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ABSTRACT  
This paper investigates a possible architecture to a dynamically 

adaptable processor. In this architecture, the running application 

is profiled and dynamic traces of high frequently executed loops 

(hot paths) are detected. The proposed online profiling 

methodology is mainly hardware-based so that overhead can be 

reduced as much as possible. Studying the behavior of branch 

and jump instructions, gathered by the profiler, guides us to the 

hot paths. To improve the performance for the next iterations, 

hot paths are optimized using dynamic software pipelining 

technique, which seems a suitable method for our simplified 8-

way VLIW accelerator. To exploit the hardware accelerator, the 

binary code is rewritten. Some preliminary performance 

evaluations show speedup.  
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1. INTRODUCTION 
Dynamically linked libraries, micro-architecture specific 

features, inaccurate run-time profiles and using object-oriented 

language and techniques have limited the size of the scope 

available for static compiler analysis. Also dynamic optimization 

offers more opportunities for those applications whose behavior 

are input dependent. More recently, the use of dynamic code 

generation environments makes the applicability of heavyweight 

static compiler optimization techniques impractical. Meanwhile 

on the hardware side, progress of semiconductor technology 

enabled to design a large scale, complex functionality SoCs. As 

the complexity increases it is getting difficult to foresee 

circumstances which a system operates at its design time and it 

makes challenging to design a system optimizing performance, 

power consumption, and energy consumption for them.  

Shifting optimizations to runtime can be a possible solution for 

these problems. Generally, in dynamic optimization, a binary 

program is executed on a processor system. The system monitors 

the executing binary, detects the frequently executed regions, 

optimizes those regions and exchange future occurrences of the 

original regions with the optimized version. The main processor 

or some extra hardware accelerator can be used for running the 

optimized traces. Recent work in dynamic optimization has 

shown that a run-time system can improve program performance 

and power consumption by performing optimizations that are 

difficult to deploy statically [4], [5], [6], [7], [8]. 

However there are some issues to realize the dynamic 

optimization in a system. It must have small impact on system’s 

operation. It should be identified, where and how the 

optimizations are going to be applied. Also the system has to be 

able to update the executing optimized code, adaptively. The 

overhead of detection and optimization must be amortized by 

gaining better performance. This limits the scope of 

optimizations that can be done online, and makes the efficiency 

of the optimization infrastructure extremely critical. To 

overcome the overhead, there can be several solutions according 

to the application. For some applications that there is a gap 

between consecutive execution of the application, e.g. printer 

and mobile applications, the dynamic optimization can be done 

in this gap. For those applications without this gap, a training 

phase can be defined before the normal use. In the training 

phase, the system learns about the hot paths of the application, 

applies optimizations and prepares for executing optimized code 

for the next iterations. Using a hardware engine for optimization 

can be another solution.  

This paper, proposes SysteMorph as a concept of a system which 

can be dynamically optimized. It optimizes systems dynamically 

and executes application programs adaptively based on 

application program’s online profile information for processor 

based systems. SysteMorph consists of three elemental 

technologies those are (1) online profiling, (2) dynamic adaptive 

optimization, and (3) smart hardware.  

The concept of SysteMorph is described in Section 2. Section 3 

discusses the SysteMorph online hotpath profiler. In Section 4 

proposed SoC architecture of SysteMorph is described.  Some 

preliminary performance evaluations are shown in Section 5 and 

the paper is closed with conclusion and future work. 

2. SYSTEMORPH CONCEPT 
SysteMorph is a feedback directed dynamic optimization 

technology mainly adapted in processor based systems (Fig. 1). 

With SysteMorph, a system can be optimized in terms of 

performance, power consumption, and energy consumption 

using target application program’s run-time profile information. 

SysteMorph technology consists of the following three elemental 

technologies: Online profiling, Adaptive dynamic optimization 

and Smart hardware.  

The online profiler collects run-time information at binary level 

and exploits it for optimization/acceleration. The information is 

sent to the optimizer as feedback. The profiling information 

helps the system to detect, e.g. threads, a hot instruction 

sequence, hot loops and etc.  



 

Figure 1. SysteMorph Concept 

The adaptive dynamic optimization is a technology to optimize 

the system dynamically including software and hardware based 

on the profile information. It can cover various optimizations for 

hot traces, fusion of instructions (for dynamic reconfigurable 

processors), reconfiguring the reconfigurable parts of the system 

and etc. After optimizations, optimized binary code and 

modified configurations are rewritten. Dynamic optimization can 

be done at different periods. For example, the system can have a 

training phase before starting its normal operation. In the 

training phase, the user can apply desired inputs and let the 

system learn about the hot paths, optimize them and exchange 

the code for exploiting the accelerator. In the other case, if there 

are any gaps between the consecutive executions of the 

application, dynamic optimization can be applied at those 

periods. In the these cases, the overhead of dynamic 

optimization can be ignored.  

The smart hardware technology is a hardware configuration 

technology to perform hardware reconfiguration or mode change 

to apply the adaptive dynamic optimization. Basically it contains 

a general purpose or dynamic reconfigurable processor, some 

hardware for profiler and accelerator.  

3. ONLINE HOT PATH PROFILER 
The online profiling is a technology to collect information of 

application program’s behaviors at run-time, while off-line 

profiling collects whole information regarding to application 

program’s execution after running the application program. The 

issue of the online profiling is how to get precise profile while 

the profiling does not affect execution of an application program. 

The advantage of online profiling is that it can get a profile for a 

running application program which behavior depends on its 

inputs.  

3.1 Branch History Hot Path Profiler 
Any serial code can be considered as many linked basic blocks. 

A basic block is a sequence of instructions ending in a control 

instruction. All instructions except the last instruction are non-

control instructions. Our online profiler finds dynamic traces of 

basic blocks of loops. The online profiler has a hardware profiler 

assistant and hot path finder software routine. The profiler 

assistant monitors the executed instructions. When it encounters 

a branch, it stores the address of the branch and its target address 

in the branch history table (which is a buffer that can be a FIFO 

or a CAM). The branch history table has four fields: basic block 

start address, branch instruction address, branch target address 

and executed count. The last field shows, the execution 

frequency of basic block. When the buffer is filled, the main 

processor is interrupted.  

The interrupt routine, containing the hot path finder, starts 

analyzing the branch history table and find closed paths by 

dynamically linking the basic blocks. The closed paths will be 

considered as a hot path if they have been executed more than a 

defined threshold and their length is less than a maximum 

length. Using a hardware assistant for profiler helps to reduce 

the overhead of profiling and makes dynamic optimizations more 

effective. Hot paths will be passed to the optimizer routine for 

optimizations.  

Because whole hot path is used to apply optimization taking 

advantage of loop execution, precise hot path prediction is 

crucial. BH (branch history) hot path profiler is an online 

profiling method that can provide hot path prediction based on 

each branch instructions history.  

To detect hot path(s) BH profiler collects address information on 

each executed branch instructions as a tuple. The tuple consists 

of branch instruction address (BIA), branch target address 

(BTA), and basic block start address (BSA). The tuple is stored 

in the branch history table. (Fig. 2). When a branch instruction is 

executed a tuple is constructed then compared with tuples stored 

in the branch history table. If there is a hit, associated count is 

incremented otherwise the new tuple is written in the branch 

history table. Also a separated table called backward branch 

history table keeps branch target address (BTA) only for 

backward branches.  

 

 

 

Figure 2. Branch history table and Backward branch history 

table 

When a count in an entry of the backward branch history table 

exceeds a threshold value, that BTA entry is picked as a start 

address of a hot path. The branch history table is referred to find 

hot path sequence. BSA addresses in the branch history table are 

compared with BTA. If matched BSA is found, BTA in the same 

entry is picked to search next BSA. If multiple BSAs are found 

counts are compared and BSA which has bigger count is picked. 

Finally if BTA is smaller than BSA and the BTA is matched the 

hot path head address, current sequence BTA is identified as a 

hot path. By using BSA to index branch history table, the search 

is simplified.  

4. SYSTEMORPH UTILIZING A VLIW 

ACCELERATOR AND TRACE BASED 

DYNAMICALLY SOFTWARE 

PIPELINING  
Fig. 3 illustrates the proposed architecture for implementing 

SysteMorph. It contains a main processor, online profiler, 

optimizer, binary rewriter and an accelerator. The main 

processor is a simple RISC processor with 32 32-bit registers. 

The application is run on the main processor.  

The optimizer routine uses Trace based Dynamic Software 

Pipelining (TSWP) technique for optimizing hot paths. Software 

pipelining has been shown to be an effective technique for 

scheduling loop intensive program on VLIW processors [1]. The 

principle behind software pipelining is to overlap or pipeline 

different iterations of the loop body in order to exploit 

parallelism. 
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Figure 3. Proposed architecture for SoC implementation 

of SysteMorph 

 

However loops including conditional branches are difficult to 

handle for the software pipelining because there are multiple 

paths of execution to schedule. To address this problem Trace 

based Dynamic Software Pipelining (TSWP) is proposed. Figure 

4 shows outline of TSWP technique. TSWP applies to hot paths 

which are detected based on online profile information. In this 

technique, the high frequently executed path of the loop is 

selected among different available paths. Then, it is optimized, 

using software pipelining and executed speculatively. In the case 

of branch misprediction, the compensation code, which is 

generated by the optimizer, is run. 

 

 

 

 

 

 

 

 

 

Figure 4. Outline of Dynamic Software Pipelining 

 

When the optimized code is generated, it is passed to the rewrite 

binary procedure. In this procedure, the new code is rewritten 

and the first instruction of the hot path is replaced by a call 

instruction to the start address of the new generated instructions. 

The optimized code contains all necessary instructions for 

initializing the accelerator register file. Binary rewriting makes 

the instructions generated by the optimizer, executable by the 

accelerator. After binary rewriting, the interrupt handler finishes 

and control returns to the target application. For the next time 

when the loop including the hot path is executed, the optimized 

code will be executed speculatively. If the predicted path is not 

hot path, the compensation code will be executed.  

The accelerator is a simplified 8-way five-stage VLIW processor 

which excludes many unnecessary instructions such as memory 

management and instructions for supporting the OS. This simple 

architecture of the accelerator helps it to have a higher 

performance and lower power consumption and faster clock 

frequency. Similarities between the opcodes of main processor 

and accelerator facilitate the binary translation and optimization. 

To obtain better performance using TSWP, 128 32-bit registers 

have been used by the accelerator. 

5. PRELIMINARY PERFORMANCE 

EVALUATION 
Figure 5 shows the results of running SysteMorph hot path 

detector for some of MiBench programs [2]. The line 

corresponds to the right Y-axis which shows the number of 

detected hot paths in the applications and the bars correspond to 

the left Y-axis which illustrate the total instructions of all the hot 

paths seen in the application. According to the results, in most 

cases there are tiny parts of the code which have been detected 

as hot paths (less than 30 hot paths have been detected except 

two cases). Mostly the hot paths contain less than 50 

instructions. This information shows that hot path optimizer will 

be called not so much and there will not be much overhead. Also 

it shows that the optimized code is small enough to be fitted in a 

small memory instruction for accelerator which allow efficient 

execution without instruction fetch using main memory. 
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Figure 5. Number of hot paths and their total instructions 

for MiBench 

 

To have a preliminary performance evaluation of SysteMorph, 

two experiments have been done. A single issue RISC processor 

(model A) has been compared to a single issue RISC processor, 

once  augmented with a 4-way VLIW accelerator (model B) and 

once with an 8-way VLIW accelerator (model C). SimpleScalar 

[3] tool set has been used as the simulator and Mibench 

programs as our benchmark. The 4-way accelerator has three 

integer/branch units and one load/store unit. The 8-way 

accelerator has 7 integer/branch units and one load/store unit.  

Each instruction has been supposed to take one clock cycle. 

Each processor can execute at most one branch instruction in 

each cycle. To evaluate the speedup, the application was run on 

model A (sim-safe of Simplescalar tool set was utilized) and 

clock cycles were counted, so called Nall. Then the hot path 

detector was run for the output of the sim-safe, which is 

sequence of executed instructions on the processor, and hot 

paths were detected. Fig. 6 shows the percentage of the total 

executed instructions covered by hot paths. As it can be seen, in 

most cases, hot paths are critical regions of the code, which 

cover a big part of total executed instructions. 
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Figure 6. Percentage of executed instructions covered by hot 

paths 

For the first experiment, hot paths were optimized using list 

scheduling and in the second experiment they were optimized by 

traced-based dynamic software pipelining. The speedup was 

calculated using: speedup = Nall / ((Nall - NHP) + (NOPHP)) (Eq. 

1). Nall is the total clock cycle counts for executing the 

applications on the single issue RISC processor. NHP  is the clock 

cycle counts for executing hot paths on the single issue 

processor without applying any optimization. And NOPHP  is the 

number of clock cycles for executing optimized hot paths (hot 

paths were optimized by list scheduling and TSWP) on the 

accelerator. Figure 7 and 8 show the speed up gained by 

applying list scheduling and TSWP to the hot paths for 4-way 

and 8-way accelerators, using Eq. 1. According to the Fig 7 and 

Fig 8, TSWP can not always improve the speedup comparing to 

list scheduling. Due to tight dependences and load/store 

instructions for some applications in their hot paths, it is hard to 

overlap consecutive iterations of the loop. But for the 

applications that have less dependences and have no or few 

load/store instructions in their hot paths, TSWP boosts the 

performance more. In this phase of evaluation, the overhead of 

optimization and switching from processor to accelerator and 

reverse have been ignored. Also the overhead of hot paths 

misprediction recovery has not been considered. At runtime, hot 

paths are logically, sequential code. Therefore, jump and branch 

instructions in hot paths are treated exactly like other 

instructions. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, a dynamically adaptable architecture based on 

online profiling information has been proposed. This 

architecture tries to obtain better performance by accelerating the 

frequently executed dynamic trace of loops (hot paths) of the 

applications. The hot paths detection is performed, according to 

the binary code online profiling information. The profiler is 

hardware based which decreases the overhead. Hot paths 

identification is done by studying the behavior of branch/jump 

instructions. Hardware accelerator is used for executing the hot 

paths. Binary rewriting provides the feasibility for running the 

hot paths on the accelerator. Running hot path detector for 

MiBench has shown that mostly for each application the number 

of hot paths is less than 30 and their length is approximately 50 

instructions. Due to these numbers little overhead for system and 

small instruction memory for accelerator will be expected.  

Among different architectures we have focused on an 

architecture which contains a hardware/software profiler and an 

8-way VLIW accelerator. Dynamic software pipelining is used 

as the dynamic optimization technique. Besides optimizing the 

code, the compensation code for hot path recovery is generated. 

The preliminary performance evaluations show improvement, 

though it’s rough and more exact evaluation is going to be done. 

We are trying to turn over profiling and optimizing to the 

hardware as much as possible to reduce the overhead of runtime 

software while not losing the flexibility of the optimizer.  
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Figure 7. Speedup gained by applying list scheduling to hot 

paths 
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Figure 8. Speedup gained by applying TSWP to hot paths 
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