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 Abstract 
 

In reconfigurable systems, reconfiguration latency 

has a significant impact on the system performance. In 

this work, a temporal partitioning algorithm is 

presented to partition data flow graphs for 

reconfigurable computing systems. Life-time of a node 

in a data flow graph represents the number of times it 

executes during the application run. A new factor, 

called residing eligibility, inspired from the Universal 

gravitation law, is introduced to depict the eligibility of 

a node to stay in succeeding partitions and to prohibit 

it from being swapped in/out. Life-time, size, and 

distance of a node from the nearest identical node in 

the data flow graph are important factors for 

determining its residing eligibility. Assigning nodes to 

a partition according to their residing eligibility can 

cause fewer nodes with different functionalities to be 

assigned to subsequent partitions. Thus, 

reconfiguration overhead time and also wasted 

hardware space decreases due to common parts in 

subsequent configurations on a partially 

programmable hardware. 
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1.  Introduction 
 

Reconfigurable computing systems (RCS) are an 

alternative to application-specific integrated circuits 

(ASICs) and general-purpose processors [1, 17]. An 

RCS is a combination of a general-purpose processor 

and a reprogrammable hardware (like an FPGA
1
). One 

of the main challenges in the reconfigurable computing 

domain is the lack of appropriate compilers. A static 

compiler is used before run-time to generate 

configurations and their scheduling. Static 

reconfiguration refers to having the ability to 

reconfigure a system, but not during the execution time 

[8]. To implement a large circuit on an FPGA, it may 

have to be partitioned into multiple stages. Each 

configuration can be swapped in/out to implement each 
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stage one by one and perform the functions of the 

original circuit. This type of partitioning is known as 

temporal partitioning [3,6].  

Bobda [3] proposed a spectral placement to position 

the modules in a three-dimensional vector space. 

Karthikeya et al. [5] proposed algorithms for temporal 

partitioning and scheduling of large designs on area 

constrained reconfigurable hardware but did not 

consider the reconfiguration time overhead. SPARCS 

[11] is an integrated partitioning and synthesis 

framework, which has a temporal partitioning tool to 

temporally divide and schedule the tasks on a 

reconfigurable system. Luk et al. [7,13] proposed a 

methodology to take advantage of common operators in 

successive partitions. It attempted to reduce 

configuration time and thus, the application execution 

time. Tanougust et al. [15] attempted to find the 

minimum area while meeting timing constraints. In 

[14], Spillane and Owen focused on finding a sequence 

of conditions for activating an appropriate component 

at a particular time and optimizing successive 

configurations to achieve the desired trade-offs among 

reconfiguration time, operation speed and area. In [9], a 

similarity-based partitioning algorithm was proposed, 

which finds modules with the same functionality in a 

data flow graph (DFG) and then attempts to increase 

the similarity of adjacent configurations. This results in 

a shorter placement time for similar partitions on the 

target FPGA for the compilation process and also 

shorter reconfiguration time.   

In this paper, we propose a novel temporal 

partitioning algorithm called gravity-directed and life-

time based algorithm (GifT), which attempts to prohibit 

high cost swapping in/out of modules during run-time 

of application by using a new factor, named residing 

eligibility. Residing eligibility is calculated based on 

the life-time and the inertia of modules according to 

Universal gravitation law. Life-time of a node 

represents how many times it appears in DFG. Inertia 

or mass of a module represents the size of the 

corresponding node in DFG. This algorithm intends to 

reduce the reconfiguration overhead time and is used at 

the design time where there is enough time to explore 

the search space and to get close to the optimality of 

design criteria. We explain the GifT algorithm, and the 



idea behind it in Section 2. In Section 3, GifT 

parameters and the way to calculate them are presented. 

In Section 4, the details of our implementation are 

explained and experimental results are presented and 

finally, Section 5 concludes the paper. 

2. GifT Temporal Partitioning 

Temporal partitioning can be stated as partitioning a 

data flow graph (DFG) into a number of partitions such 

that each partition can fit in the target device and also, 

dependencies among the graph nodes are not violated. 

For a partially-reconfigurable hardware, parts of the 

hardware can be programmed without disturbing the 

rest of the design since common parts of two 

successive configurations can remain unchanged. Our 

main goal is to reduce the reconfiguration time and 

overall run-time of applications. We assume that the 

target programmable device is partially programmable. 

The proposed algorithm takes a DFG, the nodes of 

which represent pre-designed modules in a library. For 

large modules of DFG, which may occur in succeeding 

configurations, swapping them in/out may not be cost-

effective, since it increases reconfiguration overhead 

time. Therefore, it is reasonable to assign large modules 

with more inertia and identical nodes at closer distance 

to subsequent partitions. From this theoretical fact, 

GifT algorithm was inspired from the Universal 

gravitation law: Newton came to the conclusion that 

every object in the Universe attracts every other object 

with a force proportional to the product of their masses 

and inversely proportional to the square of the distance 

between the two objects.  

The main idea behind GifT is considering potential 

of DFG nodes to stay at the subsequent partitions with 

respect to their priority. Priority of DFG nodes is 

calculated according to their life time and inertia. Using 

this idea, some modules of current configuration are 

replicated at the next configuration without need for 

using them during run-time. This brings about smaller 

bit-stream size for the next configuration. According to 

our methodology, identical nodes in a DFG are the 

nodes that have the same functionality. For example, 

assume for a selected node and its identical node in 

input data flow graph, first and third partitions are the 

probable appropriate partitions to assign them. 

According to the GifT idea, if a node is replicated in 

second partition with no need to be run, this causes that 

the parts of programmable device, which have been 

allocated to this node remain unchanged at the run-

time. Therefore, less reconfiguration time is needed to 

reconfigure second and third partitions. This effect will 

be more stressed if a larger size node is considered. In 

addition, distance of the identical nodes in DFG is an 

important factor which determines their attraction force 

exert each other according to Universal gravitation law. 

In other words, nodes those have non-partitioned closer 

identical nodes in DFG will have the higher priority for 

partitioning than the other nodes with far or without 

identical nodes.  

We define a new factor named residing eligibility 

(RE), which shows the eligibility of a module for 

staying in the next partition, whereas it has been 

partitioned in the current configuration. Higher RE 

value shows the high eligibility of a module for 

partitioning and staying at the next partition to decrease 

the effect of its inertia on reconfiguration time. A naïve 

approach for temporal partitioning is using the ASAP
1
 

scheduling algorithm [3, 10]. This algorithm schedules 

a data flow graph in an attempt to minimize latency by 

topologically sorting of the nodes of the graph [10]. In 

our proposed partitioning process, assigning priority of 

node for partitioning is done according to ASAP level 

of node in DFG, size of node and the distance of node 

with other partitioned identical nodes located in 

previous partitions. In other words, RE represents the 

priority of a node for partitioning. We consider two 

types of partitioned nodes in our methodology: 

I. The nodes which are not identical to any node 

in the non-partitioned nodes of the DFG.  

II. The nodes which have identical nodes in the 

non-partitioned nodes.  

The life-time of a node represents the number of 

times it runs during the application run. Assume that a 

node is assigned to the current configuration. Both the 

life-time of the node and its distance to a similar 

unprocessed node in the DFG are important factors 

which represent the eligibility of the node to reside in 

the next configuration. Staying a node in the 

subsequent configuration prohibits it to be swapped 

in/out and therefore, it can reduce the reconfiguration 

time. 

For the node i of  type I, RE(i) is defined as:  

RE(i)= (1- Level(i)/MaxLevel)+ ε*1/(1+Slack(i))           (1) 

where Level(i) is the ASAP level of node i, MaxLevel is 

the maximum levels of nodes,  ε is a small number and 

Slack(i) is the slack of node i in the DFG. The first term 

represents the importance of ASAP level of the node 

and the second term is for tie breaking.  For the 

processed node i of type II with a similar node j in the 

remaining unprocessed nodes of the DFG, RE(i, j) is 

defined as:  
RE(i,j)=w1*(1-Level(j)/MaxLevel)+w2* Size(i)/(MaxNodeSize 

*(Level(j)-Level(i)+1))2)+ε*1/(1+Slack(i))         (2) 

 where w1 and w2 are the weights of each term. The first 

term is similar to the first term of Equation (1). The 

second term represents the role of node size in the 

residing eligibility of the node. Size of a node is 

proportional to its mass and inertia. According to the 

Universal gravitation law, larger nodes with larger 

mass exert more attraction. On the other hand, the 

closer nodes, the more attraction force they exert on 
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each other. Thus, for a processed node, which has a 

similar unprocessed node, its RE value determines 

whether it should reside on hardware or not. 

As an example, consider the DFG of Figure 1 as the 

input to the algorithm. Table 1, shows the RE values at 

different rounds for the DFG in Figure 1. The nodes 

selected for each partition in every round are depicted 

in bold face. Nodes 11 and 15 are replicated in two 

subsequent partitions.  

Figure 1: A sample DFG 
 

Table 1. RE values at different rounds 
Node 1st Round 2nd Round  3rd Round 

1 0.801   

2 0.801   

3 0.801   

4 0.801   

5 0.800   

6 0.800 0.912  

7 0.800 0.800  

8 0.800   

9 0.601   

10 0.601   

11 0.600 0.608  

12 0.600 0.609  

13 0.401 0.401  

14 0.201 0.201 0.201 

15 0.001 0.001 0.001 

3. Calculating w1 and w2  
 

RE values are computed according to Equations (1) 

and (2) for the two types of processed nodes, 

respectively. Appropriate values for w1 and w2 should 

be calculated in such a way that legal values can be 

achieved for RE. To determine these coefficients, we 

assume that RE values are normalized (0<RE<1). For a 

node of type I, RE(i)= (1- Level(i)/MaxLevel)< 1 (we 

ignore  the last term that is dependent on ε). Also, for a 

node j of type II, which is similar to an unprocessed 

node k, RE(j, k)=w1*(1- Level(k)/MaxLevel) + 

w2*(Size(j)/(MaxNodeSize*(Level(k)-Level(j)+1))
2
)< 1. 

In addition, if it is assumed that Level(k)<=Level(i), it 

will be obvious that:  RE(i)<= RE(j, k).  Therefore, the 

two following inequalities are obtained: 
w1*(1- Level(k)/MaxLevel) + w2.(Size(j)/(MaxNodeSize* 

(Level(k)-Level(j)+1))2)>  (1-Level(i)/MaxLevel)            (3) 
w1*(1- Level(k)/MaxLevel) + 

w2.(Size(j)/(MaxNodeSize*(Level(k)-Level(j)+1))2)< 1   (4) 

For the first inequality, it can be assumed that the 

maximum value of the right expression must be less 

than the minimum value of the left expression and so, 

the following inequality is obtained:   
w2>((1-w1)*(1-Level(k)/MaxLevel)*MaxNodeSize*MaxLevel2 

)/MinNodeSize                (5) 

For the inequality (5), the maximum value of the left 

expression should be less than 1: 

w1*(1- 1/MaxLevel) + w2 < 1            (6) 

By solving the linear programming problem 

obtained, which consists of two inequalities (5) and (6), 

w1 and w2 are calculated as follows (Figure 2): 

w1= (X*Y-1)/X*(Y+1) and w2= 1- w1*X            (7) 

X= 1-1/MaxLevel and 

Y= MaxNodeSize*MaxLevel
2
/MinNodeSize)          (8) 

According to (7) and (8), we find that w1 and w2 are 

entirely dependent on the characteristics of the input 

DFG and therefore, they should be calculated for the 

DFG at the initialization step of GifT. 

 
Figure 2. Solution space for calculating w1 and w2 

4. Experimental Results 
 

In our presented temporal partitioning algorithm a 

DFG is taken as the input. A library consisting of the 

required modules has been developed. Each module 

was described in VHDL and was then synthesized by 

Leonardo Spectrum synthesis tool to obtain a structural 

description. The SIS synthesis package [12] was used to 

perform technology-independent logic optimization of 

each module circuit. Next, each circuit was technology-

mapped into 4-LUTs
1
 and flip flops by FlowMap [4]. 

The output of FlowMap is a netlist of LUTs and flip 

flops in .blif format. T-VPack [3] then packed this 

netlist of 4-LUTs and flip flops into more coarse-

grained logic blocks. We used VPR [3] that is one of 

the popular tools for placement and routing of the 

configurations. The architecture of the target 

programmable device was chosen to be a Xilinx Virtex 

(XCV100) FPGA. We chose five static data flow graphs 

from [3] and applied our tool to them. 

We assume that the reconfiguration time can be 

approximated by a linear function of the total area of 

functional units being reconfigured. Usually, the run 

time of each configuration is much less than a 

microsecond, whereas the full reconfiguration of a 

programmable device is typically done in several 

microseconds. Therefore, reducing the reconfiguration 

time decreases the overall run time of the application 

accordingly. Experiments showed that GifT often 

results in more common CLBs in subsequent 

configurations comparing with greedy temporal 
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partitioning algorithm presented in [9] (Table 2). Thus, 

more reduction in reconfiguration overhead time is 

achieved by GifT algorithm. These two algorithms 

generated the same number of partitions.  

Figure 3(a) shows the improvement in 

reconfiguration time for both similarity-based 

algorithm [9] and Gift. Gift has usually more reduction 

in reconfiguration overhead time. Another result 

showed that GifT not only had no extra area overhead 

but also it reduced the wasted area in partitions. Figure 

3(b) shows that the wasted number of CLB’s using the 

GifT algorithm is less than that generated by the 

algorithm presented in [9].  

Table 2. Comparison of GifT and the algorithm in [9]. 
Similarity-Based 

algorithm [9] 

 

GifT 

 

 

 

 

 

DFG 

 

 

 

DFG 

Size 

(No. of 

CLB’s) 

No. of  

Partitions 

No. of 

Similar 

CLB’s 

No. of  

Partitions 

No. of 

Similar 

CLB’s 

1 1059 3 627 3 637 

2 900 3 401 3 401 

3 1080 4 616 4 636 

4 1217 4 791 4 801 

5 948 3 453 3 453 
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(b) 

Figure 3. Reduction in reconfiguration time (a) reduction 
in wasted space (b) 

5. Conclusion 
 

In this work, a new temporal partitioning algorithm 

was proposed to generate configurations for a 

reconfigurable computing system. RE is a new factor, 

which defines the eligibility of a module for staying in 

the subsequent partition to reduce reconfiguration 

overhead time. It is dependent on the life-time and the 

inertia of a module. Some of modules are replicated in 

the succeeding configurations, which brings about 

more common CLB’s and reduction in the 

reconfiguration time without any extra area overhead 

and even with smaller wasted area.  
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