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ABSTRACT 
This paper addresses an energy optimization problem of pipeline depth and voltage scheduling 
for hard real-time tasks on a dynamic pipeline and voltage scaled (DPVS) processor, which can 
adjust its pipeline depth and operating voltage dynamically depending on the workload character-
istics under the timing constraints. For a set of periodic tasks, we formulate the energy optimiza-
tion problem as a linear programming (LP) problem. Then, we propose the energy efficient ver-
sion of widely used fixed-priority and dynamic-priority scheduling methods, which produce a 
feasible task schedule with optimal processor energy consumption. This paper also provides a set 
of experimental results to show the effectiveness of the proposed techniques in reducing energy 
over the existing methods. 
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1. INTRODUCTION 
The demands for mobile and pervasive computing devices have made energy efficient 

computing a critical technology. To reduce system energy consumption, adapting hardware to 
workload characteristics with supply voltage reduction is one of the strongly effective techniques 
[5]. As a consequence, the concept of dynamic pipeline and voltage scaling (DPVS), which is the 
ability to adjust pipeline depth and operating voltage dynamically to workload characteristics un-
der timing constraints, is first proposed in [5] and the pipeline and voltage scheduling problem of 
a task on a realistic DPVS model is addressed in [6]. In this paper, we present the energy efficient 
scheduling techniques to integrate DPVS mechanisms into the two most-studied real-time sched-
ulers, Rate Monotonic (RM) and Earliest-Deadline-First (EDF) schedulers. RM is a static- or 
fixed-priority scheduler, and assigns task priority according to its period [15]. It always selects 
first the task with the shortest period that is ready to run (released for execution). EDF is a dy-
namic-priority scheduler that sorts tasks by deadlines and always gives the highest priority to the 
released task with the most imminent deadline [1]. A fixed-priority scheduling means that a prior-
ity is assigned to a computation only once, while a dynamic scheme allows changing priority with 
time. In the classical treatments of these schedulers, both assume that the task deadline equals the 
period, that scheduling and preemption overheads are negligible, and that the tasks are independ-
ent [4,9]. In this paper, we maintain the same assumptions. The scheduling techniques to be stud-
ied in this paper are preemptive and priority-driven ones. This means that whenever there is a re-
quest for a task that is of higher priority than the one currently being executed, the running task is 
immediately interrupted and the newly requested task is started [11].  
 

2. MODELS AND MOTIVATION 
2.1 Real-Time Task Model 
There are two types of hard real-time tasks, periodic and sporadic tasks [10]. This paper assumes 
such a real-time system composed of a set of periodic tasks, and the tasks are executed on a single 



DPVS processor. Each periodic task Tk ( Xijk ,Dk , Pk ) is characterized by its worst-case execution 
times Xijk at each processor mode modeij = ( pi ,Vj , Fij ), relative deadline Dk , and period Pk . The 
ready times of the tasks occur periodically with period Pk , the period of the task Tk . In most 
cases, the deadlines are assumed to be equal to the periods. A periodic task set, denoted by T 
{ T1 ,T2 ,…, Tk }, is defined to be a set of arbitrary positive number of such periodic tasks. Any 
periodic task set has its hyperperiod, which is the least common multiple of all the periods of the 
tasks in it. Each invocation of the task is called a job and the r-th invocation of task Tk is denoted 
as Jk,r . Each job Jk,r ( r Pk , Xijk , Dk ) in a job set J is characterized by its release time r Pk , worst 
case execution times Xijk at each modeij , and relative deadline Dk . 

To assess the feasibility of a schedule, we define the processor utilization factor U(T ) to be 
the fraction of processor time spent in the execution of the periodic task set T. In other words, the 
utilization factor is equal to one minus the fraction of idle processor time. Since Xijk/Pk is the frac-
tion of processor time spent in executing task kT , for n  periodic tasks, the utilization factor is 
given by 
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where xijk denotes the allocation rate of the combination of the i-th pipeline depth and the j-th 
supply voltage for the k-th task. This paper makes several assumptions for tasks, summarized as 
follows: 
 
(T1) Deadline for a periodic task’s instance is equal to the next request of the tasks. 
(T2) Preemption over a task is always possible. 
(T3) All overhead for context switching is counted into the corresponding task’s computation re-

quirements. 
(T4) Tasks are independent with no precedence constraints. 
(T5) The worst case execution demand of each task is analyzed and known a priori. 
 
2.2 Energy Model 
The dominant source of energy in a digital CMOS microprocessor is the dynamic consumption, 
which is mainly the charging and discharging of the load capacitances [2]. The dynamic energy 
consumption is equal to 
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where gta and gtLC  denote the switching counts and the load capacitances of the gate g  at t -th 

unit time respectively, T denotes the total execution cycles, G denotes the total number of gates in 
a circuit, and DDV  denotes the supply voltage. When we assume the gates in a circuit form an 
average collective switched capacitance C, and the total execution cycles CPIICT ⋅= , 
where CPI is clock cycle per instruction, IC is the total instruction count committed, the energy 
consumption derived from Eq.(2) can be given by 
 

2
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Then, we develop this energy model on the following assumption: CPI increases linearly as the 
number of pipeline depth increases, i.e., pKCPICPI so ⋅+=  where oCPI  denotes the clock 



cycles without stall or NOP cycles per instruction, sK  denotes the slope which depends on work-
load characteristics, p  denotes the pipeline depth. This assumption is proved to be reasonable 
and proper by our extensive simulations [5] and also referred in [3]. Additionally we define the 
ratio between the average switched capacitance during a NOP or stall cycle sC  and that of a typi-

cal instruction execution cycle oC as oss CCr = , which depends on the circuit design. The de-
veloped energy model derived from Eq.(3) becomes as 
 

2)( DDscoo VpKrCPICICE ⋅⋅⋅+⋅⋅=       (4) 
 
If there exists a deadline time D , we should satisfy the equation of DFCPIIC ≤⋅  where F is 
the operating frequency. 
 

3. OPTIMAL PIPELINE AND VOLTAGE SCHEDULING PROBLEM 
In this section, we address the problem of the optimal pipeline-depth and voltage schedul-

ing for minimizing energy, which is indispensable for exploiting the benefit of a DPVS processor 
and formulate it by using Linear Programming (LP) method. 
 
3.1 Assumptions 
The assumptions of the processor for formulation are as follows: 
(P1) The processor can vary its pipeline depth and operating voltage dynamically without any 

adaptation overhead in terms of speed and energy. 
(P2) The processor has only a small number of available pipeline depths and voltages. 
(P3) The processor equips an adaptive clock scheme which tracks the alteration of pipeline depth 

and voltage. 
(P4) The processor exploits instruction level parallelism uniformly over a task. 
 
3.2 Notations 
The variables used in the formulation are defined as follows: 
• N   The number of periodic tasks N=|{Tk}| 

• ICk    The instruction count of the k-th task 

• CPIik  The average CPI of the k-th task when the i-th pipeline depth is applied 

• Cik   The average switched capacitance per cycle of the k-th task when the i-th pipeline depth 
is applied 

• M  The number of available voltages M=|{Vj}| 

• Vj The j-th supply voltage (1≦j≦M) 

• L The number of available pipeline depths  L=|{pi}| 

• pi The i-th pipeline depth (1≦i≦L) 

• Fij  The clock frequency when the i-th pipeline depth and the j-th supply voltage are applied 

• modeij   The (i,j)-th execution mode for the processor.   modeij= (pi, Vj, Fij) 

• xijk   The allocation rate of the combination of the i-th pipeline depth and the j-th supply volt-
age for the k-th task  (0≦xijk≦1) 



 

3.3 Formulation 
The energy optimal pipeline depth and voltage scheduling problem for a set of periodic tasks is 
formulated as follows: 
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)(Tlcm  denotes the least common multiple of T . 
Find the optimal processor mode assignment xijk to each task, which minimizes the processor en-
ergy consumption. Note that Ulub(T) differs among the scheduling algorithms. 
 

4. PRIORITY-DRIVEN OPTIMAL SCHEDULING 
In the following sections, we present both fixed-priority and dynamic-priority scheduling 

algorithms under fixed processor mode assignment policy. Fixed-priority means the priorities are 
assigned to tasks once and for all, while dynamic-priority means the priorities of tasks might 
change from request to request. In this paper, we also use the word of fixed of dynamic or in the 
same manner to classify the methods of processor mode assignment. 
 
4.1 Fixed-Priority Fixed-Mode Scheduling 
In a typical real-time system, there are many periodic tasks that share hardware resources [8]. To 
ensure that each task satisfies its timing constraint, the execution of tasks should be coordinated 
in a controlled manner. This is often done via fixed-priority scheduling. Fixed-priority scheduling 
has several advantages over other scheduling schemes. It is quite simple to implement in most 
kernels and is adopted in most real-time scheduling algorithms of practical interest due to its low 
overhead and predictability. Also, many analytical methods are available to determine whether 
the system is schedulable. Rate Monotonic (RM) scheduling is the first scheduling scheme that 
falls into this category. It assigns a higher priority to a task with a shorter period or with a higher 
execution rate. It is proved to be optimal in the sense that if a given task set fails to be scheduled 
by RM, it cannot be scheduled by any fixed priority scheduling. Computing the priorities of a set 
of n  tasks for the RM priority rule amounts to ordering the task set according to their periods. 
Hence the time complexity of the RM priority assignment is the time complexity of a sorting al-
gorithm, i.e., )log( nnΟ [10]. As the RM priority assignment is optimum, the utilization factor 
achieved by RM for a given task set is greater than or equal to the utilization factor for any other 
priority assignment for that task set. Then let us consider the worst case utilization bound of RM.  
 
THEOREM 1:[12] For a set of n periodic tasks with fixed-priority assignment, the least upper 
bound to the processor utilization factor is )12( 1 −= nnU . 
 
Since )12( 1 −= nnU  decreases monotonically from 83.0  when 2=n  to 693.02log =e  as 

∞→n , it follows that any periodic task set of any size will be able to meet all deadlines all of 



the time if the RM algorithm is used and the total utilization is not greater than 693.0 . This utili-
zation bound is a sufficient. It is quite possible that a given task set T { T1 ,T2 ,…, Tk } with its 
utilization exceeding the bound above be fixed priority feasible. It is known that any periodic task 
set in which their periods are harmonic, i.e., for every pair of periods Pk1 and Pk2 in the task set, it 
is either the case that Pk1 is an integer multiple of Pk2 or Pk2 is an integer multiple of Pk1, is fixed-
priority feasible if and only if its utilization is at most one. Nevertheless, this is the best possible 
test using the utilization of a given task set, and the number of tasks in it, as the sole determinants 
of feasibility.  

We propose the fixed-priority fixed-mode (FPFM) scheduling as is shown in Figure 1. 
When the input parameters which include a task set T  and available processor modes { modeij } 
are given, it produces a table of feasible scheduling result during T’s highperperiod which mini-
mizes the total energy consumption under RM. 
 

 
Figure 1. A pseudo code of FPFM Scheduling 

 
4.2 Dynamic-Priority Fixed-Mode Scheduling 
The most widely studied and adopted dynamic-priority scheduling algorithm is Earliest Deadline 
First (EDF) algorithm. EDF is said to be optimal in the sense that no other dynamic, as well as 
fixed, priority-driven scheduling algorithm can lead to a feasible schedule which cannot be ob-
tained by EDF [11]. The EDF scheduling algorithm is defined as follows. At each time instant t, 
schedule the job active at time instant t whose deadline parameter is the smallest [10]. EDF has an 

FPFM Scheduling Procedure: 
Input: A periodic task set }{},,,{ 21 φ≠NTTTT K , where ),,( kkijkk PDXT . 

Available processor modes ),,( ijjiij FVpdemo = . 
Output: A table of feasible energy-efficient schedule during a hyperperiod of T , 

i.e., a job set assigned its start and completion times, processor modes is produced 
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proposed LP problem (Eq.(4)). Then, assign CPU time opt
kX  to each kT . 

Else  Return no feasible schedule exists 
3.     Sort the task set T  according to the order of higher execution rate first. 
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4.     Generate the invoked job set J  from the sorted task set T . 
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6.     Reclaim opt
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7.     Return J  with opt
kx′ , rks ,  and rke ,  



apparent dominance over RM because it can schedule a task set if and only if the processor utili-
zation is lower than or equal to 1 [10], meaning that a schedule with zero slack time is possible. 
 
THEOREM 2:[11] For a given set of n periodic tasks with dynamic priority assignment, a neces-
sary and sufficient condition to yield the feasible EDF schedule is 1≤U . 
 
This theorem gives us a simple )(nΟ  procedure based on the processor utilization to 
check the feasibility. The proposed dynamic-priority fixed-mode (DPFM) scheduling is 
shown in Figure 2. 
 

 
Figure 2. A pseudo code of DPFM Scheduling 

 
5. EXPERIMENTAL RESULTS 

We performed several simulations to assess the benefits of the proposed DPVS scheduling 
techniques over the simply system shutdown approach and dynamic voltage scaling (DVS) ap-
proach [13,14]. In experiments, the system shutdown approach assumes the processor has fixed 
deepest pipeline depth and fixed highest voltage, while DVS assumes the processor can adjust its 
operating voltage with fixed deepest pipeline depth. Then, the assumed DPVS processor is such 
that the architecture applied is the same as proposed in [5], which has the power-of-two pipeline 
depths available, and the available voltage and its voltage-frequency correspondence is the same 
as Intel’s XScale processor [16], while its pipeline depth-frequency correspondence assumed to 
be linear for simplicity. The available pipeline depths and voltages are {1, 2, 4, 8, 16} stage and 
{0.75, 1.0, 1.3, 1.6, 1.8} volt respectively. Besides, the corresponding frequency to voltage is 
{150, 400, 600, 800, 1000} MHz. For the experiments, 10 periodic tasks are randomly generated. 

DPFM Scheduling Procedure: 
Input: A periodic task set }{},,,{ 21 φ≠NTTTT K , where ),,( kkijkk PDXT . 

Available processor modes ),,( ijjiij FVpdemo = . 
Output: A table of feasible energy-efficient schedule during a hyperperiod of T , 

i.e., a job set assigned its start and completion times, processor modes is produced 
Since Step 0 to 2 are the same as FPFM Algorithm by substituting 1)(lub =TU ,  
these steps are omitted to avoid duplications. See Figure 1 about these steps. 
 
0.- 2.  The optimal processor mode assignment opt

kx  of each kT  is found under EDF. 

Then, the corresponding CPU time opt
kX  is assigned to each kT . 

3.     Generate the invoked job set J  from a given periodic task set T . 
}1)(,,1,0,,,2,1{ , −== krk PTlcmrNkJJ KK  

where )(Tlcm  denotes the least common multiple of T . 
Identify each job rkJ ,  as a independent job kJ ′  in J . 

},,2,1{ NkJJ k ′=′′ K ,  )1/)(( −⋅=′ kPTlcmNN  

4.     Sort J  according to the order of earlier deadline first. 
},,,{ 21 NJJJJ ′K   )( 1+′′ ≤ kk DD  

5.     Compute start time ks ′  and completion time ke ′  of each job kJ ′  

6.     Return J  with opt
kx , ks ′  and ke ′  



The total number of jobs generated from each task Tk are Pk /lcm(T ). The period and the worst-
case execution time of each task are randomly generated from uniform distribution with the 
ranges of [10,100] ms and [1, period] ms in steps of 1 ms, respectively. In order to estimate the 
processor energy consumption, we use the energy model of Eq.(3), assuming the average energy 
consumed during a NOP or a stall cycle is 50% of that consumed by a typical instruction, i.e., 
rs=0.5. The pipeline depth elasticity slope Ks is randomly generated from uniform distribution 
with the range of [0.1, 0.8] in steps of 0.1 for each task.  

For randomly generated periodic tasks, we produce an energy optimal schedule by using 
FPFM and DPFM, then, estimate energy reduction results of each energy optimization approach, 
i.e., shutdown, DVS, and DPVS. We repeat this procedure varying the average processor utiliza-
tion from 0.1 to 1.0 in steps of 0.1 for DPFM, from 0.1 to 0.7 for FPDM, by stretching the worst-
case execution time of each task at equal rate. The least upper bound utilization of FPFM for 10 
periodic tasks becomes 0.72 while that of DPFM is always 1.0. In order to solve the LP problem, 
we used Optimization Toolbox 2.0 in MATLAB environment [7], which contains routines that 
implement the most widely used methods for performing minimization or maximization. The ex-
perimental results are shown in Figure 3. 

Our comparative study shows there exits the clear advantage of DPVS in energy reduction. 
When tasks are scheduled by FPFM, DPVS can reduce -49% energy from shutdown and -39% 
from DVS in average, as is shown in the left figure. When tasks are scheduled by DPFM, DPVS 
can reduce -72% energy from shutdown and -45% from DVS in average, as is shown in the right 
figure. 

 
Figure 3. Normalized Energy of Shutdown, DVS, and DPVS 

 
6. CONCLUSION 

In this paper, we presented an energy optimization problem for real-time tasks on a DPVS 
processor. We formulated the optimal scheduling problem of pipeline depth and voltage for 
minimizing energy consumption by using LP method. We also proposed the energy optimal prior-
ity-driven scheduling techniques based on existing task scheduling algorithms such as RM and 
EDF. The experimental results showed the DPVS processor could reduce energy consumption 
effectively over well-known existing energy minimization techniques such as system shutdown 
approach and DVS, when tasks are scheduled by FPFM or DPFM. We observed DPVS can re-
duce -49% and -39% of energy consumption in average by FPFM, compared to system shutdown 
and DVS approach respectively, and also -72% and -45% of energy reduction is observed by 
DPFM. 
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