
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Energy Efficient Scheduling For Hard Real-Time
Tasks On Dynamic Pipeline And Voltage Scaled
Processor

Hyodo, Akihiko
Department of Computer Science and Communication Engineering Kyushu University

Muroyama, Masanori
Department of Computer Science and Communication Engineering Kyushu University

Tarumi, Kousuke
Department of Computer Science and Communication Engineering Kyushu University

Yasuura, Hiroto
Department of Computer Science and Communication Engineering Kyushu University

https://hdl.handle.net/2324/6123

出版情報：SLRC 論文データベース, 2004-06
バージョン：
権利関係：

ENERGY EFFICIENT SCHEDULING FOR HARD REAL-TIME TASKS

ON DYNAMIC PIPELINE AND VOLTAGE SCALED PROCESSOR

Akihiko Hyodo, Masanori Muroyama, Kousuke Tarumi, and Hiroto Yasuura
Department of Computer Science and Communication Engineering

Kyushu University, Japan
akihiko@c.csce.kyushu-u.ac.jp

ABSTRACT
This paper addresses an energy optimization problem of pipeline depth and voltage scheduling
for hard real-time tasks on a dynamic pipeline and voltage scaled (DPVS) processor, which can
adjust its pipeline depth and operating voltage dynamically depending on the workload character-
istics under the timing constraints. For a set of periodic tasks, we formulate the energy optimiza-
tion problem as a linear programming (LP) problem. Then, we propose the energy efficient ver-
sion of widely used fixed-priority and dynamic-priority scheduling methods, which produce a
feasible task schedule with optimal processor energy consumption. This paper also provides a set
of experimental results to show the effectiveness of the proposed techniques in reducing energy
over the existing methods.

KEYWORDS: Low Energy, Energy Efficient Scheduling, Variable Pipeline Depth

1. INTRODUCTION
The demands for mobile and pervasive computing devices have made energy efficient

computing a critical technology. To reduce system energy consumption, adapting hardware to
workload characteristics with supply voltage reduction is one of the strongly effective techniques
[5]. As a consequence, the concept of dynamic pipeline and voltage scaling (DPVS), which is the
ability to adjust pipeline depth and operating voltage dynamically to workload characteristics un-
der timing constraints, is first proposed in [5] and the pipeline and voltage scheduling problem of
a task on a realistic DPVS model is addressed in [6]. In this paper, we present the energy efficient
scheduling techniques to integrate DPVS mechanisms into the two most-studied real-time sched-
ulers, Rate Monotonic (RM) and Earliest-Deadline-First (EDF) schedulers. RM is a static- or
fixed-priority scheduler, and assigns task priority according to its period [15]. It always selects
first the task with the shortest period that is ready to run (released for execution). EDF is a dy-
namic-priority scheduler that sorts tasks by deadlines and always gives the highest priority to the
released task with the most imminent deadline [1]. A fixed-priority scheduling means that a prior-
ity is assigned to a computation only once, while a dynamic scheme allows changing priority with
time. In the classical treatments of these schedulers, both assume that the task deadline equals the
period, that scheduling and preemption overheads are negligible, and that the tasks are independ-
ent [4,9]. In this paper, we maintain the same assumptions. The scheduling techniques to be stud-
ied in this paper are preemptive and priority-driven ones. This means that whenever there is a re-
quest for a task that is of higher priority than the one currently being executed, the running task is
immediately interrupted and the newly requested task is started [11].

2. MODELS AND MOTIVATION
2.1 Real-Time Task Model
There are two types of hard real-time tasks, periodic and sporadic tasks [10]. This paper assumes
such a real-time system composed of a set of periodic tasks, and the tasks are executed on a single

DPVS processor. Each periodic task Tk (Xijk ,Dk , Pk) is characterized by its worst-case execution
times Xijk at each processor mode modeij = (pi ,Vj , Fij), relative deadline Dk , and period Pk . The
ready times of the tasks occur periodically with period Pk , the period of the task Tk . In most
cases, the deadlines are assumed to be equal to the periods. A periodic task set, denoted by T
{ T1 ,T2 ,…, Tk }, is defined to be a set of arbitrary positive number of such periodic tasks. Any
periodic task set has its hyperperiod, which is the least common multiple of all the periods of the
tasks in it. Each invocation of the task is called a job and the r-th invocation of task Tk is denoted
as Jk,r . Each job Jk,r (r Pk , Xijk , Dk) in a job set J is characterized by its release time r Pk , worst
case execution times Xijk at each modeij , and relative deadline Dk .

To assess the feasibility of a schedule, we define the processor utilization factor U(T) to be
the fraction of processor time spent in the execution of the periodic task set T. In other words, the
utilization factor is equal to one minus the fraction of idle processor time. Since Xijk/Pk is the frac-
tion of processor time spent in executing task kT , for n periodic tasks, the utilization factor is
given by

∑∑∑
= = =

⋅
=

N

k

M

j

L

i k

ijkijk

P
Xx

TU
1 1 1

)((1)

where xijk denotes the allocation rate of the combination of the i-th pipeline depth and the j-th
supply voltage for the k-th task. This paper makes several assumptions for tasks, summarized as
follows:

(T1) Deadline for a periodic task’s instance is equal to the next request of the tasks.
(T2) Preemption over a task is always possible.
(T3) All overhead for context switching is counted into the corresponding task’s computation re-

quirements.
(T4) Tasks are independent with no precedence constraints.
(T5) The worst case execution demand of each task is analyzed and known a priori.

2.2 Energy Model
The dominant source of energy in a digital CMOS microprocessor is the dynamic consumption,
which is mainly the charging and discharging of the load capacitances [2]. The dynamic energy
consumption is equal to

∑∑
= =

⋅⋅=
T

t

G

g
DDgtLgt VCaE

1 1

2 (2)

where gta and gtLC denote the switching counts and the load capacitances of the gate g at t -th

unit time respectively, T denotes the total execution cycles, G denotes the total number of gates in
a circuit, and DDV denotes the supply voltage. When we assume the gates in a circuit form an
average collective switched capacitance C, and the total execution cycles CPIICT ⋅= ,
where CPI is clock cycle per instruction, IC is the total instruction count committed, the energy
consumption derived from Eq.(2) can be given by

2
DDVCCPIICE ⋅⋅⋅= (3)

Then, we develop this energy model on the following assumption: CPI increases linearly as the
number of pipeline depth increases, i.e., pKCPICPI so ⋅+= where oCPI denotes the clock

cycles without stall or NOP cycles per instruction, sK denotes the slope which depends on work-
load characteristics, p denotes the pipeline depth. This assumption is proved to be reasonable
and proper by our extensive simulations [5] and also referred in [3]. Additionally we define the
ratio between the average switched capacitance during a NOP or stall cycle sC and that of a typi-

cal instruction execution cycle oC as oss CCr = , which depends on the circuit design. The de-
veloped energy model derived from Eq.(3) becomes as

2)(DDscoo VpKrCPICICE ⋅⋅⋅+⋅⋅= (4)

If there exists a deadline time D , we should satisfy the equation of DFCPIIC ≤⋅ where F is
the operating frequency.

3. OPTIMAL PIPELINE AND VOLTAGE SCHEDULING PROBLEM
In this section, we address the problem of the optimal pipeline-depth and voltage schedul-

ing for minimizing energy, which is indispensable for exploiting the benefit of a DPVS processor
and formulate it by using Linear Programming (LP) method.

3.1 Assumptions
The assumptions of the processor for formulation are as follows:
(P1) The processor can vary its pipeline depth and operating voltage dynamically without any

adaptation overhead in terms of speed and energy.
(P2) The processor has only a small number of available pipeline depths and voltages.
(P3) The processor equips an adaptive clock scheme which tracks the alteration of pipeline depth

and voltage.
(P4) The processor exploits instruction level parallelism uniformly over a task.

3.2 Notations
The variables used in the formulation are defined as follows:
• N The number of periodic tasks N=|{Tk}|

• ICk The instruction count of the k-th task

• CPIik The average CPI of the k-th task when the i-th pipeline depth is applied

• Cik The average switched capacitance per cycle of the k-th task when the i-th pipeline depth
is applied

• M The number of available voltages M=|{Vj}|

• Vj The j-th supply voltage (1≦j≦M)

• L The number of available pipeline depths L=|{pi}|

• pi The i-th pipeline depth (1≦i≦L)

• Fij The clock frequency when the i-th pipeline depth and the j-th supply voltage are applied

• modeij The (i,j)-th execution mode for the processor. modeij= (pi, Vj, Fij)

• xijk The allocation rate of the combination of the i-th pipeline depth and the j-th supply volt-
age for the k-th task (0≦xijk≦1)

3.3 Formulation
The energy optimal pipeline depth and voltage scheduling problem for a set of periodic tasks is
formulated as follows:

Minimize ∑∑∑
= = =

⋅⋅⋅⋅⋅=
N

k

M

j
jikikk

k

L

i
ijk VCCPIIC

P
TlcmxE

1 1

2

1

)(
 (5)

Subject to],1[],,1[],,1[NkMjLi ∈∀∈∀∈∀ , 10 ≤≤ ijkx ,

∑∑ ∑∑
= = = =

≤⋅=∈∀
M

j

L

i

M

j

L

i
kijkijkijk DXxxNk

1 1 1 1

,1],,1[
,

)()(lub TUTU ≤ = The lest upper bound of processor utilization

where ∑∑∑
= = =

⋅
=

N

k

M

j

L

i k

ijkijk

P
Xx

TU
1 1 1

)(,
ij

ikk
ijk F

CPIIC
X

⋅
=

)(Tlcm denotes the least common multiple of T .
Find the optimal processor mode assignment xijk to each task, which minimizes the processor en-
ergy consumption. Note that Ulub(T) differs among the scheduling algorithms.

4. PRIORITY-DRIVEN OPTIMAL SCHEDULING
In the following sections, we present both fixed-priority and dynamic-priority scheduling

algorithms under fixed processor mode assignment policy. Fixed-priority means the priorities are
assigned to tasks once and for all, while dynamic-priority means the priorities of tasks might
change from request to request. In this paper, we also use the word of fixed of dynamic or in the
same manner to classify the methods of processor mode assignment.

4.1 Fixed-Priority Fixed-Mode Scheduling
In a typical real-time system, there are many periodic tasks that share hardware resources [8]. To
ensure that each task satisfies its timing constraint, the execution of tasks should be coordinated
in a controlled manner. This is often done via fixed-priority scheduling. Fixed-priority scheduling
has several advantages over other scheduling schemes. It is quite simple to implement in most
kernels and is adopted in most real-time scheduling algorithms of practical interest due to its low
overhead and predictability. Also, many analytical methods are available to determine whether
the system is schedulable. Rate Monotonic (RM) scheduling is the first scheduling scheme that
falls into this category. It assigns a higher priority to a task with a shorter period or with a higher
execution rate. It is proved to be optimal in the sense that if a given task set fails to be scheduled
by RM, it cannot be scheduled by any fixed priority scheduling. Computing the priorities of a set
of n tasks for the RM priority rule amounts to ordering the task set according to their periods.
Hence the time complexity of the RM priority assignment is the time complexity of a sorting al-
gorithm, i.e.,)log(nnΟ [10]. As the RM priority assignment is optimum, the utilization factor
achieved by RM for a given task set is greater than or equal to the utilization factor for any other
priority assignment for that task set. Then let us consider the worst case utilization bound of RM.

THEOREM 1:[12] For a set of n periodic tasks with fixed-priority assignment, the least upper
bound to the processor utilization factor is)12(1 −= nnU .

Since)12(1 −= nnU decreases monotonically from 83.0 when 2=n to 693.02log =e as

∞→n , it follows that any periodic task set of any size will be able to meet all deadlines all of

the time if the RM algorithm is used and the total utilization is not greater than 693.0 . This utili-
zation bound is a sufficient. It is quite possible that a given task set T { T1 ,T2 ,…, Tk } with its
utilization exceeding the bound above be fixed priority feasible. It is known that any periodic task
set in which their periods are harmonic, i.e., for every pair of periods Pk1 and Pk2 in the task set, it
is either the case that Pk1 is an integer multiple of Pk2 or Pk2 is an integer multiple of Pk1, is fixed-
priority feasible if and only if its utilization is at most one. Nevertheless, this is the best possible
test using the utilization of a given task set, and the number of tasks in it, as the sole determinants
of feasibility.

We propose the fixed-priority fixed-mode (FPFM) scheduling as is shown in Figure 1.
When the input parameters which include a task set T and available processor modes { modeij }
are given, it produces a table of feasible scheduling result during T’s highperperiod which mini-
mizes the total energy consumption under RM.

Figure 1. A pseudo code of FPFM Scheduling

4.2 Dynamic-Priority Fixed-Mode Scheduling
The most widely studied and adopted dynamic-priority scheduling algorithm is Earliest Deadline
First (EDF) algorithm. EDF is said to be optimal in the sense that no other dynamic, as well as
fixed, priority-driven scheduling algorithm can lead to a feasible schedule which cannot be ob-
tained by EDF [11]. The EDF scheduling algorithm is defined as follows. At each time instant t,
schedule the job active at time instant t whose deadline parameter is the smallest [10]. EDF has an

FPFM Scheduling Procedure:
Input: A periodic task set }{},,,{ 21 φ≠NTTTT K , where),,(kkijkk PDXT .

Available processor modes),,(ijjiij FVpdemo = .
Output: A table of feasible energy-efficient schedule during a hyperperiod of T ,

i.e., a job set assigned its start and completion times, processor modes is produced

0. Initially assign CPU time ref

kX on reference mode to each task kT .

1. Compute the processor utilization on reference mode ∑
=

=
N

k k

ref
kref

P
X

TU
1

)(

2. If)12()()(1
lub −=≤ Nref NTUTU then

Find the optimal processor mode assignment opt
kijk xx = to each task kT by using

proposed LP problem (Eq.(4)). Then, assign CPU time opt
kX to each kT .

Else Return no feasible schedule exists
3. Sort the task set T according to the order of higher execution rate first.

NTTTT ,,,{ 21 K })(1+≤ kk PP
4. Generate the invoked job set J from the sorted task set T .

}1)(,,1,0,,,2,1{ , −== krk PTlcmrNkJJ KK

5. Compute start time rks , and completion time rke , of each),,(, k
opt
kkrk DXPrJ ⋅ .

6. Reclaim opt
kx by exploiting any slack time, i.e., find opt

kx′ such 1)(=′ TU opt

7. Return J with opt
kx′ , rks , and rke ,

apparent dominance over RM because it can schedule a task set if and only if the processor utili-
zation is lower than or equal to 1 [10], meaning that a schedule with zero slack time is possible.

THEOREM 2:[11] For a given set of n periodic tasks with dynamic priority assignment, a neces-
sary and sufficient condition to yield the feasible EDF schedule is 1≤U .

This theorem gives us a simple)(nΟ procedure based on the processor utilization to
check the feasibility. The proposed dynamic-priority fixed-mode (DPFM) scheduling is
shown in Figure 2.

Figure 2. A pseudo code of DPFM Scheduling

5. EXPERIMENTAL RESULTS

We performed several simulations to assess the benefits of the proposed DPVS scheduling
techniques over the simply system shutdown approach and dynamic voltage scaling (DVS) ap-
proach [13,14]. In experiments, the system shutdown approach assumes the processor has fixed
deepest pipeline depth and fixed highest voltage, while DVS assumes the processor can adjust its
operating voltage with fixed deepest pipeline depth. Then, the assumed DPVS processor is such
that the architecture applied is the same as proposed in [5], which has the power-of-two pipeline
depths available, and the available voltage and its voltage-frequency correspondence is the same
as Intel’s XScale processor [16], while its pipeline depth-frequency correspondence assumed to
be linear for simplicity. The available pipeline depths and voltages are {1, 2, 4, 8, 16} stage and
{0.75, 1.0, 1.3, 1.6, 1.8} volt respectively. Besides, the corresponding frequency to voltage is
{150, 400, 600, 800, 1000} MHz. For the experiments, 10 periodic tasks are randomly generated.

DPFM Scheduling Procedure:
Input: A periodic task set }{},,,{ 21 φ≠NTTTT K , where),,(kkijkk PDXT .

Available processor modes),,(ijjiij FVpdemo = .
Output: A table of feasible energy-efficient schedule during a hyperperiod of T ,

i.e., a job set assigned its start and completion times, processor modes is produced
Since Step 0 to 2 are the same as FPFM Algorithm by substituting 1)(lub =TU ,
these steps are omitted to avoid duplications. See Figure 1 about these steps.

0.- 2. The optimal processor mode assignment opt

kx of each kT is found under EDF.

Then, the corresponding CPU time opt
kX is assigned to each kT .

3. Generate the invoked job set J from a given periodic task set T .
}1)(,,1,0,,,2,1{ , −== krk PTlcmrNkJJ KK

where)(Tlcm denotes the least common multiple of T .
Identify each job rkJ , as a independent job kJ ′ in J .

},,2,1{ NkJJ k ′=′′ K ,)1/)((−⋅=′ kPTlcmNN

4. Sort J according to the order of earlier deadline first.
},,,{ 21 NJJJJ ′K)(1+′′ ≤ kk DD

5. Compute start time ks ′ and completion time ke ′ of each job kJ ′

6. Return J with opt
kx , ks ′ and ke ′

The total number of jobs generated from each task Tk are Pk /lcm(T). The period and the worst-
case execution time of each task are randomly generated from uniform distribution with the
ranges of [10,100] ms and [1, period] ms in steps of 1 ms, respectively. In order to estimate the
processor energy consumption, we use the energy model of Eq.(3), assuming the average energy
consumed during a NOP or a stall cycle is 50% of that consumed by a typical instruction, i.e.,
rs=0.5. The pipeline depth elasticity slope Ks is randomly generated from uniform distribution
with the range of [0.1, 0.8] in steps of 0.1 for each task.

For randomly generated periodic tasks, we produce an energy optimal schedule by using
FPFM and DPFM, then, estimate energy reduction results of each energy optimization approach,
i.e., shutdown, DVS, and DPVS. We repeat this procedure varying the average processor utiliza-
tion from 0.1 to 1.0 in steps of 0.1 for DPFM, from 0.1 to 0.7 for FPDM, by stretching the worst-
case execution time of each task at equal rate. The least upper bound utilization of FPFM for 10
periodic tasks becomes 0.72 while that of DPFM is always 1.0. In order to solve the LP problem,
we used Optimization Toolbox 2.0 in MATLAB environment [7], which contains routines that
implement the most widely used methods for performing minimization or maximization. The ex-
perimental results are shown in Figure 3.

Our comparative study shows there exits the clear advantage of DPVS in energy reduction.
When tasks are scheduled by FPFM, DPVS can reduce -49% energy from shutdown and -39%
from DVS in average, as is shown in the left figure. When tasks are scheduled by DPFM, DPVS
can reduce -72% energy from shutdown and -45% from DVS in average, as is shown in the right
figure.

Figure 3. Normalized Energy of Shutdown, DVS, and DPVS

6. CONCLUSION

In this paper, we presented an energy optimization problem for real-time tasks on a DPVS
processor. We formulated the optimal scheduling problem of pipeline depth and voltage for
minimizing energy consumption by using LP method. We also proposed the energy optimal prior-
ity-driven scheduling techniques based on existing task scheduling algorithms such as RM and
EDF. The experimental results showed the DPVS processor could reduce energy consumption
effectively over well-known existing energy minimization techniques such as system shutdown
approach and DVS, when tasks are scheduled by FPFM or DPFM. We observed DPVS can re-
duce -49% and -39% of energy consumption in average by FPFM, compared to system shutdown
and DVS approach respectively, and also -72% and -45% of energy reduction is observed by
DPFM.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Processor Utilization

N
or
m
a
li
ze
d
 E
n
er
g
y

Shutdown DPFM-DVS DPFM-DPVS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Processor Utilization

N
o
rm
a
li
ze
d
 E
n
e
rg
y

Shutdown FPFM-DVS FPFM-DPVS

7. ACKNOWLEDGEMENTS
This work has been supported by the Grant-in-Aid for Creative Scientific Research No.

14GS0218 and the Silicon Sea-Belt Project “Establishing Project of a Cluster for System-LSI De-
sign and Development”. We are grateful for their support.

8. REFERENCES
[1] C. L. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard real-time
environment”, Journal of the AACM, 20(2), pp46-61, 1973.
[2] A. Chandrakasan, S. Sheng, R. Brodersen, “Low power CMOS digital design”, IEEE Journal
of Solid-State Circuits, April 1992.
[3] A. Hartstein, T. R. Puzak, “The optimum pipeline depth for a microprocessor”, In Interna-
tional Symposium on Computer Architecture, pp. 7-13, May 2002.
[4] Hong, I., Potkonjak, M., and Srivastava, M. B.,”On-line scheduling of hard real-time tasks on
a variable voltage processor”, Proc. International Conference on Computer Aided Design (IC-
CAD), pp. 653-656, 1998.
[5] A. Hyodo, M. Muroyama, and H.Yasuura, “Variable Pipeline Depth Processor for Energy
Efficient Systems”, IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, Vol.E86-A, No.12, pp.2983-2990, 2003.
[6] Akihiko Hyodo, Masanori Muroyama, Kousuke Tarumi, Kouji Makiyama, Hiroto Yasuura,
“Dynamic Pipeline and Voltage Scaling on a Low-Power Microprocessor,” Proc. of International
Symposium on Information Science and Electrical Engineering, pp444-447, 2003.
[7] TheMathWorks, Inc. MATLAB Optimization Toolbox. http://www.mathworks.com/
[8] G. Quan and X. (Sharon) Hu, “Energy efficient fixed-priority scheduling for real-time sys-
tems on variable voltage processors”, Proc. of IEEE/ACM Design Automation Conference, pp
828-833, 2001.
[9] Woonseok Kim, Dongkun Shin, Han-Saem Yun, Jihong Kim, Sang Lyul Min, “Performance
Comparison of Dynamic Voltage Scaling Algorithms for Hard Real-Time Systems”, IEEE Real
Time Technology and Applications Symposium 2002.
[10] Jean-François Hermant, Laurent Leboucher, and Nicolas Rivierre, “Real-Time Fixed and
Dynamic Priority Driven Scheduling Algorithms: Theory and Experience”, INRIA Research Re-
port 3081, 1996.
[11] Johngwon Lee, Sungyoung Lee, Hyungill Kim, “Scheduling of Hard-Aperiodic Tasks in
Hybrid Static/Dynamic Priority Systems”, ACM(American Computing Machinery) SIGPLAN
Notices, Vol.30, No.11, pp7-19, ACM, U.S.A., November 1995.
[12] Han-Saem Yun, Jihong Kim, “On energy-optimal voltage scheduling for fixed-priority hard
real-time systems”, ACM Transactions on Embedded Computing Systems (TECS) August 2003.
[13] T. Pering, T. Burd, R. Brodersen, “The simulation and evaluation of dynamic voltage scaling
algorithms”, In International Symposium on Low Power Electronics and Design, pages 76-81,
August 1998.
[14] T. Ishihara, H. Yasuura, “Voltage scheduling problem for dynamically variable voltage
processors”, In International Symposium on Low Power Electronics and Design, pages 197-202,
August 1998.
[15] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: Exact charac-
terization and average case behavior”, In IEEE Real-Time Systems Symposium, 1989.
[16] Intel Corporation, “Intel Xscale core Developer’s Manual”, January 2004.

