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Abstract
In testing system-on-a-chip (SOC), external pins for test

are getting more and more precious hardware resources be-
cause the number of external pins is strongly restricted.
Cores, which are basic components to build SOCs, are
tested via test access mechanisms (TAMs) such as a test bus
architecture. When cores are tested via TAMs, test stim-
uli and test responses for cores have to be transported over
these TAMs. There is often the difference between the num-
bers of input/output ports of cores and the widths of TAMs.
This difference causes the serialization of test patterns. It
is probable that some parts of TAMs are unused because
of the difference. This is a wasteful usage of TAMs. Test
scheduling should be done in order to remove such a waste-
ful usage of TAMs. In this paper, a novel and practical test
architecture optimization is proposed such that test time is
minimized with floorplanning constraints abided. In this
proposal, the computation time for the optimization can be
alleviated by floorplanning manipulation. Several experi-
mental results to this optimization are shown to validate this
proposal using a commercial LP solver.

1 Introduction
Recent significant advances in semiconductor technol-

ogy have been increasing the number of transistors avail-
able on a chip dramatically. System designers can now
build a large system on a single chip as a system-on-a-
chip (SOC). They often use multiple pre-designed and pre-
verified blocks, hereafter called cores, to reduce the time
required for design and verification.

Testing SOCs is getting harder and harder while semi-
conductor technology improves. Abundant and deep func-
tions per chip make it hard to test SOCs like a former
system-on-a-board. The increasing test cost for SOC can
be reduced by test time reduction and test time reduction is,
therefore, one of major research challenges on SOC. Test
access mechanisms (TAMs) and test wrappers were pro-
posed as important components of an SOC test access ar-
chitecture [13]. TAMs deliver pre-computed test sequences
to cores on an SOC, while test wrappers interface between
these test data and cores [14].

Test scheduling has been researched to reduce the test
time of digital systems [1, 3–5, 7, 9–12]. In [4, 10–12],
the combination of BIST and external test is discussed as
well as test scheduling. In [4, 5], the relationship between

testing time and TAM widths using ILP was examined,
and TAM width optimization under power and routing con-
straints was studied in [3]. However, the problem of ef-
fective test width adaptation in test wrappers was not ad-
dressed in [3–5, 10, 11]. A test wrapper design for embed-
ded cores was presented in [8]. However, the issue of re-
ducing the TAM width required for a test wrapper was not
addressed. In [7], the problem of effective test width adap-
tation in test wrappers was addressed. However the prob-
lem of floorplanning is not addressed. Floorplanning must
be taken into account in order to apply the test architecture
optimization to practical SOCs. Moreover, the size of prob-
lems solved in [7] is too small to validate the applicability
of the approach to practical designs. In this paper, a practi-
cal test architecture optimization is proposed which can be
done under floorplanning constraints within short computa-
tion time. In this proposed optimization, the floorplanner is
supposed to determine topological placements and correla-
tions between cores on SOCs.

The remainder of this paper is organized as follows: In
Section 2, core clustering for floorplanning is introduced
and a mathematical model is shown under which the num-
bers and widths of TAMs are constant. Some examples of
the optimizations which have been solved under this model-
ing by an LP solver are shown. In Section 3, the restriction
of the constant numbers and widths of TAMs is removed
and computational complexity to this problem is discussed.
In Section 4, several lemmas and theorems are introduced
and an efficient algorithm is discussed to seek for a faster
computation than the one shown in Section 3. Section 5
concludes this paper with a summary.

2 Core Clustering for Floorplanning
In this section, we discuss a mathematical modeling of

test architecture optimization for SOCs with floorplanning
constraints. Iyengar et al. presented a research on wrap-
per/TAM co-optimization in [7] but the mathematical model
defined in [7] has two problems. The first problem is that
the size of problems which can be solved is too small to
be applied to practical SOCs. The next problem is that
topological locality of cores are ignored. The mathemati-
cal model in [7] assumed that it is discretionary to assign
cores to TAMs. Such an assumption is too impractical to
apply the optimization to SOCs. Topological locality must
be formulated to optimize a test architecture and minimize



test time of practical SOCs.
Floorplanning makes cores topologically local on SOCs

and so it is quite natural that floorplanning should determine
several sets of TAMs and all cores should be clustered to the
sets of TAMs with the topologically locality abided. Let us
define a group in order to formulate this topological locality.
A group is given a corresponding set of TAMs and consists
of cores which can share the given TAMs of the group. Ev-
ery core can be assigned to the TAMs of the groups as far
as the core belongs to the group.
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Figure 1. Venn
Diagram for Core
Clustering.

Now let us discuss
core clustering to groups
under floorplanning con-
straints. It is quite proba-
ble that a core can be as-
signed to several groups
if they are topologically
close. Here let us assume
that any core may be as-
signed into an only group
among possible ones. A
Venn diagram for the
core clustering is shown
in Figure 1. In this exam-
ple, Core i ∈ G1 is reach-
able to TAM set B1. Core
i ∈ G1 ∩G2 is reachable to both TAM sets B1 and B2. And
Core i ∈ G1 ∩G2 ∩G3 is reachable to any of TAM sets B1,
B2 and B3. Such a core must be assigned to optimal group
in order to minimize test time of the SOC. Assignment of
such cores to groups and TAMs must be determined in test
architecture optimization process.

The TAM sets should be carefully made in compliance
with floorplanning. Once TAM sets are determined in all
groups, all cores which are accessible to each of TAM set
Bj are classified into Group G j. Thus Group G j consists of
cores which are reachable to TAM set B j of Group G j. Now
0-1 integer variable xi jk is introduced as follows to formu-
late the test time of the SOC.

xi jk =

{
1 if Core i is assigned to the kth TAM of Group Gj,
0 otherwise.

The test time T jk on the kth TAM of Group G j is

T jk =
∑

i

TWi(wjk) · xi jk, (1)

where wjk is the width of the kth TAM of Group j and
TWi(w) is testing time for Core i when the width of TAM
is w. TWi can be obtained by solving bin packing prob-
lems [2, 7]. For example, TWi for Core 5 of d695 is shown
in Figure 2. The x-axis corresponds to w and the y-axis
does to TWi . TWi(w) is a monotonically decreasing function
between 1 and a upper bound of w. Note that Theorem 1
introduced in [7] is incorrect. The incorrectness of the the-
orem is detailed in Appendix A. The test time T j for Group
G j is the maximum one among test times on all TAMs, and
formulated as follows.

T j = max
k

T jk
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Figure 2. Test times for Core 5.

The test
time for
the SOC is
the maxi-
mum one
among test
times on
all groups,
and for-
mulated as
follows.

T = max
j

T j

A core
must be assigned to one only core, and so 0-1 integer
variables must satisfy the following constraints.∑

j,k

xi jk = 1, 1 ≤ i ≤ NC,

where NC is the number of cores on the SOC. A mathe-
matical programming model for this problem is shown as
follows.

Minimize T , subject to
1. T ≥ ∑i TWi(wjk) · xi jk, 1 ≤ j ≤ M, 1 ≤ k ≤ |B j|.
2.
∑

j,k xi jk = 1, 1 ≤ i ≤ NC.

The number of variables and constraints is a measure of
computational complexity. Let the number of TAMs for
all groups be NB. The number of variables for xi jk is
NCNB = O(NCNB) = O(NC

2). Note that the upper bound
of NB is NC because it is meaningless that there are more
TAMs than cores. Floorplanner tool is discretionary to de-
termine this number of groups and TAMs as far as topo-
logical locality is abided. The number of constraints is
NB + NC ≤ 2NC = O(NC).

A hypothetical floorplanning for d695, which is an
ITC’02 benchmark SOC, is shown in Table 1. This ta-
ble shows the number of input and output ports, the num-
ber of scan chains, the maximum scan chain length in
each module, the number of patterns, and possible as-
signments to group. The line “Possible assignment to
groups” in this table shows which group each core can
be assigned to in compliance with floorplanning. These
possible assignments mean that G1 = {1, 2, 3, 4, 9}, G2 =
{2, 3, 4, 5, 6, 7, 8}, G3 = {1, 6, 7, 8, 9}. Moreover, G1 ∩ G2
= {2, 3, 4}, G2 ∩ G3 = {6, 7, 8}, G3 ∩ G1 = {1, 9} and

Table 1. Possible core assignments on a hy-
pothetical floorplanning for d695.

Core 1 2 3 4 5 6 7 8 9 10
# Inputs 32 207 34 36 38 62 77 35 35 28

# Outputs 32 108 1 39 304 152 150 49 320 106
# Scan chains 0 0 1 4 32 16 16 4 32 32

Maximum scan
chain length - - 32 54 45 41 34 46 54 55

# Patterns 12 73 75 105 110 234 95 97 12 68
Possible assignment

to groups {1} {1} {2} {1,2} {1,2} {2,3} {2,3} {2,4} {3,4} {3,4}



Table 2. Optimal test architecture under FP constraints.
Total
TAM
width

Test time
without FP
constraints

Test time
with FP

constraints

TAM width
configuration Assignment to group Assignment to TAM ∆t

3 220288 251480 {1}, {1}, {1} (1,1,2,1,2,3,3,2,1,1) (1,1,1,1,1,1,1,1,1,1) 14.16%
6 110641 120188 {1}, {1,2}, {2} (3,2,2,2,2,3,2,3,3,1) (1,2,2,2,2,1,1,1,1,1) 8.63%
6 110641 191874 {1}, {1,1}, {3} (3,1,2,2,2,3,3,3,1,3) (1,1,1,1,2,1,1,1,1,1) 73.42%
9 73972 95992 {1}, {2,2}, {2,2} (1,2,2,2,2,3,2,2,1,3) (1,1,1,1,2,2,1,1,1,1) 29.77%
9 73972 84207 {1}, {3,3}, {2} (3,1,2,1,2,2,2,2,3,3) (1,1,2,1,2,1,1,2,1,1) 13.84%
12 55993 60128 {2}, {4,4}, {2} (3,2,2,2,2,2,3,3,3,1) (1,2,2,2,1,2,1,1,1,1) 7.38%
12 55993 64070 {2}, {2,3,3}, {2} (3,2,1,2,2,2,3,2,3,1) (1,1,1,1,3,2,1,1,1,1) 14.43%
12 55993 62248 {2}, {3,4}, {3} (1,2,2,1,2,2,3,2,1,3) (1,2,2,1,2,1,1,2,1,1) 11.17%

G1 ∩ G2 ∩ G3 = φ. Core as-
signments should be analyzed and
sought out by floorplanner tool.
This paper does not cover how a
floorplanner tool works for test ar-
chitecture optimization of SOCs.
However, the implementation of
the floorplanner tool would be
simple. This is a future work for
this research. In Table 1, Core 4
can be assigned to either Group 1
or 2. Such cores which can be assigned to one among mul-
tiple groups must be assigned to the optimal group so that
test time for the SOC is minimized. Table 2 shows op-
timal core assignments for several TAM width configura-
tions. In these optimization, a commercial LP solver was
used [6] and computation times were too short to measure.
Column “Total TAM width” in Table 2 is the summation
of all widths of TAMs, in other words, the total available
TAM width to the SOC. Column “Test time without FP con-
straints” is the minimal test time when the floorplanning
constraint is not taken into account. These test times are
same as in [7]. Column “Test time with FP constraints”
is the minimal test time sought out by solving the problem
shown in this section. Column “TAM width configuration”
shows how many TAMs each group has and how many bits
the width of each TAM is. For example, “{1}, {1, 2}, {2}”
means that there are three groups and there are a 1-bit TAM
for Group 1, a 1-bit TAM and a 2-bit TAM for Group 2 and a
2-bit TAM for Group 3. In Column “Assignment to Group”,
the numbers mean which group each core is optimally as-
signed to. In Column “Assignment to TAM”, the numbers
similarly mean which TAM each core is optimally assigned
to. For example, in the first configuration for 6 bits, a 1-bit
TAM is assigned to Group 1, a 1-bit TAM and a 2-bit TAM
to Group 2, and a 2-bit TAM to Group 3. Cores 1, 6, 8 and
9 are optimally assigned to Group 3, Cores 2, 3, 4, 5, and
7 to Group 2 and Core 10 to Group 1. Cores 2, 3, 4 and
5 are optimally assigned to the 2-bit TAM of Group 2 and
Core 7 to the 1-bit TAM of Group 2. The minimal test times
with and without floorplanning constraints are 120188 and
110641 respectively.

The test architecture optimization with floorplanning
constraints resulted in a successful test design at the expense
of about 8.63% test time rise for a 6-bit configuration.

3 Optimal Partitioning of TAM Width
In Section 2, a test architecture optimization was dis-

cussed for given cores, groups, possible core assignments
groups, and a TAM width configuration. TAM width con-
figuration was constant in the previous section but the num-
ber of TAMs and their TAM widths may be variable so that
shorter test time is achieved. For example, there are three
TAM width configurations for 12 bits of total TAM width
as shown in Table 2. The number of TAMs and their widths
may be variables like these examples so that test time is re-
duced. In this section, a generalized mathematical modeling

in which the restrictions of the constant number and width
of TAMs are removed, is shown.

When TAM k of Group j has l of width, the test time for
TAM k of Group j is formulated the same way as Equation
(1) as follows.

T jk =
∑

i

TWi(Wjk) · xi jk =
∑
i,l

TWi (l) · δ jkl · xi jk, (2)

where

δ jkl =

{
1 the width of kth TAM of Group j is l,
0 otherwise.

Any core must be assigned to one only TAM and the fol-
lowing constraint can be introduced.∑

j,k

xi jk = 1.

Any TAM must have one only width and the following con-
straint can be introduced.∑

l

δ jkl = 1.

In Equation (2), the term δ jkl · xi jk is non-linear and that is
replaced to linearize Equation (2) by variable y i jkl. Variable
yi jkl has the following constraints.

δ jkl + xi jk − 2yi jkl ≥ 0,

δ jkl + xi jk − yi jkl ≤ 1.

Let the total bits for all TAMs be W. The following con-
straint is introduced. ∑

j,k,l

l · δ jkl = W.

The test time for the SOC is equal to the test time which is
maximum among ones on all TAM and shown as follows.

T = max
j,k

T jk = max
j,k

∑
i,l

TWi (l) · yi jkl.

A mathematical programming model for this problem is
shown as follows.

Minimize T , subject to

1. T ≥ ∑i,l TWi(l) · yi jkl, ∀ j, k.
2.
∑

j,k xi jk = 1, ∀i.
3.
∑

l δ jkl = 1, ∀ j, k.
4. δ jkl + xi jkl − 2yi jkl ≥ 0, ∀i, j, k, l.
5. δ jkl + xi jkl − yi jkl ≤ 1, ∀i, j, k, l.



6.
∑

j,k,l l · δ jkl = W.

When the number of TAMs is shown by NB, there are
NCNB variables for xi jk, NBW for δ jkl, and NCNBW for yi jkl.
The total number of variables is NB · (NC + W + NCW) =
O(NCNBW) = O(NC

2W). Note that the upper bound of NB
is NC because it is meaningless that there are more TAMs
than cores. The number of constraints is NB + NC + NB +
NCNBW + NCNBW + 1 = O(NCNBW) = O(NC

2W). The
numbers of cores, TAMs, and the total width of TAMs af-
fect the computation time for this problem. This means that
the computation time grows quite rapidly as NC, NB, and
W grow. It is hard to obtain the optimal solution for large
W, though W of SOCs is generally quite large. Only small
problems can be solved within practical time.

4 Test Architecture Optimization under FP
Constraints

In Section 3, the test architecture optimization in which
TAM configurations were treated as variables was dis-
cussed. As discussed in the previous section, the optimiza-
tion is a time-consuming process itself. An algorithm which
can optimize a test architecture within shorter and more
practical computation time is necessary to apply this opti-
mization to practical SOCs. In this section, a test architec-
ture optimization achieved by enumeration of optimizations
shown in Section 2 is discussed.

The space of the enumeration itself is too vast to com-
pletely seek out. In this section, several lemmas and the-
orems are introduced to prune enumeration. Tree prun-
ing makes the test architecture optimization possible within
practical computation time.

Now let us introduce several notations to make a discus-
sion clear. Let test time of Core c on a TAM whose width
is w be TW(w, c). These times are obtained by solving bin
packing problems as described in Section 2 [2, 7]. In this
section, it is assumed that these times are comprehensively
given. Optimal test architecture free from floorplan con-
straints can be determined by the total TAM bits w and a set
of cores C. Let the test time free from floorplan constraints
be TNFP(w,C). This test time can be sought out the same
way as [7]. Optimal test architecture with floorplan con-
straints can be determined by the total TAM bits, a group
configuration and a TAM bits distribution. Note that a TAM
bits distribution is necessary to solve a problem shown in
Section 2. Enumeration of such problems, consequently,
necessitates a TAM bits distribution. Let a group configu-
ration and a TAM bits distribution be G = {G1,G2, · · · ,Gn}
and b = (b1, b2, · · · , bn) respectively. Note that

∑
bi = w.

Let the minimal test test time with floorplan constraints be
TFP(w,G, b).

Lemma 1
The test time for a core monotonously decreases as the
width of the TAM for the core increases.
w1 < w2 ⇒ TW(w1, c) ≥ TW(w, c).

Lemma 2
The test time for the SOC without floorplan constraints

monotonously decreases as the TAM bits increase.
w1 < w2 ⇒ TNFP(w1,C) ≥ TNFP(w2,C).
Lemma 3
The test time for the SOC with floorplan constraints
monotonously decreases as the TAM bits increase.
w1 < w2 ⇒ min

b1

TFP(w1,G, b1) ≥ min
b2

TFP(w2,G, b2).

Lemma 4
The test time for a group increases as a core is added to the
group.
G1 ⊆ G2 ⇒ min

b1

TFP(w, {G1}, b1) ≤ min
b2

TFP(w, {G2}, b2).

Theorem 1
If there exists a feasible solution which can achieve
test time Ttmp under floorplan constraints and only if
TNFP(w,C)|C=GM−∑i�M Gi ≥ Ttmp, the optimal TAM bits for
Group M are w or more.

Theorem 1 means that enumeration can be pruned depend-
ing on test time of temporal solution. The more the enu-
meration proceeds, the more tree pruning is done because
test time of temporal solution becomes shorter and shorter.
Theorem 1 prunes the lower TAM bits on each group.

Lemma 5
If min

bi,i�M
TFP(w,G, b) > TNFP(bM,GM) then

min
bi ,i�M

TFP(w,G, b) = min
b′

TFP(w − w′,G′, b′), where

G
′ = {G1 −GM, · · · ,GM−1−GM,GM+1−GM, · · · ,Gn−GM}.

Theorem 2
If min

bi ,i�M
TFP(w,G, b) > TNFP(bM,GM) then the optimal TAM

bits for Group M are bM or less.

Theorem 3
If min

bM+1,···,bn

TFP(w,G, b) > TNFP(bM,GM) then

min
b′M+1 ,···,b′n

TFP(w,G, b′)|b′i=bi(∀i,i<M),b′M=bM+1 ≥
min

bM+1 ,···,bn

TFP(w,G, b).

Theorem 3 prunes the upper TAM bits for each group while
Theorem 1 prunes the lower TAM bits. Theorem 3 allevi-
ates the computation time of the problems given large TAM
bits w.

Theorem 4
If min

bi,i�M
TFP(w,G, b) > TNFP(bM,GM) and only if

min
bi ,i�M

TFP(w,G, b) < min
bi ,i�M

TFP(w,G, b) then the test archi-

tecture which achieves min
bi ,i�M

TFP(w,G, b) is optimal.

Theorem 4 is a stricter version of Theorem 2. Theorem 4
means that tree pruning of enumeration can finish when test
architecture is optimized in ascending order of TAM bits
for a group. This theorem can reduce the exploration space
of enumeration and the computation time can be greatly re-
duced consequently.

A pseudo-code of test architecture optimization algo-
rithm is shown in Figure 3. This algorithm mainly consists
of three parts. In the first part of the algorithm,



Test Architecture Optimization Algorithm
Procedure OptimizeTestArchitecture
Input wSOC: The total bits of all TAMs.
Input TW(w, i): Test time for Core i when the width of TAM is w.
Input G = {G1, · · · ,Gn}: A set of n groups.
Output b: Optimal TAM bits distribution.
Output Optimal TAM architecture.
begin
// Seek out minimal test times TNFP(w,C)|C=Gi−∑ j�i G j

// and maximal test times TNFP(w,G).
for ∀G ∈ G do // for all groups

forall possible TAM bits do // the bits notated by w
// Seek out minimal test time for G and w
Compute TNFP(w,C)|C=Gi−∑ j�i G j .
// Seek out maximal test time for G and w
Compute TNFP(w,G).

endfor
endfor
// Seek for maximal number of TAMs NBmax(w,G).
for ∀G ∈ G do

for ∀C ⊆ G do // for all core combinations
forall possible TAM bits do // the bits notated by w

Seek out TNFP(w,C) and let the number
of TAMs for the solution be NB(w,C).
NBmax(w,G) = max {NBmax(w,G),NB(w,C)} ;

endfor
endfor

endfor
// Optimizations shown in Section 2 are enumerated.
Let P be all partitions of w to groups.
for ∀P ∈ P do // for all partitions of TAM bits to groups

Check out the applicability of Theorem 3.
If applicable, return the solution and exit.
Let B be all possible TAM configurations derived from P.
Note that B must not exceed NBmax(w,G).
for ∀b ∈ B do // for all possible TAM configurations

Minimize test time
and let the test time be TFP(w,G, b).
if a better solution is obtained then

Narrow P and B by Theorems 1, 2, 3 and 4.
endif

endfor
endfor

end

Figure 3. Test design optimization algorithm.

TNFP(w,C)|C=Gi−∑ j�i G j and TNFP(w,G) are sought out for all
groups and possibles TAM bits. These times can be solved
with short computation time because the size of problems is
small. The times are relevant to Theorems 1-4. The times
are used in enumeration, that is, in the third part of this al-
gorithm. In the second part, the maximum number of TAMs
on every group is sought out by solving all possible combi-
nations of cores and TAM bits. These problems are small
and easy to solve because the number of cores is small. The
number of TAMs can be the upper bound on enumeration
and alleviate the enumeration process. In the third part, an
optimal test architecture is sought out by enumerating small
problems. Repeatedly speaking, the test architecture op-
timization is based on enumeration of problems shown in
Section 2. Tree pruning is done by the theorems introduced
in this section.

Optimizations were done for d695 of ITC ’02 benchmark
SOCs. Test designs of d695 are shown in Table 1 in order
to evaluate the optimization proposed in this section. Two
group configurations for d695 are shown in Table 3.

Table 3. Two hypothetical FPs for d695.
Core # 1 2 3 4 5 6 7 8 9 10

Floorplan 1 {1,2} {1,3} {1,3} {1,3} {3} {2,3} {2,3} {2,3} {1,2} {1,2}
Floorplan 2 {1,2} {1} {1} {1} {2} {2} {2} {2} {2} {1,2}

Floorplan 1 has a more discretionary grouping to assign
cores to multiple groups than Floorplan 2. In Floorplan 2,
only Cores 1 and 10 can be assigned to multiple groups. Op-
timal test architectures for Floorplans 1 and 2 are shown in
Tables 4 and 5. In these tables, the minimal test times with
and without floorplanning constraints are shown for the pur-
pose of comparison. In the tables, “Optimal TAM width
configurations”, “Optimal assignments to groups” and ”Op-
timal assignments to TAMs under FP constraints” are also
shown in these tables. ∆t means how much test time rises
with floorplan constraints. Computation times to obtain an
optimal test architecture under FP constraints are shown in
the last column. The optimizations were done for 10, 20,
30, 40, 50 and 60 of TAM bits. According to the experimen-
tal results shown in the tables, all the test times derived for
Floorplan 1 are shorter than the ones for Floorplan 2, though
the difference between the minimal test times is quite slight.

Table 4. Optimal test architecture of d695 under Floorplan 1.
Total
TAM
bits

Test time without
FP constraints

Test time with
FP constraints

TAM width
configuration Assignment to group Assignment to TAMs ∆t

Computation time
(HH:MM:SS)

10 67146 68013 {3}, {1}, {6} (1,1,1,1,3,3,2,3,1,1) (1,1,1,1,1,1,1,1,1,1) 1.29 % 00:00:03.34
20 33895 34616 {1}, {5}, {6,8} (1,3,1,1,3,3,3,2,2,2) (1,1,1,1,2,1,2,1,1,1) 2.13% 00:00:33.63
30 22670 23275 {1}, {7}, {1,4,17} (1,1,1,3,3,3,3,3,2,2) (1,1,1,2,3,3,2,1,1,1) 2.67% 00:04:14.32
40 17523 17523 {2}, {3,19}, {16} (1,3,1,1,3,2,3,2,2,2) (1,1,1,1,1,2,1,1,1,2) 0% 00:24:12.80
50 13844 13844 {2}, {11}, {2,16,19} (2,3,3,1,3,3,3,3,2,2) (1,2,1,1,2,3,3,1,1,1) 0% 02:08:34.58
60 11420 11420 {3}, {11}, {2,4,6,17,17} (2,3,1,3,3,3,3,3,1,2) (1,2,1,2,4,5,3,1,1,1) 0% 11:11:02.20

Table 5. Optimal test architecture of d695 under Floorplan 2.
Total
TAM
bits

Test time without
FP constraints

Test time with
FP constraints

TAM width
configuration Assignment to group Assignment to TAM ∆t

Computation time
(HH:MM:SS)

10 67146 68914 {1}, {4,5} (2,1,1,1,2,2,2,2,2,2) (2,1,1,1,2,1,1,1,2,2) 2.63 % 00:00:00.44
20 33895 35135 {1,4}, {7,8} (1,1,1,1,2,2,2,2,2,1) (2,2,1,1,1,2,2,1,2,2) 3.66 % 00:00:05.13
30 22670 23442 {3}, {1,8,18} (1,1,1,1,2,2,2,2,2,2) (1,1,1,1,3,3,2,1,3,2) 3.41 % 00:00:30.88
40 17523 17624 {1,2}, {3,4,11,19} (1,1,1,1,2,2,2,2,2,2) (1,1,2,2,3,4,2,1,1,4) 0.58 % 00:01:35.82
50 13844 14144 {4}, {2,9,16,19} (1,1,1,1,2,2,2,2,2,2) (1,1,1,1,3,4,4,1,3,2) 2.17 % 00:04:42.58
60 11420 11519 {5}, {2,17,17,19} (2,1,1,1,2,2,2,2,2,2) (1,1,1,1,3,4,2,1,4,2) 0.87 % 00:13:14.22

The computation times
for Floorplan 1 are
much longer than the
ones for Floorplan 2
because there are more
test architectures to be
sought in Floorplan 1
than in Floorplan 2.
There is a trade-off
between discretion of
floorplan and compu-
tation time. Figure
4 shows optimal test
architectures under
Floorplans 1 and 2
when total TAM bits



are 50. In the figure, the x-axis corresponds to test
time and the height of each box means the width of the
corresponding TAM.

Core 2 Core 5

Core 6 Core 7

14144

Floorplan 1

Floorplan 2

Test time [cycles]
0

Core 8

Core 10

Core 5 Core 9

Core 6 Core 7

Group 2

Group 1 Core 2 Core 3 Core 4Core 1

13844
Test time [cycles]

0

Core 4Group 1

Core 3 Core 8

Group 3

Group 2 Core 9 Core 10Core 1

Figure 4. Optimal architecture when wSOC = 50.

5 Conclusions
In this paper, a test architecture optimization under floor-

planning constraints was discussed. There are mainly two
contributions in this proposal. The first contribution is
that test architecture optimization taken floorplanning con-
straints into account is proposed. The models of the former
researches were idealized too much to optimize test archi-
tectures of practical SOCs. There are strict place-and-route
constraints in designing practical SOCs and our proposal of-
fers system designers a powerful test architecture optimiza-
tion in such practical SOCs. The second contribution is to
adjust computation time of test architecture optimization.
Floorplanner can determine how an SOC should be floor-
planned, how many groups there are on the SOC and how
many cores each group has. Our experiments showed that
the differences between floorplannings made computation
times vary from minutes to hours. For example, given 60
of TAM bits, it took more than 2 hours to optimize a test
architecture under a floorplan for d695, though less than 5
minutes for the other floorplan. This validates computa-
tion time can be adjusted by the number of cores per group
which floorplanners can determine.

In future work, floorplanning consideration should be
extended to the other TAM architectures. There are sev-
eral TAM architectures proposed before. It must be also
researched how floorplanner determines groups and core as-
signment to groups.
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A The Upper Bound of TAM Width
A theorem was introduced in [7] as follows.

Theorem 1 in [7]
If a core has n functional inputs, m functional outputs, and
sc internal scan chains of lengths l1, l2, · · · , lsc, respectively,
an upper bound kmax on the TAM width required to minimize
testing time is given by 	max{n,m}+∑sc

i=1 li
maxi{li} 
.

This theorem is false. For example, let us assume a core
has 4 internal scan chains of lengths 5, 3, 3, 3 respec-
tively. To make the example clear, there are no functional
inputs and outputs for this core. According to the theorem,
kmax =

max{0,0}+(5+3+3+3)}
max{5,3,3,3} = 	2.8
 = 3. The true upper bound

is, however, 4 because scan chains cannot be split. This
contradicts the theorem.
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