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ABSTRACT 
In this paper, we propose a cache architecture, called SCache, to 
detect buffer-overflow attacks at run time. Furthermore, the 
energy-security efficiency of SCache is discussed. SCache 
generates replica cache lines on each return-address store, and 
compares the original value loaded from the memory stack to the 
replica one on the corresponding return-address load. The number 
and the placement policy of the replica line strongly affect both 
energy and vulnerability. In our evaluation, it is observed that 
SCache can protect more than 99.3% of return-address loads from 
buffer-overflow attacks, while it increases total cache energy 
consumption by about 23%, compared to a well-known low-
power cache.  

1. INTRODUCTION 
As the popularity of mobile computing devices and 

the advance in internet information services, 
considering energy-security efficiency of computer 
systems becomes more important. Although the 
internet is a much useful instrument, it also gives an 
opportunity for attacking remote connected devices to 
malicious persons. On the other hand, reducing 
energy consumption is an inevitable design constraint 
for mobile devices such as laptop computers and 
cellular phones, because it affects directly the battery 
lifetime. Fundamentally, in order to defend own 
computer system, some extra tasks which do not 
contribute program-execution results are required, 
resulting in wasted energy consumption. However, 
only few attempts have so far been made at the 
tradeoff between energy and security.  

In this paper, we propose a cache architecture, called 
Secure Cache (SCache), to prevent buffer-overflow 
attacks. Moreover, we evaluate the energy overhead 
caused by SCache based on a 0.18µm SRAM design, 
and discuss the tradeoff between energy and security. 
The attackers attempt to alter the procedure return 
address by causing a buffer overflow which breaks 
the structure of memory stack. SCache detects the 

return-address corruption without any software 
supports at run time. When a return address is pushed 
onto the memory stack, SCache generates one or more 
replicas of the return-address value, and saves them 
into the other cache space. Since on-chip caches give 
a large impact on both performance and energy 
consumption, researches have proposed a number of 
approaches to lowering cache energy [6][7][8][10]. In 
contrast to prior work, this paper focuses on the 
tradeoff between energy and security. 

This paper is organized as follows: Section 2 
explains briefly the mechanism of buffer overflow, 
and introduces related work to solve the buffer-
overflow problem. Section 3 proposes SCache 
architecture, and the organization and operation are 
explained in detail. In Section 4, we evaluate 
vulnerability and energy consumption of several 
SCache models, and discuss the energy-security 
tradeoff. Finally, in Section 5, we conclude this paper. 

2. STACK SMASHING ATTACK 
In this section, we explain the mechanism of the 

stack smashing, and show related work to prevent the 
buffer-overflow attack. 

2.1. Buffer-Overflow Vulnerability 
To attack vulnerable computer systems, at least two 

processes have to be done: injecting an attack code 
and hijacking the program-execution control. The 
buffer overflow makes it possible to achieve both the 
issues simultaneously. This is one of the main reasons 
why the buffer-overflow vulnerability is commonly 
exploited for attacking target computers. For example, 
the malicious programs such as Code Red warm in 
2001 and Braster in 2003, which raged in the world, 
utilize this defect. Figure 1 illustrates the percentage 
of CERT advisories relating to the buffer-overflow 



vulnerability for each year. We see from Figure 1 that 
50% of advisories in 2001 relate to this weak point.  

The buffer overflow is caused by writing an 
inordinately large amount of data into a buffer. 
Unfortunately, the C programming language does not 
perform automatically array-bound checks, and this 
defect mainly exists in the standard C library such as 
strcpy(). Therefore, many programs have the  
possibility to suffer from the buffer-overflow 
vulnerability.  

The overflow breaks memory stack structure as 
depicted in Figure 2, and this operation is called stack 
smashing. In this figure, we assume that the function 
f() calls the function g(), which includes a vulnerable 
operation strcpy(), as shown in the rightmost figure. 
The state of the memory stack immediately after the 
function call g() is depicted in the leftmost figure. The 
stack consists of the function parameters, the return 
address to the caller, the previous frame pointer, and 
the local array variable buf. In g(), if the size of the 
string pointed by s is larger than the memory size 
allocated for the local variable buf, a buffer overflow 
takes place when the strcpy() function is executed. As 
a result, the contiguous stack contents are overwritten. 
If the pointer s points a malicious string which is 
meticulously constructed by an attacker, the attack 
code is injected into the memory stack and the return 
address is altered to the top of the injected code, as 
shown in the middle one in Figure 2. The corrupted 
return address is set to the program counter (PC) 
when the execution of g() completes. As a result, the 
program-execution control is finally hijacked by the 
injected attack code. 

2.2. Related Work 
The most straightforward way to solve the buffer-

overflow attack is to prohibit the execution of codes 
stored in data segments. For example, AMD Athlon64 
employs this protection. However, some programs 
attempt to generate an executable code at run time, e.g. 
just-in-time compiler. To support such operations, the 
microprocessors should be able to execute the 
instructions stored in a data segment.  

So far, many techniques to address the buffer-
overflow attacks have been proposed. They can be 
classified into two types: static and dynamic. The 
static approach generates a secure object code based 
on source code analysis. For example, the paper [11] 
formulates detection of buffer overflows as an integer 
range analysis problem in order to find the potential 
of stack smashing. SASI introduced in [4] inserts 
reference-monitor codes into application programs to 
observe program-execution behavior. For instance, a 
bound-checking code as a reference monitor may 
detect buffer-overflow attacks. StackGuard, which is 
a patch to gcc, is another static approach to defending 
the stack smashing[3]. Each return address is pushed 
onto the stack with a “canary word” which is a 
randomly generated value. The canary is allocated to 
the next stack entry of the return address, and its copy 
is also stored into a general-purpose register. 
Therefore, we can detect stack smashing by 
comparing the canary value read from the stack 
memory with that saved in the register. This approach 
stands on the assumption that the canary word is 
altered whenever a return address corruption takes 
place. 

One of the main drawbacks of the static approach is 
code compatibility, because it requires a code 
translation or re-compilation. On the other hand, the 

Figure 1: buffer overflow advisories (from [9])
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dynamic approach does not have this negative effect. 
A dynamically loadable library (DLL) called libsafe is 
used to check vulnerabilities before un-trusted 
standard C libraries are executed[1]. Similarly, 
libverify is another DLL which injects a verification 
code at the start of the process execution via a binary 
re-writing[1]. StackGhost exploits cleverly the register 
window of the SPARC architecture[5]. In such 
architecture, a return address is saved in the register 
window. Only when a register-window overflow 
occurs, the return address is stored into a memory 
stack by OS support. Although the memory stack 
access is potentially vulnerable, OS can insert some 
operation to protect the return address, e.g. 
implementing a canary word as well as StackGuard. 
Another approach called SRAS (Secure Return 
Address Stack) is an LIFO fashion small memory 
embedded in the microprocessor core[9]. SRAS is a 
straightforward but very efficient architectural support 
to prevent the buffer-overflow attacks. A return 
address is pushed onto not only the memory stack but 
also SRAS, and they are compared to detect stack 
smashing when the corresponding return instruction is 
executed. Our research has been started from this 
paper.  

Since SCache belongs to the dynamic approach, 
code compatibility can be maintained. In addition, we 
do not modify the library and OS. Unlike StackGhost, 
our approach is independent of the microarchitecture 
of processor. We exploit the random-access large 
cache to store the copied data. Therefore, SCache has 
enough capacity, and can work well even if function 
calls are performed with non-LIFO fashion, e.g. 
longjump(). Another simple hardware support is to 
XOR the return-address value with a secret key, 
whereas SCache does not require any key information. 
Furthermore, the main difference of this paper is to 
focus on the energy-security tradeoff that is hardly 
discussed so far.  

3. THE SCACHE ARCHITECTURE 
In this section, we propose the SCache architecture, 

and explain the structure and operation of a four-way 
set-associative SCache.  

3.1 Overview 
Commonly, return addresses are transferred to (or 

from) the memory stack through on-chip caches. 
Therefore, if it is possible to protect the return address 
on the cache, we can prevent stack smashing without 
affecting the structure of complex microprocessor. In 

order to achieve such a hardware protection, SCache 
attempts to make one or more copies of the return 
address when it is stored into the cache. We call a 
cache line including the copy of the return address a 
replica line. Actually, the replica line is not a 
complete copy of whole cache line. Only the return 
address is copied. Since the replica line can be placed 
in the cache set indexed by the reference address of 
the current return-address store, we can generate at 
most Asso-1 replica lines where Asso is the cache 
associativity. Any cache accesses, except return-
address stores, can not overwrite the replica lines. 
Therefore, the replica lines are treated as read only. 
When a return address is popped off the memory 
stack, SCache selects one of the replica data and 
compares it with the popped original return address. If 
they are exactly the same, we can ensure that the 
popped return address is safe. Otherwise, it means that 
a return-address corruption takes place, thus a signal 
to report security status is sent to the processor in 
order to terminate the current program execution.  

3.2 Structure and Operation 
Figure 3 shows the structure of a four-way set- 

associative SCache. Here, we assume that the number 
of replica lines to be generated for each return-address 
store (noted as Nrep) is two. Unlike conventional 
caches, one-bit replica flag (R-flag) is added to each 
tag entry. The R-flag is set to one if the corresponding 
cache line is a replica, otherwise it is reset to zero. 
Moreover, a multiplexer to select a replica data and a 
32-bit comparator for examining return-address 
corruption are required. Figure 4 illustrates its 
operation on return-address load/store hits. When 

Figure 3: 4-way set-associative SCache 
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a return address is pushed, the cache works as 
follows.  
W1. With the same manner as conventional caches, 

the set indexed by the reference address is 
accessed for tag checking. The corresponding R-
flags are also read in parallel.  

W2. Then the return address is stored into the cache-
hit line. We call the target line the master line. 
Namely, the master line includes the original 
value of the return address. 

W3. If some replica lines already exist in the indexed 
set, the return address is stored into them in 
order to avoid a coherence problem. The replica 
lines can be detected by examining the tag and 
the R-flag at the step W1, because the 
corresponding replica lines have the same tag 
information and a valid R-flag. 

W4. New replica lines are generated by writing the 
return-address value into other non-replica 
line(s) and setting the corresponding R-flag(s) to 
one. The tag and offset information of the 
original write operation performed at the step 
W2 is used to make the replica line(s).  

Note that the example assumes a cache hit. However, 
even on a miss, the cache works in the same manner 
after the line replacement is completed. As explained 
in Section 3.1, SCache does not make a complete 
copy of whole master line, but just writes one word 
return-address value to the several lines in parallel. In 
other words, the contents of the replica lines are not 
exactly the same as those of the master line. In 
addition, a replica line can include several return 
addresses if the offset addresses are different. On the 
other hand, at a return-address load, the cache 
examines whether or not the popped return address is 
safe as follows. 

R1. The cache activates all the ways to read cache 
lines, tags, and R-flags. Then, the master line, 
which has the matching tag and the invalid R-
flag, is selected. The return-address data read 
from the master line is sent to the processor. 

R2. The replica lines having the matching tag are 
searched in the referenced set. If there are 
several replica lines corresponding to the current 
return-address load, one of them is randomly 
selected. Otherwise, the cache reports to the 
processor that the loaded return address may be 
unsafe, and completes the current cache access.  

R3. The return address read from the master line is 
compared with that obtained from the selected 
replica line. For this examination, only one 
replica data is selected and compared with the 
original one, because all of the replica lines 
include the same copy of the original return-
address value. If the 32-bit comparison result is 
not a match, the cache alarms to terminate the 
program execution due to the insecure return-
address load. 

In conventional write accesses, the tag checks and 
the data write (W1 and W2) are performed 
sequentially. Although SCache requires two more 
steps, W3 and W4, they can be executed in parallel 
with the step W2. For read accesses, SCache 
completes to read the target data at the step R1 as well 
as conventional caches. In addition, the hardware 
components for SCache, a replica-line MUX and a 
32-bit word comparator, do not affect the cache 
critical paths. Accordingly, SCache does not worsen 
the cache-access time.  

For normal accesses (i.e. non-return-address loads or 
stores), SCache operates as the same as conventional 
caches except that the invalid R-flag is included in 
the cache-hit condition. Therefore, the normal 
accesses do not modify the replica lines. For instance, 
let us consider a write operation to the next stack 
entry of the return address. Here, we assume that the 
write target entry is allocated to the same cache line as 
the return-address value. In this scenario, the write 
operation is performed only to the master line, which 
has the invalid R-flag. The master line does not have 
any protection mechanism, thus the write operation 
can be completed.  

Figure 4: Operation on return-address accesses
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The microprocessor needs to output a signal to 
indicate whether the current access targets a return 
address. This can be easily achieved by checking the 
source (or destination) operand of the current memory 
reference [9]. For many microprocessors, the return 
address is located to a special register, e.g. R31.  

3.3 Impact on Energy and Security 
SCache attempts to protect return addresses by 

generating replica lines. However, for each return-
address store, the cache needs to write the return-
address value into several locations, i.e. one to the 
master line and one to each replica line, thereby 
increasing write-access energy. Furthermore, on 
return-address loads, the cache examines all the ways 
to find replica lines. Namely, SCache can not reduce 
read-access energy as well as already proposed low-
power caches which attempt to avoid unnecessary 
way activation [6][10]. Another drawback of SCache 
is the energy overhead caused by degrading cache-hit 
rates. Since generating replica lines pollutes effective 
cache area, the energy consumed for cache-line 
replacements is increased. 

On the other hand, from the security point of view, 
SCache can detect return-address corruption 
whenever at least one replica line exists. However, 
replica lines may be evicted from the cache, because 
they are also candidates for the cache-line 
replacement on misses. The most straightforward way 
to solve this issue is to prohibit evicting the replica 
lines from the cache. In this approach, we need to 
carefully release the replica lines with an appropriate 
timing. This is because a too-early-release degrades 
the efficiency of security, while a too-late-release 
pollutes unnecessarily the effective cache area. A 
simple strategy is to release the locked replica lines 
when the corresponding return-address load is issued 
to the cache. However, in this approach, still we have 
a possibility to take the too-early-releases. A number 
of microprocessors employ various predictions to gain 
performance, e.g. branch prediction, value prediction, 
etc. In such high-performance microprocessors, some 
instructions may be squished when a miss-prediction 
takes place. Therefore, the return-address load which 
is squished in later releases rashly the corresponding 
replica lines in the cache. Another approach to 
achieve secure operations is that we allow to evict the 
replica lines but try to make the replica lines reside in 
the cache as long as possible. We can consider at least 
two approaches: increasing the number of replica 
lines to be generated (Nrep) and employing the MRU 

algorithm for replica-line placements. However, they 
affect negatively cache energy consumption and miss 
rates.  

4. EVALUATION 
In this section, we define six SCache models, and 

discuss the ability of proposed approach. The SCache 
models differ in the number and the placement policy 
of replica lines. First, we explain how the energy and 
vulnerability are evaluated. Next, we measure them 
for the SCache models, and discuss the energy-
security tradeoff. The performance overhead caused 
by SCache is also evaluated. 
4.1 Experimental Setup 

We extended SimpleScalar tool set (ver.3.0d) [12] to 
support the SCache approach, and executed seven 
integer programs and four floating-point programs 
from the SPEC2000 benchmark suite [13]. The small 
input data set was used to complete the whole 
program execution. In this evaluation, we assume that 
the L1 data cache size is 16 KB, the line size is 32 B, 
and the associativity is 4. Furthermore, a 4-way 
superscalar out-of-order execution is assumed. For 
other parameters, we used the simplescalar default 
value defined in [2]. In this section, we refer to the 
issued return-address load (or store) to the cache as 
the IRA load (or store). We use the following 
equation to evaluate the efficiency for security,  

Vulnerability = (Nv-rald / Nrald) * 100,  

where Nrald and Nv-rald are the total number of IRA 
loads in the program execution and that of insecure 
IRA loads (i.e. return-address loads without any 
replica line), respectively. On the other hand, to 
evaluate the energy overhead, we use the energy 
model,  

Etotal = Erd + Ewt + Ewb + Emp,  

where Erd and Ewt are the total energy consumed for 
cache read and write accesses, respectively. Ewb is 
another energy overhead caused by evicting dirty 
lines from the cache due to replica placement. Emp is 
the energy dissipated for cache-line replacements. We 
assume that the energy consumed for a next-level 
memory access is ten times larger than that for an L1 
cache read access. Based on a 0.18 µm CMOS 
technology, we designed a 4KB SRAM array and 
estimated energy consumption. The circuits have been 
optimized to meet 3.0 ns access time. After the layout, 
we have measured energy consumption by performing  



Table 1: Cache-Miss Rates 
Model 

Bench 
#IRA Load(Nrald) CONV LRU1-NR LRU1 LRU2 MRU1 MRU2 ALL 

164.gzip 4,930,467 5.22% 5.23% 5.22% 5.22% 5.22% 5.23% 5.25%

175.vpr 5,627,709 3.53% 3.59% 3.56% 3.63% 3.59% 3.66% 3.74%

176.gcc 37,519,156 4.26% 6.06% 4.29% 4.37% 4.33% 4.43% 4.64%

181.mcf 992,419 20.02% 20.05% 20.02% 20.03% 20.05% 20.06% 20.10%

197.parser 45,466,527 4.13% 4.25% 4.18% 4.44% 4.23% 4.55% 5.07%

255.vortex 22,101,265 1.75% 1.83% 1.79% 1.91% 1.82% 1.94% 2.32%

256.bzip 18,147,017 2.31% 2.31% 2.31% 2.32% 2.31% 2.32% 2.45%

177.mesa 4,727,396 0.14% 0.15% 0.15% 0.16% 0.15% 0.16% 1.08%

179.art 32,466 42.93% 42.93% 42.93% 42.93% 42.93% 42.93% 42.93%

183.equake 3,580,827 2.44% 2.45% 2.44% 2.46% 2.45% 2.47% 2.52%

188.ammp 6,307,839 36.27% 36.29% 36.28% 36.31% 36.28% 36.30% 36.38%

IRA: Issued Return Address, CONV: Conventional  
    

 

Hspice circuit simulations with extracted load 
capacitances. First, we obtained the energy for 
accessing 1-bit memory cell that includes sensing and 
pre-charging. Next, we calculated the average energy 
for each operation based on the total number of bits 
to be accessed. Then we multiplied the energy by the 
number of events occurred during the program 
execution.  

Since the cache associativity is assumed as four, we 
can generate at most three replica lines for each 
return-address store, i.e. Nrep = 3. Furthermore, there 
are two options for the replica line placement, LRU 
and MRU. Here, we define six SCache models: 
LRU1-NR, LRU1, LRU2, MRU1, MRU2, and ALL. 
LRU1 and LRU2 generate one and two replica line(s) 
with the LRU placement algorithm, respectively. 
MRU1 and MRU2 place replica line(s) on the MRU 
location except the master line. The ALL model 
makes the maximum number of replica lines. In these 
models, the replica lines are treated as the same as 
normal lines, i.e. they can be evicted from the cache. 
On the other hand, LRU1-NR prohibits evicting the 
replica lines, and they are released when the 
corresponding return-address load is issued to the 
cache. We compare the SCache models with a 
conventional low-power way-predicting cache, noted 
as CONV. This model attempts to activate only the hit 
way which includes the reference data by employing 
an MRU-base way prediction [6], thereby saving 

cache-access energy. Here, we do not take the energy 
overhead caused by the way prediction, e.g. accessing 
an MRU table, into account. Note that the SCache 
models also perform the MRU-base way prediction. 
However, on each return-address load, they need to 
activate all the ways in spite of the correct way-
prediction, as explained in Section 3.3. 

4.2 Vulnerability 
Figure 5 shows the vulnerability of the SCache 

models. We should notice that conventional caches 
without any consideration for stack smashing have 
100% of vulnerability. The number of IRA loads, 
Nrald, and cache-miss rates are also presented in 
Table 1.  
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First, we discuss the effects of the number of replica 
lines, Nrep. In this simulation, we assumed that the 
LRU policy is employed for the cache-line 
replacement on misses. Therefore, replica lines 
generated in LRU1 are easily evicted from the cache 
due to conflicts. As we expected, LRU2 produces 
better results than LRU1 for all benchmarks due to the 
increased number of replica lines. We see the same 
situation for the MRU based SCaches, MRU1 and 
MRU2. If they can perform a strict MRU placement, 
the number of replica lines does not affect the 
vulnerability. However, when a return address is 
stored into the cache, all existing replica lines with the 
same tag information are updated in order to avoid 
coherence problem, as explained in Section 3.2. If a 
corresponding replica line already exists at the LRU 
location, MRU1 works as the same as LRU1. 
Therefore, MRU1 is more vulnerable than MRU2. For 
all but 181.mcf and 179.art, the most secure model 
ALL can protect more than 99.3% of IRA loads from 
stack smashing. 

Next, we discuss the impact of the replica-line 
placement algorithm. The MRU strategy constantly 
achieves higher security than the LRU models if the 
number of replica lines to be generated at each return-
address store is the same. This is because the MRU 
placement makes the replica lifetime longer as well as 
increasing the number of replica lines. However, 

against our expectation, LRU1-NR does not work 
well for some benchmarks. One of the reasons of this 
result is a hasty release of replica data caused by 
squished return-address loads.  

4.3 Energy Consumption 
Figure 6 shows energy consumption and its 

breakdown for the SCache models. All results are 
normalized to CONV. From the figure, we see that 
increasing the number of replica lines worsens energy 
efficiency. The ALL model increases energy 
consumption by about 23% in the worst case, 
197.parser. On the other hand, replica-line placement 
algorithm does not give a large impact on energy.  

The SCache models have the same energy overhead 
for read accesses. Since all of the ways in SCache are 
activated on each IRA load, the read-access energy 
depends on not the number of replica lines generated 
but the total number of IRA loads. In contrast, the 
energy dissipated for write accesses Ewt increases 
with the increase in the number of replica lines 
generated. This situation can be seen for Emp due to 
the increased cache-miss rates. For instance, in case of 
177.mesa, the ALL model worsens the cache-miss 
rate from 0.14% to 1.08%, thereby increasing the 
energy for cache-line replacements Emp. For the 
programs with small energy overhead, 181.mcf and 
179.art, it is observed that the increase in Erd, Ewt, 
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and Emp are trivial. For these benchmarks, the total 
energy is originally dominated by Emp, 51% for 
181.mcf and 62% for 179.art, due to the higher cache-
miss rates as reported in Table 1. Therefore, the 
energy overhead caused by the replica lines is 
relatively hidden.  

4.4 Energy-Security Tradeoff 
In order to evaluate both energy and security at the 

same time, we introduce the energy-vulnerability 
product (EVP). We multiply the energy overhead by 
the number of vulnerable IRA loads. Furthermore, we 
measure the E2*V (or E*V2) product in order to 
consider more energy-oriented (or security-oriented) 
applications. Figure 7 shows the evaluation results for 
the five SCache models (LRU1-NR is not included). 
All the results are normalized to LRU1. From the 
figure, it is observed that each SCache model shows 
different characteristics. For instance, MRU1 
produces the best performance if we see the energy-
oriented metric E2*V, while MRU2 or ALL give 
better results for security-oriented applications E*V2. 
This means that there is a tradeoff between energy 
and security, thus it is very important to explore the 
design space for coping both high security and low 
energy consumption. For the SCache approach, we 
conclude that MRU1 which increases the energy 
consumption only by 10% in the worst case but 
achieves relatively higher security should be selected 
if energy consumption is the primary design 
constraint. In contrast, MRU2 or ALL can protect 
more than 99% of IRA loads for many benchmarks, 
thus they are suitable for security-oriented 
applications. 

4.5 Performance Overhead 
Finally, we evaluate the impact of the SCache 

approach on processor performance. As shown in 
Table 1, increasing the number of replica lines, Nrep, 
worsens cache-hit rates, thus the processor 
performance will be degraded. This negative effect 
appears clearly on the MRU-based models. Figure 8 
reports the performance overhead caused by the 
SCache scheme. For the ALL model, the increase in 
execution time is at most 1.1%, 177.mesa. 
Furthermore, we see that in many cases the 
performance overhead is less than 0.4%. Therefore, 
we believe that the performance degradation caused 
by SCache is negligible. 

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

 16
4.g

zip

 17
5.v

pr

 17
6.g

cc

 18
1.m

cf

 19
7.p

ars
er

 25
5.v

ort
ex

 25
6.b

zip
2

 17
7.m

esa
 17

9.a
rt

 18
3.e

qu
ak

e

 18
8.a

mmp

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Benchmarks

LRU1-NR
LRU1
LRU2
MRU1
MRU2
ALL

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

 16
4.g

zip

 17
5.v

pr

 17
6.g

cc

 18
1.m

cf

 19
7.p

ars
er

 25
5.v

ort
ex

 25
6.b

zip
2

 17
7.m

esa
 17

9.a
rt

 18
3.e

qu
ak

e

 18
8.a

mmp

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Benchmarks

LRU1-NR
LRU1
LRU2
MRU1
MRU2
ALL

LRU1-NR
LRU1
LRU2
MRU1
MRU2
ALL

Figure 8: Performance 

0

0.5

1

1.5

0

0.5

1

1.5

2
2.4% 2.3%

164.gzip  175.vpr  176.gcc  197.parser 188.ammp
0

0.5

1

164.gzip  175.vpr  176.gcc  197.parser 188.ammp 164.gzip  175.vpr  176.gcc  197.parser 188.ammp

(a) EVP (b) E2VP (c) EV2P

LRU2 ALLMRU1 MRU2

0

0.5

1

1.5

0

0.5

1

1.5

2
2.4% 2.3%

164.gzip  175.vpr  176.gcc  197.parser 188.ammp
0

0.5

1

164.gzip  175.vpr  176.gcc  197.parser 188.ammp 164.gzip  175.vpr  176.gcc  197.parser 188.ammp

(a) EVP (b) E2VP (c) EV2P

LRU2 ALLMRU1 MRU2LRU2 ALLMRU1 MRU2

Figure 7: Energy-Security Tradeoff 



5. CONCLUSIONS 
In this paper, we have proposed a secure cache 

architecture, called SCache. The cache makes it 
possible to detect stack smashing at run time. The 
stack smashing alters a function return address for 
transferring the program-execution control to an 
injected malicious code. By making one or more 
replica lines in the large cache area, we can protect 
the return address. We have also considered an 
energy-security tradeoff by evaluating energy and 
vulnerability of six SCache models which differ in the 
number and the placement algorithm of replica lines. 
As a result, it has been observed that the MRU1 
model is good for energy-oriented applications, while 
the MRU2 and ALL models are suitable for security-
oriented applications. 

In this evaluation, we have estimated energy 
consumption based on an SRAM layout design which 
does not include peripheral circuits for SCache, e.g. a 
selector for replica lines, control logic, and so on. Our 
ongoing work is to design a complete SCache core. 
Another future work is to explore the SCache design 
space with various cache configurations, and to 
establish an optimization technique to find the best 
point to maximize the energy-security efficiency. 
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