Some remarks on the behaviour of the finite element solution in nonsmooth domains

Nakao, Mitsuhiro T.
Faculty of Mathematics, Kyushu University

Kinoshita, Takehiko
Faculty of Mathematics, Kyushu University

https://hdl.handle.net/2324/6098
Some remarks on the behaviour of the finite element solution in nonsmooth domains

M. T. Nakao & T. Kinoshita

MHF 2007-14

(Received June 19, 2007)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN
Some remarks on the behaviour of the finite element solution in nonsmooth domains

Mitsuhiro T. Nakao and Takehiko Kinoshita

Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan

Abstract. In this paper, we consider on the behaviour of the residual error by a smooth finite element solution for elliptic problems on nonconvex and nonsmooth domains. Against expectations, it is proved that the residual error is unbounded and actually diverges to infinity as the mesh size goes to zero. A numerical example which illustrates this phenomena will be presented for the Poisson equation on L-shaped domain using \(C^1 \)-Hermite element as well as the similar results will be shown for a \(C^0 \) element with a posteriori smoothing.

Keywords. Poisson equation, Non-smooth domain, Residual error.

1 Introduction

In this paper, we consider a finite element solution \(u_h \) of the following Poisson equation.

\[
\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}
\]

Here, \(\Omega \) is a bounded polygonal domain in \(\mathbb{R}^2 \) and \(f \) is a function in \(L^2(\Omega) \). Then, in case of \(u_h \in H^2(\Omega) \cap H_0^1(\Omega) \), the residual error \(\| f + \Delta u_h \|_{L^2(\Omega)} \) plays an important role in the numerical enclosure methods of solutions for nonlinear elliptic problems (see, e.g., [3], [4], [7], [5] etc.). Let \(S_h \) be a finite dimensional subspace of \(H_0^1(\Omega) \) dependent on the mesh size parameter \(h \). Usually, \(u_h \) is defined as an element of \(S_h \) such that

\[
(\nabla u_h, \nabla v_h)_{L^2(\Omega)} = (f, v_h)_{L^2(\Omega)}, \quad \forall v_h \in S_h.
\]

In the below, we assume that, for solutions to (1) and (2),

\[
u_h \to u \ (h \to 0) \quad \text{in } H^1(\Omega),
\]

which would be a natural condition for usual finite element subspaces.

If \(S_h \) is a \(C^0 \) element, since the residue \(f + \Delta u_h \) no longer belongs to \(L^2(\Omega) \), we need some smoothing procedure to get the residual estimation[6].
In this and the next sections, we assume that S_h is a C^1 finite element. For the convex domain Ω, assuming an inverse inequality for S_h, we easily have the following estimates:

$$
\|f + \triangle u_h\|_{L^2(\Omega)} = \|\triangle (u - u_h)\|_{L^2(\Omega)} \\
\leq Ch^{-1} \|\nabla (u - u_h)\|_{L^2(\Omega)} \\
\leq C \|\triangle u\|_{L^2(\Omega)} \\
= C \|f\|_{L^2(\Omega)},
$$

(4)

where C is a general constant independent of h. Hence, $\triangle u_h$ is bounded in h. There is, rather, a possibility to get some positive order estimates for $\|f + \triangle u_h\|_{L^2(\Omega)}$ in h provided that we use higher order polynomials. Therefore, we will naturally expect that $\triangle u_h$ should also be bounded even if Ω is nonconvex, because the approximation scheme (2) is equivalent to

$$
(-\triangle u_h, v_h)_{L^2(\Omega)} = (f, v_h)_{L^2(\Omega)}, \quad \forall v_h \in S_h,
$$

(5)

which strongly suggests that $\triangle u_h$ seems to be determined only by the function f. However, it is shown that this expectation is actually wrong. Namely, in Section 2, when u does not have H^2 smoothness, we prove that the concerning residual error is unbounded. In Section 3, we will present some computational results of these errors for the Poisson equation on L-shaped domain using C^1 Hermite functions, which confirm our theoretical assertion. Furthermore, we will show the similar result even for the case that we use some a posteriori smoothing technique with C^0 piecewise linear element. These should be interesting and rather surprising facts which is beyond our intuitive observation.

2 Unboundedness of residual error

In this section, let Ω be a nonconvex polygonal domain. Then, as well known, the weak solution u of (1) uniquely exists in $H^1_0(\Omega)$, and not necessarily belongs to $H^2(\Omega)$(see [1]). We now describe the main result in this paper.

Theorem 2.1 Let S_h be an C^1 finite element subspace on Ω, i.e., $S_h \subset H^1_0(\Omega) \cap H^2(\Omega)$, and let u_h be a solution of (2), or equivalently defined by (5). Then, the residual error has the following property.

$$
\lim_{h \to 0} \|f + \triangle u_h\|_{L^2(\Omega)} = \infty.
$$

Proof. Let assume that the set $\left\{\|\triangle u_h\|_{L^2(\Omega)}\right\}_{0 < h < 1}$ is bounded in \mathbb{R}. First, by (2) and the Poincaré inequality, we have

$$
\|\nabla u_h\|_{L^2(\Omega)} \leq \|f\|_{L^2(\Omega)} \|u_h\|_{L^2(\Omega)} \\
\leq C_p \|f\|_{L^2(\Omega)} \|\nabla u_h\|_{L^2(\Omega)},
$$

(2)
where C_p is a Poincaré constant. Therefore, \(\{\|u_h\|_{H^1_0(\Omega)}\}_{0<h<1} \) is also bounded.

Next, since Ω is a polygon, we have the following well known result
\[
\|\Delta u_h\|_{L^2(\Omega)} = |u_h|_{H^2(\Omega)},
\]
which implies that $\{u_h\}_{0<h<1}$ is a bounded set in $H^2(\Omega)$.

Thus, by the weak compactness of $H^2(\Omega)$, there exists a subsequence $\{u_{h_n}\}_{n=1}^{\infty}$ in $\{u_h\}_{0<h<1}$, which weakly converge to some $\tilde{u} \in H^2(\Omega)$. By the compactness of the embedding $H^2(\Omega) \hookrightarrow H^1(\Omega)$, we have the strong convergence:
\[
u_{h_n} \rightharpoonup \tilde{u} \quad (n \to \infty)
\] in $H^1(\Omega)$.

On the other hand, u_{h_n} converges to the solution u of (1) in $H^1(\Omega)$ by the assumption (3). Therefore, by the uniqueness of the limit, we have $u = \tilde{u}$, which implies that u has to be an element of $H^2(\Omega)$. This is a contradiction. \(\square\)

3 Numerical Examples

In this section, we show some numerical evidences for the actual divergent situations in the previous section, which suggest the difficulty to construct the approximate solution with convergent residual error, provided that the corresponding exact solution has no sufficient smoothness.

3.1 Smooth basis

We considered (1) with $f \equiv 1$ and Ω as a L-shaped domain in Fig. 1. We used the bi-cubic Hermite function as the basis of S_h with a uniform mesh in Fig. 1. In this case S_h is a subspace of $H^2(\Omega)$.

![Figure 1: domain Ω (mesh size $h = 1/5$)](image1)

![Figure 2: approximate solution u_h](image2)

Fig. 3 shows the computed results of residual errors, in which the horizontal axis means mesh size h, the vertical axis residual error $\|1 + \Delta u_h\|_{L^2(\Omega)}$ with logarithmic scale. By considering the results in Fig. 3, we obtained the residual error with negative order in h, i.e., approximately $1.23h^{-0.33}$, which confirms us the divergence property proved in Theorem 2.1.
3.2 A posteriori smoothing by piecewise linear element

In [6], some a posteriori smoothing techniques were used to get the residual error for the C^0 element. We considered the same problem in the previous subsection by using the piecewise bilinear polynomial functions for the same mesh. Naturally, the finite element solution u_h of (2) is almost same contour as Fig.2. Since the direct calculation Δu_h is not possible, some smoothing procedure are taken as in [6]. Namely, we provided a piecewise bilinear finite element subspace S_h of $H^1(\Omega)$ which is constituted by adding the bases corresponding the boundary nodes to S_h. And define the vector function $\bar{\pi}_h$, denoted as ∇u_h, which means a smoothing of ∇u_h in $S_h^* \times S_h^*$ by

$$\langle \bar{\pi}_h, \nabla u_h \rangle_{L^2(\Omega)^2} = \langle \nabla u_h, \nabla u_h \rangle_{L^2(\Omega)^2}, \quad \forall \nabla u_h \in S_h^* \times S_h^*. \quad (6)$$

Then define $\Delta u_h \equiv \text{div} \nabla u_h$.

![Figure 3: residual error $\|1 + \Delta u_h\|_{L^2(\Omega)}$](image1)

The smoothing error $\|\nabla u_h - \nabla u_h\|_{L^2(\Omega)^2}$ and the residual error $\|1 + \Delta u_h\|_{L^2(\Omega)}$ are shown in Fig.4 and in Fig.5, respectively, with the same scale as before. According to these computations, we observed that $\|\nabla u_h - \nabla u_h\|_{L^2(\Omega)^2} \approx 0.35h^{0.80}$ and $\|1 + \Delta u_h\|_{L^2(\Omega)} \approx 0.52h^{-0.33}$. These results suggest that it should be not possible to improve the residual error by this kind of a posteriori smoothing.
4 Concluding remarks

By Theorem 2.1 and our numerical experiments above, we could say that

1. When we use smooth approximate method by C^1 element it is proved that we can’t constitute sufficient approximation to Δu.

2. Even if we take a smoothing method by some a posteriori techniques for the C^0 element, it could not be possible to improve the approximate property for Δu.

3. As an alternative approach, the singular function method, e.g., [2], might have the desired property for this problem, although it should be a little bit of unusual finite element method.

References

List of MHF Preprint Series, Kyushu University
21st Century COE Program
Development of Dynamic Mathematics with High Functionality

MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle

MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI & Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI & Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions

MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Construction of hypergeometric solutions to the $q \text{Painlevé}$ equations

MHF2005-7 Hiroki MASUDA
Simple estimators for non-linear Markovian trend from sampled data: I. ergodic cases

MHF2005-8 Hiroki MASUDA & Nakahiro YOSHIDA
Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models

MHF2005-9 Masayuki UCHIDA
Approximate martingale estimating functions under small perturbations of dynamical systems

MHF2005-10 Ryo MATSUZAKI & Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations

MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI & Masayuki UCHIDA
Estimation for a discretely observed small diffusion process with a linear drift

MHF2005-12 Masayuki UCHIDA & Nakahiro YOSHIDA
AIC for ergodic diffusion processes from discrete observations
MHF2005-13 Hiromichi GOTO & Kenji KAJIWARA
Generating function related to the Okamoto polynomials for the Painlevé IV equation

MHF2005-14 Masato KIMURA & Shin-ichi NAGATA
Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift

MHF2005-15 Daisuke TAGAMI & Masahisa TABATA
Numerical computations of a melting glass convection in the furnace

MHF2005-16 Raimundas VIDUNAS
Normalized Leonard pairs and Askey-Wilson relations

MHF2005-17 Raimundas VIDUNAS
Askey-Wilson relations and Leonard pairs

MHF2005-18 Kenji KAJIWARA & Atsushi MUKAIHIRA
Soliton solutions for the non-autonomous discrete-time Toda lattice equation

MHF2005-19 Yuu HARIYA
Construction of Gibbs measures for 1-dimensional continuum fields

MHF2005-20 Yuu HARIYA
Integration by parts formulae for the Wiener measure restricted to subsets in \mathbb{R}^d

MHF2005-21 Yuu HARIYA
A time-change approach to Kotani’s extension of Yor’s formula

MHF2005-22 Tadahisa FUNAKI, Yuu HARIYA & Mark YOR
Wiener integrals for centered powers of Bessel processes, I

MHF2005-23 Masahisa TABATA & Satoshi KAIZU
Finite element schemes for two-fluids flow problems

MHF2005-24 Ken-ichi MARUNO & Yasuhiro OHTA
Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation

MHF2005-25 Alexander V. KITAEV & Raimundas VIDUNAS
Quadratic transformations of the sixth Painlevé equation

MHF2005-26 Toru FUJII & Sadanori KONISHI
Nonlinear regression modeling via regularized wavelets and smoothing parameter selection

MHF2005-27 Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI & Yasuo KAWAHARA
On reversible cellular automata with finite cell array
MHF2005-28 Toru KOMATSU
Cyclic cubic field with explicit Artin symbols

MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Kaori NAGATOU
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

MHF2005-30 Kaori NAGATOU, Kouji HASHIMOTO & Mitsuhiro T. NAKAO
Numerical verification of stationary solutions for Navier-Stokes problems

MHF2005-31 Hidefumi KAWASAKI
A duality theorem for a three-phase partition problem

MHF2005-32 Hidefumi KAWASAKI
A duality theorem based on triangles separating three convex sets

MHF2005-33 Takeaki FUCHIKAMI & Hidefumi KAWASAKI
An explicit formula of the Shapley value for a cooperative game induced from the conjugate point

MHF2005-34 Hideki MURAKAWA
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem

MHF2006-1 Masahisa TABATA
Numerical simulation of Rayleigh-Taylor problems by an energy-stable finite element scheme

MHF2006-2 Ken-ichi MARUNO & G R W QUISPEL
Construction of integrals of higher-order mappings

MHF2006-3 Setsuo TANIGUCHI
On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase function

MHF2006-4 Kouji HASHIMOTO, Kaori NAGATOU & Mitsuhiro T. NAKAO
A computational approach to constructive a priori error estimate for finite element approximations of bi-harmonic problems in nonconvex polygonal domains

MHF2006-5 Hidefumi KAWASAKI
A duality theory based on triangular cylinders separating three convex sets in \mathbb{R}^n

MHF2006-6 Raimundas VIDŪNAS
Uniform convergence of hypergeometric series

MHF2006-7 Yuji KODAMA & Ken-ichi MARUNO
N-Soliton solutions to the DKP equation and Weyl group actions
MHF2006-8 Toru KOMATSU
Potentially generic polynomial

MHF2006-9 Toru KOMATSU
Generic sextic polynomial related to the subfield problem of a cubic polynomial

MHF2006-10 Shu TEZUKA & Anargyros PAPAGEORGIOU
Exact cubature for a class of functions of maximum effective dimension

MHF2006-11 Shu TEZUKA
On high-discrepancy sequences

MHF2006-12 Raimundas VIDŪNAS
Detecting persistent regimes in the North Atlantic Oscillation time series

MHF2006-13 Toru KOMATSU
Tamely Eisenstein field with prime power discriminant

MHF2006-14 Nalini JOSHI, Kenji KAJIWARA & Marta MAZZOCCO
Generating function associated with the Hankel determinant formula for the solutions of the Painlevé IV equation

MHF2006-15 Raimundas VIDŪNAS
Darboux evaluations of algebraic Gauss hypergeometric functions

MHF2006-16 Masato KIMURA & Isao WAKANO
New mathematical approach to the energy release rate in crack extension

MHF2006-17 Toru KOMATSU
Arithmetic of the splitting field of Alexander polynomial

MHF2006-18 Hiroki MASUDA
Likelihood estimation of stable Lévy processes from discrete data

MHF2006-19 Hiroshi KAWABI & Michael RÖCKNER
Essential self-adjointness of Dirichlet operators on a path space with Gibbs measures via an SPDE approach

MHF2006-20 Masahisa TABATA
Energy stable finite element schemes and their applications to two-fluid flow problems

MHF2006-21 Yuzuru INAHAMA & Hiroshi KAWABI
Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths

MHF2006-22 Yoshiyuki KAGEI
Resolvent estimates for the linearized compressible Navier-Stokes equation in an infinite layer
MHF2006-23 Yoshiyuki KAGEI
Asymptotic behavior of the semigroup associated with the linearized compressible Navier-Stokes equation in an infinite layer

MHF2006-24 Akihiro MIKODA, Shuichi INOKUCHI, Yoshihiro MIZOGUCHI & Mitsuhiko FUJIO
The number of orbits of box-ball systems

MHF2006-25 Toru FUJII & Sadanori KONISHI
Multi-class logistic discrimination via wavelet-based functionalization and model selection criteria

MHF2006-26 Taro HAMAMOTO, Kenji KAJIWARA & Nicholas S. WITTE
Hypergeometric solutions to the \(q\)-Painlevé equation of type \(A_1 + A'_1\)^{(1)}

MHF2006-27 Hiroshi KAWABI & Tomohiro MIYOKAWA
The Littlewood-Paley-Stein inequality for diffusion processes on general metric spaces

MHF2006-28 Hiroki MASUDA
Notes on estimating inverse-Gaussian and gamma subordinators under high-frequency sampling

MHF2006-29 Setsuo TANIGUCHI
The heat semigroup and kernel associated with certain non-commutative harmonic oscillators

MHF2006-30 Setsuo TANIGUCHI
Stochastic analysis and the KdV equation

MHF2006-31 Masato KIMURA, Hideki KOMURA, Masayasu MIMURA, Hidenori MIYOSHI, Takeshi TAKAISHI & Daishin UEYAMA
Quantitative study of adaptive mesh FEM with localization index of pattern

MHF2007-1 Taro HAMAMOTO & Kenji KAJIWARA
Hypergeometric solutions to the \(q\)-Painlevé equation of type \(A_4^{(1)}\)

MHF2007-2 Kouji HASHIMOTO, Kenta KOBAYASHI & Mitsuhiro T. NAKAO
Verified numerical computation of solutions for the stationary Navier-Stokes equation in nonconvex polygonal domains

MHF2007-3 Kenji KAJIWARA, Marta MAZZOCCHI & Yasuhiro OHTA
A remark on the Hankel determinant formula for solutions of the Toda equation

MHF2007-4 Jun-ichi SATO & Hidefumi KAWASAKI
Discrete fixed point theorems and their application to Nash equilibrium

MHF2007-5 Mitsuhiro T. NAKAO & Kouji HASHIMOTO
Constructive error estimates of finite element approximations for non-coercive elliptic problems and its applications
MHF2007-6 Kouji HASHIMOTO
 A preconditioned method for saddle point problems

MHF2007-7 Christopher MALON, Seiichi UCHIDA & Masakazu SUZUKI
 Mathematical symbol recognition with support vector machines

MHF2007-8 Kenta KOBAYASHI
 On the global uniqueness of Stokes’ wave of extreme form

MHF2007-9 Kenta KOBAYASHI
 A constructive a priori error estimation for finite element discretizations in a
 non-convex domain using singular functions

MHF2007-10 Myoungnyoun KIM, Mitsuhiro T. NAKAO, Yoshitaka WATANABE & Takaaki
 NISHIDA
 A numerical verification method of bifurcating solutions for 3-dimensional
 Rayleigh-Bénard problems

MHF2007-11 Yoshiyuki KAGEI
 Large time behavior of solutions to the compressible Navier-Stokes equation
 in an infinite layer

MHF2007-12 Takashi YANAGAWA, Satoshi AOKI and Tetsuji OHYAMA
 Human finger vein images are diverse and its patterns are useful for personal
 identification

MHF2007-13 Masahisa TABATA
 Finite element schemes based on energy-stable approximation for two-fluid
 flow problems with surface tension

MHF2007-14 Mitsuhiro T. NAKAO & Takehiko KINOSHITA
 Some remarks on the behaviour of the finite element solution in nonsmooth
 domains