
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

An Adaptive Dynamic Extensible Processor

Noori, Hamid
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Murakami, Kazuaki
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

Inoue, Koji
Department of Informatics, Graduate School of Information Science and Electrical Engineering,
Kyushu University

https://hdl.handle.net/2324/6261

出版情報：IEICE Technical Report, CPSY2005-29. 105 (453), pp.13-18, 2005-12. IEICE
バージョン：
権利関係：

社団法人 電子情報通信学会 信学技報

THE INSTITUTE OF ELECTRONICS, IEICE TECHNICAL REPORT

INFORMATION AND COMMUNICATION ENGINEERS CPSY2005-29(2005-12)

An Adaptive Dynamic Extensible Processor

Hamid Noori Kazuaki Murakami and Koji Inoue

Department of Informatics, Graduate School of Information Science and Electrical Engineering, Kyushu University, 6-1

Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan

E-mail: noori@c.csce.kyushu-u.ac.jp, {murakami, inoue}@i.kyushu-u.ac.jp

Abstract This paper describes an approach for adaptive dynamic instruction set extension, tuning processors to specific

applications. These new instructions are generated after production. The processor has two modes: training mode and normal

mode. The application-specific instructions are extracted from the critical portions of the code detected by a profiler at training

mode. At normal mode they are executed on a reconfigurable coarse grain accelerator. The sequencer decides when, which

custom instruction should be executed. In this methodology there is no need to a new compiler and extra opcodes. Two

methods are proposed for finding critical regions of the code.

Keyword Extensible Processor, Hot Spots, Online Profiling, Custom Instruction, Reconfigurable Accelerator

1. Introduction

Although availability of tools, programmability, and

ability to rapidly deploy general purpose processors

(GPPs) in embedded systems are good reasons for the

common use of GPPs in embedded systems, they do not

offer the necessary performance.

The application-specific nature of embedded system

creates new opportunities to customize processor

architecture for a particular application. Application

specific instruction set processors, or ASIPs, have the

potential to meet the challenging high-performance

demands of embedded applications. The synthesis ASIPs

traditionally involved the generation of a complete

instruction set architecture (ISA) for the targeted

application. However, this full-custom solution is too

expensive and has long design turnaround times.

Another method for providing enhanced performance in

processors is application-specific instruction set

extension. By creating application-specific extensions to

an instruction set, the critical portions of an application's

dataflow graph (DFG) can be accelerated by mapping

them to custom functional units. Though not as effective

as ASICs, instruction set extensions improve performance

and reduce energy consumption of processors. Instruction

set extensions also maintain a degree of system

programmability, which enables them to be utilized with

more flexibility. The main problem with this method is

that there are significant non-recurring engineering costs

associated with implementing them. The addition of

instruction set extensions to a baseline processor brings

along with it many of the issues associated with designing

a brand new processor in the first place.

In the design of embedded systems-on-chip, the success

of a product generation depends on the efficiency and

flexibility to accommodate future design changes.

Flexibility allows system designs to be easily modified or

enhanced in response to bugs, market shifts, evolution of

standards, or user requirements, during the design cycle

and even after production which also means increase in

design productivity. Efficient implementations are

required to meet the tight cost, timing, and power

constraints present in embedded systems. Efficiency and

flexibility are critical, but usually conflicting, design

goals in embedded system design. While efficiency is

obtained through custom hardwired implementations,

flexibility is best provided through programmable

implementations.

This paper presents a work-in-progress of adaptive

dynamic extensible processor architecture. In this

methodology the processor looks for the custom

instructions (CIs) in the frequently executed portions of

the code detected during online profiling. The processor

has been developed by augmenting extra hardware to a

single issue RISC processor and applying some

modifications in the baseline processor architecture.

This paper is organized as follows: The general

overview of processor architecture will be described in

Section 2. In Sections 3 we propose our critical regions

detector. Paper is closed by conclusion and future work.

2. General Overview of Processor Architecture

By Adaptive we mean that the processor can tune itself

to the running applications. And we claim it is Dynamic,

because instruction set extension is done after production

and even at run-time in the gap between two consecutive

executions of the application (e.g. printers, cell phone and

etc). Instructions set extensions are going to be done fully

automatically and transparently.

2.1. Architecture

Our extensible processor has been designed and

developed by adding/modifying some units to/of a general

RISC processor. Figure 1 depicts the added/modified

sections to/of the baseline processor, which has been

proposed as a preliminary architecture for the extensible

processor. Because it is a newborn project, details of the

architecture still are not decided. The figure just tries to

show a general view of the whole idea and concept.

Fig. 1. General overview of the architecture

For simplicity, it has been assumed that the baseline

processor is a single issue RISC processor. Firstly, we are

going to evaluate the general idea. If it is practical then it

will be merged it with more powerful embedded

processors. There are three main units that have been

augmented to the baseline processor: a profiler, a coarse

grain reconfigurable accelerator and a sequencer.

This processor has two modes: training mode and

normal mode. In training mode the processor learns about

application-specific instructions and then generates the

proper and necessary configuration data. In normal mode,

it can still keep on learning but it can not generate new

configuration. It just uses the configured architecture for

running the application including the execution of CIs on

the accelerator.

At the training mode, the processor starts profiling the

applications. It tries to find critical regions of the code

and then looks for the CIs in these hot regions. Some

memories are required as a table for keeping the profiling

information. This information will be used for generating

CIs. Profiler has a simple hardware for monitoring and

generating base knowledge about hot regions and more

complicated software for handling the remaining tasks.

More details about the profiler will be given in Sections 3

and 4.

As it has been also mentioned in [1], [3], according to

the size of data in the processors, a matrix of ALUs seems

efficient and reasonable enough for accelerating dataflow

subgraphs as CIs. Using coarse grain reconfigurable

accelerators demand for less configuration memory. Also

mapping instructions on them will be easier. Although

fine grain accelerators are more flexible, they are slower

comparing coarse grain ones. We assume that each ALU

of the accelerator supports all fixed-point instructions of

the baseline processor except multiplication, division and

load. It has also been presumed that at most one store and

one control (branch or jump) instruction can be executed

by the accelerator. Therefore the accelerator can change

the program counter (PC).

For the preliminary performance evaluation, we

suppose that, the accelerator does not have any limitation

on inputs and outputs. It can have as many inputs as it

needs and can write to register file as many as it requires.

But there are some assumptions for the interconnect

network. The outputs of ALUs in each row are fully

connected just to the inputs of the ALUs in the subsequent

row. Also at current phase, the depth and width of the

accelerator have presumed to be infinite. Focusing on

more details about the accelerator architecture will

include in our future work.

The inputs of accelerator are directly connected to the

outputs of the registers of the register file. Therefore,

accelerator does not need to read the data from the

register file. This idea has been used before in Chimaera

[2]. The accelerator has a two-level configuration

memory: a multi-context memory and a cache.

The multi-context memory can keep for example four

configurations for the accelerator. Switching between

configurations in multi-context memory will be very fast

(within several clock cycles). The configurations of

custom instructions that are most probable to be executed

in near future are stored in the multi-context memory and

the others in the cache. Using two-level configuration

memory will hide the overhead of loading new

configuration from cache to multi-context memory.

Utilizing a direct memory access (DMA) controller,

loading multi-context memory from cache can be done in

parallel with application execution. The number of

Register

ID/EXE
Acce lerator

Mult i-Context

Memory

Cache

Funct iona l Unit

Mux Sequencer

Sequencer

Table

EXE/MEM Reg
Profiler

DMA

Pro fi ler

Table (HWT)

custom instructions is limited by the size of these

memories. At current status there is no presumed value

for size of these memories. Specifying proper size for

memories and relation between multi-context memory,

cache and DMA are left as future work.

The sequencer mainly determines the microcode

execution sequence by selecting between the accelerator

and the processor functional unit outputs. It has a table in

which the start addresses of dataflow subgraphs, which

are going to be executed as custom instructions on the

accelerator, are specified. By comparing the PC and the

contents of the table, the sequencer can distinguish which

custom instruction will be executed at what time.

Therefore the sequencer will know when it should switch

between the outputs of the accelerator and the functional

unit. Using this table, the accelerator can also decide

when to switch between different contexts of

multi-context memory and when to start loading new

configuration from cache to the multi-context memory.

The sequencer knows the required clock cycles for each

CI execution. The table of the sequencer is initialized

according to the locations of the custom instructions in

the object code at the training mode, when they are

generated.

One of the advantages of using the sequencer is that it

obviates the need for adding new opcodes for the custom

instructions. When training finishes and processor enters

the normal mode, the sequencer starts monitoring the PC.

When it reaches to the start address of a custom

instruction, it switches from functional unit to the

accelerator. Because the outputs of registers in register

file are already available at the inputs of the accelerator,

it does not need to read the registers. The sequencer will

send the result of accelerator to the next stage after

waiting for determined number of clock cycles (the

custom instruction are assumed to be multi-cycle) and

again switches to the output of functional unit. The

required clock cycles for executing each custom

instruction are determined at the training mode after

mapping the custom instructions on the accelerator. These

values will be used by sequencer.

The other advantage of the sequencer is the elimination

of the penalty because of the absence of accelerator

configuration data for the executing CI, in the

multi-context memory. When the sequencer expects the

execution of a CI in near future, it checks for the

existence of the corresponding configuration data for the

CI in the multi-context memory. If the configuration is

available, the dataflow subgraph will be executed as a CI

on the accelerator, otherwise the original code will be

executed on the functional unit (the logical sequence of

the binary code is not modified). Therefore in the case of

absence of configuration of a custom instruction we will

only miss the expected speedup for that instruction and

there will be no penalty.

It has been assumed that CIs will take multi cycles to

be executed on the accelerator. After mapping the CIs on

the accelerator it will be known how many clock cycles it

will be required for execution. Therefore we have

supposed that we can have an accelerator with variable

delay if we are able to read the output at the right time.

Using the proposed architecture and hardware obviate

the need for developing a new compiler and adding new

opcodes and instructions to the instruction set.

It could be also possible to utilize both the processor

functional unit (PFU) and accelerator in parallel. Custom

instructions (CIs) mostly need multi cycles for execution.

By proper selection of custom instruction and start time

of execution, it is possible to deploy the accelerator and

PFU in parallel. In this case the performance can be

enhanced more. We leave this issue for future work.

2.2. Functionality

We believe that it is fundamental to handle the

instruction set extensions in a fully automated manner.

On the other hand we are looking for a transparent

post-production extensible embedded processor which

does not require a new compiler. But automated

instruction-set extension tools are time consuming so that

they can not be applied dynamically while the processor

is doing its duties. Therefore two modes have been

defined for the processor: training mode and normal mode.

In the training mode, the user will run desired

applications with favorite inputs. The applications are

executed on the processor using only the processor

functional unit as usual. The system also starts online

profiling. According to the information gathered by the

profiler, critical regions are detected. More information

about the profiler and critical regions detection will be

given in following sections.

Custom instructions are generated utilizing frequently

executed regions. Each CI can have at most one control

(branch or jump) and one store instruction. The custom

instruction can not contain multiply, divide,

floating-point or load instructions. Then the

control/dataflow graph (DFG for the first method and

CDFG for second method) is generated for the detected

critical regions. In some cases, to make CIs larger, the

sequence of instructions in the object code should be

moved, which should not cause any change in the logic of

the application. For example, sometimes by moving

backward or forward some unsupported and independent

instructions (e.g. load or divide) in the object code; larger

CI could be created. In these cases we would need to do

binary rewriting for some parts of the object code. Doing

some dynamic optimizations on the instruction sequence

such as constant propagation will reduce dataflow height

and increase ILP.

For some embedded applications, there are some gaps

between consecutive executions of the applications (e.g.

printer and cell phones). In these systems the processor

can keep on profiling even at normal mode. When the

application execution finishes, it switches to training

mode and applies the tools again to update or optimize

more the custom instructions. For those embedded

applications which do not have this feature, the processor

enters the training mode at first once, and then it switches

to the normal mode. In the training mode, also data for

accelerator configuration memories are generated and

loaded into the cache and multi-context memory. The

sequencer table is initialized in this mode too.

After finishing CI generation in training mode the

processor switches to the normal mode. In the normal

mode, using the accelerator, its configuration data, the

sequencer and its table, the CIs are executed on the

accelerator. The sequencer monitors the PC and compares

to its table entries. When it detects that a CI is going to

be executed in near future, it checks whether the

corresponding configuration is available in the

multi-context memory or not. If it exists, the

multi-context memory selects the proper configuration;

the sequencer switches from processor functional unit to

the accelerator, waits for specified clock cycles and let

the accelerator finishes the execution of the custom

instruction, then switches again to the processor

functional unit. If the configuration is not available in the

multi-context memory and there is enough time, the

configuration data will be loaded to multi-context

memory from cache. Otherwise the original code will be

executed on the processor functional unit as usual. Each

CI generates proper PC after its execution finishes,

considering original sequence execution, so that processor

can continue from correct address.

All the processes that are done in training mode can be

done statically too. Therefore we can propose two

methodologies, in one methodology, the processor has a

training mode, so it needs some hardware for profiling

and in other method training mode can be performed

completely at static time. In this case, the processor does

not need extra hardware for profiling. In this method the

applications will be run using a simulator (e.g.

simplescalar toolset) at static time then the profiler and

remaining processes will be executed. The data for

configuration memories and sequencer table will be

generated statically. At the time the processor wants to

start, first the generated data should be loaded to the

configuration memories and sequencer table, then the

processor starts its job.

3. Detecting Critical Regions of the Code

In the first method, CIs are extracted from hot basic

blocks (HBBs). A basic block is a sequence of

instructions that ends in a control instruction. Therefore

the basic block has one branch or jump instruction which

is the last instruction. HBBs are basic blocks that are

executed more than a specified threshold. Start address

of HBBs are determined by the profiler hardware

monitoring the PC. In every clock cycle, the profiler

hardware compares the current value and the previous

value of PC. If the difference of these two values is

greater than the instruction length, a taken branch or jump

has occurred. The profiler hardware has a table with a

counter for each entry. In the case of taken branch/jump

detection by profiler hardware, the profiler table is

checked. If the target address (current PC) is in the table,

the corresponding counter is incremented, otherwise

current PC is added as a new entry and the corresponding

counter is initialized to one. In our future work we are

looking for hardware/software implementation of this

profiler with very low overhead and determining a proper

size for the table.

After application execution and profiling finish, the

profiler software reviews the table and selects the entries

(target addresses) with counters more than a specified

threshold. These addresses determine the start address of

HBBs. Using these addresses, the HBBs are read from the

object code. Reading an HBB is terminated as a control

instruction is seen. In this method, if the branch

instruction of hot basic block is mostly no taken (more

than the threshold), the following basic block of this HBB

will be also hot, but by looking just to the profiler table it

can not be detected.

To solve this issue, after detecting the start addresses

of the HBBs and reading the HBBs from the object code,

their last instructions are checked. If the last instruction

is branch (not jump), the branch target address, the

counter of the current HBB and the start address of not

taken part are saved in a new list. The counter shows that

how many times the branch has been executed. Jump

instructions are always taken, so their target can be

detected by looking into the table. Therefore we have to

check just the branches to see if the not taken direction is

also hot or not.

After saving these values for detected HBBs in the new

list, all branch target addresses (BTAs) of the new list,

are checked to see if they are in the HBB list or not. If a

BTA is in the current HBB list, then it is ignored.

Otherwise the branch target address of the new list is

searched in the profiler table. If the BTA of the new list

can be found in the profiler table, then the counter of the

profiler table is subtracted from the corresponding

counter of the BTA of the new list. The counter of the

profiler table shows how many times the branch is taken

and the counter of the new list shows how many times the

branch instruction of the HBB is executed. By comparing

the result of subtraction to the threshold value it can be

distinguished if the not taken direction is hot or not. If it

is hot, the not taken start address is added to the HBB list

as a new entry otherwise it is ignored. If the BTA of the

new list can not be found in the profiler table, it means

that this branch is always not taken which means that the

not taken part is hot. In this case, the not taken start

address is added to the HBB list as a new entry. This

algorithm is run again for every new HBB entry and

continues until no new HBB is found. All of these tasks

are done by profiler software.

3.1. Preliminary Performance Evaluation

To do a preliminary performance evaluation,

Simplescalar tool set (PISA configuration) [5] and

Mibench [4] (a free, commercially representative

embedded benchmark suite) have been used. We use the

sample inputs for the benchmarks. The sim-safe tool of

Simplescalar was modified to generate the sequence of

PCs of the retired instructions. The output of the modified

sim-safe is applied to our profiler, in which PCs are

monitored and the profiler table is created. Using the

profiler table, the start addresses of HBBs are detected.

The HBBs are read from the object code; CIs are

extracted from them and mapped on the accelerator. At

this phase, the custom instruction selection and mapping

is done manually.

To calculate speedup, we use a single-issue, in-order

pipelined architecture with 100% cache hit rate. Each

instruction is supposed to be executed in one clock cycle.

As it has been mentioned before, the accelerator has

been assumed to have a variable delay according to the

height of mapped custom instruction. It has been

presumed that the first row of the accelerator takes one

clock cycle and the other rows, which do not have register

read and write take 0.5 clock cycle for execution. For

example, suppose that there is a CI containing nine

instructions. After mapping this CI on the accelerator, it

takes three rows of the accelerator. The first row takes

one clock cycle and the second and third rows take 0.5

clock cycle. Therefore it takes two clock cycles for the CI

to be executed on the accelerator. For N times execution

of this CI; (9-2)*N clock cycles will be saved. Using

these assumptions, preliminary performance evaluation

was done.

In figure 2 the percentage of CIs for different length is

shown. The numbers which appear after the applications’

name show the threshold value used for selecting HBBs.

Due to the results; in most cases more than 70% of CIs

have less than 6 instructions. The longer the CI, the more

performance enhancement can be obtained. Therefore we

should look for some methods to be able to increase the

CI’s length.

Fig. 2. Percentage of custom instruction according to

their length

Table 1 illustrates more information about the CIs and

performance enhancement. The second column shows the

number of executed and profiled instructions. Third

column contains threshold values for selecting hot basic

blocks. In the next column, number of detected HBBs has

been written. The numbers in the fifth column specifies

how many CIs could be extracted from the HBBs.

Sometimes, HBBs are very long so that several custom

instructions can be extracted from one hot basic block

(e.g. in JPEG) and sometimes hot basic blocks are too

small or contain unsupported instructions so that no

custom instruction can be extracted (e.g. basicmath).The

sixth column shows the speedup versus the baseline

processor. As it was expected, applications such as sha,

gsm, and rijndael that have longer CIs could reach better

performance. The last two columns show the percentage

of the code size and execution time covered by the custom

instructions, respectively. As it can be seen, a very small

part of the object code is executed for many clock cycles.

4. Conclusions and Future Work

We have presented a general overview of a novel

architecture for an adaptive dynamic extensible processor.

This processor is capable to add application-specific

instructions to its instruction set after production.

The architecture is based on a single issue RISC

processor. A profiler, a reconfigurable accelerator and a

sequencer has been augmented to the baseline processor

and some modifications have to be applied to the register

file and pipeline intermediate registers.

This processor has two modes: training mode and

normal mode. In training mode, using the profiler, it

learns about CIs and generates the configuration data for

its accelerator and initializes its sequencer table. In

normal mode using the information generated in training

mode, tries to run the CI on the accelerator. It does not

need any new compiler and new opcodes for the extended

instructions. CIs are extracted from critical regions of

code. The preliminary valuation results speedup between

7.8% and 52% for some of Mibench programs.

Looking for a simple hardware implementation of

profiler, developing tools for CDFG generation, HIS

extraction and mapping custom instruction on the

accelerator are some examples. Also more details about

the architecture and functionality of modules such as

accelerator and sequencer should be specified. The details

of connection of accelerator to the register file are

missing. The custom instructions have many inputs and

need also many register file writing. These issues should

also be handled. However, [6] shows that 4-input,

3-output patterns achieve close to maximal speedup.

Executing primitive instructions and CIs on processor

functional unit and accelerator in parallel can also be

considered as another task. Determining the threshold

value should be done dynamically. Finally a complete

simulator framework is high required.

Acknowledgement

This research was supported in part by grant of the

Cooperative Link of Unique Science and technology for

Economy Revitalization (CLUSTER) of Ministry of

Education, Culture, Sports, Science and Technology

(MEXT) and Grant-in-Aid for Encouragement of Young

Scientists (A), 17680005.

Reference
[1] N. Clark, et al., Application-Specific Processing on a

General-Purpose Core via Transparent Instruction
Set Customization. MICRO-37, 2004.

[2] Z.A. Ye, et al., Chimaera: a high-performance
architecture with tightly-coupled reconfigurable
functional unit. 27 t h ISCA, pages 225-235, 2000

[3] N. Clark, et al., An Architecture Framework for
Transparent Instruction Set Customization in
Embedded Processors. ISAC-32, 2005.

[4] http://www.eecs.umich.edu/mibench/．

[5] http://www.simplescalar.com/．

[6] P. Yu and T. Mitra, Characterizing Embedded
Applications for Instruction-Set Extensible
Processors, DAC 2004.

App. Exe Instr

(M)

Threshold

(K)

No.

HBB

No.

CI

%

Speedup

% code

size

% exec

time

basicmath 170 64 37 18 19.6 1.4 31.6

cjpeg 101 32 42 52 27 1.5 44

djpeg 25 8 22 32 31.5 0.8 48

lame 260 32 142 104 8.6 1.1 16

dijkstra 254 64 34 20 21.4 0.7 38.6

patricia 217 128 51 17 7.8 0.6 14.6

blowfish 260 128 18 28 33 2.7 59

rijndael (enc) 260 128 63 92 36 6.1 51.7

rijndael (dec) 259 128 63 78 36 4.5 51.7

sha 154 64 9 13 52 1.1 73

adpcm (enc) 260 2000 14 8 21 0.32 42

adpcm (dec) 265 2000 12 5 24 0.24 41

crc 265 512 4 2 20 0.1 44.9

fft 189 128 43 19 18.6 0.93 30

fft (inv) 190 128 43 19 18.6 0.93 30

gsm (cod) 265 128 34 41 25.1 1.53 47.2

Table 1. Information about custom instructions of Mibench

