
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Eric: A Special-Purpose Processor for ERI
Calculations in Quantum Chemistry Applications

Nakamura, Kenta
Kyushu University

Hatae, Hidenori
Kyushu University

Harada, Muneyuki
Kyushu University

Kuwayama, Yoji
Kyushu University

他

https://hdl.handle.net/2324/6016

出版情報：SLRC 論文データベース, 2002-12
バージョン：
権利関係：

 Eric: A Special-Purpose Processor for
ERI Calculations in Quantum Chemistry Applications

Kenta NAKAMURA1, Hidenori HATAE1, Muneyuki HARADA1, Yoji KUWAYAMA1,
Masamitsu UEHARA2, Hisao SATO2, Shigeru OBARA3, Hiroaki HONDA5,

Umpei NAGASHIMA4, Yuichi INADOMI5, Kazuaki MURAKAMI1
1 Kyushu University, 2 Seiko Epson Corp., 3 Hokkaido University of Education,

4 National Institute of Advanced Industrial Science and Technology,
5 Fuji Research Institute Corp.

ehpc-lsi@star.fuji-ric.co.jp

ABSTRACT
Ab initio molecular orbital (MO) calculation is useful for
solving many challenging problems regarding the
development of new drugs, chemicals, polymers, materials,
and so on. In the EHPC (Embedded High Performance
Computing) project, we are now developing a special-
purpose computer system for ab initio MO calculations in
order to reduce the calculation time.
The sequential execution time of ab initio MO is O(N4)
where N is the number of basis functions, the heaviest
computation being the electron repulsion integrals (ERI's).
In order to accelerate ab initio MO calculations, it is
necessary to develop a special-purpose processor for ERI
calculation.
Using the characteristics of ERI in the Obara algorithm
makes it possible to reduce the calculation time. In this
work, we investigate a chip-multiprocessor (CMP)
architecture, called Eric, for an application-specific
processor able to perform fast ERI computations.

Keywords
Ab initio molecular orbital calculation, electron repulsion
integral, application-specific processor, chip-
multiprocessor architecture

INTRODUCTION
The ab initio molecular orbital (MO) method presents
important information about electronic state of molecules.
It is therefore indispensable to analyze experimentally
observed phenomena1 for designing function materials, for
developing new drugs and so on. It can also present
information about inter-atomic interaction in molecular
assemblies. This method is one of the basis of all
molecular simulation approaches. The ab initio MO
method spends most (+90%) of its execution time in the
electron repulsion integral (ERI) calculation.
Consequently, in order to improve the performance of MO,
we have to speed up the ERI calculation. Having for goal

1 Experiments are performed at the atomic level and based

on quantum chemistry.

to achieve this speed-up, we are currently developing an
MO-specific processor, called Eric.
Our ERI calculation algorithm is a new version of the
Obara algorithm [3], whose current version is widely used
today. By means of the Obara algorithm, we can express
an ERI calculation as a recurrence formula. The
recurrence calculation consists of many floating-point
multiply-and-add operations and has a large amount of
instruction-level parallelism (ILP). Therefore we can
perform fast ERI calculation by processing several
multiply-and-add operations in parallel. The Obara
algorithm is roughly divided into two segments whose
behaviors are quite different from each other. One is the
initial integral calculation and the other is the recurrence
calculation. The recurrence calculation is a series of
floating-point multiply-and-add operations and has a rich
ILP; on the other hand, the initial integral calculation
contains some complex floating-point operations such as
division, inverse square root, exponential function and
error function, and it lacks in ILP. The MO-specific
processor Eric is optimized to the characteristics of the
Obara algorithm, and can efficiently process both parts.
Hence we have employed a chip-multiprocessor (CMP)
architecture which consists of two engines: the initial
integral calculation engine and the recurrence calculation
engine. We also have investigated the architecture of
each engine.
The rest of the paper is organized as follows: Section “ERI
Calculation” explains the ab initio molecular orbital
calculations and the characteristics of the Obara algorithm.
Section “Eric: ERI-Calculation Processor” describes an
outline of the Eric processor architecture which consists of
two engines. Section “Discussion on RC Engine
Architecture” details the recurrence calculation engine and
estimates different organizations. Finally Section
“Conclusions” concludes the paper.

ERI CALCULATION
This section outlines the ab initio MO calculations and
describes the characteristics of the Obara algorithm for
solving ERI calculation.

Table 1: Computation Time for Some Peptide Molecules

Table 1

Types of Peptide Molecules G GA GAQ GAQM GAQMY
No. of Atoms 10 20 37 58 75
No. of Shells 25 50 93 145 190
Basic Size <4-31G Basis> 55 110 207 316 427
Computation Time <seconds>

Setup 0.1 0.1 0.1 0.1 0.3
Initial Orbital Set 0.1 0.6 4.4 18.9 57.3
ONE-ERI Calculation 0.1 0.3 1.5 5.0 10.1
TWO-ERI Calculation
& Fock-Matrix Generation

22.9
<96.6%>

269.4
<98.7%>

1871.0
<98.6%>

8482.1
<98.8%>

23284.3
<98.6%>

Fock-Matrix Diagonalization 0.2 1.7 11.0 60.9 211.7
Property Calculation 0.1 0.3 2.2 9.15 27.5

Total CPU Time 23.7 272.9 1892.7 8584.9 23614.5
No. of Iterations 12 14 15 16 19

Note: 4-31G basis function set, using GAMESS, on Pentium-III with 512MB Main Memory

Overview of MO
We use the Hartree-Fock (HF) method for solving ab initio
MO calculations. The HF method is the most standard
approximation technique. In the HF method, the most
time-consuming step is the Fock matrix generation
including ERI calculations. The computational load of
the ERI calculation is O(N4), where N is the number of
basis functions. We measured the computation time for
the HF method on a PC using GAMESS, a world-widely
distributed free software for MO calculation. The PC
consists of a Pentium III CPU (500MHz), with 512M bytes
main memory. shows the ab initio MO
computation time (sec) for five peptide molecules G, GA,
GAQ, GAQM and GAQMY, and summarizes the time
distribution for each step in the HF method, where the basis
function set is 4-31G. The results show that the TWO-
ERI calculation and Fock-Matrix generation consumes
more than 95% of the total computation time. It is
important to reduce the computation time of ERI's, in order
to accelerate the ab initio MO calculation.

The Obara Algorithm for ERI Calculation
In several algorithms for the ERI calculation, we adopt the
Obara method [1,3]. The formulation in recently
developed Obara method [1] is based on the recurrence
formula over the contracted Cartesian Gaussian functions,
it can be utilized in developing recurrence formulation of
ERIs and one-electron integrals. Each Gaussian function
is defined by informations of atoms. The angular
momenta of each ERI can be specified by the 4 sets of
orbital quantum numbers in which each set is written in

three-dimensional vector form, we let to rewrite ERIs to
, where , , , are orbital quantum vectors. (abcd) a b c d

First, an initial integral (,)ss ss
)

 is computed from input
data. And ERI (computation is shown in the
following recurrence formula.

abcd

() | : , , , , ,i j ij k l klm g g G g g G=< >abcd abcd

() | : , , , , ,

() | : , (1), (1), , ,

() | 1: , (1), (2), , ,

() | 1: , , (1), , (1), (1)

() | 1: , , (1)

i j ij k l kl

u i j ij k l kl

u i j ij k l k

u i j ij k l

u i j ij

m g g G g g G

m g g G g g G

m g g G g g G

m g g G g g G

m g g G

l

kl

< + >

= − < + + >

+ − < + + + >

+ − < + + + +

+ − < + +

ua 1 bcd
B A abcd
A B abcd
D C abcd
C A abcd

>

, , ,

() () | : , , (1), , ,
2

() () | 1: , , (2), , ,
2

() () | 1: , , (1), , , (1)
2

() () | : , , (1), , ,
2

() (
2

k l kl

u
i j ij k l kl

u
i j ij k l kl

u
i j ij k l kl

u
i j ij k l kl

u

g g G

m g g G g g G

m g g G g g G

m g g G g g G

m g g G g g G

>

+ < − + >

− < − + + >

+ < − + + + >

− < − + >

− <

u

u

u

u

a a 1 bcd

a a 1 bcd

c ab c 1 d

b a b 1 cd

b a) | 1: , , (2), , ,

() () | 1: , , (1), , , (1)
2

i j ij k l kl

u
i j ij k l kl

m g g G g g G

m g g G g g G

− + + >

− < − + + + >

u

u

b 1 cd

d abc d 1

Where denotes the value of the three-dimensional
orbital quantum vector, a , , , denote

i
i ib ic id i

components of , , , . 1 means the vector that if
its component is then it equals , else equals . And

 is the sum of the orbital quantum number. The sum of
ingredients of the orbital quantum vector is called the
orbital quantum number, its values: 0 , and are
called the orbital

a
i
b c d i

1 0
m

1 2
s , and . Thus, ERIs can be

symbolized
p d

(,)ss s

,i j G

s , , etc. (,ps

,k g

)ss

,l G

(,dd)dd

l,g g ,ij g

,

()
lN

i

g ,

(

i j G

ζ ζ

,

)

ij

j

g ,

(

k g ,l

i j

G

ζ ζ
))j iji k

l

g Gg g((lζ ()lg

l
kζ ζ

()l

l

i j

i j

k

k

ζ ζ ζ ζ
ρ

ζ ζ ζ ζ
+ +

=
+ + +

2 (m

k

T
+

)
jζ ζ(, , ,i) (kζ , ,Ki j

i j

u
ζ ζ+ +

k lu F

l

V K
ζ ζ

A B C

2)1,A B) e
ζ ζ

+ +
xp= − (A ,−i j

i jζ ζ


i jζ ζ

1

0

2 2e() xp()m
mF T t Tt dt= −∫

()

i j

B A

m

()

lζ




.jζ lζ

()F T

k

−
+ +ζ ζ
−

ζ
C D 




= + + A C−

0 1m mF 0 2m+ +
−  +


0

(
2 3
ε ε

3+
()()T ())m T

m

T



,T

F 

0ε

0T
T

()m T

0

(2)
2(
m 1
2)

!!exp(mt T dt
∞ −

=≈ −∫

The calculation of initial integrals
 is one of the most time-

consuming steps in the ERIs calculations. Initial integral
of the ERI calculation reduces to

, | : kss ss m< >

0 0 0 0

, | :

1 1) ,
ji k

k

NN N
m

ijklm
i j k l k

ss ss m g

Vρ
ζ= = = =

< >=

+ +∑∑∑∑
where

kG l

for (I=0; I<Nshell; I++)
 for (J=0; J<I; J++)
 for (K=0; K<J; K++)
 for (L=0; L<K; L++)

for (i=0; i<Ni; i++)
for (j=0; j<Nj; j++)

for (k=0; k<Nk; k++)
for (l=0; l<Nk; l++)

Calculate Initial Integral <si, sj, sk, sl>

forend
forend

forend
forend

 Calculate <ai, aj, ak, al> Recurrently

 forend
 forend
 forend
forend

Initial Integral
Calculation Part

Recurrence
Calculation Part

()

and
5
2

,)ijklm l

u uπ
ζ= . D

(, ,i jK ζ ζ B 



where ()mF T is shown as follows, which is called the
error function.

and
2

()T ρ

The error functions are evaluated using two
formulas depending on the value T . For values from
zero to 90, we employ the four-term Taylor expansion:

()

)() () (,

F T

F T Fε

=

−
+ −

0





where
T= −

where has been evaluated for at intervals and
tabulated. Another formula, used for greater than 90,
is an asymptotic formula of

0()mF T

F , where the upper limit
of the integration range is replaced by positive infinity.

2 2)()m mF T t
T T

.π

Figure 1: Loop Structure of the Obara Algorithm

Figure 1

Figure 1

Characteristics of the Obara Algorithm
The most characteristic point of the Obara algorithm is its
process. We first calculate an initial integral (,)ss ss

)ab cd

with input data. We then use this result to perform the
recurrence calculation for a certain ERI (, .
Therefore, the Obara algorithm can be roughly divided into
two segments: initial integral calculation and recurrence
calculation as shown in .

Initial Integral Calculation
The initial integral calculation has a four-fold loop
structure, as we can see in . In the initial integral
calculation, there is a small number of operations per
iteration, each with a small amount of instruction-level
parallelism (ILP). To make matters worse, the initial
integral calculation contains some complex floating-point
operations such as division, inverse square root,
exponential function, and error function.

Recurrence Calculation
Recurrence calculation computes a certain ERI (,
after the processing of initial calculation is completed.
The structure of the recurrence calculation part consists of
two functions, called “recurrence function” and “horizontal
function”, respectively, as shown in . Moreover,
each function has a hierarchical structure which calls the
ERI_reccal subfunctions and ERI_horcal subfunctions,
respectively. A subfunction consists of a large number of
floating-point multiply-and-add operations. Since there
are lots of parallelism between these multiply-and-add
operations, we can process many operations
simultaneously, namely we can process a subfunction in
parallel. And there are a lots of parallelism between
subfunctions as well as between multiply-and-add
operations, therefore we can process several subfunction in
parallel too.

)ab cd

Figure 2

Targ [0] = High [0] + ERI_ABx * Low [0] ;
Targ [1] = High [1] + ERI_ABx * Low [1] ;
Targ [2] = High [2] + ERI_ABx * Low [2] ;

Targ [53] = High [17] + ERI_ABz * Low [17] ;

ERI_horcal_1120_b function call
ERI_horcal_1110_b function call
ERI_horcal_1111_d function call

ERI_reccal_0001_0000 function call
ERI_reccal_0100_0000 function call

ERI_reccal_0200_0100 function call

ERI_reccal_0202_0201 function call

…
…

Recurrence
Function

Horizontal
Function

ERI_reccal_0001_0000 functionrecurrence function (1111)

Recurrence
Calculation

horizontal function (1111)

ERI_horcal_1120_b function

…
…

ERI_reccal_0001_0000 function call

…

ERI_horcal_1120_b function call

High [0] = ERI_DCx * Med1 [0]
 + ERI_CDx * Med2 [0]
 + ERI_BAx * Med3 [0]
 + ERI_ACx * Med4 [0] ;
High [1] = ERI_DCy * Med1 [0]
 + ERI_CDy * Med2 [0]
 + ERI_BAy * Med3 [0]
 + ERI_ACy * Med4 [0] ;
High [2] = ERI_DCz * Med1 [0]
 + ERI_CDz * Med2 [0]
 + ERI_BAz * Med3 [0]
 + ERI_ACz * Med4 [0] ;

Figure 2: Hierarchical Structure of a Recurrence
Calculation

ERIC: ERI-CALCULATION PROCESSOR
The Obara algorithm consists of two parts: the initial
integral calculation and the recurrence calculation. Their
characteristics differ greatly, and the MO-specific
processor Eric must process both at high speed. This
section describes the outline of the Eric processor
architecture for fast ERI calculation.

Design Goals
In the previous chapter, we saw that the Obara algorithm
have an extensive ILP. To exploit this ILP, the Eric
processor has many floating-point multiply-and-accumulate
units and performs ERI calculation in parallel. However,
the design of a processor which has a lot of functional units
brings the following problems:

 Register file which supplies functional units with
operands needs to have a great number of ports. For
the N arithmetic units, the area of the register file
grows as N3, and the delay as N3/2 [4]. Hence the
area and the delay of multi-port register file restrict
the area and the performance of the processor.

 Since the instruction code becomes very long, it is
difficult to supply arithmetic units with it.

In addition, there are also the following two problems:
 The initial integral calculation part has less ILP, and

consequently, arithmetic units are not fully used
during its processing.

 We suppose that the processor has internal program
memory in order to ease the supply of instruction
code, but there is a limit in the memory size which can
be placed on a chip. Therefore, we have to examine
techniques for reducing the program size.

We have to take the above-mentioned points into
consideration when we develop the Eric processor
architecture.

Design Philosophy
The Obara algorithm consists of two calculation parts
which characteristic is quite different. The design

philosophy for coping with the two calculation parts, IIC
part and RC part is as follows:

 An IIC part including some complex floating-point
operations accelerates processing by installing special
functional units to a processor.

 An RC part having rich ILP accelerate by installing
many functional units to a processor and parallel
processing.

However, realizing the both functions by one processor is
not efficient. Because, it is the reason that IIC part does
not need many functional units since parallelism is low,
and RC part dose not need special functional units since
there is no complex floating-point operation. Therefore
we decided to divide Eric processor into two engines: IIC
engine and RC engine.

Overview of Eric Processor
As shown in , the Eric processor architecture
consists of the following five modules.

Figure 3

Figure 3: Overview of Eric Processor Architecture

 Host Interface for communication with Host CPU,
 External Memory Interface for accessing External

Memory,
 Internal Data Memory for storing the calculation

results,
 IIC Engine for the initial integral calculation, and
 RC Engine for the recurrence calculation.

The data used in this processor is IEEE 754 double-
precision floating-point numbers. Therefore, all the
functional unit, memory and interfaces are 64-bit width,
and so, single precision floating-point numbers are not
supported.

HOST CPU

(SH4)

Internal
Data

Memory

Initial Integral
Calculation Engine

Recurrence
Calculation Engine

HOST
Interface

(SRAM I/F)

External
Memory
Interface

(SDRAM I/F)

External Memory

Extended processor
based on

MIPS architecture

Describes in Section
“Discussion on RC

Engine Architecture”
(Figure 6)

Table 2: Design Alternatives for RC Engine

 Macro routine Micro routine Parallelism
FS Subfunction call Subfunction execution Instruction-level

FP Subfunction call Subfunction execution Inter-functions
& Instruction-level

SP Statement call Statement execution Inter-statements
& Instruction-level

IIC Engine
The initial integral calculation consists of various
operations such as arithmetic, floating-point addition,
multiplication, division, inverse square root, exponential
function, function call and conditional branch. Therefore,
it is better to design the initial integral calculation (IIC)
engine with the same organization as a general purpose
processor. In this processor, the IIC engine is an
extension to the MIPS architecture.

RC Engine
Recurrence calculation (RC) engine is a processor which is
specialized to the RC part of the Obara algorithm. RC
consists of only great many floating-point multiply-and-
adds operations. Therefore, if many multiply-and-
accumulate units are installed in an RC engine, it can be
expected that a program can be executed at high speed.
However, as mentioned above, there is a problem in
installing many MAC units in RC engine. Then we
consider the organization of RC engine with the following
plans.

 In RC engine, plural clusters which consist of register
file (RF), load-store unit (LSU), and multiply-and-
accumulate (MAC) unit are created. We call it
subengine. By dividing RC engine into plural
subengine, the number of the functional units
connected to a register file can be reduced. Thereby,
some problems which multi-port register file causes
are avoidable with it.

 RC engine has internal program memory, in order to
ease supplying instruction code.

 In order to make the characteristics of the Obara
algorithm optimize, RC engine adopts hierarchical
instruction code set which consist of two: macro
routine and micro routine. This is also for reducing
program size.

Then we consider the composition of detailed RC engine
after this.

DISCUSSION ON RC ENGINE ARCHITECTURE
In the previous chapter, we showed that the Recurrence
Calculation in ERI has a hierarchical structure and
extensive instruction-level parallelism. In this section, we

examine the RC Engine architecture to be optimized with
regards to those characteristics.

Design Alternatives for RC Engine
In the design of the RC engine, in order to reduce a size of
program on chip, we adopt a program execution method
which consists of two levels of routines: a macro routine
and a micro routine. As shown in , we evaluated
three kinds of processor models: Function Serial (FS),
Function Parallel (FP) and Statement Parallel (SP). These
three models are classified by the difference in the program
portion assigned to a macro routine and a micro routine,
and the difference in the amount of parallelism.

Table 2

Function Serial (FS)
The FS is the processor model which assumed VLIW
architecture as the RC engine, and it is the base model of
FP and SP. In the FS model, subfunction calls are
assigned to a macro routine which is placed in external
memory. On the other hand subfunction execution is
assigned to a micro routine which is placed in the internal
program memory. When processing the recurrence
calculation, the macro routine is sequentially read from
external memory and the corresponding micro routine is
processed using all functional units. In this model, we use
the ILP only for calculation of the recurrence calculation.

Function Parallel (FP)
The FP is the processor model which based on the FS. In
this model, assignment of the recurrence calculation to a
macro routine and micro routine is the same, however there
is a difference in the parallelism we can use. As described
in Subsection “Characteristics of The Obara Algorithm”,
since there is parallelism between subfunctions in
recurrence calculation, we can process many subfunctions
in parallel. In this model, two or more sub engines which
consist of a set of some functional units is prepared into the
RC engine. When processing the recurrence calculation,
several macro routines are read from the external memory
in parallel, and the corresponding micro routines are
processed in parallel too.

Statement Parallel (SP)
The SP model resembles FP with respect to the hardware
organization. However, the parallelism to achieve is
different as there is parallelism between statements as well
as between subfunctions. Here, the statement is defined

as a series of floating-point multiply-and-add operations.
Therefore, many statements can be simultaneously
processed in parallel. When processing the recurrence
calculation, this model reads several macro routines
consisting of statement calls from external memory, and
executes the body of statement in parallel with the two or
more subengines as micro routines.

Performance Evaluation
We evaluated the performance of the above-mentioned
three processor models.

Evaluation Methodology
In order to decide which processor model (FS, FP or SP) to
adopt, the number of clock cycles which are reported by a
code scheduler was used as a criterion. For this
estimation, we built a code scheduler for each model of RC
engine. The code scheduler generates the micro routine
after having scheduled the input program (written in C).

Then, from the generated micro routine, we estimated
schedule length. As a static scheduling algorithm, we
adopted the critical path method, which is a one of list
scheduling algorithms, based on the “critical path, most
immediate successors first” priority [2].
We made evaluations for 12 models shown in .
The result latency and the issue latency of the functional
units common to each model are shown in Table 4. In
this paper, the result latency means the number of
intervening cycles between an instruction that produces a
result and an instruction that uses the result. The issue
latency means the number of cycles that must elapse
between issuing two same instructions.

Table 3

Table 3: Evaluation Models

In this model, the size of register file is assumed infinite.
And both the total number of MAC units and LSUs is not
more than six as resources restrictions.

Total Number
Model

No. of
Subengine

No. of MAC
per Subengine

No. of LSU
per Subengine MAC LSU

For evaluation focusing on the difference in parallelism
FS1,6,6 1 6 6
FP2,3,3 2 3 3
FP3,2,2 3 2 2
FP6,1,1 6 1 1
SP2,3,3 2 3 3
SP3,2,2 3 2 2
SP6,1,1 6 1 1

6 6

For evaluation focusing on the difference in organization
FP2,1,1 2 1 1 2 2
FP2,2,1 2 2 1 4 2
FP2,3,1 2 3 1 6 2
FP3,1,1 3 1 1 3 3
FP4,1,1 4 1 1 4 4

Table 4: Latency of Each Functional Unit

 MAC LSU
Result Latency <clock cycles> 6 5
Issue Latency <clock cycles> 1 1

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

P
e
rf

o
rm

an
c
e
 I
m

pr
o
ve

m
e
n
t

o
ve

r
F
S
1
,6

,6

(ss,ss)
(ps,ss)
(ps,ps)
(pp,ss)
(pp,ps)
(pp.pp)
(ds,ss)
(ds,ps)
(pp,ds)
(ds,ds)
(dp,ss)
(dp,ps)
(dp,pp)
(dp,ds)
(dp,dp)
(dd.ss)
(dd,ps)
(dd,pp)
(dd,ds)
(dd,dp)
(dd,dd)

Type of Integral

FP2,3,3 FP3,2,2 FP6,1,1 SP6,1,1

Figure 4: Performance Comparison among FS, FP, and SP

Figure 4

gure 4

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

P
e
rf

o
rm

an
c
e
 I
m

pr
o
ve

m
e
n
t

o
ve

r
F
P

2
,1

,1

(ss,ss)
(ps,ss)
(ps,ps)
(pp,ss)
(pp,ps)
(pp.pp)
(ds,ss)
(ds,ps)
(pp,ds)
(ds,ds)
(dp,ss)
(dp,ps)
(dp,pp)
(dp,ds)
(dp,dp)
(dd.ss)
(dd,ps)
(dd,pp)
(dd,ds)
(dd,dp)
(dd,dd)

Type of Integral

FP2,2,1 FP2,3,1 FP3,1,1 FP4,1,1 FP6,1,1

Figure 5: Performance Comparison among Different Organization of FP

Figure 5

Figure 5

Evaluation Results
We tested the three models (FS, FP and SP) and evaluated
which technique is the optimal. In this experimentation,
the number of LSU and MAC was six in each model. We
evaluated about all possible organizations. Among these,
only the results whose features stood out are shown in

. That is, since the performance of SP2,3,3 and
SP3,2,2 were lower than that of SP6,1,1, only the result of
SP6,1,1 is shown in the graph. The graph is normalized to
FS1,6,6, so we can see the speedup ratio of each model
compared to FS1,6,6 from the graph.

Meanwhile we limited to model FP and evaluated about the
difference in the organization about subengines. When
FP2,1,1 was a base model, we evaluated the difference of
performance about each case: added FU to the base model
(FP2,2,1 or FP2,3,1) and increased the number of subengines
(FP3,1,1 or FP4,1,1). showed a graph of the result.
The graph is normalized to FP2,1,1, so we can see the
speedup ratio of each model compared to FP2,1,1 from the
graph. Moreover, the graph of FP6,1,1 is appended to

 for reference of comparison with Fi .

E
xt

er
n
al

 P
ro

gr
am

 M
e
m

o
ry

MAC

LSU

Register File

Controller
for Subunit

・・・

Subengine
#1

Internal Program Memory

Subengine
#2

Subengine
#N

(N = 4 to 6)

M
ic

ro
 R

o
u
ti
n
e

Controller for RC EngineMacro Routine

Control

M
ic

ro
 R

o
u
ti
n
e

M
ic

ro
 R

o
u
ti
n
e

Figure 6: Organization of RC Engine

Discussion
As the Figure 4 which shows FP6,1,1 is the fastest in almost
all cases.
Moreover, as the Figure 5 which shows the evaluation
result about the difference in the organization shows that,
model FP3,1,1 and FP4,1,1 which the number of subengines
made to increase show the high improvement in a
performance in comparison with model FP2,2,1 and FP2,3,1
which added MAC units to base model FP2,1,1.
That is, the following considerations are drawn from these
results:

 As a result of comparing Models FS, FP, and SP, a
model FP with many subengines is the fastest.

 From the evaluation result about the organization of
FP, increasing the number of a subengine leads to
improvement in a performance, in comparison with
the case which increased the number of MAC per one
subengine.

RC Engine Design
From above stated investigation, we determined RC
engine's specification as follows:

 RC engine has four to six subengines which consist of
a register file, a load-store unit and a multiply-and-
accumulate unit.

 We adopt a program execution method consisting of
two routines: a macro routine and a micro routine.

 Subfunction call and subfunction execution are
assigned to a macro routine and a micro routine,
respectively.

 RC engine has the internal memory which supplies a
micro routine to subengines.

The final schematic of RC engine design is shown in
Figure 6.

CONCLUSIONS
In this paper, we discussed the architecture of an ERI
calculation specific processor architecture Eric. Our ERI
calculation algorithm is a new version of the Obara
algorithm which consists of two parts: initial integral
calculation and recurrence calculation. Although their
characteristics differ greatly, Eric processor needs to
process both at high speed. Then, we divided Eric
processor into two engines: IIC engine and RC engine.
The IIC engine is an extension to the MIPS architecture
and has special functional units for complex floating-point
operation included in initial integral calculation. The RC
engine has four to six subengines which consist of a
register file, a load-store unit and a multiply-and-
accumulate unit. And the RC engine adopts hierarchical
instruction code set which consist of two routines: macro
routine and micro routine.
Now we are creating specifications of Eric processor and
performing logic design. The exact performance of Eric
processor will be estimated in winter 2002.

ACKNOWLEDGMENTS
The research is granted by Japanese Ministry of Education,
Culture, Sports, Science and Technology. We thank Dr.
Lovic Gauthier and Ms. Natasha Devroye for their
proofreading.

REFERENCES
1. H. Honda, T. Yamaki, and S. Obara. Molecular

integrals evaluated over contracted Gaussian functions
by using auxiliary contracted hyper-Gaussian functions.
Journal of Chemical Physics, Vol. 117, No. 4, 1457-
1469, 2002.

2. R. Allen and K. Kennedy. Optimizing Compilers for
Modern Architectures: A Dependence-based Approach.
Morgan Kaufmann Publishers, Oct. 2001.

3. S. Obara and A. Saika. Efficient recursive computation
of molecular integrals over Cartesian Gaussian
functions. Journal of Chemistry Physics, Vol. 84, No. 7,
3963-3974, Apr. 1986.

4. S. Rixner, W. Dally, B. Khailany, P. Mattson, U.
Kapasi and J. Owens. Register Organization for Media
Processing. Proceedings of the 6th High-Performance
Computer Architecture, 375-386, Jan. 2000.

	ABSTRACT
	Keywords

	INTRODUCTION
	ERI CALCULATION
	Overview of MO
	The Obara Algorithm for ERI Calculation
	Characteristics of the Obara Algorithm
	Initial Integral Calculation
	Recurrence Calculation

	ERIC: ERI-CALCULATION PROCESSOR
	Design Goals
	Design Philosophy
	Overview of Eric Processor
	IIC Engine
	RC Engine

	DISCUSSION ON RC ENGINE ARCHITECTURE
	Design Alternatives for RC Engine
	Function Serial (FS)
	Function Parallel (FP)
	Statement Parallel (SP)

	Performance Evaluation
	Evaluation Methodology
	Evaluation Results
	Discussion

	RC Engine Design

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

