
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Energy-Security Tradeoff in a Secure Cache
Architecture Against Buffer Overflow Attacks

Inoue, Koji
PRESTO, Japan Science and Technology Agency | Department of Informatics, Kyushu University

https://hdl.handle.net/2324/6169

出版情報：Proc. of the The International Workshop on Architectural Support for Security and
Anti-Virus (WASSA04), pp.77-85, 2004-10. The International Workshop on Architectural Support
for Security and Anti-Virus
バージョン：
権利関係：

Energy-Security Tradeoff in a Secure Cache Architecture
Against Buffer Overflow Attacks

Koji Inoue† §
†Department of Informatics, Kyushu University.

6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580 Japan
§PRESTO, Japan Science and Technology Agency,
4-1-8 Honcho Kawaguchi, Saitama 332-0012 Japan

inoue@c.csce.kyushu-u.ac.jp

ABSTRACT
In this paper, we propose a cache architecture, called SCache, to
detect buffer-overflow attacks at run time. Furthermore, the
energy-security efficiency of SCache is discussed. SCache
generates replica cache lines on each return-address store, and
compares the original value loaded from the memory stack to the
replica one on the corresponding return-address load. The number
and the placement policy of the replica line strongly affect both
energy and vulnerability. In our evaluation, it is observed that
SCache can protect more than 99.3% of return-address loads from
buffer-overflow attacks, while it increases total cache energy
consumption by about 23%, compared to a well-known low-
power cache.

1. INTRODUCTION
As the popularity of mobile computing devices and

the advance in internet information services,
considering energy-security efficiency of computer
systems becomes more important. Although the
internet is a much useful instrument, it also gives an
opportunity for attacking remote connected devices to
malicious persons. On the other hand, reducing
energy consumption is an inevitable design constraint
for mobile devices such as laptop computers and
cellular phones, because it affects directly the battery
lifetime. Fundamentally, in order to defend own
computer system, some extra tasks which do not
contribute program-execution results are required,
resulting in wasted energy consumption. However,
only few attempts have so far been made at the
tradeoff between energy and security.

In this paper, we propose a cache architecture, called
Secure Cache (SCache), to prevent buffer-overflow
attacks. Moreover, we evaluate the energy overhead
caused by SCache based on a 0.18µm SRAM design,
and discuss the tradeoff between energy and security.
The attackers attempt to alter the procedure return
address by causing a buffer overflow which breaks
the structure of memory stack. SCache detects the

return-address corruption without any software
supports at run time. When a return address is pushed
onto the memory stack, SCache generates one or more
replicas of the return-address value, and saves them
into the other cache space. Since on-chip caches give
a large impact on both performance and energy
consumption, researches have proposed a number of
approaches to lowering cache energy [6][7][8][10]. In
contrast to prior work, this paper focuses on the
tradeoff between energy and security.

This paper is organized as follows: Section 2
explains briefly the mechanism of buffer overflow,
and introduces related work to solve the buffer-
overflow problem. Section 3 proposes SCache
architecture, and the organization and operation are
explained in detail. In Section 4, we evaluate
vulnerability and energy consumption of several
SCache models, and discuss the energy-security
tradeoff. Finally, in Section 5, we conclude this paper.

2. STACK SMASHING ATTACK
In this section, we explain the mechanism of the

stack smashing, and show related work to prevent the
buffer-overflow attack.

2.1. Buffer-Overflow Vulnerability
To attack vulnerable computer systems, at least two

processes have to be done: injecting an attack code
and hijacking the program-execution control. The
buffer overflow makes it possible to achieve both the
issues simultaneously. This is one of the main reasons
why the buffer-overflow vulnerability is commonly
exploited for attacking target computers. For example,
the malicious programs such as Code Red warm in
2001 and Braster in 2003, which raged in the world,
utilize this defect. Figure 1 illustrates the percentage
of CERT advisories relating to the buffer-overflow

vulnerability for each year. We see from Figure 1 that
50% of advisories in 2001 relate to this weak point.

The buffer overflow is caused by writing an
inordinately large amount of data into a buffer.
Unfortunately, the C programming language does not
perform automatically array-bound checks, and this
defect mainly exists in the standard C library such as
strcpy(). Therefore, many programs have the
possibility to suffer from the buffer-overflow
vulnerability.

The overflow breaks memory stack structure as
depicted in Figure 2, and this operation is called stack
smashing. In this figure, we assume that the function
f() calls the function g(), which includes a vulnerable
operation strcpy(), as shown in the rightmost figure.
The state of the memory stack immediately after the
function call g() is depicted in the leftmost figure. The
stack consists of the function parameters, the return
address to the caller, the previous frame pointer, and
the local array variable buf. In g(), if the size of the
string pointed by s is larger than the memory size
allocated for the local variable buf, a buffer overflow
takes place when the strcpy() function is executed. As
a result, the contiguous stack contents are overwritten.
If the pointer s points a malicious string which is
meticulously constructed by an attacker, the attack
code is injected into the memory stack and the return
address is altered to the top of the injected code, as
shown in the middle one in Figure 2. The corrupted
return address is set to the program counter (PC)
when the execution of g() completes. As a result, the
program-execution control is finally hijacked by the
injected attack code.

2.2. Related Work
The most straightforward way to solve the buffer-

overflow attack is to prohibit the execution of codes
stored in data segments. For example, AMD Athlon64
employs this protection. However, some programs
attempt to generate an executable code at run time, e.g.
just-in-time compiler. To support such operations, the
microprocessors should be able to execute the
instructions stored in a data segment.

So far, many techniques to address the buffer-
overflow attacks have been proposed. They can be
classified into two types: static and dynamic. The
static approach generates a secure object code based
on source code analysis. For example, the paper [11]
formulates detection of buffer overflows as an integer
range analysis problem in order to find the potential
of stack smashing. SASI introduced in [4] inserts
reference-monitor codes into application programs to
observe program-execution behavior. For instance, a
bound-checking code as a reference monitor may
detect buffer-overflow attacks. StackGuard, which is
a patch to gcc, is another static approach to defending
the stack smashing[3]. Each return address is pushed
onto the stack with a “canary word” which is a
randomly generated value. The canary is allocated to
the next stack entry of the return address, and its copy
is also stored into a general-purpose register.
Therefore, we can detect stack smashing by
comparing the canary value read from the stack
memory with that saved in the register. This approach
stands on the assumption that the canary word is
altered whenever a return address corruption takes
place.

One of the main drawbacks of the static approach is
code compatibility, because it requires a code
translation or re-compilation. On the other hand, the

Figure 1: buffer overflow advisories (from [9])

0

10

20

30

40

50

60

C
ER

T
Ad

vi
so

rie
s

re
la

tin
g

to
 b

uf
fe

r-
ov

er
flo

w
 (%

)

1996 1997 1998 1999 2000 2001

year
Figure 2: Stack Smashing

String
Growth

s
Return
Addr.

Saved FP

Local
Variables

(buf)

FP

SP

Higher
 Addr.

Lower
Addr.

Stack
Growth

int f () {
 …
 g (s);
…
}

int g (char *s) {
 char buf [10];
 …
 strcpy(buf, s);
}
Executed code

example

s
Corrupted
Ret. Addr.

Attack
Code

FP

SP
Before the

attack
Stack

Smashing

dynamic approach does not have this negative effect.
A dynamically loadable library (DLL) called libsafe is
used to check vulnerabilities before un-trusted
standard C libraries are executed[1]. Similarly,
libverify is another DLL which injects a verification
code at the start of the process execution via a binary
re-writing[1]. StackGhost exploits cleverly the register
window of the SPARC architecture[5]. In such
architecture, a return address is saved in the register
window. Only when a register-window overflow
occurs, the return address is stored into a memory
stack by OS support. Although the memory stack
access is potentially vulnerable, OS can insert some
operation to protect the return address, e.g.
implementing a canary word as well as StackGuard.
Another approach called SRAS (Secure Return
Address Stack) is an LIFO fashion small memory
embedded in the microprocessor core[9]. SRAS is a
straightforward but very efficient architectural support
to prevent the buffer-overflow attacks. A return
address is pushed onto not only the memory stack but
also SRAS, and they are compared to detect stack
smashing when the corresponding return instruction is
executed. Our research has been started from this
paper.

Since SCache belongs to the dynamic approach,
code compatibility can be maintained. In addition, we
do not modify the library and OS. Unlike StackGhost,
our approach is independent of the microarchitecture
of processor. We exploit the random-access large
cache to store the copied data. Therefore, SCache has
enough capacity, and can work well even if function
calls are performed with non-LIFO fashion, e.g.
longjump(). Another simple hardware support is to
XOR the return-address value with a secret key,
whereas SCache does not require any key information.
Furthermore, the main difference of this paper is to
focus on the energy-security tradeoff that is hardly
discussed so far.

3. THE SCACHE ARCHITECTURE
In this section, we propose the SCache architecture,

and explain the structure and operation of a four-way
set-associative SCache.

3.1 Overview
Commonly, return addresses are transferred to (or

from) the memory stack through on-chip caches.
Therefore, if it is possible to protect the return address
on the cache, we can prevent stack smashing without
affecting the structure of complex microprocessor. In

order to achieve such a hardware protection, SCache
attempts to make one or more copies of the return
address when it is stored into the cache. We call a
cache line including the copy of the return address a
replica line. Actually, the replica line is not a
complete copy of whole cache line. Only the return
address is copied. Since the replica line can be placed
in the cache set indexed by the reference address of
the current return-address store, we can generate at
most Asso-1 replica lines where Asso is the cache
associativity. Any cache accesses, except return-
address stores, can not overwrite the replica lines.
Therefore, the replica lines are treated as read only.
When a return address is popped off the memory
stack, SCache selects one of the replica data and
compares it with the popped original return address. If
they are exactly the same, we can ensure that the
popped return address is safe. Otherwise, it means that
a return-address corruption takes place, thus a signal
to report security status is sent to the processor in
order to terminate the current program execution.

3.2 Structure and Operation
Figure 3 shows the structure of a four-way set-

associative SCache. Here, we assume that the number
of replica lines to be generated for each return-address
store (noted as Nrep) is two. Unlike conventional
caches, one-bit replica flag (R-flag) is added to each
tag entry. The R-flag is set to one if the corresponding
cache line is a replica, otherwise it is reset to zero.
Moreover, a multiplexer to select a replica data and a
32-bit comparator for examining return-address
corruption are required. Figure 4 illustrates its
operation on return-address load/store hits. When

Figure 3: 4-way set-associative SCache

Data (Ret. Addr.)

ML RL RL

way0 way1 way2 way3
Tag Line

Load (pop)

Replica-MUX

Safe?

replica replica

Master-MUX

masterTag Match
&& R-flag

Tag Match
&& no R-flag

HIT?

32-bit
comparator

Ref. Addr.
Index

Tag
Offset

Store (push)Data (Ret. Addr.)RL: Replica Line
ML: Master Line

R-flag

32

32

Original Replica

a return address is pushed, the cache works as
follows.
W1. With the same manner as conventional caches,

the set indexed by the reference address is
accessed for tag checking. The corresponding R-
flags are also read in parallel.

W2. Then the return address is stored into the cache-
hit line. We call the target line the master line.
Namely, the master line includes the original
value of the return address.

W3. If some replica lines already exist in the indexed
set, the return address is stored into them in
order to avoid a coherence problem. The replica
lines can be detected by examining the tag and
the R-flag at the step W1, because the
corresponding replica lines have the same tag
information and a valid R-flag.

W4. New replica lines are generated by writing the
return-address value into other non-replica
line(s) and setting the corresponding R-flag(s) to
one. The tag and offset information of the
original write operation performed at the step
W2 is used to make the replica line(s).

Note that the example assumes a cache hit. However,
even on a miss, the cache works in the same manner
after the line replacement is completed. As explained
in Section 3.1, SCache does not make a complete
copy of whole master line, but just writes one word
return-address value to the several lines in parallel. In
other words, the contents of the replica lines are not
exactly the same as those of the master line. In
addition, a replica line can include several return
addresses if the offset addresses are different. On the
other hand, at a return-address load, the cache
examines whether or not the popped return address is
safe as follows.

R1. The cache activates all the ways to read cache
lines, tags, and R-flags. Then, the master line,
which has the matching tag and the invalid R-
flag, is selected. The return-address data read
from the master line is sent to the processor.

R2. The replica lines having the matching tag are
searched in the referenced set. If there are
several replica lines corresponding to the current
return-address load, one of them is randomly
selected. Otherwise, the cache reports to the
processor that the loaded return address may be
unsafe, and completes the current cache access.

R3. The return address read from the master line is
compared with that obtained from the selected
replica line. For this examination, only one
replica data is selected and compared with the
original one, because all of the replica lines
include the same copy of the original return-
address value. If the 32-bit comparison result is
not a match, the cache alarms to terminate the
program execution due to the insecure return-
address load.

In conventional write accesses, the tag checks and
the data write (W1 and W2) are performed
sequentially. Although SCache requires two more
steps, W3 and W4, they can be executed in parallel
with the step W2. For read accesses, SCache
completes to read the target data at the step R1 as well
as conventional caches. In addition, the hardware
components for SCache, a replica-line MUX and a
32-bit word comparator, do not affect the cache
critical paths. Accordingly, SCache does not worsen
the cache-access time.

For normal accesses (i.e. non-return-address loads or
stores), SCache operates as the same as conventional
caches except that the invalid R-flag is included in
the cache-hit condition. Therefore, the normal
accesses do not modify the replica lines. For instance,
let us consider a write operation to the next stack
entry of the return address. Here, we assume that the
write target entry is allocated to the same cache line as
the return-address value. In this scenario, the write
operation is performed only to the master line, which
has the invalid R-flag. The master line does not have
any protection mechanism, thus the write operation
can be completed.

Figure 4: Operation on return-address accesses

Store?
yes

Store the Return Addr.
into ML

Generate RLs until
#RL == Nrep

Normal
Complete

noStore Load

Read lines from all ways
(provide the data to CPU)

Unsafe
Complete

no

Safe Complete

Store the Return Addr.
into existing RLs

(if it has the same tag)

un-match

Error!

RL: Replica Line
ML: Master Line

Cache Access
(for Return Addr.)

yes

match

RL Hit?

Return Addr. Check

The microprocessor needs to output a signal to
indicate whether the current access targets a return
address. This can be easily achieved by checking the
source (or destination) operand of the current memory
reference [9]. For many microprocessors, the return
address is located to a special register, e.g. R31.

3.3 Impact on Energy and Security
SCache attempts to protect return addresses by

generating replica lines. However, for each return-
address store, the cache needs to write the return-
address value into several locations, i.e. one to the
master line and one to each replica line, thereby
increasing write-access energy. Furthermore, on
return-address loads, the cache examines all the ways
to find replica lines. Namely, SCache can not reduce
read-access energy as well as already proposed low-
power caches which attempt to avoid unnecessary
way activation [6][10]. Another drawback of SCache
is the energy overhead caused by degrading cache-hit
rates. Since generating replica lines pollutes effective
cache area, the energy consumed for cache-line
replacements is increased.

On the other hand, from the security point of view,
SCache can detect return-address corruption
whenever at least one replica line exists. However,
replica lines may be evicted from the cache, because
they are also candidates for the cache-line
replacement on misses. The most straightforward way
to solve this issue is to prohibit evicting the replica
lines from the cache. In this approach, we need to
carefully release the replica lines with an appropriate
timing. This is because a too-early-release degrades
the efficiency of security, while a too-late-release
pollutes unnecessarily the effective cache area. A
simple strategy is to release the locked replica lines
when the corresponding return-address load is issued
to the cache. However, in this approach, still we have
a possibility to take the too-early-releases. A number
of microprocessors employ various predictions to gain
performance, e.g. branch prediction, value prediction,
etc. In such high-performance microprocessors, some
instructions may be squished when a miss-prediction
takes place. Therefore, the return-address load which
is squished in later releases rashly the corresponding
replica lines in the cache. Another approach to
achieve secure operations is that we allow to evict the
replica lines but try to make the replica lines reside in
the cache as long as possible. We can consider at least
two approaches: increasing the number of replica
lines to be generated (Nrep) and employing the MRU

algorithm for replica-line placements. However, they
affect negatively cache energy consumption and miss
rates.

4. EVALUATION
In this section, we define six SCache models, and

discuss the ability of proposed approach. The SCache
models differ in the number and the placement policy
of replica lines. First, we explain how the energy and
vulnerability are evaluated. Next, we measure them
for the SCache models, and discuss the energy-
security tradeoff. The performance overhead caused
by SCache is also evaluated.
4.1 Experimental Setup

We extended SimpleScalar tool set (ver.3.0d) [12] to
support the SCache approach, and executed seven
integer programs and four floating-point programs
from the SPEC2000 benchmark suite [13]. The small
input data set was used to complete the whole
program execution. In this evaluation, we assume that
the L1 data cache size is 16 KB, the line size is 32 B,
and the associativity is 4. Furthermore, a 4-way
superscalar out-of-order execution is assumed. For
other parameters, we used the simplescalar default
value defined in [2]. In this section, we refer to the
issued return-address load (or store) to the cache as
the IRA load (or store). We use the following
equation to evaluate the efficiency for security,

Vulnerability = (Nv-rald / Nrald) * 100,

where Nrald and Nv-rald are the total number of IRA
loads in the program execution and that of insecure
IRA loads (i.e. return-address loads without any
replica line), respectively. On the other hand, to
evaluate the energy overhead, we use the energy
model,

Etotal = Erd + Ewt + Ewb + Emp,

where Erd and Ewt are the total energy consumed for
cache read and write accesses, respectively. Ewb is
another energy overhead caused by evicting dirty
lines from the cache due to replica placement. Emp is
the energy dissipated for cache-line replacements. We
assume that the energy consumed for a next-level
memory access is ten times larger than that for an L1
cache read access. Based on a 0.18 µm CMOS
technology, we designed a 4KB SRAM array and
estimated energy consumption. The circuits have been
optimized to meet 3.0 ns access time. After the layout,
we have measured energy consumption by performing

Table 1: Cache-Miss Rates
Model

Bench
#IRA Load(Nrald) CONV LRU1-NR LRU1 LRU2 MRU1 MRU2 ALL

164.gzip 4,930,467 5.22% 5.23% 5.22% 5.22% 5.22% 5.23% 5.25%

175.vpr 5,627,709 3.53% 3.59% 3.56% 3.63% 3.59% 3.66% 3.74%

176.gcc 37,519,156 4.26% 6.06% 4.29% 4.37% 4.33% 4.43% 4.64%

181.mcf 992,419 20.02% 20.05% 20.02% 20.03% 20.05% 20.06% 20.10%

197.parser 45,466,527 4.13% 4.25% 4.18% 4.44% 4.23% 4.55% 5.07%

255.vortex 22,101,265 1.75% 1.83% 1.79% 1.91% 1.82% 1.94% 2.32%

256.bzip 18,147,017 2.31% 2.31% 2.31% 2.32% 2.31% 2.32% 2.45%

177.mesa 4,727,396 0.14% 0.15% 0.15% 0.16% 0.15% 0.16% 1.08%

179.art 32,466 42.93% 42.93% 42.93% 42.93% 42.93% 42.93% 42.93%

183.equake 3,580,827 2.44% 2.45% 2.44% 2.46% 2.45% 2.47% 2.52%

188.ammp 6,307,839 36.27% 36.29% 36.28% 36.31% 36.28% 36.30% 36.38%

IRA: Issued Return Address, CONV: Conventional

Hspice circuit simulations with extracted load
capacitances. First, we obtained the energy for
accessing 1-bit memory cell that includes sensing and
pre-charging. Next, we calculated the average energy
for each operation based on the total number of bits
to be accessed. Then we multiplied the energy by the
number of events occurred during the program
execution.

Since the cache associativity is assumed as four, we
can generate at most three replica lines for each
return-address store, i.e. Nrep = 3. Furthermore, there
are two options for the replica line placement, LRU
and MRU. Here, we define six SCache models:
LRU1-NR, LRU1, LRU2, MRU1, MRU2, and ALL.
LRU1 and LRU2 generate one and two replica line(s)
with the LRU placement algorithm, respectively.
MRU1 and MRU2 place replica line(s) on the MRU
location except the master line. The ALL model
makes the maximum number of replica lines. In these
models, the replica lines are treated as the same as
normal lines, i.e. they can be evicted from the cache.
On the other hand, LRU1-NR prohibits evicting the
replica lines, and they are released when the
corresponding return-address load is issued to the
cache. We compare the SCache models with a
conventional low-power way-predicting cache, noted
as CONV. This model attempts to activate only the hit
way which includes the reference data by employing
an MRU-base way prediction [6], thereby saving

cache-access energy. Here, we do not take the energy
overhead caused by the way prediction, e.g. accessing
an MRU table, into account. Note that the SCache
models also perform the MRU-base way prediction.
However, on each return-address load, they need to
activate all the ways in spite of the correct way-
prediction, as explained in Section 3.3.

4.2 Vulnerability
Figure 5 shows the vulnerability of the SCache

models. We should notice that conventional caches
without any consideration for stack smashing have
100% of vulnerability. The number of IRA loads,
Nrald, and cache-miss rates are also presented in
Table 1.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

 16
4.g

zip

 17
5.v

pr

 17
6.g

cc

 18
1.m

cf
 19

7.p
ar

se
r

 25
5.v

ort
ex

 25
6.b

zip
2

 17
7.m

es
a

 17
9.a

rt
 18

3.e
qu

ak
e

 18
8.a

mm
p

LRU1-NR
LRU1
LRU2
MRU1
MRU2
ALL

6.1% 5.4%
31.1% 8.7% 4.7%

V
ul

ne
ra

bi
lit

y

Benchmarks

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

 16
4.g

zip

 17
5.v

pr

 17
6.g

cc

 18
1.m

cf
 19

7.p
ar

se
r

 25
5.v

ort
ex

 25
6.b

zip
2

 17
7.m

es
a

 17
9.a

rt
 18

3.e
qu

ak
e

 18
8.a

mm
p

LRU1-NR
LRU1
LRU2
MRU1
MRU2
ALL

LRU1-NR
LRU1
LRU2
MRU1
MRU2
ALL

6.1% 5.4%
31.1% 8.7% 4.7%

V
ul

ne
ra

bi
lit

y

Benchmarks

Figure 5: Vulnerability

First, we discuss the effects of the number of replica
lines, Nrep. In this simulation, we assumed that the
LRU policy is employed for the cache-line
replacement on misses. Therefore, replica lines
generated in LRU1 are easily evicted from the cache
due to conflicts. As we expected, LRU2 produces
better results than LRU1 for all benchmarks due to the
increased number of replica lines. We see the same
situation for the MRU based SCaches, MRU1 and
MRU2. If they can perform a strict MRU placement,
the number of replica lines does not affect the
vulnerability. However, when a return address is
stored into the cache, all existing replica lines with the
same tag information are updated in order to avoid
coherence problem, as explained in Section 3.2. If a
corresponding replica line already exists at the LRU
location, MRU1 works as the same as LRU1.
Therefore, MRU1 is more vulnerable than MRU2. For
all but 181.mcf and 179.art, the most secure model
ALL can protect more than 99.3% of IRA loads from
stack smashing.

Next, we discuss the impact of the replica-line
placement algorithm. The MRU strategy constantly
achieves higher security than the LRU models if the
number of replica lines to be generated at each return-
address store is the same. This is because the MRU
placement makes the replica lifetime longer as well as
increasing the number of replica lines. However,

against our expectation, LRU1-NR does not work
well for some benchmarks. One of the reasons of this
result is a hasty release of replica data caused by
squished return-address loads.

4.3 Energy Consumption
Figure 6 shows energy consumption and its

breakdown for the SCache models. All results are
normalized to CONV. From the figure, we see that
increasing the number of replica lines worsens energy
efficiency. The ALL model increases energy
consumption by about 23% in the worst case,
197.parser. On the other hand, replica-line placement
algorithm does not give a large impact on energy.

The SCache models have the same energy overhead
for read accesses. Since all of the ways in SCache are
activated on each IRA load, the read-access energy
depends on not the number of replica lines generated
but the total number of IRA loads. In contrast, the
energy dissipated for write accesses Ewt increases
with the increase in the number of replica lines
generated. This situation can be seen for Emp due to
the increased cache-miss rates. For instance, in case of
177.mesa, the ALL model worsens the cache-miss
rate from 0.14% to 1.08%, thereby increasing the
energy for cache-line replacements Emp. For the
programs with small energy overhead, 181.mcf and
179.art, it is observed that the increase in Erd, Ewt,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

164.g
zip

17
5.vp

r

176
.gc

c

18
1.m

cf

197.p
ars

er

255
.vo

rte
x

256
.bz

ip2

17
7.m

es
a

179.a
rt

183
.eq

uak
e

188
.am

mp

N
or

m
al

iz
ed

 E
ne

rg
y

Emp
Ewb
Ewt
Erd

C
O

N
V

LR
U

1-
N

R
LR

U
1

LR
U

2
M

R
U

1
M

R
U

2
AL

L

Benchmarks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

164.g
zip

17
5.vp

r

176
.gc

c

18
1.m

cf

197.p
ars

er

255
.vo

rte
x

256
.bz

ip2

17
7.m

es
a

179.a
rt

183
.eq

uak
e

188
.am

mp

N
or

m
al

iz
ed

 E
ne

rg
y

Emp
Ewb
Ewt
Erd

Emp
Ewb
Ewt
Erd

C
O

N
V

LR
U

1-
N

R
LR

U
1

LR
U

2
M

R
U

1
M

R
U

2
AL

L

C
O

N
V

LR
U

1-
N

R
LR

U
1

LR
U

2
M

R
U

1
M

R
U

2
AL

L

Benchmarks

Figure 6: Energy Consumption

and Emp are trivial. For these benchmarks, the total
energy is originally dominated by Emp, 51% for
181.mcf and 62% for 179.art, due to the higher cache-
miss rates as reported in Table 1. Therefore, the
energy overhead caused by the replica lines is
relatively hidden.

4.4 Energy-Security Tradeoff
In order to evaluate both energy and security at the

same time, we introduce the energy-vulnerability
product (EVP). We multiply the energy overhead by
the number of vulnerable IRA loads. Furthermore, we
measure the E2*V (or E*V2) product in order to
consider more energy-oriented (or security-oriented)
applications. Figure 7 shows the evaluation results for
the five SCache models (LRU1-NR is not included).
All the results are normalized to LRU1. From the
figure, it is observed that each SCache model shows
different characteristics. For instance, MRU1
produces the best performance if we see the energy-
oriented metric E2*V, while MRU2 or ALL give
better results for security-oriented applications E*V2.
This means that there is a tradeoff between energy
and security, thus it is very important to explore the
design space for coping both high security and low
energy consumption. For the SCache approach, we
conclude that MRU1 which increases the energy
consumption only by 10% in the worst case but
achieves relatively higher security should be selected
if energy consumption is the primary design
constraint. In contrast, MRU2 or ALL can protect
more than 99% of IRA loads for many benchmarks,
thus they are suitable for security-oriented
applications.

4.5 Performance Overhead
Finally, we evaluate the impact of the SCache

approach on processor performance. As shown in
Table 1, increasing the number of replica lines, Nrep,
worsens cache-hit rates, thus the processor
performance will be degraded. This negative effect
appears clearly on the MRU-based models. Figure 8
reports the performance overhead caused by the
SCache scheme. For the ALL model, the increase in
execution time is at most 1.1%, 177.mesa.
Furthermore, we see that in many cases the
performance overhead is less than 0.4%. Therefore,
we believe that the performance degradation caused
by SCache is negligible.

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

 16
4.g

zip

 17
5.v

pr

 17
6.g

cc

 18
1.m

cf

 19
7.p

ars
er

 25
5.v

ort
ex

 25
6.b

zip
2

 17
7.m

esa
 17

9.a
rt

 18
3.e

qu
ak

e

 18
8.a

mmp

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Benchmarks

LRU1-NR
LRU1
LRU2
MRU1
MRU2
ALL

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

 16
4.g

zip

 17
5.v

pr

 17
6.g

cc

 18
1.m

cf

 19
7.p

ars
er

 25
5.v

ort
ex

 25
6.b

zip
2

 17
7.m

esa
 17

9.a
rt

 18
3.e

qu
ak

e

 18
8.a

mmp

P
er

fo
rm

an
ce

 O
ve

rh
ea

d

Benchmarks

LRU1-NR
LRU1
LRU2
MRU1
MRU2
ALL

LRU1-NR
LRU1
LRU2
MRU1
MRU2
ALL

Figure 8: Performance

0

0.5

1

1.5

0

0.5

1

1.5

2
2.4% 2.3%

164.gzip 175.vpr 176.gcc 197.parser 188.ammp
0

0.5

1

164.gzip 175.vpr 176.gcc 197.parser 188.ammp 164.gzip 175.vpr 176.gcc 197.parser 188.ammp

(a) EVP (b) E2VP (c) EV2P

LRU2 ALLMRU1 MRU2

0

0.5

1

1.5

0

0.5

1

1.5

2
2.4% 2.3%

164.gzip 175.vpr 176.gcc 197.parser 188.ammp
0

0.5

1

164.gzip 175.vpr 176.gcc 197.parser 188.ammp 164.gzip 175.vpr 176.gcc 197.parser 188.ammp

(a) EVP (b) E2VP (c) EV2P

LRU2 ALLMRU1 MRU2LRU2 ALLMRU1 MRU2

Figure 7: Energy-Security Tradeoff

5. CONCLUSIONS
In this paper, we have proposed a secure cache

architecture, called SCache. The cache makes it
possible to detect stack smashing at run time. The
stack smashing alters a function return address for
transferring the program-execution control to an
injected malicious code. By making one or more
replica lines in the large cache area, we can protect
the return address. We have also considered an
energy-security tradeoff by evaluating energy and
vulnerability of six SCache models which differ in the
number and the placement algorithm of replica lines.
As a result, it has been observed that the MRU1
model is good for energy-oriented applications, while
the MRU2 and ALL models are suitable for security-
oriented applications.

In this evaluation, we have estimated energy
consumption based on an SRAM layout design which
does not include peripheral circuits for SCache, e.g. a
selector for replica lines, control logic, and so on. Our
ongoing work is to design a complete SCache core.
Another future work is to explore the SCache design
space with various cache configurations, and to
establish an optimization technique to find the best
point to maximize the energy-security efficiency.

ACKNOWLEDGMENTS
I would like to thank Prof. Shingi Tomita, Prof.

Hiroto Yasuura, and all other members of PREST
“information infrastructure and applications” research
group for discussing at technical meetings. The VLSI
chip in this study has been fabricated in the chip
fabrication program of VLSI Design and Education
Center (VDEC), the University of Tokyo in
collaboration with Hitachi Ltd. and Dai Nippon
Printing Corporation. This research was supported in
part by the Grant-in-Aid for Creative Basic Research,
14GS0218, and for Encouragement of Young
Scientists (A), 14702064.

REFERENCES
[1] A.Baratloo, N.Singh, and T.Tsai, “Transparent Run-Time

Defense Against Stack Smashing Attacks,” Proc. of 2000
USENIX Annual Technical Conference, June 2000.

[2] D.Burger and T.M.Austin, “The SimpleScalar Tool Set,
Vertion 2.0,” Univ. of Wisconsin-Madison Computer
Sciences Department Technical Report #1342, June, 1997.

[3] C.Cowan, C.Pu, D.Maier, H.Hinton, J.Walpole, P.Bakke,
S.Beattie, A.Grier, P.Wagle, and Q.Zhang, “StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks,” Proc. of 7th USENIX Security
Symposium, Jan, 1998.

[4] U.Erlingsson and F.B.Schneider, “SASI Enforcement of
Security Policies: A Retrospective,” Proc. of the workshop
on New security paradigm, 1999.

[5] M.Frantzen and M.Shuey, “StackGhost: Hardware
Facilitated Stack Protection,” Proc. of the 10th USENIX
Security Symposium, Aug. 2001.

[6] K.Inoue, T.Ishihara, and K.Murakami, “Way-Predicting Set-
Associative Cache for High Performance and Low Energy
Consumption,” Proc. of the Int. Symp.on Low Power
Electronics and Design, pp. 273--275, Aug. 1999.

[7] M.B.Kamble and K.Ghose, “Analytical Energy Dissipation
Models For Low Power Caches,” Proc. of the Int. Symp. on
Low Power Electronics and Design, pp.143--148, Aug. 1997

[8] J.Kin, M.Gupta, and W.H.Mngione-Smith, ”The Filter
Cache: An Energy Efficient Memory Structure,” Proc. of the
30th Int. Symp. on Microarchitecture, pp.184--193, Dec.
1997.

[9] R.B.Lee, D.K.Karig, J.P.McGregor, and Z.Shi, “Enlisting
Hardware Architecture to Thwart Malicious Code Injection,”
Proc. of the Int. Conf. on Security in Pervasive Computing,
Mar. 2003.

[10] M.D.Powell, A.Agarwal, T.N.Vijaykumar, B.Falsafi, and
K.Roy, “Redicing Set-Associative Cache Energy via Way-
Prediction and Selective Direct-Mapping,” Proc. of the 34th
Int. Symp. on Microarchitecture, pp.54--65, Dec. 2001.

[11] D.Wagner, J.S.Foster, E.A.Brewer, and A.Aiken, “A First
Step Towards Automated Detection of Buffer Overrun
Vulnerabilities,” Proc. of the Network and Distributed
System Security Symposium, Feb. 2000.

[12] SimpleScalar Tool Sets, http://www.simplescalar.com/.
[13] SPEC(Standard Performance Evaluation Corporation,

http://www.specbench.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

