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Abstract  This paper describes an approach for adaptive dynamic instruction set extension, tuning processors to specific 

applications. These new instructions are generated after production. The processor has two modes: training mode and normal 

mode. The application-specific instructions are extracted from the critical portions of the code detected by a profiler at training 

mode. At normal mode they are executed on a reconfigurable coarse grain accelerator. The sequencer decides when, which 

custom instruction should be executed. In this methodology there is no need to a new compiler and extra opcodes. Two 

methods are proposed for finding critical regions of the code.  
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1. Introduction 

Although availability of tools, programmability, and 

ability to rapidly deploy general purpose processors 

(GPPs) in embedded systems are good reasons for the 

common use of GPPs in embedded systems, they do not 

offer the necessary performance. 

The application-specific nature of embedded system 

creates new opportunities to customize processor 

architecture for a particular application. Application 

specific instruction set processors, or ASIPs, have the 

potential to meet the challenging high-performance 

demands of embedded applications. The synthesis ASIPs 

traditionally involved the generation of a complete 

instruction set architecture (ISA) for the targeted 

application. However, this full-custom solution is too 

expensive and has long design turnaround times. 

Another method for providing enhanced performance in 

processors is application-specific instruction set 

extension. By creating application-specific extensions to 

an instruction set, the critical portions of an application's 

dataflow graph (DFG) can be accelerated by mapping 

them to custom functional units. Though not as effective 

as ASICs, instruction set extensions improve performance 

and reduce energy consumption of processors. Instruction 

set extensions also maintain a degree of system 

programmability, which enables them to be utilized with 

more flexibility. The main problem with this method is 

that there are significant non-recurring engineering costs 

associated with implementing them. The addition of 

instruction set extensions to a baseline processor brings 

along with it many of the issues associated with designing 

a brand new processor in the first place. 

In the design of embedded systems-on-chip, the success 

of a product generation depends on the efficiency and 

flexibility to accommodate future design changes. 

Flexibility allows system designs to be easily modified or 

enhanced in response to bugs, market shifts, evolution of 

standards, or user requirements, during the design cycle 

and even after production which also means increase in 

design productivity. Efficient implementations are 

required to meet the tight cost, timing, and power 

constraints present in embedded systems. Efficiency and 

flexibility are critical, but usually conflicting, design 

goals in embedded system design. While efficiency is 

obtained through custom hardwired implementations, 

flexibility is best provided through programmable 

implementations. 

This paper presents a work-in-progress of adaptive 

dynamic extensible processor architecture. In this 

methodology the processor looks for the custom 

instructions (CIs) in the frequently executed portions of 

the code detected during online profiling. The processor 

has been developed by augmenting extra hardware to a 

single issue RISC processor and applying some 

modifications in the baseline processor architecture. 

This paper is organized as follows: The general 

overview of processor architecture will be described in 

Section 2. In Sections 3 we propose our critical regions 

detector. Paper is closed by conclusion and future work. 

 

2. General Overview of Processor Architecture 

By Adaptive we mean that the processor can tune itself 

to the running applications. And we claim it is Dynamic, 

because instruction set extension is done after production 



 

 

and even at run-time in the gap between two consecutive 

executions of the application (e.g. printers, cell phone and 

etc). Instructions set extensions are going to be done fully 

automatically and transparently. 

2.1. Architecture 

Our extensible processor has been designed and 

developed by adding/modifying some units to/of a general 

RISC processor. Figure 1 depicts the added/modified 

sections to/of the baseline processor, which has been 

proposed as a preliminary architecture for the extensible 

processor. Because it is a newborn project, details of the 

architecture still are not decided. The figure just tries to 

show a general view of the whole idea and concept. 

 

 

Fig. 1. General overview of the architecture 

 

For simplicity, it has been assumed that the baseline 

processor is a single issue RISC processor. Firstly, we are 

going to evaluate the general idea. If it is practical then it 

will be merged it with more powerful embedded 

processors. There are three main units that have been 

augmented to the baseline processor: a profiler, a coarse 

grain reconfigurable accelerator and a sequencer. 

This processor has two modes: training mode and 

normal mode. In training mode the processor learns about 

application-specific instructions and then generates the 

proper and necessary configuration data. In normal mode, 

it can still keep on learning but it can not generate new 

configuration. It just uses the configured architecture for 

running the application including the execution of CIs on 

the accelerator. 

At the training mode, the processor starts profiling the 

applications. It tries to find critical regions of the code 

and then looks for the CIs in these hot regions. Some 

memories are required as a table for keeping the profiling 

information. This information will be used for generating 

CIs. Profiler has a simple hardware for monitoring and 

generating base knowledge about hot regions and more 

complicated software for handling the remaining tasks. 

More details about the profiler will be given in Sections 3 

and 4. 

As it has been also mentioned in [1], [3], according to 

the size of data in the processors, a matrix of ALUs seems 

efficient and reasonable enough for accelerating dataflow 

subgraphs as CIs. Using coarse grain reconfigurable 

accelerators demand for less configuration memory. Also 

mapping instructions on them will be easier.  Although 

fine grain accelerators are more flexible, they are slower 

comparing coarse grain ones. We assume that each ALU 

of the accelerator supports all fixed-point instructions of 

the baseline processor except multiplication, division and 

load. It has also been presumed that at most one store and 

one control (branch or jump) instruction can be executed 

by the accelerator. Therefore the accelerator can change 

the program counter (PC).  

For the preliminary performance evaluation, we 

suppose that, the accelerator does not have any limitation 

on inputs and outputs. It can have as many inputs as it 

needs and can write to register file as many as it requires. 

But there are some assumptions for the interconnect 

network. The outputs of ALUs in each row are fully 

connected just to the inputs of the ALUs in the subsequent 

row. Also at current phase, the depth and width of the 

accelerator have presumed to be infinite. Focusing on 

more details about the accelerator architecture will 

include in our future work. 

The inputs of accelerator are directly connected to the 

outputs of the registers of the register file. Therefore, 

accelerator does not need to read the data from the 

register file. This idea has been used before in Chimaera 

[2]. The accelerator has a two-level configuration 

memory: a multi-context memory and a cache. 

The multi-context memory can keep for example four 

configurations for the accelerator. Switching between 

configurations in multi-context memory will be very fast 

(within several clock cycles). The configurations of 

custom instructions that are most probable to be executed 

in near future are stored in the multi-context memory and 

the others in the cache. Using two-level configuration 

memory will hide the overhead of loading new 

configuration from cache to multi-context memory. 

Utilizing a direct memory access (DMA) controller, 

loading multi-context memory from cache can be done in 

parallel with application execution. The number of 
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custom instructions is limited by the size of these 

memories. At current status there is no presumed value 

for size of these memories. Specifying proper size for 

memories and relation between multi-context memory, 

cache and DMA are left as future work. 

The sequencer mainly determines the microcode 

execution sequence by selecting between the accelerator 

and the processor functional unit outputs. It has a table in 

which the start addresses of dataflow subgraphs, which 

are going to be executed as custom instructions on the 

accelerator, are specified. By comparing the PC and the 

contents of the table, the sequencer can distinguish which 

custom instruction will be executed at what time. 

Therefore the sequencer will know when it should switch 

between the outputs of the accelerator and the functional 

unit. Using this table, the accelerator can also decide 

when to switch between different contexts of 

multi-context memory and when to start loading new 

configuration from cache to the multi-context memory. 

The sequencer knows the required clock cycles for each 

CI execution. The table of the sequencer is initialized 

according to the locations of the custom instructions in 

the object code at the training mode, when they are 

generated.  

One of the advantages of using the sequencer is that it 

obviates the need for adding new opcodes for the custom 

instructions. When training finishes and processor enters 

the normal mode, the sequencer starts monitoring the PC. 

When it reaches to the start address of a custom 

instruction, it switches from functional unit to the 

accelerator. Because the outputs of registers in register 

file are already available at the inputs of the accelerator, 

it does not need to read the registers. The sequencer will 

send the result of accelerator to the next stage after 

waiting for determined number of clock cycles (the 

custom instruction are assumed to be multi-cycle) and 

again switches to the output of functional unit. The 

required clock cycles for executing each custom 

instruction are determined at the training mode after 

mapping the custom instructions on the accelerator. These 

values will be used by sequencer. 

The other advantage of the sequencer is the elimination 

of the penalty because of the absence of accelerator 

configuration data for the executing CI, in the 

multi-context memory. When the sequencer expects the 

execution of a CI in near future, it checks for the 

existence of the corresponding configuration data for the 

CI in the multi-context memory. If the configuration is 

available, the dataflow subgraph will be executed as a CI 

on the accelerator, otherwise the original code will be 

executed on the functional unit (the logical sequence of 

the binary code is not modified). Therefore in the case of 

absence of configuration of a custom instruction we will 

only miss the expected speedup for that instruction and 

there will be no penalty. 

It has been assumed that CIs will take multi cycles to 

be executed on the accelerator. After mapping the CIs on 

the accelerator it will be known how many clock cycles it 

will be required for execution. Therefore we have 

supposed that we can have an accelerator with variable 

delay if we are able to read the output at the right time.  

Using the proposed architecture and hardware obviate 

the need for developing a new compiler and adding new 

opcodes and instructions to the instruction set. 

It could be also possible to utilize both the processor 

functional unit (PFU) and accelerator in parallel. Custom 

instructions (CIs) mostly need multi cycles for execution. 

By proper selection of custom instruction and start time 

of execution, it is possible to deploy the accelerator and 

PFU in parallel. In this case the performance can be 

enhanced more. We leave this issue for future work. 

2.2. Functionality 

We believe that it is fundamental to handle the 

instruction set extensions in a fully automated manner. 

On the other hand we are looking for a transparent 

post-production extensible embedded processor which 

does not require a new compiler. But automated 

instruction-set extension tools are time consuming so that 

they can not be applied dynamically while the processor 

is doing its duties. Therefore two modes have been 

defined for the processor: training mode and normal mode. 

In the training mode, the user will run desired 

applications with favorite inputs. The applications are 

executed on the processor using only the processor 

functional unit as usual. The system also starts online 

profiling. According to the information gathered by the 

profiler, critical regions are detected. More information 

about the profiler and critical regions detection will be 

given in following sections.  

Custom instructions are generated utilizing frequently 

executed regions. Each CI can have at most one control 

(branch or jump) and one store instruction. The custom 

instruction can not contain multiply, divide, 

floating-point or load instructions. Then the 

control/dataflow graph (DFG for the first method and 

CDFG for second method) is generated for the detected 



 

 

critical regions. In some cases, to make CIs larger, the 

sequence of instructions in the object code should be 

moved, which should not cause any change in the logic of 

the application. For example, sometimes by moving 

backward or forward some unsupported and independent 

instructions (e.g. load or divide) in the object code; larger 

CI could be created. In these cases we would need to do 

binary rewriting for some parts of the object code. Doing 

some dynamic optimizations on the instruction sequence 

such as constant propagation will reduce dataflow height 

and increase ILP.  

For some embedded applications, there are some gaps 

between consecutive executions of the applications (e.g. 

printer and cell phones). In these systems the processor 

can keep on profiling even at normal mode. When the 

application execution finishes, it switches to training 

mode and applies the tools again to update or optimize 

more the custom instructions. For those embedded 

applications which do not have this feature, the processor 

enters the training mode at first once, and then it switches 

to the normal mode. In the training mode, also data for 

accelerator configuration memories are generated and 

loaded into the cache and multi-context memory. The 

sequencer table is initialized in this mode too.  

After finishing CI generation in training mode the 

processor switches to the normal mode. In the normal 

mode, using the accelerator, its configuration data, the 

sequencer and its table, the CIs are executed on the 

accelerator. The sequencer monitors the PC and compares 

to its table entries. When it detects that a CI is going to 

be executed in near future, it checks whether the 

corresponding configuration is available in the 

multi-context memory or not. If it exists, the 

multi-context memory selects the proper configuration; 

the sequencer switches from processor functional unit to 

the accelerator, waits for specified clock cycles and let 

the accelerator finishes the execution of the custom 

instruction, then switches again to the processor 

functional unit. If the configuration is not available in the 

multi-context memory and there is enough time, the 

configuration data will be loaded to multi-context 

memory from cache. Otherwise the original code will be 

executed on the processor functional unit as usual. Each 

CI generates proper PC after its execution finishes, 

considering original sequence execution, so that processor 

can continue from correct address. 

All the processes that are done in training mode can be 

done statically too. Therefore we can propose two 

methodologies, in one methodology, the processor has a 

training mode, so it needs some hardware for profiling 

and in other method training mode can be performed 

completely at static time. In this case, the processor does 

not need extra hardware for profiling. In this method the 

applications will be run using a simulator (e.g. 

simplescalar toolset) at static time then the profiler and 

remaining processes will be executed. The data for 

configuration memories and sequencer table will be 

generated statically. At the time the processor wants to 

start, first the generated data should be loaded to the 

configuration memories and sequencer table, then the 

processor starts its job. 

 

3. Detecting Critical Regions of the Code 

In the first method, CIs are extracted from hot basic 

blocks (HBBs). A basic block is a sequence of 

instructions that ends in a control instruction. Therefore 

the basic block has one branch or jump instruction which 

is the last instruction. HBBs are basic blocks that are 

executed more than a specified threshold.  Start address 

of HBBs are determined by the profiler hardware 

monitoring the PC. In every clock cycle, the profiler 

hardware compares the current value and the previous 

value of PC. If the difference of these two values is 

greater than the instruction length, a taken branch or jump 

has occurred. The profiler hardware has a table with a 

counter for each entry. In the case of taken branch/jump 

detection by profiler hardware, the profiler table is 

checked. If the target address (current PC) is in the table, 

the corresponding counter is incremented, otherwise 

current PC is added as a new entry and the corresponding 

counter is initialized to one. In our future work we are 

looking for hardware/software implementation of this 

profiler with very low overhead and determining a proper 

size for the table. 

After application execution and profiling finish, the 

profiler software reviews the table and selects the entries 

(target addresses) with counters more than a specified 

threshold. These addresses determine the start address of 

HBBs. Using these addresses, the HBBs are read from the 

object code. Reading an HBB is terminated as a control 

instruction is seen. In this method, if the branch 

instruction of hot basic block is mostly no taken (more 

than the threshold), the following basic block of this HBB 

will be also hot, but by looking just to the profiler table it 

can not be detected. 

To solve this issue, after detecting the start addresses 



 

 

of the HBBs and reading the HBBs from the object code, 

their last instructions are checked. If the last instruction 

is branch (not jump), the branch target address, the 

counter of the current HBB and the start address of not 

taken part are saved in a new list. The counter shows that 

how many times the branch has been executed. Jump 

instructions are always taken, so their target can be 

detected by looking into the table. Therefore we have to 

check just the branches to see if the not taken direction is 

also hot or not. 

After saving these values for detected HBBs in the new 

list, all branch target addresses (BTAs) of the new list, 

are checked to see if they are in the HBB list or not. If a 

BTA is in the current HBB list, then it is ignored. 

Otherwise the branch target address of the new list is 

searched in the profiler table. If the BTA of the new list 

can be found in the profiler table, then the counter of the 

profiler table is subtracted from the corresponding 

counter of the BTA of the new list. The counter of the 

profiler table shows how many times the branch is taken 

and the counter of the new list shows how many times the 

branch instruction of the HBB is executed. By comparing 

the result of subtraction to the threshold value it can be 

distinguished if the not taken direction is hot or not. If it 

is hot, the not taken start address is added to the HBB list 

as a new entry otherwise it is ignored. If the BTA of the 

new list can not be found in the profiler table, it means 

that this branch is always not taken which means that the 

not taken part is hot. In this case, the not taken start 

address is added to the HBB list as a new entry. This 

algorithm is run again for every new HBB entry and 

continues until no new HBB is found. All of these tasks 

are done by profiler software. 

3.1. Preliminary Performance Evaluation 

To do a preliminary performance evaluation, 

Simplescalar tool set (PISA configuration) [5] and 

Mibench [4] (a free, commercially representative 

embedded benchmark suite) have been used. We use the 

sample inputs for the benchmarks. The sim-safe tool of 

Simplescalar was modified to generate the sequence of 

PCs of the retired instructions. The output of the modified 

sim-safe is applied to our profiler, in which PCs are 

monitored and the profiler table is created. Using the 

profiler table, the start addresses of HBBs are detected. 

The HBBs are read from the object code; CIs are 

extracted from them and mapped on the accelerator. At 

this phase, the custom instruction selection and mapping 

is done manually.  

To calculate speedup, we use a single-issue, in-order 

pipelined architecture with 100% cache hit rate. Each 

instruction is supposed to be executed in one clock cycle.  

As it has been mentioned before, the accelerator has 

been assumed to have a variable delay according to the 

height of mapped custom instruction. It has been 

presumed that the first row of the accelerator takes one 

clock cycle and the other rows, which do not have register 

read and write take 0.5 clock cycle for execution. For 

example, suppose that there is a CI containing nine 

instructions. After mapping this CI on the accelerator, it 

takes three rows of the accelerator. The first row takes 

one clock cycle and the second and third rows take 0.5 

clock cycle. Therefore it takes two clock cycles for the CI 

to be executed on the accelerator. For N times execution 

of this CI; (9-2)*N clock cycles will be saved. Using 

these assumptions, preliminary performance evaluation 

was done. 

In figure 2 the percentage of CIs for different length is 

shown. The numbers which appear after the applications’ 

name show the threshold value used for selecting HBBs. 

Due to the results; in most cases more than 70% of CIs 

have less than 6 instructions. The longer the CI, the more 

performance enhancement can be obtained. Therefore we 

should look for some methods to be able to increase the 

CI’s length. 

 

Fig. 2. Percentage of custom instruction according to 

their length 

Table 1 illustrates more information about the CIs and 

performance enhancement. The second column shows the 

number of executed and profiled instructions. Third 

column contains threshold values for selecting hot basic 

blocks. In the next column, number of detected HBBs has 

been written. The numbers in the fifth column specifies 

how many CIs could be extracted from the HBBs. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sometimes, HBBs are very long so that several custom 

instructions can be extracted from one hot basic block 

(e.g. in JPEG) and sometimes hot basic blocks are too 

small or contain unsupported instructions so that no 

custom instruction can be extracted (e.g. basicmath).The 

sixth column shows the speedup versus the baseline 

processor. As it was expected, applications such as sha, 

gsm, and rijndael that have longer CIs could reach better 

performance. The last two columns show the percentage 

of the code size and execution time covered by the custom 

instructions, respectively. As it can be seen, a very small 

part of the object code is executed for many clock cycles. 

 

4. Conclusions and Future Work 

We have presented a general overview of a novel 

architecture for an adaptive dynamic extensible processor. 

This processor is capable to add application-specific 

instructions to its instruction set after production. 

The architecture is based on a single issue RISC 

processor. A profiler, a reconfigurable accelerator and a 

sequencer has been augmented to the baseline processor 

and some modifications have to be applied to the register 

file and pipeline intermediate registers. 

This processor has two modes: training mode and 

normal mode. In training mode, using the profiler, it 

learns about CIs and generates the configuration data for 

its accelerator and initializes its sequencer table. In 

normal mode using the information generated in training 

mode, tries to run the CI on the accelerator. It does not 

need any new compiler and new opcodes for the extended 

instructions. CIs are extracted from critical regions of 

code. The preliminary valuation results speedup between 

7.8% and 52% for some of Mibench programs. 

Looking for a simple hardware implementation of 

profiler, developing tools for CDFG generation, HIS  

 

 

 

 

 

 

 

 

 

 

 

 

 

extraction and mapping custom instruction on the 

accelerator are some examples. Also more details about 

the architecture and functionality of modules such as 

accelerator and sequencer should be specified. The details 

of connection of accelerator to the register file are 

missing. The custom instructions have many inputs and 

need also many register file writing. These issues should 

also be handled. However, [6] shows that 4-input, 

3-output patterns achieve close to maximal speedup. 

Executing primitive instructions and CIs on processor 

functional unit and accelerator in parallel can also be 

considered as another task. Determining the threshold 

value should be done dynamically. Finally a complete 

simulator framework is high required. 
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App. Exe Instr 

(M) 

Threshold 

(K) 

No. 

HBB 

No. 

CI 

% 

Speedup 

% code 

size 

% exec 

time 

basicmath 170 64 37 18 19.6 1.4 31.6 

cjpeg 101 32 42 52 27 1.5 44 

djpeg 25 8 22 32 31.5 0.8 48 

lame 260 32 142 104 8.6 1.1 16 

dijkstra 254 64 34 20 21.4 0.7 38.6 

patricia 217 128 51 17 7.8 0.6 14.6 

blowfish 260 128 18 28 33 2.7 59 

rijndael (enc) 260 128 63 92 36 6.1 51.7 

rijndael (dec) 259 128 63 78 36 4.5 51.7 

sha 154 64 9 13 52 1.1 73 

adpcm (enc) 260 2000 14 8 21 0.32 42 

adpcm (dec) 265 2000 12 5 24 0.24 41 

crc 265 512 4 2 20 0.1 44.9 

fft 189 128 43 19 18.6 0.93 30 

fft (inv) 190 128 43 19 18.6 0.93 30 

gsm (cod) 265 128 34 41 25.1 1.53 47.2 

Table 1. Information about custom instructions of Mibench 


