
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

GifT:A Gravity-Directed and Life-Time Based
Algorithm for Temporal Partitioning of Data
Flow Graphs

Mehdipour, Farhad
Computer and IT Engineering Department, Amirkabir University of Technology

Saheb Zamania, Morteza
Computer and IT Engineering Department, Amirkabir University of Technology

Sedighi, Mehdi
Computer and IT Engineering Department, Amirkabir University of Technology

Murakami, Kazuaki
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

他

https://doi.org/10.15017/6329

出版情報：Proceedings of The 2006 International Conference on Engineering of Reconfigurable
Systems & Algorithms (ERSA'06), pp.227-230, 2006-06. International Conference on Engineering
of Reconfigurable Systems & Algorithms
バージョン：
権利関係：

GifT:A Gravity-Directed and Life-Time Based Algorithm

for Temporal Partitioning of Data Flow Graphs

Farhad Mehdipour, Morteza Saheb Zamani,

Mehdi Sedighi

Computer and IT Engineering Department,

Amirkabir University of Technology,

Tehran, Iran

Kazuaki Murakami, Hamid Noori

Department of Informatics, Graduate School of

Information Science and Electrical Engineering,

Kyushu University, Japan

 Abstract

In reconfigurable systems, reconfiguration latency

has a significant impact on the system performance. In

this work, a temporal partitioning algorithm is

presented to partition data flow graphs for

reconfigurable computing systems. Life-time of a node

in a data flow graph represents the number of times it

executes during the application run. A new factor,

called residing eligibility, inspired from the Universal

gravitation law, is introduced to depict the eligibility of

a node to stay in succeeding partitions and to prohibit

it from being swapped in/out. Life-time, size, and

distance of a node from the nearest identical node in

the data flow graph are important factors for

determining its residing eligibility. Assigning nodes to

a partition according to their residing eligibility can

cause fewer nodes with different functionalities to be

assigned to subsequent partitions. Thus,

reconfiguration overhead time and also wasted

hardware space decreases due to common parts in

subsequent configurations on a partially

programmable hardware.

Keywords: Reconfigurable computing systems,

Temporal partitioning, Data flow graph.

1. Introduction

Reconfigurable computing systems (RCS) are an

alternative to application-specific integrated circuits

(ASICs) and general-purpose processors [1, 17]. An

RCS is a combination of a general-purpose processor

and a reprogrammable hardware (like an FPGA
1
). One

of the main challenges in the reconfigurable computing

domain is the lack of appropriate compilers. A static

compiler is used before run-time to generate

configurations and their scheduling. Static

reconfiguration refers to having the ability to

reconfigure a system, but not during the execution time

[8]. To implement a large circuit on an FPGA, it may

have to be partitioned into multiple stages. Each

configuration can be swapped in/out to implement each

1- Field Programmable Gate Array

stage one by one and perform the functions of the

original circuit. This type of partitioning is known as

temporal partitioning [3,6].

Bobda [3] proposed a spectral placement to position

the modules in a three-dimensional vector space.

Karthikeya et al. [5] proposed algorithms for temporal

partitioning and scheduling of large designs on area

constrained reconfigurable hardware but did not

consider the reconfiguration time overhead. SPARCS

[11] is an integrated partitioning and synthesis

framework, which has a temporal partitioning tool to

temporally divide and schedule the tasks on a

reconfigurable system. Luk et al. [7,13] proposed a

methodology to take advantage of common operators in

successive partitions. It attempted to reduce

configuration time and thus, the application execution

time. Tanougust et al. [15] attempted to find the

minimum area while meeting timing constraints. In

[14], Spillane and Owen focused on finding a sequence

of conditions for activating an appropriate component

at a particular time and optimizing successive

configurations to achieve the desired trade-offs among

reconfiguration time, operation speed and area. In [9], a

similarity-based partitioning algorithm was proposed,

which finds modules with the same functionality in a

data flow graph (DFG) and then attempts to increase

the similarity of adjacent configurations. This results in

a shorter placement time for similar partitions on the

target FPGA for the compilation process and also

shorter reconfiguration time.

In this paper, we propose a novel temporal

partitioning algorithm called gravity-directed and life-

time based algorithm (GifT), which attempts to prohibit

high cost swapping in/out of modules during run-time

of application by using a new factor, named residing

eligibility. Residing eligibility is calculated based on

the life-time and the inertia of modules according to

Universal gravitation law. Life-time of a node

represents how many times it appears in DFG. Inertia

or mass of a module represents the size of the

corresponding node in DFG. This algorithm intends to

reduce the reconfiguration overhead time and is used at

the design time where there is enough time to explore

the search space and to get close to the optimality of

design criteria. We explain the GifT algorithm, and the

idea behind it in Section 2. In Section 3, GifT

parameters and the way to calculate them are presented.

In Section 4, the details of our implementation are

explained and experimental results are presented and

finally, Section 5 concludes the paper.

2. GifT Temporal Partitioning

Temporal partitioning can be stated as partitioning a

data flow graph (DFG) into a number of partitions such

that each partition can fit in the target device and also,

dependencies among the graph nodes are not violated.

For a partially-reconfigurable hardware, parts of the

hardware can be programmed without disturbing the

rest of the design since common parts of two

successive configurations can remain unchanged. Our

main goal is to reduce the reconfiguration time and

overall run-time of applications. We assume that the

target programmable device is partially programmable.

The proposed algorithm takes a DFG, the nodes of

which represent pre-designed modules in a library. For

large modules of DFG, which may occur in succeeding

configurations, swapping them in/out may not be cost-

effective, since it increases reconfiguration overhead

time. Therefore, it is reasonable to assign large modules

with more inertia and identical nodes at closer distance

to subsequent partitions. From this theoretical fact,

GifT algorithm was inspired from the Universal

gravitation law: Newton came to the conclusion that

every object in the Universe attracts every other object

with a force proportional to the product of their masses

and inversely proportional to the square of the distance

between the two objects.

The main idea behind GifT is considering potential

of DFG nodes to stay at the subsequent partitions with

respect to their priority. Priority of DFG nodes is

calculated according to their life time and inertia. Using

this idea, some modules of current configuration are

replicated at the next configuration without need for

using them during run-time. This brings about smaller

bit-stream size for the next configuration. According to

our methodology, identical nodes in a DFG are the

nodes that have the same functionality. For example,

assume for a selected node and its identical node in

input data flow graph, first and third partitions are the

probable appropriate partitions to assign them.

According to the GifT idea, if a node is replicated in

second partition with no need to be run, this causes that

the parts of programmable device, which have been

allocated to this node remain unchanged at the run-

time. Therefore, less reconfiguration time is needed to

reconfigure second and third partitions. This effect will

be more stressed if a larger size node is considered. In

addition, distance of the identical nodes in DFG is an

important factor which determines their attraction force

exert each other according to Universal gravitation law.

In other words, nodes those have non-partitioned closer

identical nodes in DFG will have the higher priority for

partitioning than the other nodes with far or without

identical nodes.

We define a new factor named residing eligibility

(RE), which shows the eligibility of a module for

staying in the next partition, whereas it has been

partitioned in the current configuration. Higher RE

value shows the high eligibility of a module for

partitioning and staying at the next partition to decrease

the effect of its inertia on reconfiguration time. A naïve

approach for temporal partitioning is using the ASAP
1

scheduling algorithm [3, 10]. This algorithm schedules

a data flow graph in an attempt to minimize latency by

topologically sorting of the nodes of the graph [10]. In

our proposed partitioning process, assigning priority of

node for partitioning is done according to ASAP level

of node in DFG, size of node and the distance of node

with other partitioned identical nodes located in

previous partitions. In other words, RE represents the

priority of a node for partitioning. We consider two

types of partitioned nodes in our methodology:

I. The nodes which are not identical to any node

in the non-partitioned nodes of the DFG.

II. The nodes which have identical nodes in the

non-partitioned nodes.

The life-time of a node represents the number of

times it runs during the application run. Assume that a

node is assigned to the current configuration. Both the

life-time of the node and its distance to a similar

unprocessed node in the DFG are important factors

which represent the eligibility of the node to reside in

the next configuration. Staying a node in the

subsequent configuration prohibits it to be swapped

in/out and therefore, it can reduce the reconfiguration

time.

For the node i of type I, RE(i) is defined as:

RE(i)= (1- Level(i)/MaxLevel)+ ε*1/(1+Slack(i)) (1)

where Level(i) is the ASAP level of node i, MaxLevel is

the maximum levels of nodes, ε is a small number and

Slack(i) is the slack of node i in the DFG. The first term

represents the importance of ASAP level of the node

and the second term is for tie breaking. For the

processed node i of type II with a similar node j in the

remaining unprocessed nodes of the DFG, RE(i, j) is

defined as:
RE(i,j)=w1*(1-Level(j)/MaxLevel)+w2* Size(i)/(MaxNodeSize

*(Level(j)-Level(i)+1))2)+ε*1/(1+Slack(i)) (2)

 where w1 and w2 are the weights of each term. The first

term is similar to the first term of Equation (1). The

second term represents the role of node size in the

residing eligibility of the node. Size of a node is

proportional to its mass and inertia. According to the

Universal gravitation law, larger nodes with larger

mass exert more attraction. On the other hand, the

closer nodes, the more attraction force they exert on

1- As Soon As Possible

each other. Thus, for a processed node, which has a

similar unprocessed node, its RE value determines

whether it should reside on hardware or not.

As an example, consider the DFG of Figure 1 as the

input to the algorithm. Table 1, shows the RE values at

different rounds for the DFG in Figure 1. The nodes

selected for each partition in every round are depicted

in bold face. Nodes 11 and 15 are replicated in two

subsequent partitions.

Figure 1: A sample DFG

Table 1. RE values at different rounds
Node 1st Round 2nd Round 3rd Round

1 0.801

2 0.801

3 0.801

4 0.801

5 0.800

6 0.800 0.912

7 0.800 0.800

8 0.800

9 0.601

10 0.601

11 0.600 0.608

12 0.600 0.609

13 0.401 0.401

14 0.201 0.201 0.201

15 0.001 0.001 0.001

3. Calculating w1 and w2

RE values are computed according to Equations (1)

and (2) for the two types of processed nodes,

respectively. Appropriate values for w1 and w2 should

be calculated in such a way that legal values can be

achieved for RE. To determine these coefficients, we

assume that RE values are normalized (0<RE<1). For a

node of type I, RE(i)= (1- Level(i)/MaxLevel)< 1 (we

ignore the last term that is dependent on ε). Also, for a

node j of type II, which is similar to an unprocessed

node k, RE(j, k)=w1*(1- Level(k)/MaxLevel) +

w2*(Size(j)/(MaxNodeSize*(Level(k)-Level(j)+1))
2
)< 1.

In addition, if it is assumed that Level(k)<=Level(i), it

will be obvious that: RE(i)<= RE(j, k). Therefore, the

two following inequalities are obtained:
w1*(1- Level(k)/MaxLevel) + w2.(Size(j)/(MaxNodeSize*

(Level(k)-Level(j)+1))2)> (1-Level(i)/MaxLevel) (3)
w1*(1- Level(k)/MaxLevel) +

w2.(Size(j)/(MaxNodeSize*(Level(k)-Level(j)+1))2)< 1 (4)

For the first inequality, it can be assumed that the

maximum value of the right expression must be less

than the minimum value of the left expression and so,

the following inequality is obtained:
w2>((1-w1)*(1-Level(k)/MaxLevel)*MaxNodeSize*MaxLevel2

)/MinNodeSize (5)

For the inequality (5), the maximum value of the left

expression should be less than 1:

w1*(1- 1/MaxLevel) + w2 < 1 (6)

By solving the linear programming problem

obtained, which consists of two inequalities (5) and (6),

w1 and w2 are calculated as follows (Figure 2):

w1= (X*Y-1)/X*(Y+1) and w2= 1- w1*X (7)

X= 1-1/MaxLevel and

Y= MaxNodeSize*MaxLevel
2
/MinNodeSize) (8)

According to (7) and (8), we find that w1 and w2 are

entirely dependent on the characteristics of the input

DFG and therefore, they should be calculated for the

DFG at the initialization step of GifT.

Figure 2. Solution space for calculating w1 and w2

4. Experimental Results

In our presented temporal partitioning algorithm a

DFG is taken as the input. A library consisting of the

required modules has been developed. Each module

was described in VHDL and was then synthesized by

Leonardo Spectrum synthesis tool to obtain a structural

description. The SIS synthesis package [12] was used to

perform technology-independent logic optimization of

each module circuit. Next, each circuit was technology-

mapped into 4-LUTs
1
 and flip flops by FlowMap [4].

The output of FlowMap is a netlist of LUTs and flip

flops in .blif format. T-VPack [3] then packed this

netlist of 4-LUTs and flip flops into more coarse-

grained logic blocks. We used VPR [3] that is one of

the popular tools for placement and routing of the

configurations. The architecture of the target

programmable device was chosen to be a Xilinx Virtex

(XCV100) FPGA. We chose five static data flow graphs

from [3] and applied our tool to them.

We assume that the reconfiguration time can be

approximated by a linear function of the total area of

functional units being reconfigured. Usually, the run

time of each configuration is much less than a

microsecond, whereas the full reconfiguration of a

programmable device is typically done in several

microseconds. Therefore, reducing the reconfiguration

time decreases the overall run time of the application

accordingly. Experiments showed that GifT often

results in more common CLBs in subsequent

configurations comparing with greedy temporal

1-Four-inputs LookUp Table

partitioning algorithm presented in [9] (Table 2). Thus,

more reduction in reconfiguration overhead time is

achieved by GifT algorithm. These two algorithms

generated the same number of partitions.

Figure 3(a) shows the improvement in

reconfiguration time for both similarity-based

algorithm [9] and Gift. Gift has usually more reduction

in reconfiguration overhead time. Another result

showed that GifT not only had no extra area overhead

but also it reduced the wasted area in partitions. Figure

3(b) shows that the wasted number of CLB’s using the

GifT algorithm is less than that generated by the

algorithm presented in [9].

Table 2. Comparison of GifT and the algorithm in [9].
Similarity-Based

algorithm [9]

GifT

DFG

DFG

Size

(No. of

CLB’s)

No. of

Partitions

No. of

Similar

CLB’s

No. of

Partitions

No. of

Similar

CLB’s

1 1059 3 627 3 637

2 900 3 401 3 401

3 1080 4 616 4 636

4 1217 4 791 4 801

5 948 3 453 3 453

0

5

10

15

20

Reduction

Percentage

DFG No.

Reconfiguration Time Reduction

Reduction in reconfiguration Time

using Similarity-Based Algorithm

[10]

17.76 13.38 17.1 19.5 14.34

Reduction in Reconfiguration Time

using Gift

18.06 13.38 17.67 19.74 14.34

1 2 3 4 5

(a)

0

50

100

150

200

250

No. of Wasted

CLB's

DFG No.

No. of Wasted CLB's

No. of Wasted CLB's using

Similarity-Based alg. [10]

246 159 231 180 120

No. of Wasted CLB's using

Gift

231 118 214 160 107

1 2 3 4 5

(b)

Figure 3. Reduction in reconfiguration time (a) reduction
in wasted space (b)

5. Conclusion

In this work, a new temporal partitioning algorithm

was proposed to generate configurations for a

reconfigurable computing system. RE is a new factor,

which defines the eligibility of a module for staying in

the subsequent partition to reduce reconfiguration

overhead time. It is dependent on the life-time and the

inertia of a module. Some of modules are replicated in

the succeeding configurations, which brings about

more common CLB’s and reduction in the

reconfiguration time without any extra area overhead

and even with smaller wasted area.

Acknowledgement

This work has been supported by Iran

Telecommunication Research Center (ITRC).

References

[1] Barr M, A Reconfigurable Computing Primer, Miller Freeman

Inc., 1998.
[2] Betz V., VPR and T-VPack1 user’s manual (Version 4.30),

http://www.eecg.toronto.edu/~vaughn, 2000.

[3] Bobda C., Synthesis of dataflow graphs for reconfigurable
systems using temporal partitioning and temporal placement, Ph.D

thesis, Faculty of Computer Science, Electrical Engineering and

Mathematics, University of Paderborn, 2003.
[4] Cong J., Ding Y., Flowmap: An optimal technology mapping

algorithm for delay optimization in lookup-table based FPGA

designs, IEEE Transactions on CAD, 1994, pp.1-12.

[5] Karthikeya M., P. Gajjala, B. Dinesh, Temporal partitioning and

scheduling data flow graphs for reconfigurable computer, IEEE

Transactions on Computers, vol. 48, no. 6, 1999, pp.579–590.

[6] Kaul M., Vemuri R., Optimal temporal partitioning and synthesis

for reconfigurable architectures, International Symposium on Field-

Programmable Custom Computing Machines, 1998, pp.312–313.

[7] Luk W., Shirazi N., P.Y.K. Cheung, Modeling and optimizing

runtime reconfiguration systems, in: K.L. Pocek, J. Arnold (Eds.),

Proceedings of IEEE Symposium on FPGA’s Custom Computing

Machines, IEEE Computer Society Press, 1996, pp. 167–176.

[8] Maestre R., Kurdahi F., Fernadez M., Hermida R., Bagherzadeh
N., Singh H., A framework for reconfigurable computing: task

scheduling and context manegement, IEEE Transactions on VLSI

Systems, vol. 9, no. 6, 2001, pp. 858–873.
[9] Mehdipour F., Saheb Zamani M., Sedighi M., An Integrated

Temporal Partitioning and Physical Design Framework for Static

Compilation of Reconfigurable Computing System, Microprocessors
and Microsystems, vol. 30, no. 1, Feb 2006, pp. 52-62.

[10] Micheli G.D., Synthesis and optimization of digital circuits,

McGraw-Hill, 1994.

[11] Ouaiss I., Govindarajan S., Srinivasan V., Kaul M., Vemuri R.,

An Integrated Partitioning and Synthesis System for Dynamically

Reconfigurable Multi-FPGA Architectures, Proceedings of the

Reconfigurable Architecture Workshop, 1998, pp. 31-36.

[12] Sentovich E M, SIS: A system for sequential circuit analysis,

Tech. Report No.UCB/ERLM92/41, University of California,
Berkeley, 1992.

[13] Shirazi N., Luk W., Cheung P.Y.K., Automating production of

runtime reconfiguration designs, in: K.L. Pocek, J. Arnold (Eds.),
Proceedings of IEEE Symposium on FPGA’s Custom Computing

Machines, IEEE Computer Society Press, 1998, pp. 147–156.

[14] Spillane J., Owen H., Temporal partitioning for partially
reconfigurable field programmable gate arrays, IPPS/SPDP

Workshops, 1998, pp. 37-42.

[15] Tanougast C., Berviller Y., Brunet P., Weber S., Rabah H.,

Temporal partitioning methodology optimizing FPGA resources for

dynamically reconfigurable embedded real-time system,

Microprocessors and Microsystems, vol. 27, 2003, pp. 115-130.

[16] Zhang X., Ng K.W., A review of high-level synthesis for

dynamically reconfigurable FPGA’s, Microprocessors and

Microsystems, vol. 24, 2000, pp.199–211.

