposed a real-time task scheduling 
algorithms for the dynamically variable voltage processor. Their approach 
based on the Earliest Deadline First (EDF) algorithm. Similar to [Shin00], 
their approach exploits the first and third sources of the idle intervals 
mentioned above. However they assume to choose voltages from a limited 
number of candidates, while [Shin00] assumes to use continuous values of 
voltage and clock frequency which is practically impossible. 

3.3 Power-Reliability Tradeoff 

Since the voltage scaling technique reduces voltage margins, it is 
impossible to discuss about low-power design techniques without 
considering reliability issues. Most circuit designers have to determine 
supply voltage of the target circuit to ensure that all circuits operate correctly 
even in the worst-case operating environment. There are three measure 
voltage margins as follows [Austin04]. 

 
1. Process Margin 

This ensures that performance uncertainties resulting from manufacturing 
variations in transistor do not prevent slower devices from completing 
computation within a clock period. 

2. Ambient Margin 
This ensures correct operation at the worst-case temperature. 

3. Noise Margin 
This protects against a variety of noise sources that introduce uncertainty 
in supply and signal voltage levels, such as di/dt noise in the supply 
voltage and cross-coupling noise in logic signals. 
 
The sum of these voltages defines the minimum supply voltage that 

ensures correct circuit operation even in the worst-case condition. As 
mentioned before, the energy consumption of CMOS circuit is quadratically 
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proportional to the supply voltage. Therefore, it is clear that there is a trade-
off between reliability and energy consumption. 
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Figure 6-9. Dynamic Voltage Scaling for Reliable Data Transmission 

Worm et al. proposed an interconnect system which uses low-swing 
signaling, error detection codes, and a retransmission scheme [Worm02]. 
This technique optimally finds the interconnect voltage swing and frequency 
with subject to workload requirements and signal to noise conditions. The 
most straightforward way to reduce the energy consumption for the 
communication is lowering the voltage swing of signals propagated through 
interconnects. This however causes an increase of sensitivity to noise 
sources because of the decreased noise margins. Their technique monitors bit 
error rates of the interconnect on the fly as shown in Figure 6-9 and 
dynamically finds the optimal swing level which minimizes energy 
consumption while satisfying the reliability constraint. Their simulation 
results show that the energy consumption can be reduced by 56% over a 
conventional interconnect with more robustness to large variations in actual 
workload, noise and technology quality. 

Bertozzi et al. evaluated energy efficiency of several error resilient 
techniques such as error correcting codes, a data retransmission technique 
and so on [Bertozzi02]. Their experiments demonstrated that retransmission 
strategies are more effective than the error-correction-based technique in 
terms of energy efficiency.  

Austin et al. proposed Razor, a voltage scaling technique based on 
dynamic detection and correction of circuit timing errors [Austin04]. The 
technique eliminates unnecessary voltage margins that the traditional worst-
case design methodologies require. In some cases, computations may fail 
and require additional time and energy for recovery. However, the overall 



6. Energy Management Techniques for SoC  Design 15
 
computation consumes significantly less energy than traditional worst-case 
design. 

3.4 Commercial Products 

There has been a lot of power management software released before. 
Early power management software used the BIOS to determine whether a 
device had been idle long enough to shift a sleep state. With the introduction 
of Advanced Power Management (APM) the OS began to control the power 
settings and timings. With the Advanced Configuration and Power Interface 
(ACPI) specification, all power management moved from the BIOS to the 
hardware and operating system. In today’s low-power oriented computer 
systems, chipsets support ACPI power and thermal management functions to 
control various system-level and processor-level power and sleep states, and 
they also still support APM. However, neither APM nor ACPI supports 
dynamic voltage scaling of chipsets. Recently, many computer systems 
including laptop PCs, PDAs, cellular phones, and etc. introduced the 
dynamic voltage scaling technique. The following power management 
software support dynamic voltage scaling.  
 

• SpeedStepTM, Extended SpeedStepTM (Intel) 
• PowerNow! TM (AMD) 
• LongHaulTM (VIA Technologies) 
• LongRunTM, LongRun2TM (Transmeta) 
• SmartReflexTM (TI) 
• IEMTM (ARM) 
 
Most of the above software products are based on the dynamic voltage 
scaling techniques mentioned in this section. Some of them also support a 
dynamic body biasing technique which can dynamically control the 
threshold voltage of transistors for reducing the leakage power consumption 
of a chip. The detailed explanation of the dynamic body biasing technique 
will be provided in Section 6. 

3.5 Conclusions 

In this section we addressed several techniques for lowering supply 
voltage of chips considering voltage compatibility, a power-delay tradeoff 
and a power-reliability tradeoff. As mentioned above, lowering supply 
voltage has the biggest impact on power reduction. The techniques can be 
applied to many kinds of SoC implementations like multi-chip module 
(MCM), network on chip (NoC), system in package (SiP), chip multi 



16 Chapter 6
 
processor (CMP) and so on. However, it becomes more difficult in future to 
control supply voltage due to the reliability issues. Breakthrough will be 
appeared if we can tolerate negative effects of process variations, 
temperature variations, soft errors and noises even in ultra low-voltage 
operation. 

4. TECHNIQUES FOR REDUCING SWITCHING 
ACTIVITY 

Lowering the switching activity is a very promising way of decreasing the 
power consumption. There are numerous researches on this issue. In this 
section, we introduce system level approaches for reducing the switching 
activity. System level switching activity reduction can be categorized as 
follows: 
• Turn off unused HW modules. 
• Adjust datapath, the bit width of buses and operational units in a system. 
• Trade precision for low power (Use narrow bit width). 
• Compiler based instruction scheduling 

Practical strategies we pick up in this section are shutting down unused 
modules, adjusting datapath width to minimize power consumption and 
compiler optimization techniques for reducing the switching activity.  

There are two main shutting down strategies: clock gating and power 
gating as summarized in Figure 6-10. Power gating is mainly used for 
reducing leakage power. Section 6 describes the power gating in more detail. 
The best-known technique for reducing the switching activity is clock gating. 
Clock network power can account for as much as 75 percent of the total 
switching power of a chip, and sequential cells driven by clocks can account 
for as much as 70 percent of the total clock power. Clock gating essentially 
disables the clock to a circuit to save power by both preventing unnecessary 
activity in logic modules and by eliminating power dissipation on clock 
network. Using a simple AND or OR gate (depending on the edge on which 
flip-flops are triggered) with the enable and clock signals as inputs produces 
a gated clock as output. One can also employ a level-sensitive latch to hold 
the enable signal from the active edge until the inactive edge of the clock. 
Clock gating can be applied in either fine-grained or coarse-grained manner. 
Fine-grained allows us to reach miscellaneous small units in clock sinks and 
aggressively save their dynamic power even for a few cycles. Coarse-grained 
gating saves power from higher level of the clock tree by removing all clock 
switching from its down-stream units. 
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Figure 6-10. Comparison of Clock Gating and Power Gating 

 Another strategy for reducing switching activity is datapath width 
adjustment. Since datapath width, the bit width of buses and operational 
units in a system, strongly affects the size of circuits and memories in a 
system, the power consumption of a system also depends on the width of the 
datapath. In design of embedded systems and System-On-a-Chip (SOC), 
designers have to consider the trade off among system performance, cost and 
power consumption. Bitwidth of data, the length of data, computed in the 
system is one of the most important design parameters related with 
performance, cost and power of the system. The bitwidth of datapath and the 
size of memories strongly depend on the bitwidth of data. Providing more 
datapath width for computation than required, will consume more dynamic 
power and leakage power than necessary by the extra bits. 

Typical algorithms defined in C/C++ or SystemC will initially not contain 
definitions of the actual bit width for operations and storage elements. For 
algorithm selection, the design team often relies on floating point and 
straight integer calculations. Based on the stimulus which is applied to the 
design under optimization users can assess the minimum and maximum 
values on specific operations and then choose the optimal bit width 
accordingly. This allows users to understand the impact of bit width on 
energy and is a step towards trade offs between quality, which may be higher 
in a video application using higher bit width, vs. energy which decreases 
with lower bit width in the operations. In quality driven design, both higher 
and lower bits of data can be reduced. From the requirements on the output 
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quality, lower bits of data may be omitted in the datapath width adjustment 
(See Figure 6-11). This means that there is potential for further energy 
reduction by decreasing computation accuracy. 

int func(v1, v2) 

{ 

  int  x0, x1, x2, x3, x3; 

  char xdfgp,  leergre; 

 

  x0 = v1 + v2; 

  x1 = v2 – v1; 

  df   0 * 1  

 
Variables 

Datapath 

D/A 

Output 

ALU 

Upper lower 

Program 

 

Figure 6-11. Datapath Adjustment 

 In this section, we describe dynamic power management by using the 
shutting down strategy, the datapath width adjustment strategy, and 
instruction scheduling. 

4.1 Dynamic power management (DPM) 

System level dynamic power management (DPM) has gained considerable 
attention in recent years as a way to save energy in devices that can be 
turned on and off. DPM dynamically reconfigures systems to provide the 
requested services and performance levels with a minimum number of active 
components or a minimum load on such components. The fundamental 
premise for the applicability of DPM is that systems and their components 
experience non-uniform workload during operation time and that it is 
possible predict, with a certain degree of confidence, the fluctuations of 
workload. There are two power reduction methodologies when idle modes: 
voltage scaling with frequency scaling and clock gating. Only clock gating 
methodology is introduced.  

The control procedure is often called policy. An example of a simple 
policy, ubiquitously used for laptops and palmtops, is the timeout policy, 
which shuts down components after a fixed inactivity time, under the 
assumption that it is highly likely that a component remains idle if it has 
been idle for the timeout time. Power could be shut off or gated to functional 
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blocks when operating in a standby mode and restored as needed. The gated 
circuit would not dissipate any power when turned off. Additional circuit 
would be required to monitor the need for these functional blocks. A 
problem with power gating is the latency between when the signal to turn a 
unit on arrives and when the unit is ready to operate. Retention flip-flops on 
an isolated power supply could be used to save the logic state of all 
sequential elements when a chip is powered down, eliminating the need to 
reinitialize the device when it comes out of standby mode. Some products 
support multiple levels of standby (soft off, nap and sleep) which differ in 
terms of the amount of power saving and latency (See Figure 6-12). 

Active
mode

Standby
(Idle)
mode

Sleep
mode

Power: 400mW Wait for interrupt
Power: 50mW

Wait for wake-up event
Power: 0.16mW

10us

10us

160us

90us
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Figure 6-12. Dynamic Power Managament 

 

4.2 Datapath width adjustment (Bit-width optimization) 

Processor-based systems treat various data with different bit width. It is 
efficient in power reduction not only to determine datapath width statically 
but also to control the active datapath width dynamically. 

First, we introduce static optimization, which adjusts datapath width. Bit-
width analysis is performed to extract information on the required bit width 
of variables in programs and algorithms. For hardware design, using the 
result of bit-width analysis, one can determine the length of registers, the 
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size of operation units, and the width of memory words on the datapath of a 
system to minimize the meaningless power consumption by the useless bits. 
Shorter registers and operation units reduce switching activity and the 
leakage of extra bits on the datapath. However, the trade-off between power 
consumption and execution time needs to be resolved. Generally, narrowing 
the datapath width reduces the area and power of the processor, but degrades 
the performance. The number of execution cycles increases, since some 
single-precision operations should be replaced with double or more precision 
operations in order to preserve the accuracy of the computation. Single-
precision operations are those whose precision is smaller than that of the 
datapath width. For example, an addition of two 32-bit data is a single-
precision operations whose datapath width is equal to or greater than 32 bits, 
while it is a double precision operation on 16-bit processors. Changing the 
datapath width affects the size of data memory (RAM) and instruction 
memory, which is mostly implemented by ROM in embedded systems. Let 
us consider a program including two variables x and y, and assume that two 
variables x and y require at most 18 bits and 26 bits, respectively (see Figure 
6-13). When the datapath width is 32 bits, two words are required to store 
these two variables, and the amount of the data memory is 64 bits. Since the 
minimum bit size required to store the variables is only 44 bits (18+26), 20 
bits of the memory (about 30%) are unused. By reducing the datapath width 
to 26 bits, one can reduce the unused bits to 8 bits. Unused bits, however, 
increase to 31 bits, if a 25-bit datapath is adopted, because y requires two 
words. When the datapath width is 9 bits, two words and three words are 
required for x and y, respectively, and the unused area is only 1 bit. Many 
unused bits in the data memory can be eliminated by datapath-width 
optimization. 
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main()
{
  int18 x;
  int26 y;
  ..........
}

32 bits x 2 words = 64 bits

26 bits x 2 words = 52 bits

9 bits x 5 words = 45 bits

Datapath width is 32

Datapath width is 26

Datapath width is 9

 

Figure 6-13. An Example of Datapath Width Adjustment 

 
Second, dynamic approach, which control active datapath width, is 

introduced. This approach is called value-based clock gating. There is a fact 
that “narrow-width” data is common not only in multimedia codes, but also 
in more general workloads. For example, over half the integer operation 
executions require 16 bits or less on a 64-bit processor. Basic mechanism to 
reduce power consumption is operand-value-based clock gating to turn off 
portions of memories, buses, and arithmetic units that will be unused by 
narrow-width operations. This optimization results in around 50% reductions 
in the data bus and integer unit power consumption. By Appling this for data 
memory, 80% power reduction can be achieved. However, this approach 
requires hardware cost for detecting dynamically operation widths and 
turning off the unused units. As shown in Figure 6-14, if there is a 7-bit 
width data, only the lower data memory (D0) is accessed. 
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Figure 6-14. A Data Memory Example Using Operand Based Clock Gating 

  

4.3 Compiler Optimization 

Compiler optimization is also effective for reducing the switching. In 
[Tomiyama1998], they proposed an instruction scheduling technique to 
reduce power consumption due to off-chip driving. Their technique reduces 
transitions on a data bus between an on-chip cache and a main memory, and 
as a result, power consumed by off-chip drives in the main memory is 
reduced. Let us consider an example in Figure 6-15, and assume 8-bit 
instruction width and 32-bit cache line size. There are four instructions (a)-
(d) in the memory block. When the memory block is sent to the cache, the 
instruction (a) is sent first. At the time, four bits switch from high- to low-
level. At the next cycle, (b) is sent to the cache and six bits switch to 
opposite level. As a result, the cache miss invokes twenty four transitions 
totally in the data bus. If changing the positions of two instructions (b) and 
(c) keeps the meaning of the program, it reduces bus transitions by 25%, 
from twenty four to eighteen bus transitions (See Figure 6-15). Thus the 
instruction scheduling can reduce transitions on the bus. Tomiyama et al. 
reported that the scheduling algorithm achieves significant reduction in 
transitions on the data bus, up to 28% of reduction, and runs efficiently. 
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Figure 6-15. An Example of Instruction Scheduling for Low Power 

4.4 Commercial Products 

 
The Pentium 4 processor uses the clock gating technology. Every unit on 

the chip has a power reduction plan, and almost every functional unit block 
contains clock gating logic. 

 
 

4.5 Conclusions 

In this section, we summarized system level switching activity reduction 
strategies. The basic strategies are clock gating and datapath width 
adjustment. Analyzing statically and dynamically system requirements, 
unnecessary switching activity reduction can be achieved. 

5. TECHNIQUES FOR REDUCING THE PRODUCT 
OF SWITCHING ACTIVITY AND A LOAD 
CAPACITANCE 

A major contributor to the system budget is the memory-processor 
interface. Ko et al. mentioned that the power dissipation of an external 
memory access is at least an order of magnitude higher than that of an on-
chip access [Liu94][Ko98]. For this reason, a lot of techniques for reducing 
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energy consumption of the off-chip buses have been proposed. The basic 
idea is reducing the switching activities (SA) of hardware modules whose 
load capacitance (CL) is large even if the SAs of low-CL modules are 
increased. Suppose we have a processor system including a CPU core, cache 
memories, an off-chip memory, and a processor-memory interface as shown 
in Figure 6-16. The energy dissipation of the memory-processor interface, 
Einterface, can be expressed by (5.1), 

( overheadmemorydataaddressinterface EEEENE +++⋅=  (5.1) 

where N, Eaddress, Edata, Ememory, and Eoverhead, represent the number of memory 
accesses, the energy dissipation in address buses per access, that in data 
buses per access, that in a memory module per access and energy overhead 
per access, respectively. There may exist the energy overhead if the 
memory-processor interface is modified for reducing the energy 
consumption in off-chip buses. As one can see, we can reduce the energy 
dissipation of the processor-memory interface by decreasing N, Eaddress, Edata, 
Ememory, and Eoverhead. The problem of minimizing the total energy 
consumption of the processor system is basically equivalent to finding the 
best tradeoff point between on-chip computational energy and off-chip 
communication energy. 

CPU
core

D-Cache
Memory

Eaddress

Ebuses

Ememory

Eoverhead

I-Cache

 

Figure 6-26. Energy Dissipation of Processor-Memory Interface 

There are the following three major approaches for reducing the energy 
required for the communication between a memory and a processor.  
• Cache miss reduction 
• Bus encoding 
• Code compression 
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5.1 Cache Miss Reduction 

Since cache miss rate is associated with the number of off-chip memory 
access, reducing cache miss rate leads to a reduction of the energy 
dissipation for the off-chip memory accesses. The most straightforward way 
for reducing the cache miss rate is to employ larger cache memory on a chip. 
Many techniques have been proposed for optimizing cache configuration 
considering tradeoff between energy consumption of off-chip memory and 
cache memory [Su95][Hicks97][Li98][Shine99][Malik00]. All these 
techniques are based on the fact that while a bigger cache consumes more 
energy per access, it can reduce the number of cache misses and as a result 
can reduce the energy consumption for the off-chip accesses. Suppose we 
have a processor with on-chip cache memory which can be resized for the 
target application as shown in Figure 6-17. 

Caches

CPU core Program Memory
  (Flash Memory)

Resizable Cache

Processor

 

Figure 6-17. An Example of Resizable Cache 

If we optimize the cache size for the target application, the energy 
consumption for memory accesses can be drastically reduced. For example, 
based on the experiment in [Ishihara05], the optimal cache size for the 
SPEC95 benchmark program, “Compress”, is 2kB as shown in Figure 6-18. 
If we use the 4kB cache instead of 2kB power consumption of the cache 
becomes very large. Conversely, if the 1kB cache is used, the power 
consumption of off-chip memory becomes huge due to the large number of 
cache misses. In the optimal case, the power consumption can be reduced by 
85% compared to the result for 1kB cache memory. Note that the leakage 
power of the cache memory is assumed to be 10% of its dynamic power 
consumption. 
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Figure 6-18. Cache Optimization for Low Power 

Li and Henkel proposed Avalanche framework which simultaneously 
evaluates the tradeoffs of energy dissipations of caches and main memory 
[Li98]. The trade-off between system performance and energy dissipation is 
also explored in the framework. Their experiments demonstrated significant 
improvements (up to 95% energy saving) in energy dissipation. 

Another approach to reducing the number of cache misses is a compiler-
based approach [McFarling89][Hwu89][Tomiyama96][Panda96] 
[Hashemi97][Ghosh99]. The idea is to modify the place of basic blocks, 
procedures, or global variables in the address space so that the number of 
cache conflict misses is minimized. This can significantly reduce the number 
of cache misses and energy consumption of memory subsystems. We first 
explain the idea behind the typical code and data placement technique. 
Consider a direct-mapped cache of size C (= 2m words) whose cache line 
size is L words, i.e., L consecutive words are fetched from the main memory 
on a cache read miss. In a direct-mapped cache, the cache line containing a 
word located at memory address M can be calculated by (⎣M/L⎦ mod C/L). 
Therefore, two memory locations Mi and Mj will be mapped onto the same 
cache line if the following condition holds, 

0  mod  =⎟
⎠

⎞
⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢−⎥⎦

⎥
⎢⎣
⎢

L
C

L
M

L
M ji

 (5.1) 

Several code and data placement techniques have used the above formula 
[5.6-5.13]. Assume a direct mapped instruction cache with 4 cache-lines, 
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where each cache-line is 32 bytes as shown in Figure 6-19. Functions A, B, 
C and D are placed in the main memory as shown in the left side of Figure 6-
19. If functions A, B, and D are accessed in a loop, conflict misses occur 
because A and D are mapped onto the same cache line. If the locations of C 
and D are swapped as shown in the right side of Figure 6-19, the cache 
conflict is resolved. Code placement techniques modify the placement of 
basic blocks or functions in the address space so that the total number of 
cache conflict misses is minimized. Similar to the code placement techniques, 
data placement techniques modify the placement of global variables in the 
address space so as to reduce the number of data cache misses. 

......

cache line memory block
(32 bytes)

A function
(104 bytes)

(L=32 bytes)

S=4

main memoryI-cache

conflict misses
in cache-line 1  

Figure 6-19. An Example of Code Placement 

Kulkarni et al. proposed a data placement algorithm which finds the 
optimal locations of global variables in the main memory [Kulkarni01]. The 
algorithm also explores different cache sizes considering trade-offs among 
performance, energy consumption and chip area. In the first step, they 
measure the cache miss rates for different cache sizes. Once the miss rates 
are obtained, the algorithm performs data placement for each cache size and 
estimate the energy consumption including energies for on-chip accesses and 
off-chip accesses. Depending on the design constraints, the designer can 
either choose a lower power solution with some overhead in size and vice 
versa. Their experiments demonstrated that the total energy consumption can 
be reduced by 10.6% with 26% performance overhead and 7% area overhead. 

 Scratchpad memory can be used as a design alternative for the on-chip 
cache memory. Current embedded processors particularly in the area of 
multimedia applications and graphic controllers have on-chip scratchpad 
memories. In cache memory systems, the mapping of program elements is 
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done during runtime, while in scratchpad memory systems this is done by 
the programmer or the compiler. Unlike the cache memory, the scratchpad 
memory does not need tag search operations and, as a result, it is more 
power efficient than the cache memory if programmers or compilers can 
optimally allocate code and data on the scratchpad memory.  

Ishihara and Yasuura proposed a code allocation technique which finds a 
size of an on-chip scratchpad memory and a code allocation to the 
scratchpad memory simultaneously so as to minimize the total energy 
required for fetching instructions [Ishihara00]. Their experiments showed 
that the energy consumption for the instruction fetching can be reduced by 
50%. Benini et al. presented a novel solution for the design hierarchy of low-
power embedded systems [Benini00]. The idea is mapping the most 
frequently accessed data onto a small memory, called application-specific 
memory (ASM) which is placed vary close to the processor. The 
experimental results on a set of typical embedded programs have shown that 
the energy consumption can be reduced by 68% with respect to equivalent 
caches having different sizes, organizations and configurations. Banakar et al. 
proposed an approach for selection of on-chip memory configuration from 
various sizes of cache and scratch pad memories [Bankar02]. Their 
experiments show that scratchpad based compile-time memory outperforms 
cache-based run-time memory on almost all aspects. For example, the total 
energy consumption of scratchpad based systems is less than that of cache-
based systems by 40% on an average. 

5.2 Bus Encoding 

Bus encoding techniques reduce communication power by changing the 
format of the information in a way that the total communication power is 
minimized. The basic strategy is to reduce switching activity of off-chip 
buses by encoding data transmitted between a processor and a memory. We 
have to consider a tradeoff between the energy consumed in buses and the 
energy overhead of encoding and decoding circuits. Suppose we have an 
original data format, Format-A, and low-switching format, Format-B as 
shown in Figure 6-20.  Energy consumption for sending data using Format-
A and Format-B is EA and EB, respectively. The energy overhead for 
encoding and decoding (i.e., translating Format-A into Format-B and vice 
versa) is Eoverhead. Bus encoding techniques are effective only when the 
following inequality holds, 

overheadEEBEA +> . 
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Figure 6-30. Low-Power Bus Encoding 

The bus-invert coding is one of the most popular approaches [Stan95]. In 
the bus-invert coding, if the Hamming distance (the number of switched bits) 
between the new pattern to be transferred and the old one currently on the 
bus is larger than half the bus width, the new pattern is transferred with each 
bit inverted. An additional invert bit is used to inform the receiver side 
whether the pattern is inverted or not. The experiments demonstrated that the 
bus-invert coding technique decreases the I/O peak power dissipation by 
50% and the I/O average power dissipation by 25%. 

For instruction address patterns, where consecutive patterns are often 
sequential, the Cray code is efficient [Su94]. The Gray code has only one-bit 
difference in consecutive number for addressing. Due to locality of program 
reference, Gray code addressing can significantly reduce the number of bit 
switches. The experimental results showed that for typical programs running 
on a RISC microprocessor, using Gray code addressing reduce the switching 
activity at the address lines by 30-50% compared to conventional binary 
code addressing. 

In the T0 code [Benini97], the bus transitions are further reduced by 
freezing the address lines when consecutive patterns are detected to be 
sequential. An extra bus line is employed to inform the receiver side whether 
or not the current pattern is sequential.  

In special purpose applications, where the information about the 
sequence of patterns is available a priori, the characteristics of patterns can 
be exploited to efficiently reduce bus transitions. The Beach Solution 
[Benini97-2] makes clusters of bus lines based on statistical information of 
address patterns and then generates an encoding function for each cluster 
such that the encoded version of each cluster results in less transitions. 

For data address patterns which are less sequential than instruction 
address patterns and less random than data patterns, the Partial Bus-Invert 
code [Shin98] performs better. It applies the bus-invert coding to a pre-
defined sub-group of bus lines thereby avoiding unnecessary inversion of 
relatively inactive and/or uncorrelated bus lines. The experiments on 
benchmark examples indicate that the partial bus-invert coding reduces the 
total bus transitions by 62.6% on the average, compared to that of the 
unencoded patterns. 
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5.3 Code Compression 

An alternative approach to bus encoding is code compression. The basic 
strategy is to use narrow instruction codes for reducing the switching activity 
when the instructions are transmitted from a program memory to a CPU.  

One of the best known instruction compression approaches is the 
“Thumb” instruction set of the ARM microprocessor family [Segars95]. 
ARM cores can be programmed using a reduced set of 16-bit instructions 
instead of standard 32-bit RISC instructions, which reduces required 
instruction memory occupation and bandwidth by a factor of 2. 

Yoshida et al. proposed a code compression technique as depicted in 
Figure 6-21 [Yoshida97]. Suppose we have an object code and the number 
of distinct instructions appeared in the code is N. In this case, we can express 
all those instruction codes using ⎡ -bit binary patterns. Since the 
firmware running on a given embedded processor normally uses only a small 
subset of the instructions supported by the processor, a 

⎤Nlog

⎡ ⎤Nlog -bit is much 
smaller than original instruction width. As a result, we can reduce the energy 
consumption for fetching instruction. According to this idea, the object code 
is stored in memory in compressed format, i.e., each instruction is replaced 
with a ⎡ -bit binary pattern which is in one-to-one correspondence 
with the original instruction. Every time an instruction is fetched from the 
program memory, it is decompressed (i.e., the original format is restored) 
using an instruction decompression table (IDT) and then passed to the 
processor’s decoding logic. This architecture is motivated by the fact that 
software programs normally use only a subset of all possible instructions 
offered by the processor’s instruction set. Since 

⎤Nlog

⎡ ⎤Nlog  (where N is the 
number of distinct instructions) is usually much smaller than the original 
instruction width, this approach reduces both memory energy and bus power 
consumption.  
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Figure 6-21. An Example of Code Compression 

Although, in principle, the solution depicted above offers good 
opportunities for energy reduction, it often happens that the number of 
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distinct instructions, N, used by a program is not small. In such a situation, 
the size of the Instruction Decompression Table (IDT) becomes very large, 
and therefore area and power dissipation of the IDT would be very large as 
well. As a solution of the problem, Benini et al. proposed a selective 
instruction compressing technique [Benini99]. Their idea is to compress only 
a subset of fixed cardinality (256 elements) of the instructions used by a 
program, namely, those that are executed more often. This approach is 
motivated by the observation that the 256 most frequently used instructions 
are always executed for at least 50% and up to 99.99% of the time. The idea 
can be implemented as shown in Figure 6-22. This approach guarantees a 
fixed and limited size for the IDT and reduces energy and area overhead for 
decompressing the instructions. 
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Figure 6-22. Selective Code Compression 

5.4 Conclusions 

We addressed several techniques for lowering switching activity of off-
chip buses considering tradeoff between the power consumption for on-chip 
computation and that for off-chip communication. Other than the techniques 
addressed in this section, there has been proposed a lot of techniques which 
reduce switching activity of high capacitance nodes. Specifically, circuit 
level approaches like logic synthesis techniques, placing and routing 
techniques, and high-level synthesis techniques which reduce transitions of 
high capacitance modules are well studied. On the other hand, there is much 
scope left to study on source-level design techniques which modify an 
application program in a way that power-hungry hardware components are 
less frequently used without sacrificing performance, computational quality 
and system reliability.  
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6. TECHNIQUES FOR REDUCING REAKAGE 

POWER 

For mobile/portable devices with a high standby-to-active ratio, leakage 
current may be the dominant factor in determining overall battery life. The 
three primary sources of leakage current (See Figure 6-23) are sub-threshold 
(Isub) or source-to-drain leakage current which grows exponential with 
lowering Vt and increasing temperature, reverse bias junction band-to-band 
tunneling current (Ib-b), and gate oxide tunneling current (Igate). Reducing of 
gate oxide thickness results in an increase in the field across the oxide. The 
high electric field coupled with low oxide thickness results in tunneling of 
electrons from substrate to gate and also from gate to substrate through the 
gate oxide, resulting in the gate oxide tunneling current. Most of the interests 
have focused on the leakage caused by sub-threshold current and gate oxide 
tunneling current in terms of system level leakage management. Due to the 
leakage mechanisms described above, leakage current increases dramatically 
in the scaled devices. Particularly, with reduction of threshold voltage to 
achieve high performance, leakage power becomes a significant component 
of the total power consumption in both active and standby modes of 
operation. Since in the sleep mode Igate will likely be dominant, two 
approaches may be considered: (1) reduce the threshold voltage of the sleep 
device somewhat (e.g. 100mV) to minimize the delay penalty associated 
with an extra series device; this allows the use of smaller sleep devices to 
simultaneously reduce Igate, dynamic power, and layout area while not 
penalizing standby mode leakage since Isub << Igate or (2) incorporate a multi-
Tox process was proposed.  

A key difference between the state dependence of Isub and Igate is that the 
magnitude of Isub primarily depends of the number of on vs. off transistors in 
a stack, while Igate also depends strongly on the position of the on/off 
transistors. 
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Figure 6-23. Sources of Leakage Current 

Leakage power can be expressed as follows [6-2]: 
 

DDleakleak VInP ⋅⋅= ,  (6-1) )e)(V/V(I THDD V/V
TTHleak

−−∝ 1α
 

where n indicates the number of transistors, VT denotes thermal voltage 
which is about 25mV at room temperature and increases linearly as 
temperature increases. According to this relationship, leakage current and 
therefore power dissipation increases exponentially with decreasing 
threshold voltage (VTH) and with increasing temperature. Equation (6-1) 
suggests two ways to reduce Pleak. First, we could turn off the supply voltage. 
That is, set VDD to zero so that the factor in parentheses also becomes zero. 
Second, we could increase the threshold voltage, which (because it appears 
as a negative exponent) can have a dramatic effect in even small increments. 
Of course using high-VT  transistors will degrade performance. A solution is 
to have mixture of high and low VT  transistors. Use low VT  transistors on 
timing-critical paths and high Vt transistors on non-critical paths. This 
approach is referred to as dual VT  design. Multi-Threshold CMOS 
(MTCMOS) cells can be used to control leakage power (See Figure 6-24). 
Low VT  transistors are used to implement gates for high speed, while high 
VT  transistors are added to form virtual rails. These high VT  transistors 
suppress the leakage current when the sleep signal is activated. Of course, 
there needs to be a sleep control mechanism. 
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Figure 6-24. Multi-Threshold CMOS (MTCMOS) 

Variable Threshold CMOS (VTCMOS) is a body biasing technique that 
controls effective threshold voltage by applying substrate bias to MOS 
transistors (See Figure 6-25). This technique is applicable at runtime. In the 
active mode, a zero body bias is applied. In standby mode, the effective 
threshold voltage is made to be larger by applying a reverse substrate bias to 
block the leakage current. Transistor performance in the active mode is kept 
the same as that in the conventional design by utilizing low VDD and low VT . 
However, triple well technology is required. 

 

Figure 6-25. Variable-Threshold CMOS (VTCMOS) 

In addition to above approaches, area reduction also reduces leakage 
power. Datapath width adjustment described in Section 6.4 is also effective 
for reducing the leakage power. The power dissipation of the whole system 
not only dynamic power but also leakage power is drastically reduced by 
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tuning the parameters of processors and memories tailored for the 
applications. 

Reducing the number of transistors and controlling power supply voltage, 
VT , or temperature dynamically can reduce the leakage. Basic strategies are 
shown below. Some system level methodologies related using the strategies 
are shown in this section. 

 using high threshold voltage for non-critical paths 
 shifting the circuit to the low leakage mode 
 cooling high temperature parts, 
 reducing the number of transistors. 

Many techniques [Ishihara2002, Kaxiras2000, Powell2000, Sato2004] 
proposed to address leakage power have focused on cache memory that is a 
major leakage consumer of the entire system because leakage power is a 
function of the number of transistors. For example, StrongARM processor 
uses 60% of the die area for cache memories [Manne1998]. 
 

6.1 Multiple Vth CMOS and Dual Vth techniques 

One way to increase the threshold voltage is to use Multiple Threshold 
Circuits with sleep transistors [Calhoun2003]. This involves isolating a leaky 
circuit element by connecting it to a pair of virtual power supplies that are 
linked to its actual power supplies through sleep transistors (Figure 6-24). 
When the circuit is active, the sleep transistors are activated, connecting the 
circuit to its power supplies. However, when the circuit is inactive, the sleep 
transistors are deactivated, thus disconnecting the circuit from its power 
supplies. In this inactive state, almost no leakage passes through the circuit 
because the sleep transistors have high threshold voltages. This technique 
effectively confines the leakage to one part of the circuit, but is tricky to 
implement for several reasons. The sleep transistors must be sized properly 
to minimize the overhead of activating them. They cannot be turned on and 
off too frequently. Moreover, this technique does not readily apply to 
memories, because memories lose data when their power supplies are cut. 

 Another way to increase the threshold is to employ dual threshold 
circuits. Dual threshold circuits [Liu2004, Wei1998, Ho2004] reduce 
leakage by using high threshold (low leakage) transistors on non-critical 
paths and leakage by using low threshold transistors on critical paths, the 
idea being that non-critical paths can execute instructions more slowly 
without impairing performance.  
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6.2 Dynamic Power Management for Reducing Leakage 

Adaptive body biasing technique [Seta1995, Kobayashi1994,Nose2002] 
is a runtime technique that reduces leakage power by dynamically adjusting 
the threshold voltages of circuits depending on whether the circuits are 
active. When a circuit is not active, the technique increases its threshold 
voltage, thus saving leakage power exponentially, although at the expense of 
a delay in circuit operation. When the circuit is active, the technique 
decreases the threshold voltage to avoid slowing it down. To adjust the 
threshold voltage, adaptive body biasing applies a voltage to the transistor’s 
body known as a body bias voltage (Figure 6-25).  Vt is dynamically 
controlled through software depending on the workload of a processor. The 
Vth-hopping scheme [Nose2002] can achieve 82% power saving compared 
with the fixed low-Vth circuits.  In order to suppress efficiently the leakage 
power, combining the adaptive body biasing technique and the dual Vt 
technique could be useful (See Figure 6-26). In this case, the adaptive body 
biasing is used only in the critical paths. On the other hand, Vt of the non-
critical paths gates is set to a considerably higher value (high-Vt), which is 
not changed for the entire time. 
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Figure 6-26. Combining VTCMOS and Dual Vth Technologies 

6.3 Thermal Management 

Several cooling techniques have been developed since the 1960s. Some 
below cold air into the circuit, while others refrigerate the processor 
[Schmidt2002], sometimes even by costly means such as circulating 
cryogenic fluids like liquid nitrogen [Krane1988]. These techniques have 
three advantages. First, they significantly reduce subthreshold leakage. In 
fact, a recent study [Schmidt2002] showed that cooling a memory cell by 50 
degrees Celsius reduces the leakage power by five times. Second, these 
techniques allow a circuit to work faster because electricity encounters less 
resistance at lower temperatures. Third, cooling eliminates some negative 
effects of high temperatures, namely the degradation of a chip’s reliability 
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and life expectancy. Recently, the reliability is a much more significant issue 
in design. Despite these advantages, there are issues to consider, such as the 
costs of the hardware used to cool the circuit. Moreover, cooling techniques 
are insufficient if they result in wide temperature variations in different parts 
of a circuit. Rather, one needs to prevent “hotspots” by distributing heat 
evenly throughout a chip.  

Reliability and leakage power are both strongly affected by system 
temperature. In [Simunic], they proposed a joint reliability and power 
management optimization.  Their approach achieved a significant 
improvement in energy consumption (40%) in tandem with meeting 
reliability constraint for all operating temperatures. 

Another thermal management is a temperature aware task scheduling 
[Hung2005], which is task scheduling such that the temperature of HW is 
minimized. 

6.4 Bitwidth Optimization for Reducing Leakage 

Cao et. al. [Cao2002] reported a bitwidth optimization technique for 
reducing not only dynamic and leakage power at system level design. For 
Lempel-Ziv algorithm, they got dynamic power saving of 59.2% and leakage 
power saving of 64.3 a the optimal datapath width of 15bits; for ADPCM 
encoder, dynamic power saving is 44.2% and leakage power saving is 4.74% 
at the optimal datapath width of 19bits; for MPEG-2 AAC audio decoder, 
the dynamic power saving is 14.5% and leakage power saving is 18.1% at 
the optimal datapath width of 24bits and MPEG2 video decoder, the 
dynamic power saving is 18.3% and leakage power is 19.1% at optimal 
datapath width of 28bits. For different application, the number of variables is 
different and the effective size of variables is also different, therefore the 
optimal datapath width of minimal power is different. Note that this is under 
the assumption ActTime : InactTime = 1 : 1. ActiTime is the application 
execution time, which is called active time and InactTime is the idle time, 
which is called inactive time. 
 

6.5 Commercial Products 

In [Mutoh1996], they presented power management processor, which 
uses MTCMOS technology. 

Toshiba used the mixed MTCMOS and Dual VT  method to reduce the 
leakage power in a DSP core for W-CDMA cell phones. Cell phones spend a 
significant amount of time in the standby mode. Toshiba also presented a 
low power single-chip MPEG4 video-phone LSI. The VTCMOS technology 
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is employed to reduce a standby leakage current, which is only 17% of the 
conventional CMOS design [ISSCC A 60MHz 240mW MPEG-4 video-
phone LSI with 16Mbit embedded DRAM]. 
 

6.6 Conclusions 

 
This section describes leakage power reduction methodologies. There are 

four basic strategies: using high-VT on non-critical paths, shifting low 
leakage mode, cooling high temperature parts, and reducing the number of 
transistors. 

7. POWER REDUCTION TECHNIQUES USING 
APPLICATION SPECIFIC HARDWARE 

The ultimate way for energy reduction is creating application-specific 
integrated circuits (ASICs) that implement their algorithms directly in 
dedicated, fixed-function logic. The most energy-efficient type of processor 
core is the "application-specific instruction processor" (ASIP). These 
processors are custom designed for the application at hand. Today, however, 
a few companies offer automated tools that generate ASIPs based on 
parameters supplied by the system designer. ASIC designers can also 
achieve good energy efficiency by starting with a processor core and then 
customizing the core to the needs of their application. The processor cores 
offered by ARC and Tensilica are specifically designed for customization by 
the system designer. Both companies' offerings allow the system designer to 
add custom instructions that can produce massive energy efficiency gains. 

7.1 Energy-Flexibility Tradeoff 

Power consumption heavily depends on an implementation style and its 
flexibility [Rabaey00]. In Figure 6-27, the tradeoff between energy 
consumption and flexibility for different architectures is shown. As one can 
see, the dedicated hardware (ASICs) is 4 orders of magnitude more power 
efficient than embedded processors. Therefore, if there is no need for 
flexibility, the ASIC implementation is preferred. In practice, however, 
many systems require flexibility of the system in order to support not only 
existing applications but also upcoming ones. 
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Figure 6-27. Energy-Flexibility Tradeoff 

We can broadly categorize system architectures which concurrently 
satisfy high flexibility and low energy consumption as follows, 

 
1. A hybrid architecture which consists of embedded processor or DSP and 

dedicated hardware, and 
2. A configurable processor. 

7.2 Hybrid Architecture 

A hybrid-architecture consists of a microprocessor core, a set of standard 
cores, and a set of application specific cores as shown in Figure 6-28. The 
design goal using the hybrid-architecture is to partition a given application 
into the microprocessor core and the application specific cores in order to 
minimize the total energy consumption.   

MPU

Dedicated HW

Dedicated HW

I-Cache

D-Cache

Application

 

Figure 6-28. An Example of a Hybrid-Architecture 
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Hardware/software partitioning is the process of dividing an application 
into software running on a microprocessor and dedicated hardware. This 
approach is a well-established design methodology with the goal to increase 
the performance and to decrease the energy consumption of a system as 
described.  

Dave et al. proposed a hardware/software co-design technique, called 
COSYN, which targets embedded systems consisting of general-purpose 
processors, ASICs and FPGAs [Dave97]. Functions of COSYN include 
allocation, scheduling, performance estimation, and power optimization. 
COSYN finds hardware/software partitioning based on the performance and 
power estimation of a processing element.  

Henkel proposed a hardware/software partitioning technique for low-
power core-based systems [Henkel99]. The technique considers the power 
consumption of a whole embedded system consisting of a microprocessor 
core, application specific cores, cache cores and a memory core. The 
technique based on a fine-grained (instruction/operation-level) analysis of 
energy consumption. The experimental results demonstrated high reductions 
of power consumption between 35% and 94% at the cost of a relatively 
small additional hardware overhead.  

7.3 Configurable Processor 

A configurable processor core is a fully functional processor design that 
can be customized or expanded to meet the performance and/or energy 
efficiency needs of applications [Wei05]. There are four general ways a 
processor can be configured:  

 
• By selecting from standard configuration options, such as bus widths, 

interfaces, memories, floating-point units, etc.  
• By adding custom instructions that describe new registers, register files 

and custom data types, such as 56-bit data for security processing or 256-
bit data types for packet processing.  

• By adding custom, high-performance interfaces that exceed the 
bandwidth abilities of the more common shared-bus architectures of 
conventional RISC and DSP cores.  
 
Configurable processors are typically delivered as synthesizable RTL 

code, and can be easily mapped onto an FPGA or SoC design. Some 
configurable processors are provided with automatically tailored software-
development tools (the compiler, assembler, debugger, linker, and profiler), 
EDA synthesis scripts, and verification test benches that reflect the designer-
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defined architectural extensions so that no additional effort is required to 
ready the configured core for SoC development.  

The ability to add custom instructions of any width allows an SoC 
designer to use a configurable processor core to implement datapath 
operations that closely match the abilities of a manually designed RTL block. 
Since the configurable processor does not have a feature for dynamically 
reconfiguring the structure of the processor, it is more energy efficient than a 
reconfigurable processor. In the configurable processor core, the datapaths 
are implemented using the base processor's integer pipeline, plus additional 
execution units, registers, and other functions added by the chip architect or 
SoC designer for a target application.  

Energy efficiency of the configurable processor typically comes from the 
following three features [Wei05], 

 
1. Configuration of the instruction set permits a much closer fit of the 

processor to the target application, 
2. Configuring the processor removes unneeded hardware features like 

larger cache memories than needed, unused register files and extra bits of 
datapath [Inoue00], and 

3. Automatic processor generation tools enable logic optimization, signal 
switching activity reduction, and seamless mapping into low-voltage 
circuits. 

 
A lot of configurable processors and their optimization methodologies 

are proposed. However, only a few of them focus on methodologies for 
lowering energy consumption. 

In [Inoue00], Inoue et al. proposed a flexible SoC architecture and its 
optimization framework, called FlexSys, which allows system designers to 
customize datapath width and memory size for a target application. A key of 
the FlexSys technology is that it allows designers to customize the core 
processor for the target application by replacing a few photomasks used for 
via layers only, which results in a low-cost customization of the processor 
for a target application. The experiments using DSPstone benchmark 
programs demonstrated that the energy consumption can be reduced by 54% 
compared to the normal RISC processor-based system which has a CPU core 
with 32-bit datapath and the fixed number of memory words. 

 

7.4 Conclusions 

In this section we introduced a concept of energy-flexibility tradeoff. We 
showed that system designers can drastically reduce energy consumption by 
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trading flexibility for energy consumption. However, in practice, it is very 
important to preserve system flexibility in case of future upgrade or 
modification in a target application. Therefore, we have to find the best 
compromising point between high flexibility and low energy consumption. 
We can broadly categorize system-level methodologies which satisfy high 
flexibility with low energy consumption as follows,  
1. hardware/software partitioning for a hybrid architecture which consists of 

a microprocessor core and dedicated hardware and 
2. exploiting customizability of configurable processors.  

 
These strategies allow system designers to explore SoC architectures 

considering tradeoff between flexibility and energy consumption. As a result, 
system designers can find the best tradeoff point which compromises 
between high flexibility and low energy consumption. 

8. SUMMARY 

This chapter addressed several key methodologies for reducing power 
and/or energy consumption of SoCs which consist of hardware and software 
running on it.  Each of those methodologies takes design tradeoffs into 
consideration. In Section 3, we introduced an energy-delay tradeoff and an 
energy-reliability tradeoff in SoC design. Section 4 discussed on a tradeoff 
between energy consumption and quality of services (QoS). The QoS, in this 
chapter includes precision (or computational quality) and latency (or 
response time). In section 5, a tradeoff between computational energy and 
communication energy is considered. Section 6 summarized several leakage 
reduction techniques considering the energy-delay tradeoff and the energy-
QoS tradeoff. In Section 7, we introduced an energy-flexibility tradeoff. The 
key point of the energy reduction techniques is to take the tradeoffs into 
consideration according to a design objective and design constraints.  

The problem of how to model and evaluate complicated SoCs in terms of 
energy, performance, QoS, reliability and flexibility becomes more attractive 
to tackle. As the supply voltage and threshold voltage of chips is lowered 
down along with the transistor scaling, sensitivity to temperature variation, 
process variation, sources of soft error and noise sources is increased.  This 
results in model uncertainty and makes evaluation of SoC difficult. 
Increasing size, complexity, and functionality integrated on SoC becomes 
this problem more difficult. In near future, modeling and evaluation of SoC 
dynamically and/or statically taking the model uncertainty into account is 
one of the most important themes for low-energy SoC design.  
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