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ABSTRACT

This paper describes the parallel finite element analysis of large scale problems based on the Do-
main Decomposition Method with preconditioner using Balancing Domain Decomposition for a
massively parallel processors. In order to solve the issue of memory shortage and computational
time, the developed system employs a dynamic load balancing and hierarchical distributed data
management technique. The present system is successfully applied to static elastic stress analyses,
pressure vessel model of over one million with effective performances.
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INTRODUCTION

With the increase of the size and complexity of numerical simulation problems, such as a finite
element method (FEM), more processing power and memory of computer are required. Using
single processor computers, we encounter their physical limits. To save computational time and
memory, it is well known that the parallel computers, particularly Multiple Instruction Multiple
Data (MIMD) type computers including clustered workstation computers seem to be promising.
A MIMD type computer has many processors with local memory, and can reduce computational
time by distributing tasks among processors. However, we need special algorithms for parallel
computing to solve problems with high performance using this kind of computer.

The iterative Domain Decomposition Method (DDM) is one of the most effective parallel meth-
ods for large scale problems due to its excellent parallelism and suitability for various kinds of
parallel computers such as massively parallel processors and workstation/PC clusters [Yagawa
and Shioya(1994), Shioya and Yagawa(1998)]. As the iterative DDM satisfies continuity among
subdomains through iterative calculations such as the Conjugate Gradient (CG) method, it is



indispensable to reduce the number of iterations with a preconditioning technique especially for
large scale problems.

The Neumann-Neumann algorithm (N-N) is known to be an efficient domain decomposition pre-
conditioner with unstructured subdomains for an iterative solution of finite element discretization
of difficult problems with strongly discontinuous coefficients [Roeck and Tallec(1991)]. However,
its convergence deteriorates with the increasing number of subdomains due to the lack of a coarse
problem to propagate the error globally. The Balancing Domain Decomposition method (BDD)
based on N-N introduced by Mandel [Mandel(1993)] shows that the equilibrium conditions for the
singular problems on subdomains lead to the simple and natural construction of a coarse problem.
The construction is purely algebraic. In this study, an implementation of BDD to static elastic
stress analysis is presented and some numerical experiments are performed.

BALANCING DOMAIN DECOMPOSITION

Interface Problem

Consider a system of linear algebraic equations,

Ku = f (1)

arising from a finite element discretization of a linear, elliptic, self adjoint boundary value problem
in domain Ω.

The domain Ω is split into non-overlapping subdomains Ω(1),...,Ω(k) and union of all subdomains
boundaries is Γ = ∪k

i=1∂Ω(i). Let V (i) and V be the spaces of degrees of freedom on ∂Ω(i) and
Γ. Let u(i) be the vector of degrees of freedom corresponding to all elements in subdomain Ω(i)

and let N (i) denotes the 0− 1 matrix that maps the degrees of freedom u(i) into global degrees of
freedom u.

Each u(i) is split into degrees of freedom u
(i)
B that correspond to the interface of the Ω(i) with other

subdomains, and the remaining degrees of freedom u
(i)
I . The subdomain stiffness matrices and

N (i) are then split accordingly and the system (1) is
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After eliminating u(i), the system (1) becomes

Sub = g (3)

where S is the Schur complement that is the assembly of the local ones:

S =
k

∑

i=1

N
(i)
B S(i)N

(i)
B

T
(4)

S(i) = K
(i)
BB − K

(i)
IB

T
K

(i)
II

−1
K

(i)
IB (5)

The local Schur complements S(i) are positive semidefinite.



A large number of domain decomposition (or substructuring) methods consist of solving the re-
duced system (3) iteratively. Since S is symmetric positive definite, the preconditioned CG method
is the standard choice for iterative methods. This method requires at each step the solution of an
auxiliary problem,

Mz = r (6)

with a symmetric positive definite matrix M , called a preconditioner.

Neumann-Neumann Preconditioner

The method uses a collection of matrices D(i) that form a decomposition of unity,

k
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= I (7)

The simplest choice for D(i) is the diagonal matrix with diagonal elements equal to the recip-
rocal of the number of subdomains with which the degrees of freedom is associated. The N-N
preconditioned operator M−1 is described by

M−1 =
k

∑
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T
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where S(i)† is the Moore-Penrose pseudoinverse of S(i).

Another drawback of N-N is the lack of a mechanism to exchange information between all subdo-
mains in the preconditioning step and thus to prevent the growth of the condition number with
the number of subdomains. BDD settled this matter by solving a coarse problem.

Balancing Domain Decomposition Preconditioner

Let n(i) be the dimension of V (i), let m(i) be the number with 0 ≤ m(i) ≤ n(i), let Z(i) be the
n(i) × m(i) matrices of full column rank such that

RangeZ(i) ⊂ NullS(i), i = 1, ..., k (9)

and let W be the coarse space defined by

W = {v ∈ V/v =
k

∑

i=1

N
(i)
B D(i)u(i), u(i) ∈ RangeZ(i)} (10)

Let P be the S-orthogonal projection onto W , then the BDD preconditioned operator M−1 is
described by

M−1 = P +
k

∑

i=1
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Using BDD, we should determine an efficient Z (i) satisfying (9). For an elastic stress problem,
NullS(i) can be considered to correspond to the degrees of freedom of rigid displacement. At the
point X(x1, x2, x3) on the interface of the subdomain Ω(i), let Z

(i)
X be defined as:
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and Zi be defined by assembling Z
(i)
X ,
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∑

P
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X (13)

where B
(i)
X is the 0-1 matrix that maps the degrees of freedom X into global degrees of freedom

of the interface of the subdomain Ω(i).

Algorithm of Balancing Domain Decomposition is summarized as follows:
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step3 : u(i) = S(i)†s(i), i = 1, ..., k
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NUMERICAL EXPERIMENTS

BDD performances

The present system is applied to the pipe model shown in Figure 1 to estimate the effect of
number of subdomains to the convergence. This model is expressed by 6,333 10-noded tetrahedral
elements. The total degrees of freedom is 33,585 and for test analysis, it is divided into four sizes
of subdomains, i.e. 20, 50, 80 and 160 subdomains. DDM without any preconditioner (DDM),
DDM with diagonal scale preconditioner (DSCALE) and BDD are performed for these models.

The numbers of iterations until convergence are shown in Table1. Though that of DSCALE
decrease in all cases compared with DDM, they increase with the number of subdomains. On the
other hand, for the case of BDD, it is shown not only that the number of iterations drastically
decreases compared with DDM but also that the increasing number of iterations for the number
of subdomains is very little.

Large Scale Analysis

As a larger model, the present system is applied to the finite element analysis of an shaft bearing
model shown in Figure 2. This model is expressed by 10-noded tetrahedral elements, divided into
subdomains and divided again into parts. The sizes of this model are listed in Table 2. This
problem is solved by Alpha Cluster (DEC AlphaAXP 533MHz) consisting of 18 processors, 1
Grand, 3 Parents and 14 Children were assigned for HDDM.



Table 1: NUMBER OF ITERATIONS FOR PIPE MODEL

Num. of Domains DDM DSCALE BDD
20 1,423 822 36
50 1,823 1,097 40
80 2,170 1,090 38
160 2,580 1,143 45

Table 2: MESH SIZES FOR SHAFT BEARING MODEL

Nodes Elements Subdomains Parts Total DOFs Interface DOFs
71,970 117,977 600 3 295,708 101,856

Table 3: CALCULATION PERFORMANCES WITH HDDM AND BDD

Num. of Iter CPU Time Mem. for GP Mem. for P Mem. for C CPU Usage
DDM 1,072 20.8[min] 0.001 [MB] 5.6 [MB] 50.1[MB] 68.5%
BDD 113 11.0[min] 0.03 [MB] 91.5 [MB] 46.2[MB] 42.5%

For this model, DDM with diagonal preconditioner and BDD are performed. The number of
iterations, calculation times and required amount of memory are shown in Table 3. As shown in
the table, although BDD requires more memory than DDM, reducing the number of iterations and
speeding up the calculation time are achieved. The force imbalance measure at inter subdomain
measure (residual value) against the number of CG iterations are shown in Figure 1. It is shown
here that in case of BDD, the residual values decrease almost monotonically with the increase of
the number of iterations.

CONCLUSION

The finite element system based on the DDM with preconditioner using BDD was developed in the
current study. This system can be applied to structural analyses and effective performances were
obtained. To apply for larger models like over ten million degrees of freedom problem, parallelizing
of the system and reducing memory usage of BDD are required.
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Figure 1: Mesh of Pipe Model Figure 2: Shaft Bearing Model
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Figure 3: Profile of Residual Norm


