
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Processor Architecture Protecting Secret Data
from Hostile Software

Mori, Tatsuya
Department of Computer Science and Communication Engineering Graduate School of Information
Science and Electrical Engineering Kyushu University

Yasuura, Hiroto
Department of Computer Science and Communication Engineering Graduate School of Information
Science and Electrical Engineering Kyushu University

Inoue, Koji
PRESTO, Japan Science and Technology Agency | Department of Computer Science and Communication
Engineering Graduate School of Information Science and Electrical Engineering Kyushu
University

https://hdl.handle.net/2324/6234

出版情報：SLRC 論文データベース, 2005-07
バージョン：
権利関係：

A Processor Architecture
Protecting Secret Data from Hostile Software

Tatsuya MORI†, Hiroto YASUURA†, Koji INOUE†‡
†Department of Computer Science and Communication Engineering
Graduate School of Information Science and Electrical Engineering

Kyushu University
6-1 Kasuga-Koen, Kasuga-City, Fukuoka 816-8580, Japan

‡PRESTO, Japan Science and Technology Agency
4-1-8 Honcho Kawaguchi, Saitama 332-0012 Japan

E-mail : {t-mori,yasuura,inoue}@c.cscs.kyushu-u.ac.jp

Abstract

Recently, security on programs and data is strongly
required in multitask open computer systems such as
personal computers, mobile phones and IC cards. Sev-
eral kinds of secure microprocessor architectures have
been proposed to offer solutions to the problem. But
these architectures are much inclined to general soft-
ware protection. We focus on only secret data protec-
tion including its control code in a program. In this pa-
per, we propose a processor architecture, which enables
programmer to use special instruction set for control
cryptography data and protect secret data from hostile
software. It is called Cryptographic DataPath Proces-
sor(CDPP). This architecture lets not memorize secret
data while decrypted even if in internal registers. Secret
data is decrypted just in front of an ALU on datapath
and encrypted just behind it. Programmers can con-
trol the cryptograph by special instructions activating
symmetric cipher circuits. CDPP enables secure data
control implementation by programmers under hostile
software environments.

1 Introduction

As the semiconductor technology advances remark-
ably, information devices that installs LSI with various
functions is widespread. With the enhancement of the
function, the information terminal treating the confi-
dential information that doesn’t want to be known to
others increases rapidly. When programmer mount two
or more applications on one terminal, sharing proces-
sor by some application programs installed in termi-
nal is general technique for giving generality to mount-
ing terminal. As a typical example, in IC card system
that provides the personal authentication and the dig-
ital cash service, several services exists together in one
card, and the mechanism that the confidential infor-
mation on individual service is not exposed to other

services is needed.
However, the problem that the confidential informa-

tion on the program and data is violated has happened
on the multitasking OS of the computer in recent years.
A variety of secure processor architectures are proposed
to solve this problem, but these architectures tends to
protect the entire software excessively[1][2][3][4]. These
approaches require extra processing for security and
additional hardware and extra energy are needed. An-
other problem is ability of anti-tampering. If the de-
crypted secret codes or data stored some memory de-
vices in the system, there is a possibility to be stolen
by illegal methods. We appropriate the focus to the
confidential information alone that doesn’t want to be
exposed truly as a protection target.

In this paper, we assume a special instruction which
enable programmer to control cryptograph, and pro-
pose the processor architecture that defends the confi-
dential information from other software. In this archi-
tecture, even if it is an internal register of the processor,
it is prohibited to memorize it with the confidential
information decrypted. The secret data is decrypted
immediately before Arithmetic and Logic Unit(ALU)
on the data passing, and encrypted immediately af-
ter ALU. The programmer can control this cryptog-
raphy processing by special instructions that activates
the symmetric-key encryption circuit. CDPP enables
programmer to mount the operation of secret data in
the software environment under the multitasking OS.

Originally, the confidential information that wants
to be protected is a part of program, and it is a pro-
grammer that knows which information should be pro-
tected. We think that programmer should be able to
specify the secret data, and when it is unnecessary of
protection, it is thought that the processor should be
able to execute the instruction at high speed. The fea-
ture of CDPP is to be able to achieve the data pro-
tection management by programmer. In CDPP, the
throughput of the instruction execution by the cryp-
tography processing is decreased according to the pro-
gramming, programmer comes to be able to handle the

trade-off between execution speed of program and stub-
bornness of secret data protection.

The remainder of this paper is organized as follows.
Section 2 arranges the demand condition based on the
analysis of the existing multitask system. Section 3 ex-
plains details of the proposal architecture and the secu-
rity model. Section 4 consider CDPP from both sides
of strength and the execution performance of safety.
Section 5 concludes this paper with summary.

2 Basic Assumptions and Condisions

A present multitask system is made aiming to mul-
tiplex the limited resource like the processor and the
memory, etc. between two or more processes, and to
share efficiently. One of our targets is a proposal of
the secret management method that can coexist with
a basic function of processor and OS to multiplex the
resource efficiently. In this section, the system model
whom the secret protection that we think about targets
is defined, and demand condition of CDPP is arranged
from restriction of the process management of OS and
processor architecture of the multitask system to the
model.

2.1 Assumption

We assume a computer system which is composed of
hardware and software. hardware consists of a proces-
sor, a memory, input devices and output units. soft-
ware consists of programs and data stored in the mem-
ory.

If a certain programmer thinks about the protec-
tion of secret data on his program, the system user can
read and modify software in the memory. So, all other
software including OS can become a means of attack.
The attack means the act that exposes secret data on
a certain software. In this paper, the object that can
become a means of attack is expressed, ”Untrustwor-
thy”. Moreover, the modification of hardware which
needed an exclusive knowledge, a technology, and a
huge cost, and achievement is more difficult than the
modifications of software in general. Therefore, hard-
ware won’t become a means of attack, it is expressed,
”Trustworthy”. By the way, the reliability of hardware
is based on the reliability of the hardware designer.

2.2 Restriction of Processor and OS

Figure 1 shows the structure of an existing and each
element of a process that is during the execution of
software. The component of the process can be clas-
sified into the program and data by the treatment on
processor.

When a process is executed, program is read from
an external memory through Memory Management
Unit(MMU), it stores in instruction register, it inter-
prets, and it is executed with ALU. The change of the
value stored in register and writing to an external mem-
ory that reflects the execution of instruction are done
through MMU.

ProcessorMMUMem.
ALURegisterProgramData

Figure 1. Operation model in existing proces-
sor

When the execution process is switched, the content
of register on a process is saved in an external memory
by OS. MMU converts the virtual address seen from
process and the physical address in external memory,
and gives memory area isolated from other processes
to each process.

OS maintains the management data called Process
Control Block(PCB) in process correspondence, and
memory map in the process etc. are stored there. The
memory management function of OS manages virtual
address area seen in each process by rewriting the page
table of MMU. This memory management operation is
penetration from a process.

When the execution of a process starts once, it is a
processor that loads program into instruction register,
executs instructions, and accesses data. OS doesn’t lie
between this process. The data referred frequently is
put on register, and was executed immediately before
exists together, too. However, it is restricted by MMU,
and the data of other processes is able not to be referred
to unrestrictedly for the range of address where the
process can be accessed to memory.

By the cooperated operation of such processor and
OS, a special memory and a processor core are given
respectively and program is executed. A virtual exe-
cution environment is offered for processes like being
able to execute the I/O of data.

It is our purpose to construct architecture that offers
secret protection safe for some processes with assump-
tion that a register and an external memory cannot be
trusted, and only the mechanism in processor can be
trusted. It is necessary to protect process information
to be protected even when put on either the processor
internal and external. And, it is necessary to have the
correspondence with memory management operation
with OS from the viewpoint of correspondence with
an existing multitasking OS by secret protection, and
to penetrate from an application the memory manage-
ment operation.

3 CDPP Architecture

We propose Cryptographic DataPath Proces-
sor(CDPP) architecture in this chapter. CDPP is com-
posed of a special instruction set that achieves the cryp-
tography protection of data and the microprocessor ar-
chitecture that achieves the instruction set. It is an ex-
plain that the instruction set and the microprocessor
architecture of CDPP, and management model of data

protection which uses both parties as follows.

3.1 Instruction set

In this subsection, it explains the instruction set of
proposal architecture CDPP together with data protec-
tion model based on the cryptograph. Figure 2 shows
data protection model of CDPP.ProcessorMMU

Symmetric keyCryptosystem Asymmetric keyCryptosystemMem.
ALURegisterCommon key(encrypted) Secret keyProgram(encrypted) Program(decrypted)

Data(encrypted) Common key(decrypted)
Figure 2. Data protection model in CDPP

3.1.1 Single process

The secret data of process is stored in memory while
encrypted with a common key to individual process
based on the conventional encryption system. The se-
cret data is read to register while encrypted, and it is
decrypted for the first time when it is referred with
ALU as an argument of operation. Moreover, if the
operation result of ALU is secret data and it is en-
crypted and stored in register. ALU consists of one-
input-one-output function and two-inputs-one-output
function. Depending on combining the plain data and
the encrypted data, the one-input-one-output function
has combination by 22 kinds of and the two-inputs-
one-output function has the combination by 23 kinds
of (Table 1)．In CDPP, these enhanced operations are
mounted as a protective instruction.

Table 1. I/O of ALU

X,Y:input Z:output
X Y Z X Z
p p p p p
p p e p e
p e p e p
p e e e e
e p p
e p e
e e p p:plain data
e e e e:encrypted data

At this time, a common key necessary for encrypting
and decrypting secret data is stored in memory while
encrypted with the public key. The key pairs with the
secret key to processor based on the public key cryp-
tosystem. When the process issues the Key Loading
instruction, the common key is decrypted and stored
in core. The above is summarized in the Table 2 as a
Cryptograph Operating Instruction.

Table 2. Cryptograph Operating Instruction

instruction operation
Protective Operation Operation treating secret data
Key Load Loading common key into processor

Moreover, the instruction can be protected in
CDPP, and this encrypted instruction is called a Pro-
tected Code. The calculation process of program can
be concealed by making a Cryptograph Operating In-
struction the Protected Code. The distinction between
protection code and non-protection code is achieved by
adding the code judgment bit.

3.1.2 Multi-process

In CDPP, secret data is protected independently
in each process. The process information on the data
protection manages by OS, and is maintained in PCB.

In multiprocessing environment, OS manages paral-
lel execution in a process. OS is issued the Key Op-
erating Instruction shown in the Table 3, registered,
switched, and liberated the common key to each pro-
cess. The decrypted common key is made a capsule in
each process, and OS cannot operate directly. More-
over, it is necessary to interpret the Key Operating
Instruction independently of Cryptograph Operating
Instruction shown in the Table 2. This is achieved
by adding the code judgment bit added to the Cryp-
tograph Operating Instruction to the Key Operating
Instruction, and making it interpret as Non-protected
Code.

Table 3. Key Operating Instruction

instruction operation
Key Entry Registering a common key in an individual PCB
Key Switch Switching the common key to each PCB
Key Release Liberating the common key of PCB

3.2 Microprocessor architecture

In CDPP，secret data is decrypted just in front of
an ALU in datapath and encrypted just behind it, so
as not to memorize secret data while decrypted even
if in internal registers. Figure 3 shows the structure of
datapath around ALU.

The plain data or the encrypted data is selected by
instruction as for each I/O, and controller controls this
selection by interpreting instruction. If it is not secret
data, passing Symmetric Key Cryptosystem(SKC) is
not used. In case of treating secret data for the input,
SKC decrypts data. In case of the output is secret
data, SKC encrypts data. Therefore, secret data is not
memorized while encrypted.

ALU
Mux. Mux. SKC

Mux.
Controller

input X input Y

output Z

SKC

SKC
SKC : Symmetric key Cryptosystem

Figure 3. Datapath structure around ALU

3.3 Operation model

3.3.1 Software distribution

Figure 4 shows the operation model of software distri-
bution in CDPP.SW Mem.Common key(encrypted)Public keyCommon key Program(encrypted)

Data
Program

Data(encrypted)
Figure 4. Software distribution model

First of all, a common key that encrypts own soft-
ware is made according to the conventional encryption
system of CDPP, and secret data is encrypted. Next,
necessary instructions are made Protected Code while
considering the stubbornness of program. Finally, the
common key is encrypted with the public key, and dis-
tributed together with software.

3.3.2 Software execution

When PCB is generated, the storage table of the com-
mon key is secured in controller of processor that OS
specified. The common key is decoded with Processor’s
secret key when the key loading instruction is issued,
and it is stored in storage table.

The program is one by one interpreted by instruction
fetch when the execution of program starts, and it is
executed by ALU. The program specifies the Protected
Code or Non-protection Code, is decrypted if it is a
Protected Code, and interpreted as plain if it is a Non-
protected Code. And, if it is a protection instruction,
data is decrypted in former steps of ALU, encrypted by
latter part or both parties are executed. The protected

data is made a block cipher with the system bus size
as a unit.

When the execution of PCB is interrupted, the PCB
management function of OS saves contents from reg-
ister in an external memory. The PCB management
function of OS returns contents to register when exe-
cution restarts. At this time, because common key is
protected by specification of CDPP, OS cannot expose
secret data.

The execution environment of each individual pro-
cess secretly protected is offered with these mecha-
nisms. And, the secret protection can coexist with the
resource management mechanism of OS like memory
management and schedule, etc.

4 Consideration

4.1 Security

In this section, it is described that programming is
possible with safety of secret data kept when Table 2
and 3 instruction is mounted.

The function of the symmetric-key encryption used
with CDPP is assumed to be C(x), and programming
object that treats protection data C(x) is assumed the
function H(x). Moreover, H is assumed that it has one
direction, and x is not obtained from the operation re-
sult by H−1. When H is done in programming, it is
achieved by combining two-inputs-one-output function
and one-input-one-output function, and it becomes
H(x) = hnhn−1・・・h2h1(x). There is danger from
which x is exposed during the calculation of this H(x),
and the middle variable of these hn−1・・・h2h1(x)，・・・，
h2h1(x)，h1(x) becomes the secret data, too. The op-
eration done by one instruction is shown by“⇒”, and
the calculation process is shown as follows.

C(x)⇒ C(h1(x))⇒ C(h2h1(x))⇒

・・・ ⇒ C(hn−1・・・h1(x))⇒ hn・・・h1(x) = H(x)

Thus, even if these middle variables leak, protecting
x becomes possible according to strength of C(x) be-
cause it makes all the middle variables to which x can
be presumed secret data.

Moreover, if the program of calculation process
leaks, the middle variable is exposed by replacing
Protective Operation with Non-protective Operation,
hnhn−1・・・h2h1(x) is traced oppositely and x is exposed.
However, if the Protective Operation is encrypted, the
effective replacement’s of the attacker of instruction be-
coming difficult, and concealing the calculation process
of program become possible.

Even if attacker rewrite memory while the execu-
tion of PCB stopped, a key is registered after PCB be-
gins and the counterfeit in memory is not significant.
The secret data cannot be effectively operated without
knowing a common key, it doesn’t become an effective
attack that only inserts random instruction even if the
program is replaced.

4.2 Performance

We consider how much instruction execution
throughput decreases when CDPP is mounted on an
existing processor. Figure 5 shows the model of pro-
gram written aiming at the data protection on CDPP.

ProtectedInstructionProtectiveOperation
Non-protectedInstruction

Nped_insNpive_ope
Nall_ins

Figure 5. Program model on CDPP

However, to pay attention to one PCB, the Key Load
Instruction and Key Operating Instruction are disre-
garded here.

We define the number of all instructions is Nall ins,
the number of Protected Instructions is Nped ins, the
number of Protective Instructions is Npive ope，the pro-
portion of Protected Instructions in all instructions is
Pped ins = Nped ins/Nall ins, the proportion of Protive
Instructions in Protected Instructions is Ppive ope =
Npive ope/Nped ins.

The average time when the processor before CDPP
is applied hangs to one instruction execution is as-
sumed to be TN , and the operation time of the
symmetric-key encryption used with CDPP is assumed
to be TSKC . The increase rate at the operation time
by the symmetric-key encryption of one time becomes
PSKC = TSKC/TN , and the average time to execute
Protected Instruction of Non-protective Instruction be-
comes Tn inst = TN + TSKC .

Moreover, when Protective Instructions of Protected
Instructions assumes the ratio that uses the symmetric-
key encryption by both before and behind ALU to be
extremely a lot of, Tpive ope = TN + 3 ∗ TSKC . By the
way, it is required that Protective Instructions be the
Protected Instructions of all here.

Time T that hangs to all instruction execution on
CDPP is requested above.

T = (Nall ins −Nped ins) ∗ TN

+(Nped ins−Npive ope)∗Tn inst+Npive ope∗Tpive ope

= (Nall ins −Nped ins) ∗ TN

+ (Nped ins −Npive ope) ∗ (TN + TSKC)
+ Npive ope ∗ (TN + 3 ∗ TSKC)

= Nall ins ∗TN +Nped ins ∗TSKC +2∗Npive ope ∗TSKC

Increase rate P is requested compared with all in-
struction execution time Nall ins ∗ TN before CDPP is
applied.

P = {(Nall ins ∗ TN + Nped ins ∗ TSKC

+2∗Npive ope∗TSKC)−Nall ins ∗ TN}/Nall ins ∗ TN

= (1 + 2 ∗Npive ope/Nped ins)
∗ (Nped ins ∗ TSKC)/(Nall ins ∗ TN)

= PSKC ∗ Pped ins ∗ (1 + 2 ∗ Ppive ope)

Therefore, the throughput after CDPP is mounted
compared before mounted is Expression (1).

(1+P)−1 = (1+PSKC ∗Pped ins ∗ (1+2∗Ppive ope))−1

(1)
Figure 6 and 7 show Expression (1). Figure 6 as-

sumes Ppive ope = 0.8，PSKC = {0.1, 0.2, 0.3, 0.4}, and
takes Pped ins in a horizontal axis. This is an aspect
from processor design side, how the overhead of pro-
cessor by symmetric-key encryption processing changes
by mounted application is estimated.

Figure 7 assumes PSKC = 0.2，Ppive ope = {0.4, 0.6
, 0.8, 1.0}, and takes Pped ins in a horizontal axis. This
is an aspect from software design side, how overhead of
the processor by symmetric-key encryption processing
changes by the mounted program is estimated.

0%10%20%30%40%50%60%70%80%90%100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%Pped_ins %
Throughput % Pskc=0.1Pskc=0.2Pskc=0.3Pskc=0.4
Figure 6. Throughput decrease after CDPP is
mounted(Ppive ope = 0.8)

0%10%20%30%40%50%60%70%80%90%100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%Pped_ins %
Throughput % Pc_inst=0.4Pc_inst=0.6Pc_inst=0.8Pc_inst=1.0
Figure 7. Throughput decrease after CDPP is
mounted(PSKC = 0.2)

Even if it is the maximum, the lower performance is
20～40%. This is not a big penalty when thinking the
improvement of safety.

5 Conclusions

We proposed CDPP architecture that offered a se-
cret safeguard of process that was able to coexist with
the multitasking OS. CDPP installs the next mecha-
nism, and offers the means that program protects se-
cret data of a process leading.

• Cryptgraph control with software
• All the memory units are objects of cryptography

protection
• Behavior of process is concealed by the crypto-

graph

If the processor that can be trust it with CDPP ar-
chitecture in the terminal is mounted, own secret data
can be defended from all software except me includ-
ing OS of the terminal, and safe data management be
achieved. Moreover, CDPP enables program to mount
the secret protection mechanism as an instruction, and
to protect own secret data specifying it.

Future work is estimating the increase of circuit area
and power consumption by CDPP mounting and an
examination of the Protective Instruction and crypto-
graph circuit considering with these overheads.

Acknowledgment

We thank Mr. M. Muroyama, Mr. U. Mesbah, Mr.
K. Tarumi, Mr. S. Yamaguchi and Mr. M. Tokunaga
for their help of preparation of this article. Thanks are
also due to all of members System LSI Research Center
of Kyushu University.

This work has been supported by the Grant-in-
Aid for Creative Scientific Research No.14GS0218 of
the Ministry of Education, Science, Sports and Cul-
ture(MEXT) from 2002 to 2006. We are grateful for
their support.

References

[1] Markus Kuhn,“ The TrustNo 1 Cryptoprocessor
Concept”,April 30, 1997.

[2] T Gilmont, J legat, J Quisquater“ Enhancing Se-
curity in the Memory Management Unit”

[3] Lie, Thekkath, Mitchell, Horowitz,“ Architectural
Support for Copy and Tamper Resistant Software”,
ASPLOS2000, pp.168-177, 2000.

[4] M Hashimoto, H Haruki,“Multi-vendor Secure Pro-
cessor under a Hostile Operating System”, IPS of
Japan Thesis magazine, Mar, 2004.

