
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Customizable Framework for Arithmetic Synthesis

Matsunaga, Taeko
Fukuoka Industry, Science & Technology Foundation

Matsunaga, Yusuke
System LSI Research Center Kyushu University

https://hdl.handle.net/2324/6171

出版情報：SASIMI2004, pp.315-318, 2004-10. Sasimi Workshop
バージョン：
権利関係：

Customizable Framework for Arithmetic Synthesis

Taeko Matsunaga Yusuke Matsunaga

FLEETS System LSI Research Center
Fukuoka Industry, Science & Technology Foundation Kyushu University

t matsunaga@fleets.jp matsunaga@slrc.kyushu-u.ac.jp

Abstract— Design of arithmetic units has been an

important issue which can dominate performance of the

whole circuits. Recent logic synthesis tools can imple-

ment arithmetic units from RTL descriptions by uti-

lizing parameterized design components predefined in

arithmetic libraries. This paper reviews the current sta-

tus in arithmetic synthesis, and some issues, especially

on customizability, are pointed out to be tackled for bet-

ter performance. Further work is still needed in arith-

metic synthesis, and it is helpful to have an framework

which eases new approaches to be integrated. Require-

ments for such framework are discussed and a possible

synthesis flow within this framework is shown.

I. Introduction

Design of arithmetic units has been an important is-
sue which can dominate performance of the whole circuits.
Many hardware algorithms and architectures for arithmetic
units have been proposed so far, and still now[1][2]. In per-
formance critical areas, such as processor design, designers
often implement them by hand based on the accumulated
know-how that has been built up over many years. In such
cases, requirements for arithmetic units are usually defined
beforehand.

On the other hand, when people design circuits using
logic synthesis tools from specifications at register transfer
level(RTL), the type and the number of necessary arith-
metic units can vary. For example, an expression a ∗ b + c
may need one adder and one multiplier, or one multiply-add
module. How to implement an arithmetic module can not
be decided uniquely even if a type of an arithmetic module
is decided. An arithmetic module can have several different
architectures with various characteristics such as area and
delay. An architecture which is the best choice according to
one measure, may not be the best under another measure.
In those situations, it is very difficult for designers to decide
which operation should be tuned and how to tune, so some
effective tools are required. Further work is still needed in
arithmetic synthesis, and it is helpful to have an framework
which eases such work to be tried.

This paper focuses on arithmetic synthesis and its frame-
work. The current status in existing tools is overviewed and
the issues to be tackled are considered. Requirements for
its framework are picked up, and a possible synthesis flow
within this framework is shown.

II. Arithmetic synthesis in logic synthesis flow

In this section, current status of arithmetic synthesis in
logic synthesis flow is overviewed and several issues to be
addressed are considered.

A. Current status in arithmetic synthesis

Arithmetic synthesis task in logic synthesis flow is to
generate arithmetic units which realize the functions of
corresponding arithmetic operations appeared in RTL de-
scriptions. Early logic synthesis tools had poor capabil-
ity to implemented arithmetic operations. They converted
arithmetic operations into logic expressions, and resulted in
larger and slower implementations. Recent logic synthesis
tools can generate better results by using special libraries
for parameterized arithmetic units where many implemen-
tations of arithmetic units are stored. Here, we call such
libraries arithmetic libraries. Arithmetic libraries are inte-
grated into logic synthesis tools by default or optionally[3].
The amount and quality of reusable components for arith-
metic units is very important to get better results. Users
can build original parameterized components and integrate
them into the library. Those components can be reused in
synthesis flow.

Another approach to improve results of arithmetic
synthesis is to group arithmetic operations in RTL
descriptions, and implement them using carry save
adders(CSA)[4][5]. Many arithmetic operations are based
on addition and reduced to multi-operand additions. Us-
ing carry-save adders can reduce the number of necessary
carry-propagate adders(CPA), and the maximal delay can
be improved. This approach has been implemented within
existing tools and better results are reported.

B. Considerations

In this section, we pick up two points to be considered
for arithmetic synthesis capability to be more improved.

B..1 Customizability for arithmetic libraries

As stated previously, the amount and quality of reusable
components for arithmetic libraries is very important to get
better results. Another important point is customizability,
that is, capability to integrate one’s original components
into arithmetic libraries. Existing tools have this capabil-
ity in case that such components are represented as HDL

descriptions. For example, an n-bit ripple carry adder is
represented in parameterized form as shown in Fig.1.

module full_adder(output Co,
 output Sum,
 input A,
 input B,
 input Ci);

 assign Sum = (!A & !B & Ci)|(!A & B & !Ci)|(A & !B & !Ci)|(A & B & Ci);
 assign Co = (!A & B & Ci)|(A & !B & Ci)|(A & B & !Ci)|(A & B & Ci);
endmodule // full_adder

module rca (sum, co, a, b, ci);
 parameter SIZE = 4;
 output [SIZE-1:0] s;
 output co;
 input [SIZE-1:0] a;
 input [SIZE-1:0] b;
 input ci;

 wire [SIZE:0] c;

 assign c[0] = ci;
 assign co = c[SIZE];

 genvar i;
 generate
 for (i=1; i < SIZE+1; i=i+1) begin:u
 full_adder fa(.Co(c[i]),.Sum(sum[i-1]),.A(a[i-1]),.B(b[i-1]),.Ci(c[i-1]));
 end
 endgenerate

endmodule // rca

full
adder

a0 a1b0 b1

ci
c1

an-1bn-1 sn-1

co

s0 s1

...

Fig. 1. Parameterized HDL description of ripple carry adder

Many arithmetic units have regular structures, and can
be expressed by using generate-statements in VHDL or ver-
ilog.

But there are some cases where an appropriate architec-
ture of an arithmetic unit can not be represented statically.
One case is occurred from consideration of bit-wise timing
constraints. In [6], an algorithmic approach is proposed to
generate a parallel-prefix adder which has a minimal delay
for a given profile of input arrival times. Bit-wise considera-
tion of timing constraints is a promising approach to achieve
better performance. But each timing constraint is decided
dynamically in synthesis flow. Programs can generate an
architecture dynamically under various environments, but
existing tools can not integrate them flexibly in their syn-
thesis flow.

B..2 Selection problem

Another issue in arithmetic synthesis is selection and res-
election problem; that is, how to select one among those
alternatives, and how and where to find candidates to be
changed.

Arithmetic synthesis usually has been done hierarchi-
cally. Circuit structures at technology independent level

are defined first, and then mapped to netlist whose com-
ponents are cells in the specified target technology library.
First decisions at technology independent level are done
without enough technology information available. Estima-
tions at that level may lead to a wrong decision, and the
first selection should be changed to another one to satisfy
given constraints.

These issues seem not severe now. Logic synthesis tools
have been much improved, so there is no problem with-
out tight performance constraints. In timing critical cases,
designers are often aware of circuit structure at RTL in
mind, and sometimes design arithmetic circuits separately
and embedded to other circuit parts.

In both cases, the above issues have less significance. But
there exist some other cases where designers hardly recog-
nize RTL structures. One case is RTL structure generated
through behavioral synthesis tool. There can be lots of
arithmetic modules to be tuned, where it is difficult for de-
signers to handle them effectively. So, some effective strate-
gies for automatic selection/reselection are needed.

One approach is that the total flow from behavior to
cells can be considered to tackle the problem. When con-
straint violations have occurred, only cell sizing may solve
the problem, but it may be a good idea to change behav-
ior, which means scheduling and binding are changed. This
can not be done at RTL. More accurate estimation at higher
levels may reduce occurrence of reselection. But behavioral
synthesis often link to less technology dependent informa-
tion. So, more flexible interface is required between logic
synthesis and behavioral synthesis.

III. Framework for arithmetic synthesis

A. Requirements for framework

According to the previous considerations, we pick up the
following requirements for a better framework.

• User-defined programs can be dynamically linked and
used in synthesis flow. This property enables users to
integrate their own algorithms which generate appro-
priate architectures under dynamic conditions. Pro-
grams other than module generators, such as technol-
ogy mapper, can also be linked.

• The total flow from behavior to cells can be considered
within a framework. Arithmetic synthesis can be con-
nected to behavioral synthesis method which utilizes
customized functional units[7]

B. Overall synthesis flow

Fig.2 and 3 show an overall synthesis flow within this
framework.

B..1 Inputs and outputs for arithmetic synthesis

Inputs for arithmetic synthesis are the following three
items:

Arithmetic

synthesis

technology-independent

logic minimization

technolog mapping

HDL analysis

/elaboration

Internal model

Extraction of

Operation network

Cell Library

ConstraintsSpecification at RTL

(HDL Description)

Specification

at Behavioral Level

cell netlist

Fig. 2. Arithmetic synthesis in logic synthesis flow

• Operation network:
Operation network is a directed acyclic graph which
consists of operation nodes and edges. Every edge has
bit width as an attribute. Fig.4 shows an example
of operation network. In this case, two expressions,
op1 = a+b+c+d and op2 = b+c+d+e are expressed
in an operation network. Operation network can rep-
resent one and more expressions which may have com-
mon sub-expressions, and represents the function to be
implemented as an arithmetic unit.

Operation network can also be an interface to behav-
ioral synthesis.

• Cell library: target cell library

• Constraints(optional): area, timing, power, and so on

Arithmetic synthesis tool accepts above three types of
inputs, decides an architecture, and outputs netlist whose
components are mapped to cells in the given target li-
braries. Characteristics such as area and delay values, or
estimated values may also be output.

B..2 Synthesis engine and arithmetic libraries

The arithmetic synthesis tool consists mainly of two part,
synthesis engine and arithmetic libraries.

Synthesis engine should include the following capabilities:

• analysis on operation network

• transformation from operation network to structures
at technology independent level

• transformation from structures at technology indepen-
dent level to cell netlist (technology mapping for arith-
metic modules)

API

cell netlist

operation

network

constraints
user-defined

template

user-defined

generator

synthesis

engine

cell library

built-in

generator

Arithmetic libraries

Fig. 3. An arithmetic synthesis system

• estimation for implementation

• selection of candidates

Decision from an operation network to cell netlist is done
hierarchically. For example, Fig.4 shows two candidates
for the operation network, which consist CSA and CPA.
Since operation network including multiple operations is
not assumed to be transformed into CSA structures, other
components such as (4;2) compressors can be candidates to
construct an architecture.

Candidates to be linked at each level are generated by
using three arithmetic libraries.

• Built-in library which the framework has by default.

• User defined templates: template-type descriptions for
architecture written in HDL.

• User defined programs: user-defined generator for
reusable architecture which can not be represented as
HDL code. Some interface mechanism is needed to be
linked dynamically to synthesis engines.

IV. Summary and conclusion

In this paper, several issues on current arithmetic syn-
thesis are reviewed and requirements for framework are dis-
cussed to tackle these issues. The framework which satisfies
the described requirements can be a platform where new ar-
chitectures or algorithms are plugged in. To evaluate the
effectiveness of this framework, dynamically linked mecha-
nism should be implemented.

o1 = a + b + c + d
o2 = b + c + d + e

input [15:0] a,b,c,d,e;
output [15:0] o1, o2;
...

++

+

+

a b dc e

15:0 15:0

15:0

15:0 15:0 15:0

15:0

15:0 15:0

15:0

CPA

CSA

CSA

CPA

CSA

a b c d e

o1 o2

CPA

CSA

CPA

a b c d e

CPA

o1 o2

expressions in HDL

operation network

some candidates

at technolog indepent level

Fig. 4. Transformation of expressions in HDL to architectures

V. Acknowledgment

This research was supported in part by a grant of
Fukuoka project in the Cooperative Link of Unique Sci-
ence and Technology for Economy Revitalization (CLUS-
TER) of Ministry of Education, Culture, Sports, Science
and Technology(MEXT).

References

[1] Israel Koren, “Computer Arithmetic Algorithms”,
A.K.Peters Ltd.

[2] Michael J. Flynn, Stuart F. Oberman, “Advanced
Computer Arithmetic Design”, Wiley Interscience

[3] DesignWare BuildingBlock IP,
http://www.synopsys.com/products/designware/
buildingblock.html

[4] T. Kim, W. Jao, and S. Tjiang, “Circuit Optimiza-
tion Using Carry-Save-Adder Cells”, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits
and Systems, Vol.17, No.10, pp.974-984, October 1998.

[5] Junhyung Um and Taewhan Kim, “An Optimal Al-
location of Carry-Save-Adders in Arithmetic Cir-
cuits”, IEEE Transactions on Computers, Vol.50,
No.3, pp.215-233, March 2001.

[6] Jianhua Liu, Shuo Zhou, Haikun Zhu, and Chung-
Kuan Cheng, “An Algorithmic Approach for Generic
Parallel Adders”, in Proceedings of ICCAD’03, pp.734-
740, Nov.2003.

[7] Tsuyoshi Sadakata and Yusuke Matsunaga, “A Behav-
ioral Synthesis Method Considering Complex Opera-
tions”, In Proceedings of SASIMI 2004.

