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Abstract

Information integration comprises the three steps:
data discovery; information extraction; and infor-
mation integration. In this paper, we focus on the
data discovery step which is crucial for the fol-
lowing steps. We first define what the data dis-
covery is from the viewpoint of information ex-
traction. The problem is, given a large amount of
files, to find some sets of files such that found files
in each set share some template. Each set corre-
sponds to a template and multiple templates could
be hidden in given files. We exploits a linear time
algorithm which was originally developed by the
authors for the common parts detection problem.
The algorithm found different templates from col-
lected Web pages including many noise files. We
can cluster files according to the found templates.
Files of a cluster is used as input data for an infor-
mation extraction algorithm.

1 Introduction
The recent upsurge of data on the Web and its diversity pose
the necessity of data integration. In the chaotic Web, how-
ever, many sites and persons provide series of data with the
same type. For example, news articles on an online news
outlet, blog entries, search result pages, catalogs on a shop-
ping site, and so on. Once we can extract contents from
such data and integrate them into a single database, we can
easily find, compare, and utilize data on the Web. Imagine
that we have an integrated database of cars of various mak-
ers and that you want to buy a sedan. All you need is just
to search the database.

This scenario is completed by the following steps: data
discovery; information extraction; and data integration. In-
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formation extraction has been well studied [2, 3, 5, 6, 8,
13, 15, 18]. Information integration has also been well
studied, but the target is databases. Some researches on
information integration for data on the Web appears re-
cently [4, 10, 12, 16, 19]. In standard information extrac-
tion approaches, input files are assumed to have some sim-
ilar structures and styles. However, it has not been consid-
ered how to find and collect them.

What are requirements for a data discovery algorithm?
First, the algorithm has to find a site providing files with
common structures. In [7], only clustering after this step
is considered. In a found site,all files do not share the
single structure in general. Moreover, several classes of
structures could be hidden in a single site. So, the next task
for the algorithm is to find templates among input files and
to remove files without template. And finally, the algorithm
clusters files according to the found templates. Thus the
data discovery algorithm has to find, given files collected
exhaustively by a crawler program, some sets of files such
that files in each set share some template.

We can see that finding a common structure equals to
finding some characteristic feature, such as machine learn-
ing, wrapper generation, data mining, clustering and so on.
However, we can not exploit an algorithm of such a field for
the data discovery since they are not so fast from the prac-
tical viewpoint and they require some background knowl-
edge, such as the minimum support for data mining, train-
ing examples for machine learning, and the number of clus-
ters for unsupervised clustering. But preparing appropriate
parameters or examples is difficult when we consider data
discovery since any data are not found yet.

As described above, it is necessary for a data discov-
ery algorithm to collect files which share some features.
But it is not necessary that such a feature completely de-
scribes collected data when we consider the data discovery
for information extraction since to find more complex and
descriptive features is a task after gathering data. Instead, it
is necessary for a data discovery algorithm to be fast, scal-
able, and robust for noise since the algorithm must process
a huge amount of data including noise files.

In this paper, we exploit an algorithm, called thesub-
string amplification, for the data discovery. We adjust the
algorithm since it was originally developed by the authors



to detect the common part among given text data [9, 11].
Although a found common part is simply defined as a set
of common substrings, it is enough for a data discovery al-
gorithm to express some common structure. The authors
proved that the algorithm runs in linear time with respect
to the total length of input files.

The algorithm calculates the total numberF( f ) of occur-
rences of substrings appearing exactlyf times in input files,
and finds somef ’s providing extremely largeF( f ) values.
This amplifies the disparity of frequencies between sub-
strings in a template and substrings in non-template parts.
Therefore we see high peaks in anF( f ) graph (see Fig. 1)
if input files contain common templates. Each peak corre-
sponds to a template because a long substring in a template
appears as many times as the number of files generated
from the template. On the other hand, words or phrases
in non-template parts hardly appear frequently since they
are written in a natural language.

In [9, 11], given input files are assumed to be gener-
ated by a regular pattern [17] in the context of the ma-
chine learning of the pattern language [1]. Apattern is a
string over constant and variable symbols. By substitut-
ing constant strings into all variables, a language is de-
fined by a pattern. A pattern isregular if each variable
appear at most once. The template for a pattern is a set
of constant strings. For example,p = axby is a regular
pattern, wherea andb are constants, andx andy are vari-
ables. Its template is{a,b}. The languages defined byp
is L = {axby | x, y ∈ {a,b}+}. We think a variable as a
contents holder.

The authors considered only the case that input files are
generated by a regular pattern. Many templates, however,
may be hidden in input files and some type of contents ap-
pear repeatedly in one file. For example, a standard search
result page contains 10 search results in one page. Thus we
extend the substring amplification in Section 3.

We show two experimental results using data on the
Web. They were collected by following links recursively
from the top page of a site, and we have about 600 and
2,500 files, respectively. The extended substring amplifi-
cation found many templates among input files including
noise files. Some of the found templates are intended for
whole-page layout so that files created by them look sim-
ilarly. Other templates contain only local layout informa-
tion, such as “HOME” and “BACK” buttons at the bottom
of each page. The algorithm also found such a local tem-
plate successfully. Using these template, we can cluster
files and then files in a cluster can be an input for an infor-
mation extraction algorithm.

2 Substring Amplification

In this section, we explain the substring amplification ac-
cording to [9, 11].

The basic idea for the substring amplification is as fol-
lows. Consider that we have text files generated by some
pattern. For example, news article files in which only
contents parts are replaced. When there exist different
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Figure 1:F( f ) graph for articles of “Sankei Shimbun”

types of contents, say three different types, we havep =

w1xw2yw3zw4, where eachwi is a constant string. Each
type of contents is substituted into corresponding variable.
Since contents are written in a natural language, there exist
few possibilities that a long substring appears frequently if
it is in contents parts. On the other hand, a long substring
of wi appears as many times as the number of the files. Thus
we expect that we can find the template using frequencies
of substrings if we have enough input files.

To count substrings, it is necessary to define the length
to count in advance, otherwise just characters, which are
the shortest substrings, appear frequently, and hide sub-
strings we want to find. It is difficult, however, to decide
an appropriate length before we get data files (see Sec-
tion 5 for more discussion). Instead of deciding some fixed
length, we countall substrings, sum up their frequencies,
and calculateF( f ) for all f , whereF( f ) is defined as fol-
lows. LetS be a set of strings1 andV( f ) be a set of sub-
strings which appear exactlyf times inS. Then we define
F( f ) = f × |V( f )| so thatF( f ) is the total number of occur-
rences of substrings appearing exactlyf times inS.

Fig. 1 shows anF( f ) graph for 50 news files of “Sankei
Shimbun2.” These files are generated by some patternp
containing four different types of contents: date, headline,
sub-headline, and body. 50 files were given to the algo-
rithm without any modification (see Fig. 2).

We see that a clear peak atfp = 50 which equals to
the number of input files. A substring appearing exactly
fp times is a part of the hidden template. The peak is con-
stituted by adding occurrences of all substrings appearing
exactly fp times. Therefore we call this method the sub-
stringamplification.

The template identified byfp = 50 contains several sub-
strings and each of them enough long. The stringw in
Fig. 2 is a part of the template between the date and the
headline of an article. We see white spaces including new-
lines and multi-byte characters. 72 characters are included
in w so that the number of all occurrences of substrings
in w is 72 · (72− 1)/2 = 2556. Moreoverw is included in

1The substring amplification treats a file just as a string even if the file
contains a structure like the tree structure of HTML tags.

2http://www.sankei.co.jp/



</b></i><br><P>
<center>
<table width=467>
<tr>
<td>

<!--------ヘッダ情報終了--------->

<!------------★★ここから入れ替えてね・ ・
---------------->
<font color="#8b0000">■</font><b>

Figure 2: String used for the template of “Sankei Shimbun”

all articles. Thus we haveF(50) = 2556× 50. On the other
hand, we have few substrings which are enough long and
appear frequently in contents. For example, “The prime
minister Koizumi” (26 characters) may appear frequently
in news articles, but it contains only 26· (26− 1)/2 = 325
substrings. Due to the same reason, we can not expect that
a single or a series of few tags become a whole template3

although it appears frequently in HTML files.
We also see other peaks atf = c×50 (c = 2,3, . . .) since

some substrings appear twice or more times in the template.
For f , c × 50 (c = 1,2, . . .), we have smallF( f ) if f is
enough large. This shows that a substring in a contents part
is hard to appear frequently.

From these observations, we define the maximal peak.

Definition 1 Let

G( f ) =
F( f )

(F( f − 1) + F( f + 1))/2
,

whereF( f ) = 1 if F( f ) is undefined. Then we say that a
frequencyfp provides the maximal peak ifG( fp) is maximal
among allG( f ) values.

From above observations, we can say that to find the maxi-
mal peak means to find a template.

To find the maximal peak, we have to count substrings.
But it takesO(n2) time for a string with lengthn to count
substrings directly since there existO(n2) substrings. In-
stead, the substring amplification employs the suffix tree as
the data structure.

The suffix tree for a stringw is the compact trie for all
suffixes ofw [14]. For a nodeu of the tree,BS(u) denotes
the string obtained by concatenating all strings labeled on
the edges of the path from the root tou. BS(u) is called
a branching string. The number of occurrences ofBS(u)
in w equals to the number of leaves belowu. For example,
BS(u) = ssi appears twice inmississippi$4 andu has two
leaves in the suffix tree (see Fig. 3).

Let v be the parent ofu. ObviouslyBS(v) is a proper
prefix of BS(u). Moreover, letx be a prefix ofBS(u) which
includesBS(v) as a prefix. Then the numbers of occur-
rences ofx and BS(u) in w are the same. For example,

3It could be apart of a template, of course.
4The last character “$” explicitly shows the end of the string.

Figure 3: Suffix tree formississippi$

algorithm main(var S: set of strings):
set of strings

var
V, F: hash table;

begin
V:=Count(S);
for f in keys(V);

F(f):=0;
for w in V(f);
F(f) += f|w|;

end;
end ;
f:=FindPeaks(F);
return(V(f));

end

Figure 4: A pseudo code of the substring amplification

bothBS(u) = ssiandssappear twice. Therefore when we
count substring frequencies, all we have to do is to count
only branching strings.

In a suffix tree, a node corresponds to a frequency. This
fact leads the followin key lemma since the number of
nodes in a suffix tree isO(n).

Lemma 1 There exist at mostO(n) different frequencies of
substrings, wheren is the total length ofS.

Fig. 4 is a pseudo code of the substring amplification.
An input is a setS of strings and an output is a set of
branching strings inS. A template which generatesS con-
sists of these branching strings.

Count(S) counts frequencies ofBS(u) for each nodeu
in the suffix tree for all strings inS. This is done inO(n)
time. And then the subroutine creates a hash tableV in
which a key is a frequencyf and a value isV( f ).

The algorithm then calculatesF( f ) from V( f ). We need
to count frequencies for both non-branching and branch-
ing strings althoughV contains those for only branching
strings. It takes alsoO(n) time to computeF( f ) since cal-
culationF(f)+=f|w| is totally executed as many times as
the number of branching strings.

Then the algorithm callsFindPeaks(F) which returns
a frequency providing the maximal peak. From Lemma 1,
there exist at mostO(n) different frequencies. Therefore
this routines done inO(n) time.



F(f)

f

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 1  10  100  1000  10000  100000  1e+06

f=61, 62

f=103, 110

F(f)

f

Figure 5:F( f ) graphs for Web pages in Kyushu University, wheref ≥ 1 (left) and f ≥ 5 (right)

Theorem 1 ([9, 11]) The time complexity of the algorithm
in Fig. 4 isO(n), wheren is the total length of strings inS.

3 Data Discovery with the Substring Ampli-
fication

When we consider a single template, all we have to do is to
find the highest peak only. But in the case of the data dis-
covery, we have to find multiple sets of files generated from
different templates. This means that several peaks must be
considered. We introduce a threshold valueδ and redefine
a peak as follows.

Definition 2 Given a thresholdδ, we say that a fre-
quencyf provides a peak ifG( f ) > δ.

By the above definition, a user must give a threshold
value. But this is not a hard burden for the user since the
substring amplification does not employ any pruning tech-
niques and so the user can change the value dynamically
even after counting substrings without any additional costs.

Next we extend the algorithm. We give a positive num-
ber asδ to the algorithm in addition toS. We also giveδ
to theFindPeaks(F, δ) which now returns multiple fre-
quencies providing peaks. SinceFindPeaks(F) calcu-
latesG( f ) for eachf , obviously the time complexity is not
changed.

Corollary 1 The time complexity of the extended algo-
rithm is alsoO(n).

In the previous section, it is mentioned that it is rare for
a substring to appear frequently if it is in contents parts.
This also holds even if input files generated by multiple
templates. Moreover, a long substring in a template of the
templates appears as many times as the number of files gen-
erated by the template. Therefore substrings in the template
appear frequently. Thus we can again find multiple tem-
plates by frequencies of substrings.

4 Experiments

In this section, we show two experimental results using text
data on the Web.

Figure 6: HTML files generated from the template identi-
fied by f = 57 (English and Japanese)

First, we give 598 HTML files (5584 Kbytes) into the
algorithm. They were collected by following links recur-
sively at most three depth from the top page of Kyushu
university5. Kyushu university has many schools, insti-
tutes, faculties, and departments. They have their own Web
pages independently. In this sense, we can say that gath-
ering pages at a large university, like Kyushu university,
means gathering pages among different sites.

Fig. 5 is F( f ) graphs for these files. Compared to the
graph in Fig. 1, peaks are smaller and irregular in the left
graph in Fig. 5.

The template identified byf = 57 is used for Web pages
of international academic exchanges (see Fig. 6). These
pages are written in English or Japanese. Each page con-
tains table(s), but the number of tables are different be-
tween pages. The substring amplification is not affected by
neither the contents language nor the number of instances.

The template identified byf = 62 is used in 62 pages.
One of them is the top page of Kyushu university (the left
most picture in Fig. 7) and the same style is also used for

5http://www.kyushu-u.ac.jp/



Figure 7: HTML files generated from the template identified byf = 62. Navigation links at left-hand side and the search
form at the upside are the common among these files
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Figure 8: F( f ) graphs for Web pages in Sankei Shimbun,
where f ≥ 5

the other two pictures in Fig. 7.
The template off = 28 consists of only the background

color, “HOME” button, and “BACK” button. The buttons
are at the bottom of each page. The substring amplification
can find such small and local characteristics among a lot of
Web pages.

Second, we give 2495 HTML files (53.8 Mbytes) col-
lected from the top page of “Sankei Shimbun.” Compared
to the previous experiment, the data size is quite large.
Fig. 8 is theF( f ) graph for these files. The substring ampli-
fication also found many templates among these files. The
maximal peak is atf = 572.

The above results show necessity for data discovery
even when we consider files from a single site since dif-
ferent templates are used even in a single site and not all
files gathered from a single site share the templates.

5 Discussion

In our setting, we count substrings with any length. On the
other hand, inn-gram statistics, which is a major frame-
work in natural language processing, we count substrings
with lengthn or series ofn words, wheren is fixed. When
we countn words, we need to do morphological analy-
sis although we can not know what kind of language de-
scribes contents. The former case (n characters) involves
another difficult problem. For a smalln, substrings with
high frequencies are oftenstop words. Therefore we need
a list of stop words and remove them. But the list depends
on languages. Thus this framework requires to have some
background knowledge. Instead, the substring amplifica-
tion countsall substrings and calculatesF( f ). A longer

substring gives a largeF( f ) which negatesF( f ) for short
stop words.

Frequent pattern mining also involves a similar prob-
lem. To avoid this, in this framework, a user must provide
a threshold value to a pattern mining algorithm. Unlike the
substring amplification, a user can not change this value dy-
namically since a frequent pattern mining algorithm prunes
its search space using the threshold.

In general, files sharing with some template in a site are
stored in one directory. Therefore you expect that a data
discovery algorithm can collect such files by only the string
processing of URLs, such as an algorithm in [7]. Such a
heuristics method, however, does not guarantee that col-
lected files areall files which share the template. In fact,
the proposed algorithm found Web pages which are stored
in different directories. On the other hand, the substring
amplification is guaranteed to collectall files sharing the
template exhaustively even if input files are collected from
different sites.

6 Conclusion

We showed that the extended substring amplification can
find groups of files such that files in each group are gener-
ated by some common template. Therefore our algorithm is
applicable to the first step of information integration, data
discovery.

The substring amplification is an unsupervised cluster-
ing algorithm. The algorithm uses a frequencyf as its fea-
ture. This enables the substring amplification to be a lin-
ear time algorithm. Moreover, the algorithm finds multiple
templates even if the number of templates are not fixed in
advance and input files are very noisy.

Using this algorithm, we can gather files written in any
formats and any languages since the algorithm treats a file
just a string, and counts all substrings instead of some
grammatical units, such as tags of HTML/XML or words
in some natural language. In the data discovery step, we
can not know what kinds of formats or languages are used.
Thus independence from formats and languages is impor-
tant for the data discovery step.

We assumed that a long substring does not appear in
any contents part frequently. This means that such a long
substring may appear frequently with some possibility. But
this is not a problem since the probability is enough small
from the practical viewpoint [9, 11].

We only showed experiments using files gathered from



only one site. But the substring amplification does not have
any limitation on the number of sites, and is applicable to
discovery among different sites. It is an interesting future
work to find blog sites or sites with search facilities, which
contain useful contents and they are created by some fixed
softwares, such as Movable Type6 and Namazu7.
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