
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

An Online Profiling-Based Dynamically Adaptable
Processor

Noori, Hamid
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Yoshimatsu, Norifumi
Fukuoka Industry, Science & Technology Foundation

Fujii, Yousuke
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Eshima, Kazuhito
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

他

https://hdl.handle.net/2324/6266

出版情報：The Proceedings of the 11th International CSI Conference, pp.520-523, 2006-01.
Computer Society of Iran
バージョン：
権利関係：

An Online Profiling-Based Dynamically Adaptable

Processor
Hamid Noori

†
, Yoshimatsu Norifumi

††
, Yousuke Fujii

†
, Kazuhito Eshima

†
, Makoto

Yoshida
††
, Takeshi Soga

††
, Takanori Hayashida

†
 and Kazuaki Murakami

†

†
Department of Informatics, Graduate School of Information Science and Electrical Engineering, Kyushu

University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan
{noori, fujii, eshima, hayashida}@c.csce.kyushu-u.ac.jp

murakami@i.kyushu-u.ac.jp
††
 Fukuoka Industry, Science & Technology Foundation

FLEETS (Fukuoka Laboratory for Emerging & Enabling Technology of SOC), 3-8-33, Momochihama,
Sawara-ku, Fukuoka, 814-0001, Japan
{nyoshimatsu, yoshida, soga}@fleets.jp

ABSTRACT
This paper investigates a possible architecture to a dynamically

adaptable processor. In this architecture, the running application

is profiled and dynamic traces of high frequently executed loops

(hot paths) are detected. The proposed online profiling

methodology is mainly hardware-based so that overhead can be

reduced as much as possible. Studying the behavior of branch

and jump instructions, gathered by the profiler, guides us to the

hot paths. To improve the performance for the next iterations,

hot paths are optimized using dynamic software pipelining

technique, which seems a suitable method for our simplified 8-

way VLIW accelerator. To exploit the hardware accelerator, the

binary code is rewritten. Some preliminary performance

evaluations show speedup.

Keywords

Adaptive dynamic optimization, online profiling, VLIW

accelerator, dynamic software pipelining.

1. INTRODUCTION
Dynamically linked libraries, micro-architecture specific

features, inaccurate run-time profiles and using object-oriented

language and techniques have limited the size of the scope

available for static compiler analysis. Also dynamic optimization

offers more opportunities for those applications whose behavior

are input dependent. More recently, the use of dynamic code

generation environments makes the applicability of heavyweight

static compiler optimization techniques impractical. Meanwhile

on the hardware side, progress of semiconductor technology

enabled to design a large scale, complex functionality SoCs. As

the complexity increases it is getting difficult to foresee

circumstances which a system operates at its design time and it

makes challenging to design a system optimizing performance,

power consumption, and energy consumption for them.

Shifting optimizations to runtime can be a possible solution for

these problems. Generally, in dynamic optimization, a binary

program is executed on a processor system. The system monitors

the executing binary, detects the frequently executed regions,

optimizes those regions and exchange future occurrences of the

original regions with the optimized version. The main processor

or some extra hardware accelerator can be used for running the

optimized traces. Recent work in dynamic optimization has

shown that a run-time system can improve program performance

and power consumption by performing optimizations that are

difficult to deploy statically [4], [5], [6], [7], [8].

However there are some issues to realize the dynamic

optimization in a system. It must have small impact on system’s

operation. It should be identified, where and how the

optimizations are going to be applied. Also the system has to be

able to update the executing optimized code, adaptively. The

overhead of detection and optimization must be amortized by

gaining better performance. This limits the scope of

optimizations that can be done online, and makes the efficiency

of the optimization infrastructure extremely critical. To

overcome the overhead, there can be several solutions according

to the application. For some applications that there is a gap

between consecutive execution of the application, e.g. printer

and mobile applications, the dynamic optimization can be done

in this gap. For those applications without this gap, a training

phase can be defined before the normal use. In the training

phase, the system learns about the hot paths of the application,

applies optimizations and prepares for executing optimized code

for the next iterations. Using a hardware engine for optimization

can be another solution.

This paper, proposes SysteMorph as a concept of a system which

can be dynamically optimized. It optimizes systems dynamically

and executes application programs adaptively based on

application program’s online profile information for processor

based systems. SysteMorph consists of three elemental

technologies those are (1) online profiling, (2) dynamic adaptive

optimization, and (3) smart hardware.

The concept of SysteMorph is described in Section 2. Section 3

discusses the SysteMorph online hotpath profiler. In Section 4

proposed SoC architecture of SysteMorph is described. Some

preliminary performance evaluations are shown in Section 5 and

the paper is closed with conclusion and future work.

2. SYSTEMORPH CONCEPT
SysteMorph is a feedback directed dynamic optimization

technology mainly adapted in processor based systems (Fig. 1).

With SysteMorph, a system can be optimized in terms of

performance, power consumption, and energy consumption

using target application program’s run-time profile information.

SysteMorph technology consists of the following three elemental

technologies: Online profiling, Adaptive dynamic optimization

and Smart hardware.

The online profiler collects run-time information at binary level

and exploits it for optimization/acceleration. The information is

sent to the optimizer as feedback. The profiling information

helps the system to detect, e.g. threads, a hot instruction

sequence, hot loops and etc.

Figure 1. SysteMorph Concept

The adaptive dynamic optimization is a technology to optimize

the system dynamically including software and hardware based

on the profile information. It can cover various optimizations for

hot traces, fusion of instructions (for dynamic reconfigurable

processors), reconfiguring the reconfigurable parts of the system

and etc. After optimizations, optimized binary code and

modified configurations are rewritten. Dynamic optimization can

be done at different periods. For example, the system can have a

training phase before starting its normal operation. In the

training phase, the user can apply desired inputs and let the

system learn about the hot paths, optimize them and exchange

the code for exploiting the accelerator. In the other case, if there

are any gaps between the consecutive executions of the

application, dynamic optimization can be applied at those

periods. In the these cases, the overhead of dynamic

optimization can be ignored.

The smart hardware technology is a hardware configuration

technology to perform hardware reconfiguration or mode change

to apply the adaptive dynamic optimization. Basically it contains

a general purpose or dynamic reconfigurable processor, some

hardware for profiler and accelerator.

3. ONLINE HOT PATH PROFILER
The online profiling is a technology to collect information of

application program’s behaviors at run-time, while off-line

profiling collects whole information regarding to application

program’s execution after running the application program. The

issue of the online profiling is how to get precise profile while

the profiling does not affect execution of an application program.

The advantage of online profiling is that it can get a profile for a

running application program which behavior depends on its

inputs.

3.1 Branch History Hot Path Profiler
Any serial code can be considered as many linked basic blocks.

A basic block is a sequence of instructions ending in a control

instruction. All instructions except the last instruction are non-

control instructions. Our online profiler finds dynamic traces of

basic blocks of loops. The online profiler has a hardware profiler

assistant and hot path finder software routine. The profiler

assistant monitors the executed instructions. When it encounters

a branch, it stores the address of the branch and its target address

in the branch history table (which is a buffer that can be a FIFO

or a CAM). The branch history table has four fields: basic block

start address, branch instruction address, branch target address

and executed count. The last field shows, the execution

frequency of basic block. When the buffer is filled, the main

processor is interrupted.

The interrupt routine, containing the hot path finder, starts

analyzing the branch history table and find closed paths by

dynamically linking the basic blocks. The closed paths will be

considered as a hot path if they have been executed more than a

defined threshold and their length is less than a maximum

length. Using a hardware assistant for profiler helps to reduce

the overhead of profiling and makes dynamic optimizations more

effective. Hot paths will be passed to the optimizer routine for

optimizations.

Because whole hot path is used to apply optimization taking

advantage of loop execution, precise hot path prediction is

crucial. BH (branch history) hot path profiler is an online

profiling method that can provide hot path prediction based on

each branch instructions history.

To detect hot path(s) BH profiler collects address information on

each executed branch instructions as a tuple. The tuple consists

of branch instruction address (BIA), branch target address

(BTA), and basic block start address (BSA). The tuple is stored

in the branch history table. (Fig. 2). When a branch instruction is

executed a tuple is constructed then compared with tuples stored

in the branch history table. If there is a hit, associated count is

incremented otherwise the new tuple is written in the branch

history table. Also a separated table called backward branch

history table keeps branch target address (BTA) only for

backward branches.

Figure 2. Branch history table and Backward branch history

table

When a count in an entry of the backward branch history table

exceeds a threshold value, that BTA entry is picked as a start

address of a hot path. The branch history table is referred to find

hot path sequence. BSA addresses in the branch history table are

compared with BTA. If matched BSA is found, BTA in the same

entry is picked to search next BSA. If multiple BSAs are found

counts are compared and BSA which has bigger count is picked.

Finally if BTA is smaller than BSA and the BTA is matched the

hot path head address, current sequence BTA is identified as a

hot path. By using BSA to index branch history table, the search

is simplified.

4. SYSTEMORPH UTILIZING A VLIW

ACCELERATOR AND TRACE BASED

DYNAMICALLY SOFTWARE

PIPELINING
Fig. 3 illustrates the proposed architecture for implementing

SysteMorph. It contains a main processor, online profiler,

optimizer, binary rewriter and an accelerator. The main

processor is a simple RISC processor with 32 32-bit registers.

The application is run on the main processor.

The optimizer routine uses Trace based Dynamic Software

Pipelining (TSWP) technique for optimizing hot paths. Software

pipelining has been shown to be an effective technique for

scheduling loop intensive program on VLIW processors [1]. The

principle behind software pipelining is to overlap or pipeline

different iterations of the loop body in order to exploit

parallelism.

BSA BTABIA count

… … … …

BSA BTABIA count

… … … …

BTA count

… …

BTA count

… …

Figure 3. Proposed architecture for SoC implementation

of SysteMorph

However loops including conditional branches are difficult to

handle for the software pipelining because there are multiple

paths of execution to schedule. To address this problem Trace

based Dynamic Software Pipelining (TSWP) is proposed. Figure

4 shows outline of TSWP technique. TSWP applies to hot paths

which are detected based on online profile information. In this

technique, the high frequently executed path of the loop is

selected among different available paths. Then, it is optimized,

using software pipelining and executed speculatively. In the case

of branch misprediction, the compensation code, which is

generated by the optimizer, is run.

Figure 4. Outline of Dynamic Software Pipelining

When the optimized code is generated, it is passed to the rewrite

binary procedure. In this procedure, the new code is rewritten

and the first instruction of the hot path is replaced by a call

instruction to the start address of the new generated instructions.

The optimized code contains all necessary instructions for

initializing the accelerator register file. Binary rewriting makes

the instructions generated by the optimizer, executable by the

accelerator. After binary rewriting, the interrupt handler finishes

and control returns to the target application. For the next time

when the loop including the hot path is executed, the optimized

code will be executed speculatively. If the predicted path is not

hot path, the compensation code will be executed.

The accelerator is a simplified 8-way five-stage VLIW processor

which excludes many unnecessary instructions such as memory

management and instructions for supporting the OS. This simple

architecture of the accelerator helps it to have a higher

performance and lower power consumption and faster clock

frequency. Similarities between the opcodes of main processor

and accelerator facilitate the binary translation and optimization.

To obtain better performance using TSWP, 128 32-bit registers

have been used by the accelerator.

5. PRELIMINARY PERFORMANCE

EVALUATION
Figure 5 shows the results of running SysteMorph hot path

detector for some of MiBench programs [2]. The line

corresponds to the right Y-axis which shows the number of

detected hot paths in the applications and the bars correspond to

the left Y-axis which illustrate the total instructions of all the hot

paths seen in the application. According to the results, in most

cases there are tiny parts of the code which have been detected

as hot paths (less than 30 hot paths have been detected except

two cases). Mostly the hot paths contain less than 50

instructions. This information shows that hot path optimizer will

be called not so much and there will not be much overhead. Also

it shows that the optimized code is small enough to be fitted in a

small memory instruction for accelerator which allow efficient

execution without instruction fetch using main memory.

0

500

1000

1500

2000

2500

3000

3500

a
u
to
m
o
ti
v
e
_
b
a
s
ic
m
a
th

a
u
to
m
o
ti
v
e
_
b
it
c
o
u
n
t

a
u
to
m
o
ti
v
e
_
q
s
o
rt

a
u
to
m
o
ti
v
e
_
s
u
s
a
n
_
c
o
rn
e
rs

a
u
to
m
o
ti
v
e
_
s
u
s
a
n
_
e
d
g
e

a
u
to
m
o
ti
v
e
_
s
u
s
a
n
_
s
m
o
o
th
in
g

c
o
n
s
u
m
e
r_
jp
e
g
_
e
n
c
o
d
e

c
o
n
s
u
m
e
r_
jp
e
g
_
d
e
c
o
d
e

c
o
n
s
u
m
e
r_
la
m
e
3
.9
6

c
o
n
s
u
m
e
r_
ti
ff
2
b
w

c
o
n
s
u
m
e
r_
ti
ff
2
rg
b
a

c
o
n
s
u
m
e
r_
ti
ff
d
it
h
e
r

c
o
n
s
u
m
e
r_
ti
ff
m
e
d
ia
n

c
o
n
s
u
m
e
r_
ty
p
e
s
e
t

o
ff
ic
e
_
g
h
o
s
ts
c
ri
p
t

o
ff
ic
e
_
s
tr
in
g
s
e
a
rc
h

n
e
tw
o
rk
_
d
ijk
s
tr
a

n
e
tw
o
rk
_
p
a
tr
ic
ia

s
e
c
u
ri
ty
_
b
lo
w
fi
s
h
_
e
n
c
o
d
e

s
e
c
u
ri
ty
_
b
lo
w
fi
s
h
_
d
e
c
o
d
e

s
e
c
u
ri
ty
_
ri
jn
d
a
e
l_
e
n
c
o
d
e

s
e
c
u
ri
ty
_
ri
jn
d
a
e
l_
d
e
c
o
d
e

s
e
c
u
ri
ty
_
s
h
a

te
le
c
o
m
_
a
d
p
c
m
_
e
n
c
o
d
e

te
le
c
o
m
_
a
d
p
c
m
_
d
e
c
o
d
e

te
le
c
o
m
_
c
rc
3
2

te
le
c
o
m
_
ff
t

0

20

40

60

80

100

120

Total number of Instructions in Hot
Paths

Number of Hot Paths

Figure 5. Number of hot paths and their total instructions

for MiBench

To have a preliminary performance evaluation of SysteMorph,

two experiments have been done. A single issue RISC processor

(model A) has been compared to a single issue RISC processor,

once augmented with a 4-way VLIW accelerator (model B) and

once with an 8-way VLIW accelerator (model C). SimpleScalar

[3] tool set has been used as the simulator and Mibench

programs as our benchmark. The 4-way accelerator has three

integer/branch units and one load/store unit. The 8-way

accelerator has 7 integer/branch units and one load/store unit.

Each instruction has been supposed to take one clock cycle.

Each processor can execute at most one branch instruction in

each cycle. To evaluate the speedup, the application was run on

model A (sim-safe of Simplescalar tool set was utilized) and

clock cycles were counted, so called Nall. Then the hot path

detector was run for the output of the sim-safe, which is

sequence of executed instructions on the processor, and hot

paths were detected. Fig. 6 shows the percentage of the total

executed instructions covered by hot paths. As it can be seen, in

most cases, hot paths are critical regions of the code, which

cover a big part of total executed instructions.

Ex te rna l M em ory

Bus C on tro lle r

C PU

In s tru ct io n

C ach e

D a ta C ach e

In stru ction

R AM

Pro file r

A ss is t

VL IW E xecu tio n

U n it

Da ta

R AM

Ex te rna l M em ory

Bus C on tro lle r

C PU

In s tru ct io n

C ach e

D a ta C ach e

In stru ction

R AM

Pro file r

A ss is t

VL IW E xecu tio n

U n it

Da ta

R AM

A
If(1)

B C

E F

G H I

J

D

If(2)

A
If(1)

B

D
If(2)

H

J

C

E F

IG

Original loop After dynamic software pipelining applied

Compensation code
A
If(1)

B C

E F

G H I

J

D

If(2)

A
If(1)
A
If(1)

BB CC

EE FF

GG HH II

JJ

D

If(2)

D

If(2)

A
If(1)
A
If(1)

BB

D
If(2)
D
If(2)

HH

JJ

C

E F

IG

CC

EE FF

IIGG

Original loop After dynamic software pipelining applied

Compensation code

0
0.2
0.4

0.6

0.8
1

1.2

bitc
o
un

t

su
san

_c
orne

rs

stringse
a
rc

h

rijnd
ae

l_d
e
co

de

qsort

su
san

_e
dge

tiff2
rgba

su
san

_sm
oo

th
in

g

ba
sic

m
a
th

ad
p
cm

_de
co

d
e

crc
32

blow
fish

_d
ec

o
de

sh
a

Figure 6. Percentage of executed instructions covered by hot

paths

For the first experiment, hot paths were optimized using list

scheduling and in the second experiment they were optimized by

traced-based dynamic software pipelining. The speedup was

calculated using: speedup = Nall / ((Nall - NHP) + (NOPHP)) (Eq.

1). Nall is the total clock cycle counts for executing the

applications on the single issue RISC processor. NHP is the clock

cycle counts for executing hot paths on the single issue

processor without applying any optimization. And NOPHP is the

number of clock cycles for executing optimized hot paths (hot

paths were optimized by list scheduling and TSWP) on the

accelerator. Figure 7 and 8 show the speed up gained by

applying list scheduling and TSWP to the hot paths for 4-way

and 8-way accelerators, using Eq. 1. According to the Fig 7 and

Fig 8, TSWP can not always improve the speedup comparing to

list scheduling. Due to tight dependences and load/store

instructions for some applications in their hot paths, it is hard to

overlap consecutive iterations of the loop. But for the

applications that have less dependences and have no or few

load/store instructions in their hot paths, TSWP boosts the

performance more. In this phase of evaluation, the overhead of

optimization and switching from processor to accelerator and

reverse have been ignored. Also the overhead of hot paths

misprediction recovery has not been considered. At runtime, hot

paths are logically, sequential code. Therefore, jump and branch

instructions in hot paths are treated exactly like other

instructions.

6. CONCLUSIONS AND FUTURE WORK
In this paper, a dynamically adaptable architecture based on

online profiling information has been proposed. This

architecture tries to obtain better performance by accelerating the

frequently executed dynamic trace of loops (hot paths) of the

applications. The hot paths detection is performed, according to

the binary code online profiling information. The profiler is

hardware based which decreases the overhead. Hot paths

identification is done by studying the behavior of branch/jump

instructions. Hardware accelerator is used for executing the hot

paths. Binary rewriting provides the feasibility for running the

hot paths on the accelerator. Running hot path detector for

MiBench has shown that mostly for each application the number

of hot paths is less than 30 and their length is approximately 50

instructions. Due to these numbers little overhead for system and

small instruction memory for accelerator will be expected.

Among different architectures we have focused on an

architecture which contains a hardware/software profiler and an

8-way VLIW accelerator. Dynamic software pipelining is used

as the dynamic optimization technique. Besides optimizing the

code, the compensation code for hot path recovery is generated.

The preliminary performance evaluations show improvement,

though it’s rough and more exact evaluation is going to be done.

We are trying to turn over profiling and optimizing to the

hardware as much as possible to reduce the overhead of runtime

software while not losing the flexibility of the optimizer.

0

0.5

1

1.5

2

2.5

bitc
o
u
n
t

su
san

_c
o
rn

e
rs

strin
gse

arc
h

rijn
dae

l_de
c
o
de

qso
rt

su
san

_e
dge

tiff2
rgba

su
san

_sm
o
o
th

in
g

basic
m

ath

adpc
m

_de
c
o
de

c
rc

3
2

blo
w

fish
_de

c
o
de

sh
a

sp
e
e
du

p

4way 8way

Figure 7. Speedup gained by applying list scheduling to hot

paths

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

bitc
o
u
n
t

su
san

_c
o
rn

e
rs

strin
gse

arc
h

rijn
dae

l_de
c
o
de

qso
rt

su
san

_e
dge

tiff2
rgba

su
san

_sm
o
o
th

in
g

basic
m

ath

adpc
m

_de
c
o
de

c
rc

3
2

blo
w

fish
_de

c
o
de

sh
a

benchmark

sp
e
e
d
u
p

4way-spec

8way-spec

Figure 8. Speedup gained by applying TSWP to hot paths

7. REFERENCES
[1] Lam, M. Software Pipelining: An Effective Scheduling

Technique for VLIW Machines. In Proceedings of the ACM

SIGPLAN ’88 Conference on Programming Language

Design and Implementation, Jun. 1998.

[2] http://www.eecs.umich.edu/mibench/

[3] http://www.simplescalar.com/

[4] Rosner R., Almog Y., Moffie M., Schwartz N. and

Mendelson A. Power Awareness through Selective

Dynamically Optimized Traces, ISCA’04, 2004.

[5] Black B. and Shen J. P. Turboscalar: A High Frequency
High IPC Microarchitecture. ISCA27, June 2000.

[6] Klaiber A., The Technology Behind Crusoe Processors.
Transmeta Corporation White Paper, 2000.

[7] http://www.cs.ucr.edu/~vahid/warp/

[8] Patel S. and Lumetta S., rePlay: A Hardware Framework for
Dynamic Optimization, IEEE Trans. on Computers, 50(6),

pp 590-608, June 2001.

