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ABSTRACT 
Ab initio molecular orbital (MO) calculation is useful for 
solving many challenging problems regarding the 
development of new drugs, chemicals, polymers, materials, 
and so on.  In the EHPC (Embedded High Performance 
Computing) project, we are now developing a special-
purpose computer system for ab initio MO calculations in 
order to reduce the calculation time. 
The sequential execution time of ab initio MO is O(N4) 
where N is the number of basis functions, the heaviest 
computation being the electron repulsion integrals (ERI's).  
In order to accelerate ab initio MO calculations, it is 
necessary to develop a special-purpose processor for ERI 
calculation. 
Using the characteristics of ERI in the Obara algorithm 
makes it possible to reduce the calculation time.  In this 
work, we investigate a chip-multiprocessor (CMP) 
architecture, called Eric, for an application-specific 
processor able to perform fast ERI computations. 

Keywords 
Ab initio molecular orbital calculation, electron repulsion 
integral, application-specific processor, chip-
multiprocessor architecture 

INTRODUCTION 
The ab initio molecular orbital (MO) method presents 
important information about electronic state of molecules.  
It is therefore indispensable to analyze experimentally 
observed phenomena1 for designing function materials, for 
developing new drugs and so on.  It can also present 
information about inter-atomic interaction in molecular 
assemblies.  This method is one of the basis of all 
molecular simulation approaches.  The ab initio MO 
method spends most (+90%) of its execution time in the 
electron repulsion integral (ERI) calculation.  
Consequently, in order to improve the performance of MO, 
we have to speed up the ERI calculation.  Having for goal 

                                                           
1 Experiments are performed at the atomic level and based 

on quantum chemistry. 

to achieve this speed-up, we are currently developing an 
MO-specific processor, called Eric. 
Our ERI calculation algorithm is a new version of the 
Obara algorithm [3], whose current version is widely used 
today.  By means of the Obara algorithm, we can express 
an ERI calculation as a recurrence formula.  The 
recurrence calculation consists of many floating-point 
multiply-and-add operations and has a large amount of 
instruction-level parallelism (ILP).  Therefore we can 
perform fast ERI calculation by processing several 
multiply-and-add operations in parallel.  The Obara 
algorithm is roughly divided into two segments whose 
behaviors are quite different from each other.  One is the 
initial integral calculation and the other is the recurrence 
calculation.  The recurrence calculation is a series of 
floating-point multiply-and-add operations and has a rich 
ILP; on the other hand, the initial integral calculation 
contains some complex floating-point operations such as 
division, inverse square root, exponential function and 
error function, and it lacks in ILP.  The MO-specific 
processor Eric is optimized to the characteristics of the 
Obara algorithm, and can efficiently process both parts.  
Hence we have employed a chip-multiprocessor (CMP) 
architecture which consists of two engines: the initial 
integral calculation engine and the recurrence calculation 
engine.  We also have investigated the architecture of 
each engine. 
The rest of the paper is organized as follows: Section “ERI 
Calculation” explains the ab initio molecular orbital 
calculations and the characteristics of the Obara algorithm.  
Section “Eric: ERI-Calculation Processor” describes an 
outline of the Eric processor architecture which consists of 
two engines.  Section “Discussion on RC Engine 
Architecture” details the recurrence calculation engine and 
estimates different organizations.  Finally Section 
“Conclusions” concludes the paper. 

ERI CALCULATION 
This section outlines the ab initio MO calculations and 
describes the characteristics of the Obara algorithm for 
solving ERI calculation. 



Table 1: Computation Time for Some Peptide Molecules 

Table 1

Types of Peptide Molecules G GA GAQ GAQM GAQMY 
No. of Atoms 10 20 37 58 75 
No. of Shells 25 50 93 145 190 
Basic Size <4-31G Basis> 55 110 207 316 427 
Computation Time <seconds>  

Setup 0.1 0.1 0.1 0.1 0.3 
Initial Orbital Set 0.1 0.6 4.4 18.9 57.3 
ONE-ERI Calculation 0.1 0.3 1.5 5.0 10.1 
TWO-ERI Calculation 
& Fock-Matrix Generation 

22.9 
<96.6%> 

269.4 
<98.7%> 

1871.0 
<98.6%> 

8482.1 
<98.8%> 

23284.3 
<98.6%> 

Fock-Matrix Diagonalization 0.2 1.7 11.0 60.9 211.7 
Property Calculation 0.1 0.3 2.2 9.15 27.5 

 

Total CPU Time 23.7 272.9 1892.7 8584.9 23614.5 
No. of Iterations 12 14 15 16 19 

Note: 4-31G basis function set, using GAMESS, on Pentium-III with 512MB Main Memory 
 

Overview of MO 
We use the Hartree-Fock (HF) method for solving ab initio 
MO calculations.  The HF method is the most standard 
approximation technique.  In the HF method, the most 
time-consuming step is the Fock matrix generation 
including ERI calculations.  The computational load of 
the ERI calculation is O(N4), where N is the number of 
basis functions.  We measured the computation time for 
the HF method on a PC using GAMESS, a world-widely 
distributed free software for MO calculation.  The PC 
consists of a Pentium III CPU (500MHz), with 512M bytes 
main memory.   shows the ab initio MO 
computation time (sec) for five peptide molecules G, GA, 
GAQ, GAQM and GAQMY, and summarizes the time 
distribution for each step in the HF method, where the basis 
function set is 4-31G.  The results show that the TWO-
ERI calculation and Fock-Matrix generation consumes 
more than 95% of the total computation time.  It is 
important to reduce the computation time of ERI's, in order 
to accelerate the ab initio MO calculation. 

The Obara Algorithm for ERI Calculation 
In several algorithms for the ERI calculation, we adopt the 
Obara method [1,3].  The formulation in recently 
developed Obara method [1] is based on the recurrence 
formula over the contracted Cartesian Gaussian functions, 
it can be utilized in developing recurrence formulation of 
ERIs and one-electron integrals.  Each Gaussian function 
is defined by informations of atoms.  The angular 
momenta of each ERI can be specified by the 4 sets of 
orbital quantum numbers in which each set is written in 

three-dimensional vector form, we let to rewrite ERIs to 
, where , , ,  are orbital quantum vectors. (abcd ) a b c d
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Where  denotes the value of the three-dimensional 
orbital quantum vector, a , , ,  denote  

i
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components of , , , .  1  means the vector that if 
its component is  then it equals , else equals .  And 

 is the sum of the orbital quantum number.  The sum of 
ingredients of the orbital quantum vector is called the 
orbital quantum number, its values: 0 ,  and  are 
called the orbital 
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The calculation of initial integrals 
 is one of the most time-

consuming steps in the ERIs calculations.  Initial integral 
of the ERI calculation reduces to 
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for (I=0; I<Nshell; I++)
   for (J=0; J<I; J++)
      for (K=0; K<J; K++)
         for (L=0; L<K; L++)

for (i=0; i<Ni; i++)
for (j=0; j<Nj; j++)

for (k=0; k<Nk; k++)
for (l=0; l<Nk; l++)

Calculate Initial Integral <si, sj, sk, sl>

forend
forend

forend
forend

   Calculate <ai, aj, ak, al> Recurrently

         forend
      forend
   forend
forend

Initial Integral
Calculation Part

Recurrence
Calculation Part
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error function. 
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formulas depending on the value T .  For values from 
zero to 90, we employ the four-term Taylor expansion: 
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Figure 1: Loop Structure of the Obara Algorithm 

Figure 1

Figure 1

Characteristics of the Obara Algorithm 
The most characteristic point of the Obara algorithm is its 
process.  We first calculate an initial integral ( , )ss ss

)ab cd

 
with input data.  We then use this result to perform the 
recurrence calculation for a certain ERI ( , .  
Therefore, the Obara algorithm can be roughly divided into 
two segments: initial integral calculation and recurrence 
calculation as shown in . 

Initial Integral Calculation 
The initial integral calculation has a four-fold loop 
structure, as we can see in .  In the initial integral 
calculation, there is a small number of operations per 
iteration, each with a small amount of instruction-level 
parallelism (ILP).  To make matters worse, the initial 
integral calculation contains some complex floating-point 
operations such as division, inverse square root, 
exponential function, and error function. 

Recurrence Calculation 
Recurrence calculation computes a certain ERI ( ,  
after the processing of initial calculation is completed.  
The structure of the recurrence calculation part consists of 
two functions, called “recurrence function” and “horizontal 
function”, respectively, as shown in .  Moreover, 
each function has a hierarchical structure which calls the 
ERI_reccal subfunctions and ERI_horcal subfunctions, 
respectively.  A subfunction consists of a large number of 
floating-point multiply-and-add operations.  Since there 
are lots of parallelism between these multiply-and-add 
operations, we can process many operations 
simultaneously, namely we can process a subfunction in 
parallel.  And there are a lots of parallelism between 
subfunctions as well as between multiply-and-add 
operations, therefore we can process several subfunction in 
parallel too. 

)ab cd

Figure 2



Targ [  0] = High [  0] + ERI_ABx * Low [  0] ;
Targ [  1] = High [  1] + ERI_ABx * Low [  1] ;
Targ [  2] = High [  2] + ERI_ABx * Low [  2] ;

Targ [ 53] = High [ 17] + ERI_ABz * Low [ 17] ;

ERI_horcal_1120_b function call
ERI_horcal_1110_b function call
ERI_horcal_1111_d function call

ERI_reccal_0001_0000 function call
ERI_reccal_0100_0000 function call

ERI_reccal_0200_0100 function call

ERI_reccal_0202_0201 function call

…
…

Recurrence
Function

Horizontal
Function

ERI_reccal_0001_0000 functionrecurrence function (1111)

Recurrence
Calculation

horizontal function (1111)

ERI_horcal_1120_b function

…
…

ERI_reccal_0001_0000 function call

…

ERI_horcal_1120_b function call

High [  0] = ERI_DCx * Med1 [  0]
           + ERI_CDx * Med2 [  0]
           + ERI_BAx * Med3 [  0]
           + ERI_ACx * Med4 [  0] ;
High [  1] = ERI_DCy * Med1 [  0]
           + ERI_CDy * Med2 [  0]
           + ERI_BAy * Med3 [  0]
           + ERI_ACy * Med4 [  0] ;
High [  2] = ERI_DCz * Med1 [  0]
           + ERI_CDz * Med2 [  0]
           + ERI_BAz * Med3 [  0]
           + ERI_ACz * Med4 [  0] ;

 

Figure 2: Hierarchical Structure of a Recurrence 
Calculation 

ERIC: ERI-CALCULATION PROCESSOR 
The Obara algorithm consists of two parts: the initial 
integral calculation and the recurrence calculation.  Their 
characteristics differ greatly, and the MO-specific 
processor Eric must process both at high speed.  This 
section describes the outline of the Eric processor 
architecture for fast ERI calculation. 

Design Goals 
In the previous chapter, we saw that the Obara algorithm 
have an extensive ILP.  To exploit this ILP, the Eric 
processor has many floating-point multiply-and-accumulate 
units and performs ERI calculation in parallel.  However, 
the design of a processor which has a lot of functional units 
brings the following problems: 

 Register file which supplies functional units with 
operands needs to have a great number of ports.  For 
the N arithmetic units, the area of the register file 
grows as N3, and the delay as N3/2 [4].  Hence the 
area and the delay of multi-port register file restrict 
the area and the performance of the processor. 

 Since the instruction code becomes very long, it is 
difficult to supply arithmetic units with it. 

In addition, there are also the following two problems: 
 The initial integral calculation part has less ILP, and 

consequently, arithmetic units are not fully used 
during its processing. 

 We suppose that the processor has internal program 
memory in order to ease the supply of instruction 
code, but there is a limit in the memory size which can 
be placed on a chip.  Therefore, we have to examine 
techniques for reducing the program size. 

We have to take the above-mentioned points into 
consideration when we develop the Eric processor 
architecture. 

Design Philosophy 
The Obara algorithm consists of two calculation parts 
which characteristic is quite different.  The design 

philosophy for coping with the two calculation parts, IIC 
part and RC part is as follows: 

 An IIC part including some complex floating-point 
operations accelerates processing by installing special 
functional units to a processor. 

 An RC part having rich ILP accelerate by installing 
many functional units to a processor and parallel 
processing. 

However, realizing the both functions by one processor is 
not efficient.  Because, it is the reason that IIC part does 
not need many functional units since parallelism is low, 
and RC part dose not need special functional units since 
there is no complex floating-point operation.  Therefore 
we decided to divide Eric processor into two engines: IIC 
engine and RC engine. 

Overview of Eric Processor 
As shown in , the Eric processor architecture 
consists of the following five modules. 

Figure 3

Figure 3: Overview of Eric Processor Architecture 

 Host Interface for communication with Host CPU, 
 External Memory Interface for accessing External 

Memory, 
 Internal Data Memory for storing the calculation 

results, 
 IIC Engine for the initial integral calculation, and 
 RC Engine for the recurrence calculation. 

The data used in this processor is IEEE 754 double-
precision floating-point numbers.  Therefore, all the 
functional unit, memory and interfaces are 64-bit width, 
and so, single precision floating-point numbers are not 
supported. 

HOST CPU

(SH4)

Internal
Data

Memory

Initial Integral
Calculation Engine

Recurrence
Calculation Engine

HOST
Interface

(SRAM I/F)

External
Memory
Interface

(SDRAM I/F)

External Memory

Extended processor
based on

MIPS architecture

Describes in Section
“Discussion on RC

Engine Architecture”
(Figure 6)

 



Table 2: Design Alternatives for RC Engine 

 Macro routine Micro routine Parallelism 
FS Subfunction call Subfunction execution Instruction-level 

FP Subfunction call Subfunction execution  Inter-functions  
& Instruction-level 

SP Statement call Statement execution Inter-statements 
& Instruction-level 

 

IIC Engine 
The initial integral calculation consists of various 
operations such as arithmetic, floating-point addition, 
multiplication, division, inverse square root, exponential 
function, function call and conditional branch.  Therefore, 
it is better to design the initial integral calculation (IIC) 
engine with the same organization as a general purpose 
processor.  In this processor, the IIC engine is an 
extension to the MIPS architecture. 

RC Engine 
Recurrence calculation (RC) engine is a processor which is 
specialized to the RC part of the Obara algorithm.  RC 
consists of only great many floating-point multiply-and-
adds operations.  Therefore, if many multiply-and-
accumulate units are installed in an RC engine, it can be 
expected that a program can be executed at high speed.  
However, as mentioned above, there is a problem in 
installing many MAC units in RC engine.  Then we 
consider the organization of RC engine with the following 
plans. 

 In RC engine, plural clusters which consist of register 
file (RF), load-store unit (LSU), and multiply-and-
accumulate (MAC) unit are created.  We call it 
subengine.  By dividing RC engine into plural 
subengine, the number of the functional units 
connected to a register file can be reduced.  Thereby, 
some problems which multi-port register file causes 
are avoidable with it. 

 RC engine has internal program memory, in order to 
ease supplying instruction code. 

 In order to make the characteristics of the Obara 
algorithm optimize, RC engine adopts hierarchical 
instruction code set which consist of two: macro 
routine and micro routine.  This is also for reducing 
program size. 

Then we consider the composition of detailed RC engine 
after this. 

DISCUSSION ON RC ENGINE ARCHITECTURE 
In the previous chapter, we showed that the Recurrence 
Calculation in ERI has a hierarchical structure and 
extensive instruction-level parallelism.  In this section, we 

examine the RC Engine architecture to be optimized with 
regards to those characteristics. 

Design Alternatives for RC Engine 
In the design of the RC engine, in order to reduce a size of 
program on chip, we adopt a program execution method 
which consists of two levels of routines: a macro routine 
and a micro routine.  As shown in , we evaluated 
three kinds of processor models: Function Serial (FS), 
Function Parallel (FP) and Statement Parallel (SP).  These 
three models are classified by the difference in the program 
portion assigned to a macro routine and a micro routine, 
and the difference in the amount of parallelism. 

Table 2

Function Serial (FS) 
The FS is the processor model which assumed VLIW 
architecture as the RC engine, and it is the base model of 
FP and SP.  In the FS model, subfunction calls are 
assigned to a macro routine which is placed in external 
memory.  On the other hand subfunction execution is 
assigned to a micro routine which is placed in the internal 
program memory.  When processing the recurrence 
calculation, the macro routine is sequentially read from 
external memory and the corresponding micro routine is 
processed using all functional units.  In this model, we use 
the ILP only for calculation of the recurrence calculation. 

Function Parallel (FP) 
The FP is the processor model which based on the FS.  In 
this model, assignment of the recurrence calculation to a 
macro routine and micro routine is the same, however there 
is a difference in the parallelism we can use.  As described 
in Subsection “Characteristics of The Obara Algorithm”, 
since there is parallelism between subfunctions in 
recurrence calculation, we can process many subfunctions 
in parallel.  In this model, two or more sub engines which 
consist of a set of some functional units is prepared into the 
RC engine.  When processing the recurrence calculation, 
several macro routines are read from the external memory 
in parallel, and the corresponding micro routines are 
processed in parallel too. 

Statement Parallel (SP) 
The SP model resembles FP with respect to the hardware 
organization.  However, the parallelism to achieve is 
different as there is parallelism between statements as well 
as between subfunctions.  Here, the statement is defined 



as a series of floating-point multiply-and-add operations.  
Therefore, many statements can be simultaneously 
processed in parallel.  When processing the recurrence 
calculation, this model reads several macro routines 
consisting of statement calls from external memory, and 
executes the body of statement in parallel with the two or 
more subengines as micro routines. 

Performance Evaluation 
We evaluated the performance of the above-mentioned 
three processor models. 

Evaluation Methodology 
In order to decide which processor model (FS, FP or SP) to 
adopt, the number of clock cycles which are reported by a 
code scheduler was used as a criterion.  For this 
estimation, we built a code scheduler for each model of RC 
engine.  The code scheduler generates the micro routine 
after having scheduled the input program (written in C).  

Then, from the generated micro routine, we estimated 
schedule length.  As a static scheduling algorithm, we 
adopted the critical path method, which is a one of list 
scheduling algorithms, based on the “critical path, most 
immediate successors first” priority [2]. 
We made evaluations for 12 models shown in .  
The result latency and the issue latency of the functional 
units common to each model are shown in Table 4.  In 
this paper, the result latency means the number of 
intervening cycles between an instruction that produces a 
result and an instruction that uses the result.  The issue 
latency means the number of cycles that must elapse 
between issuing two same instructions. 

Table 3

Table 3: Evaluation Models 

In this model, the size of register file is assumed infinite.  
And both the total number of MAC units and LSUs is not 
more than six as resources restrictions. 
 

 

Total Number 
Model 

No. of 
Subengine 

No. of MAC 
per Subengine 

No. of LSU 
per Subengine MAC LSU 

For evaluation focusing on the difference in parallelism 
FS1,6,6 1 6 6 
FP2,3,3 2 3 3 
FP3,2,2 3 2 2 
FP6,1,1 6 1 1 
SP2,3,3 2 3 3 
SP3,2,2 3 2 2 
SP6,1,1 6 1 1 

6 6 

For evaluation focusing on the difference in organization 
FP2,1,1 2 1 1 2 2 
FP2,2,1 2 2 1 4 2 
FP2,3,1 2 3 1 6 2 
FP3,1,1 3 1 1 3 3 
FP4,1,1 4 1 1 4 4 

 

Table 4: Latency of Each Functional Unit 

 MAC LSU 
Result Latency <clock cycles> 6 5 
Issue Latency <clock cycles> 1 1 
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Figure 4: Performance Comparison among FS, FP, and SP 
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Evaluation Results 
We tested the three models (FS, FP and SP) and evaluated 
which technique is the optimal.  In this experimentation, 
the number of LSU and MAC was six in each model.  We 
evaluated about all possible organizations.  Among these, 
only the results whose features stood out are shown in 

.  That is, since the performance of SP2,3,3 and 
SP3,2,2 were lower than that of SP6,1,1, only the result of 
SP6,1,1 is shown in the graph.  The graph is normalized to 
FS1,6,6, so we can see the speedup ratio of each model 
compared to FS1,6,6 from the graph. 

Meanwhile we limited to model FP and evaluated about the 
difference in the organization about subengines.  When 
FP2,1,1 was a base model, we evaluated the difference of 
performance about each case: added FU to the base model 
(FP2,2,1 or FP2,3,1) and increased the number of subengines 
(FP3,1,1 or FP4,1,1).   showed a graph of the result.  
The graph is normalized to FP2,1,1, so we can see the 
speedup ratio of each model compared to FP2,1,1 from the 
graph.  Moreover, the graph of FP6,1,1 is appended to 

 for reference of comparison with Fi . 
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Figure 6: Organization of RC Engine 

Discussion 
As the Figure 4 which shows FP6,1,1 is the fastest in almost 
all cases. 
Moreover, as the Figure 5 which shows the evaluation 
result about the difference in the organization shows that, 
model FP3,1,1 and FP4,1,1 which the number of subengines 
made to increase show the high improvement in a 
performance in comparison with model FP2,2,1 and FP2,3,1 
which added MAC units to base model FP2,1,1. 
That is, the following considerations are drawn from these 
results: 

 As a result of comparing Models FS, FP, and SP, a 
model FP with many subengines is the fastest. 

 From the evaluation result about the organization of 
FP, increasing the number of a subengine leads to 
improvement in a performance, in comparison with 
the case which increased the number of MAC per one 
subengine. 

RC Engine Design 
From above stated investigation, we determined RC 
engine's specification as follows: 

 RC engine has four to six subengines which consist of 
a register file, a load-store unit and a multiply-and-
accumulate unit. 

 We adopt a program execution method consisting of 
two routines: a macro routine and a micro routine. 

 Subfunction call and subfunction execution are 
assigned to a macro routine and a micro routine, 
respectively. 

 RC engine has the internal memory which supplies a 
micro routine to subengines. 

The final schematic of RC engine design is shown in 
Figure 6. 

CONCLUSIONS 
In this paper, we discussed the architecture of an ERI 
calculation specific processor architecture Eric.  Our ERI 
calculation algorithm is a new version of the Obara 
algorithm which consists of two parts: initial integral 
calculation and recurrence calculation.  Although their 
characteristics differ greatly, Eric processor needs to 
process both at high speed.  Then, we divided Eric 
processor into two engines: IIC engine and RC engine.  
The IIC engine is an extension to the MIPS architecture 
and has special functional units for complex floating-point 
operation included in initial integral calculation.  The RC 
engine has four to six subengines which consist of a 
register file, a load-store unit and a multiply-and-
accumulate unit.  And the RC engine adopts hierarchical 
instruction code set which consist of two routines: macro 
routine and micro routine. 
Now we are creating specifications of Eric processor and 
performing logic design.  The exact performance of Eric 
processor will be estimated in winter 2002. 
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