
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Framework for Bitwidth Optimization in
System-on-Chip Design

Tomiyama, Hiroyuki
Institute of Systems & Information Technologies/KYUSHU

Cao, Yun
System LSI Research Center, Kyushu University

Mesbah, Uddin
Department of Computer Science and Communication Engineering, Kyushu University

Inoue, Akihiko
Matsushita Electric Industorial Co., Ltd.

他

https://hdl.handle.net/2324/6014

出版情報：SLRC 論文データベース, 2002-11
バージョン：
権利関係：

A Framework for Bitwidth Optimization in System-on-Chip Design

Hiroyuki Tomiyama �1 Yun Cao �2 Uddin Mesbah �3 Akihiko Inoue �4

Eko Fajar �5 Hajime Yamashita �6 Hiroto Yasuura �2�3

�1 Institute of Systems & Information Technologies/KYUSHU

�2 System LSI Research Center, Kyushu University

�3 Department of Computer Science and Communication Engineering, Kyushu University

�4 Matsushita Electric Industorial Co., Ltd. �5 Sony LSI Design Inc. Kyushu �6 Hitachi, Ltd.

Abstract

Advances in semiconductor technology and increased
reusability of IPs enable embedded system designers
to develop Systems-On-Chip (SOCs) which are cus-
tomized for a speci�c application (or application do-
main). Speci�cally, customization of processor archi-
tecture and memories is enabled, which allows e�cient
implementation of SOCs. Up to now, a number of
research e�orts on processor customization have been
made in both industry and academia, where the instruc-
tion set and the datapath con�guration are prime de-
sign parameters. In this paper we demonstrate that the
datapath bitwidth has a large impact on system perfor-
mance, chip area, and energy consumption, and then
propose a framework and tools for datapath bitwidth
optimization. Two case studies are presented to prove
the e�ectiveness of the optimization.

1. Introduction

Traditional embedded systems are implemented on
a system board where several chips (e.g., a processor,
memories, ASICs, and peripherals) are connected to
each other. A designer selects a processor and memo-
ries from standard product libraries, and designs ASICs
if necessary. In such a design ow, the designer is
not allowed to customize the processor and memories.
However, advances in semiconductor technology and
increased reusability of hard and soft IPs enable em-
bedded system designers to develop Systems-On-Chip
(SOCs) which are highly customized for a speci�c ap-
plication (or application domain). Speci�cally, cus-
tomization of the processor architecture and the mem-
ory system is enabled, which permits e�cient imple-
mentation of SOCs in terms of performance, chip area
and power/energy consumption. A number of research
e�orts on processor customization have been made in
both industry and academia so far, where the instruc-

tion set and the datapath con�guration are prime de-
sign parameters.

In this paper, we demonstrate that datapath
bitwidth of SOCs signi�cantly a�ects the performance,
cost, and power/energy consumption. In general, a
large datapath bitwidth increases the cost and power
of datapath components (such as functional units, reg-
isters, data memories, and so on). The clock frequency
also becomes worse. On the other hand, a small data-
path bitwidth requires a large number of instructions
to be stored in program memory and be executed, re-
sulting in low performance, high memory cost, and
high energy. Since each application has its own de-
sign goal and constraints, optimization of the datapath
bitwidth for each application is very e�ective in SOC
design [4, 5, 6]. By changing the datapath bitwidth,
we can optimize performance, cost, and power/energy
consumption. To enable the bitwidth optimization, of
course, a new design methodology and several design
support tools are necessary.

In this paper, we present a framework, tools and
techniques for designing processor-based SOCs, with
speci�cally focusing on the datapath bitwidth opti-
mization. First, Section 2 shows why we focus on the
datapath bitwidth optimization. Section 3 presents
an overall framework for designing SOCs with opti-
mized datapath bitwidth. Section 4 describes a con-
�gurable processor architecture, named soft-core pro-
cessor. Next, Sections 5 and 6 present the Valen-C
language and a retargetable Valen-C compiler. Then,
techniques to analyze computational precision required
by application programs are described in Section
7. Section 8 presents two case studies on datapath
bitwidth optimization. Finally, Section 9 concludes
this paper with a summary.

2. Datapath Bitwidth as a Parameter in
SOC Design

This section shows that the datapath bitwidth sig-
ni�cantly a�ects the performance, cost, and energy

1

0

5

10

15

20

25

0 5 10 15 20 25 30 35

G
at

e
co

un
t [

ki
lo

 g
at

es
]

Datapath width [bits]

#Registers = 4

#Registers = 8

#Registers = 16

#Registers = 32

Figure 1. Processor cost versus datapath widths

consumption of processor-based SOCs.

2.1. CPU Area and Performance

We have designed a processor whose datapath width
can be changed by designers [8]. As the datapath width
is reduced, the processor cost almost linearly decreases.
As indicated in Figure 1, the CPU cost is reduced by
about 60% when the datapath width is reduced from
32 bits to 8 bits. Generally, narrowing the datapath
width reduces processor cost, but degrades the perfor-
mance. This is because the number of execution cycles
increases since some of single precision operations be-
come double or more precision ones. Single precision
operations mean ones whose precision is smaller than
the datapath width. For example, an addition of two
32-bit data is a single precision operation on proces-
sors whose datapath width is equal to or greater than
32 bits, while it is a double precision operation on a
16-bit processor.

It should be noted that the clock frequency can be
enhanced when narrowing the datapath width. In our
experience, however, the clock frequency improvement
rarely pays for the increase in the number of instruc-
tions. We can conclude that in most cases narrowing
datapath width degrades the processor performance.

2.2. Data RAM Area

Changing the datapath width a�ects the size of
a data memory (RAM) and an instruction memory
(ROM) as well as processor cost [5].

Let us consider a program including two variables
as shown in Figure 2, and assume that two variables
x and y require at most 18 bits and 26 bits, respec-
tively. When the datapath width is 32 bits, two words
are required to store the two variables. Therefore, the

main()
{
 int18 x;
 int26 y;

}

32 bits x 2 words = 64 bits

26 bits x 2 words = 52 bits

9 bits x 5 words = 45 bits

40

50

60

70

0 10 20 30

80

40
datapath width [bits]

R
A

M
 s

iz
e

[b
its

]

(a) Sample program (b) Changing of the RAM size RAM size versus datapath width
for the sample program

(c)

Figure 2. Data memory size for various datapath
widths

amount of the data memory is 64 bits. Since the mini-
mum size required to store them is only 44 bits (= 18 +
26), 20 bits of them (about 30%) are unused. When the
datapath width is 9 bits, two words and three words
are required for x and y, respectively, and the unused
area is only 1 bit. Figure 2 (c) shows that the RAM
size does not decrease monotonically with the reduc-
tion of the datapath width. Quite many unused bits
can be eliminated by determining the datapath width
appropriately.

2.3. Instruction ROM Area

The ROM size in bits is calculated by multiplying
the instruction word length by the number of instruc-
tions stored in the ROM. When the datapath width is
reduced, the number of instructions in the ROM in-
creases. For example, an addition of 20-bit data can
be executed by only one instruction on a 20-bit proces-
sor. However, if the datapath width is 10 bits, at least
two instructions are necessary. Furthermore, extra load
and store instructions may be required because of the
shortage of registers. The ROM cost grows monotoni-
cally as narrower the datapath width is, if the instruc-
tion word length does not change.

2.4. Energy Consumption

Energy consumption changes in a non-monotonic
manner with an increase in datapath bitwidth. In gen-
eral, if the datapath is too narrow, energy is increased
because of the increased execution cycles. On the con-
trary, if the datapath is too large, energy is also in-
creased due to the increased number of gates to be
switched.

2.5. Examples of Datapath Bitwidth Explo-
ration

In the rest of this section, we present three examples
of datapath bitwidth exploration in the design of appli-

Figure 3. An example of datapath bitwidth ex-
ploration for a calculator

Figure 4. An example of datapath bitwidth ex-
ploration for a Lempel-Ziv encoder/decoder

cation speci�c processors. The following three applica-
tions are used: a 12-digit decimal calculator, a Lempel-
Ziv encoder/decoder, and an ADPCM encoder. For
each of the three applications, we estimated perfor-
mance (in terms of execution cycles), chip area (in-
cluding CPU, RAM and ROM), and energy consump-
tion while varying datapath bitwidth. The estimation
results are described in Figures 3, 4 and 5.

We can see that performance, cost and energy
largely depend on the datapath bitwidth. From the
estimation results, we can �nd the optimal solution of
the bitwidth. Note that each application has di�er-
ent characteristics on performance, area, and energy.
Thus, the optimal bitwidth varies depending on the
application.

3. A Framework for Bitwidth Optimiza-
tion

Figure 6 shows our framework for designing SOCs
in which the datapath bitwidth is a design parameter.
The methodology starts from an application program
written in the ANSI-C language and a template pro-
cessor core, called soft-core processor, whose datapath
is 32 bits. The datapath bitwidth can be optimized in
the later design phases. In order to �nd the optimal the

Figure 5. An example of datapath bitwidth ex-
ploration for an ADPCM encoder

datapath bitwidth, we need to analyze the application
program. This process is called variable size analysis.
In the variable size analysis process, the required pre-
cision (bitwidth) for each variable in the application
program is analyzed statically or dynamically. Then,
the bitwidth information needs to be annotated in the
program. Since ANSI-C does not support speci�cation
of the bitwidth, we extended the ANSI-C language to
enable it. The new language is called Valen-C. Af-
ter translation of the C program into a Valen-C pro-
gram, HW/SW partitioning and processor customiza-
tion are performed. After these processes, we obtain
a hardware description in HDL or Valen-C, a software
description in Valen-C, and a processor-memory con-
�guration description. Finally, those descriptions are
synthesized or compiled to obtain an SOC design.

4. Soft-Core Processor

Traditionally, processor cores have been used as hard
macros. An SOC designer can copy a layout data of a
processor core into his/her design, but cannot modify
its architecture to �t to application. We call such a
processor core a hard-core processor. On the contrary,
we call a con�gurable processor core a soft-core proces-
sor. Soft-core processors have several parameters to be
customized by SOC designers for each application. The
typical parameters include the number of registers, the
word length of data and/or instructions, the number
of operation units and so on. The soft-core processor
may be presented in the forms of a fabricated chip,
layout data, net list in logic circuit level and RTL de-
scription in HDL. Design modi�cation is done mainly
in the HDL description rather than net list or layout
levels. A customized processor is obtained through the
redesign process using some synthesis tools. Options
or scripts for the synthesis tools are also provided for
prompt re-synthesis after the modi�cation.

We have designed an example of soft-core processor,
named Bung-DLX [8]. Bung-DLX is based on the DLX
architecture [3]. In the design of the soft-core processor
architecture, the following requirements have to be con-

Application (C)

Variable Size Analysis

Application (Valen-C)

HW/SW Partitioning Processor Customization

ASIC Synthesis

Soft-Core Processor

Compilation

HW (HDL or Valen-C) SW (Valen-C) Processor Configuration

ProcessorASIC

RAM & ROM

Processor Synthesis

SOC

Figure 6. A Framework for Bitwidth Optimiza-
tion

sidered. 1) Simple and clear architecture for easy modi-
�cation: For the modi�cation in the redesign phase, the
architecture of the soft-core processor should be sim-
ple and easy to understand for system designers. The
architecture a�ects on the con�guration of the design
environment. In Bung-DLX, a simple RISC architec-
ture based on well-known DLX architecture is adopted.
The modi�cation in the word length of datapath, the
number of registers, the amount of memory space and
the instruction set can be done by changing design pa-
rameters in a design modi�cation table. In other words,
the modi�able parameters are restricted by the design
modi�cation table. The HDL description of the mod-
i�ed Bung-DLX is automatically generated from the
design modi�cation table. Since Bung-DLX has the
Harvard architecture, in which instruction memory is
separated from data memory, the word length of data-
path (i.e. the width of data memory) can be changed
independently from the length of instruction words. 2)
Simple interface between the processor and software:
In the partitioning of hardware and software, we have
to redesign the interface between software and hard-
ware. The original soft-core processor should have a
simple interface in order to make compiler generation
and modi�cation of software library easy. Since RISC
architecture provides a simple interface between pro-
cessors and software and the modi�cation of the ar-
chitecture of Bung-DLX is restricted, most problems
in software interface caused by modi�cation can be
solved in a compiler. A retargetable compiler, called
the Valen-C compiler, was developed and all applica-
tion programs designed on the original architecture can

be automatically compiled to the modi�ed architec-
ture. The information of the modi�ed architecture is
provided from the design modi�cation table and auto-
matically reected in the architecture de�nition for the
retargetable compiler. 3) Achieving high performance
and/or low cost implementation: The soft-core proces-
sor should compete with hard-core processors in the
performance, chip area, power consumption and im-
plementation cost. This requirement has still not been
solved completely. Many possibilities to improve per-
formance and cost of Bung-DLX are remained for the
future work.

The original Bung-DLX has a non-pipelined RISC-
type architecture with 32 general purpose registers and
72 instructions. The length of data and instruction
words is 32 bits. The address spaces of data memory
and instruction memory are both 232. It is described
by a VHDL code with about 7,000 lines. The gate size
after logic synthesis is 23,282 gates. The design mod-
i�cation table includes the word length of data path,
the amount of data memory, the length of instruction
word, the amount of data memory, the number of reg-
isters and the instruction set. Bung-DLX is now pro-
vided in the form of a VHDL description together with
a simulator, an assembler, and a compiler.

5. The Valen-C Language

Currently, the ANSI-C language is widely used as
a programming language for designing embedded soft-
ware. In ANSI-C, semantics of programs depend on
both processor architectures and compilers. The size
of each data type is determined by compilers. Typi-
cally, the size of char is 8 bits, short is 16 bits, int is
32 bits, and long is also 32 bits. Some recent compilers
support the long long type of 64 bits. Note that the
sizes may vary in di�erent compilers. Therefore, the
portability of C programs is limited. For example, C
programs written for a 32-bit processor may not run
correctly on 16-bit or 24-bit processors.

In order to overcome the drawback, we have devel-
oped an extended C language, called Valen-C (Variable
Length C) [8]. Valen-C enables system designers to ex-
plicitly specify the required bit length of each variable
in programs. Even if system designers customize the
datapath width for their application, the Valen-C com-
piler preserves the semantics of the program. There-
fore, Valen-C programs can be reused on processors
with various datapath widths. Valen-C is one solution
for the problem of word-length support in C.

Syntactically, Valen-C is an extension of the C lan-
guage. As mentioned before, in Valen-C, programmers
can specify the required bit length of each variable in
a program. The control structures in Valen-C, such as
\if" and \while" statements, are same as C.

C provides for three integer sizes, declared using the
keywords short, int and long. The sizes of these in-
teger types are determined by the compiler designer.
In many processors, the size of short is 16 bits, int is

16 or 32 bits, and long is 32 bits. On the other hand,
in Valen-C, programmers can use more kinds of data
types. For example, if a variable x needs a precision
of 11 bits, x will be declared as \int11 x". Similar to
C, the sign and unsign quali�ers can be speci�ed in
Valen-C. The char type also exists in Valen-C, and it
is assumed to have a length of larger than 8 bits. The
struct type and the array type are also available as well.

A oating point variable which has the precision of
a 5-bit exponent and a 10-bit mantissa is declared as
\oat5.10 x".

6. Retargetable Valen-C Compiler

If a processor architecture is modi�ed, the compiler
for the processor also need to be modi�ed. To make the
modi�cation easy, retargetable compilers have been de-
veloped so far by some researchers and engineers. How-
ever, most of these compilers assume that the datapath
width is 8 � 2n (n is a natural number). In our opti-
mization, a retargetable compiler which is applicable
to any datapath width is required. In cases that the
precision of an operation is larger than the datapath
width, the compiler has to translate the operation into
a certain number of machine instructions.

We have developed such a retargetable compiler for
the Valen-C language [8]. The Valen-C compiler takes
a Valen-C or ANSI-C program as input and generates
assembly code.

The Valen-C compiler preserves the precision of pro-
grams in the following manner: If a variable has a
precision of n bits, the Valen-C compiler allocates the
storage of not less than n bits for the variable. If an
operation in a Valen-C program requires the precision
of n bits, the operation is performed with the precision
of not less than n bits. For example, an addition of
two 13-bit variables will be calculated with a precision
of 20 bits on 20-bit processors. In cases that the preci-
sion of an operation is larger than the datapath width,
the operation is performed by more than one machine
instructions. For example, an addition with a 20-bit
precision is performed by two addition instructions of
lower 10 bits and upper 10 bits on a 10-bit processor.
Floating point data types have not been supported yet.

The Valen-C compiler is retargetable by modifying
the machine description. The machine description in-
cludes the datapath width, the number of registers, the
instruction set, the sizes and alignments of the program
and data memories, the minimum addressable size of
the data memory, and so on.

The datapath width of the processor does not have
to be 2n (n is a positive integer number). For example,
the datapath width can be 11 bits or 29 bits. Further-
more, variables whose sizes are larger than the data-
path width is available in Valen-C programs.

Figure 7 shows an example of the compilation of a
Valen-C program on a 10-bit processor. The example
assumes that the size of short, int, long, and long long
is 5 bits, 10 bits, 20 bits, and 30 bits, respectively. In

Machine Description File

Valen-C Program
main(){
 unsigned int1 flag;
 int14 x, y;
 int20 z, w;

 if (flag = 1) {
 z = x + y;
 }else{
 z = w;
 }
 ...
}

Datapath width:10bits

short
int
long
long long

: 5 bits
: 10 bits
: 20 bits
: 30 bits

Valen-C to C Translation

Code Generation

C Program

Valen-C Retargetable Compiler

main(){
 unsigned short flag;
 long x, y;
 long z, w;

 if (flag = 1) {
 z = x + y;
 }else{
 z = w;
 }
 ...
}

Assembly Code

zl : lower bits of z
zu : upper bits of z
seq : set conditinal if two operands
 are equal each other
addc : add with carry
beqz : branch equal zero

L2:

seq tmp, flag, 1
beqz tmp, L1
add zl, xl, yl;
addc zu, xu, yu;
jmp L2:
move zl, wl;
move zu wu;

L1:

Figure 7. Example of compilation of Valen-C pro-
gram

the Valen-C to C translations phase, the variable ag
is mapped into short type since the size is less than 5
bits. The long type is used for x, y, z and w because
their sizes are larger than 10 bits and do not exceed
20 bits. In the code generation phase, the equation z
= x + y is performed by two addition instructions of
lower 10 bits and then upper 10 bits with a carry bit.
Similarly, the assignment z = w is also divided into two
machine instructions.

The Valen-C compiler has been implemented based
upon the SUIF library [2], and is available at [1].

7. Variable Size Analysis

Although the Valen-C language has enhanced
reusability over ANSI-C, specifying bitwidth of ev-
ery program variable is very cumbersome and time-
consuming. Therefore, many system designers may
prefer ANSI-C rather than Valen-C. As mentioned ear-
lier, however, ANSI-C cannot be used for datapath
bitwidth optimization in SOC design.

In order to reduce the burden of Valen-C program-
mers, we have developed techniques for variable size
analysis which automatically analyze required bitwidth
of variables in C programs [7]. Using the techniques,
C programs are automatically translated into Valen-C
ones. Thus, programmers do not have to care about
variable bitwidths.

There exist two approaches to analyze variable sizes.
One is dynamic analysis which executes programs and
monitors the value of each variable. The other ap-
proach is static analysis, which analyzes variable sizes
without running programs. The rest of this section
presents these approaches.

7.1. Static Approach

For an assignment statement with arithmetic oper-
ations, the range of a variable in the left side is calcu-
lated from ranges of variables, constants, and operators
in the right side.

Let us consider the following assignment statement
with a single operator.

y = x � 3;

In this example, if a variable x is in [�2, 5], the range
of y, [�6, 15], is analyzed. Therefore, the size of y is 5
bits.

Let us consider another example with more than one
operators.

z = x � 3 + y;

In order to calculate the range of z, the range of x�3 is
�rstly calculated. Then, we can obtain the maximum
value of z by adding the maximum value of x � 3 to
that of y. The minimum value of z can be calculated
by adding the minimum value of x � 3 to that of y.

Next, let us consider the case where more than one
assignments exist in a function. The variable ranges in
the function can be calculated by applying above anal-
ysis methods to each assignment successively from the
top of the function. If a variable appears in the left side
in more than one assignments, the maximum value of
the results each of which is calculated in each assign-
ment becomes the maximum value of the variable. The
minimum value can be obtained in a similar way.

The following example shows a function which has
more than one assignments.

int func(int x)
f

int y,z;
z = x � 3; | (1)
y = z + 3; | (2)
z = x � 2 + y; | (3)

g

The function func() has three assignments (1), (2), and
(3). In this example, assume that the range of the pa-
rameter x is [�1, 2]. The sizes of local variables y and
z are calculated in the following manner. First, the
assignment (1) is analyzed and we can know that the
range of z is [�3, 6]. Next, by analyzing the assignment
(2), we obtain the range [0, 9] of y. And next, after an-
alyzing the statement (3), we can know that the range
of z at the point (3) is [�2, 13]. Finally, the results of
analyzing assignments (1) and (3) are merged and the
range [�3, 13] of z is obtained. Then, it is analyzed
that the sizes of y and z are both 5 bits.

For logical operations, it is di�cult to calculate max-
imum and minimum values of each variable. We com-
pute the variable size for logical operations without
calculating the maximum and minimum values. Let us
consider the following assignment with a logical oper-
ation and assume that the range of y is [0, 5].

unsigned int x, y;
x = y & (unsigned)4;

(1)

(3)

(2)

(4)

int cal(int s)
{
 int A,B,C,D,L;

 A = B - func(C) * 3;

 D = func(L) + 4;

}

int func(int x)
{

 return R;
}

Figure 8. Function calls

In this example, since sizes of both y and the unsigned
constant 4 are 3 bits, we can know that the size of x is
also 3 bits.

Conditional Statements: For a conditional state-
ment, the then and else parts are analyzed separately.
Let us consider the following if-else statement where
the ranges of y and z are assumed to be [3, 6] and
[�13, �10], respectively.

if (a < 5) x = y � 5;
else x = z + 13;

The range of x, [�2, 1], is obtained in the then part,
and [0, 3] in the else part. Then, the range [�2, 3] is
obtained for x.

Loops: We consider two types of loops. One is
bounded loops, and the other is unbounded loops. A
bounded loop is expanded into a straight-line program.
Then, variable sizes in the loop can be obtained. On
the other hand, it is impossible to expand unbounded
loops because the number of iterations can not be
known statically. In this case, dynamic analysis is ap-
plicable.

Arrays: Let us consider how to analyze the size of
arrays. Basically, each element of an array is treated
as a scalar variable and the analysis methods explained
above are applied. Then, the size of the array is given
by the largest size of the elements. In case that it is
impossible to analyze the value of the array index, all
the array elements are considered as one scalar variable.

Function Calls: Let us consider the example in Fig-
ure 8 where a function cal() calls func() twice. When
analyzing the assignment to A, func() is analyzed with
the range of the parameter C which is assigned to x
in func(). Then, we get the range of R which is used
for analyzing the range of A in cal(). When analyzing
the assignment to D, func() is analyzed again by as-
suming that the range of x is the same as that of L.
Finally, the range of parameter x in func() is analyzed

by merging the ranges of C and L. Since recursive
function calls generally cannot be analyzed statically,
we use dynamic analysis for them.

Pointers: The size of pointers is the same as the
memory address width and is determined by hardware
organization of the system.

Pointer Accesses: Let us consider the case that
variables are accessed via pointers. In general, it is
not always possible to analyze which variable a pointer
p pointing to. If possible, we can use methods pre-
sented above. If otherwise, �rst, we analyze the set of
variables to which p can pointed. In case that a refer-
ence �p appears in the right part of assignments, the
maximum and minimum values of �p are assumed to
be maximum and minimum values of the variables in
the set. In case that �p appears in the left size of as-
signments, the ranges of all the variable in the set are
updated.

7.2 Dynamic Approach

Static analysis is an e�cient method to analyse the
variable size. However, in many cases when we can
not predict the assigned value of a variable unless we
execute the program, such as the case of unbounded
loops, static analysis becomes insu�cient. As a solu-
tion to this problem, we adopted dynamic analysis.

In dynamic analysis, we execute the program and
monitor the values assigned to each variable. For this
purpose, after each assignment statement in program
code, a function is inserted which monitors the variable
in the assignment statement. The monitoring function
checks the value assigned to the variable and veri�es
the bit width required to store it. After that, it keeps
the bit width temporarily in a table. Next, when the
monitoring function checks the same variable with a
di�erent assigned value, it compares the new bit width
with the bit width already memorized in the table, and
keeps the bigger bit width in the table, and so on.
Thus, the required bit width of the variable is anal-
ized while running the program.

8. Case Studies

We have performed a number of case studies on
datapath bitwidth optimization. This section presents
two of them, i.e., the design of ADPCM decoder LSIs
and the design of MPEG-2 video decoder processors.

8.1 ADPCM Decoder LSIs

We have designed two ASICs for ADPCM decoder.
The design started from an ADPCM decoder program
written in C which is a part of the DSPstone bench-
mark suite [9]. Next, we statically analyzed required

Table 1. Variable size analysis results for ADPCM
decoder
Variables Original bitwidth Required bitwidth

valpred 32 bits 18 bits
index 32 bits 9 bits
step 32 bits 15 bits

bu�erstep 32 bits 1 bit
delta 32 bits 4 bits
sign 32 bits 4 bits
vpdi� 32 bits 16 bits

inputbu�er 32 bits 8 bits
Total 256 bits 75 bits

(�71%)

Table 2. Synthesis results of ADPCM decoders
with di�erent datapath bitwidth

ADPCM32 ADPCM18

Bitwidth 32 18
Energy [nJ] 365.58 238.76 (-35%)
Cells 1379 669 (-52%)
Tr. 13006 5864 (-55%)

bitwidth of variables in the program. The analysis re-
sults are shown in Table 1. There are eight int-type
variables in the program which are all 32 bits in orig-
inal. Our variable size analysis results show that no
variable requires the precision of 32 bits or more. The
size of the largest variable is only 18 bits.

Based on the results, we designed two ASICs for
ADPCM decoder. One has 32-bit datapath, and the
other has 18-bit one. At that time, no high-level syn-
thesis tool for C/Valen-C was available, we manually
designed the ASICs in VHDL. Then, logic synthesis
was performed with Synopsys Design Compiler and 0.5
�m standard cell technology. The synthesis results are
summarized in Table 2. With datapath bitwidth opti-
mization, chip area and energy concumption were sig-
ni�cantly reduced (by 49% and 35%, respectively).

8.2 MPEG-2 Video Decoder Processors

In the second case study, we have examined the per-
formance/cost/energy trade-o� by changing datapath
bitwidth of a soft-core processor. MPEG-2 video de-
coder was used as an application program. The original
program consists of over 6,000 lines of C code which in-
cludes several function blocks such as IDCT blocks, a
couple of motion estimation blocks, a motion compen-
sation block, variable length encoding, decoding blocks
and so on.

We have analyzed required bitwidth of 384 int type
variables, and the results are summarized in Table 3.
Based on the results, we translated the C program into
Valen-C one. For variables of the other type (e.g., char,

adpcm32.xpm

adpcm18.xpm

ADPCM18ADPCM32

Figure 9. Layout of the ADPCM LSIs

Table 3. Variable size analysis results for MPEG-
2 decoder

Size # Variables Size # Variables
1 bit 50 15 bits 2
2 bits 17 16 bits 39
3 bits 11 17 bits 39
4 bits 11 18 bits 3
5 bits 10 20 bits 6
6 bits 14 24 bits 14
7 bits 16 26 bits 2
8 bits 9 27 bits 4
9 bits 7 28 bits 3
10 bits 3 29 bits 3
11 bits 6 30 bits 7
12 bits 17 32 bits 82
14 bits 46

short, etc.), their bitwidth was kept same.

We varied the datapath bitwidth of the processor
from 17 bits to 40 bits, and estimated the performance
(in terms of execution cycles), cost (gate count) and
energy consumption. The results are depicted in Fig-
ure 10. From the �gure, we can see that the chip
area increases in a monotonic fashion with the data-
path bitwidth. Execution cycles are minimized at 28-
bit datapath, but are not further decreased for larger
bitwidth. Please note that, in general, smaller data-
path bitwidths have shorter critical path delays. This
means that, in the MPEG-2 example, performance is
maximized at 28-bit datapath. Energy consumption is
also minimized at 28 bits. For datapath shorter than
28 bits, more energy is required because of larger exe-
cution cycles. On the other hand, for datapath larger
than 28 bits, more gates need to switch, thus more en-
ergy is consumed.

Thus, we can explore the design space to �nd the
optimal cost/performance/energy trade-o� by chang-
ing processor datapath bitwidth.

area (kilo gates)

cycles (mega cycles)

energy consumption (J)

Datapath Width (bits)

A
re

a
(k

ilo
 g

at
es

)

13

14

15

16

17

18

19

21

22

20

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

300

320

340

360

380

400

420

440

460

480

500

15 20 25 30 35 40

E
xecution C

ycles

T
otal E

nergy C
onsum

ption

Figure 10. Performance/cost/energy trade-o� for
MPEG-2 decoder processor

9. Conclusions

We have presented an overall framework, tools, and
techniques for datapath bitwidth optimization in the
design of SOCs. Through the case studies, we have
demonstrated that an SOC design can optimize the
performance, cost, and energy trade-o� by changing
the datapath bitwidth. Our future work includes de-
velopment of e�cient algorithms to �nd the optimal
datapath bitwidth.

References

[1] http://kasuga.csce.kyushu-u.ac.jp/~codesign/

[2] http://www-suif.stanford.edu/

[3] J. L. Hennessy and D. A. Patterson. Computer Archi-
tecture: A Quantitative Approach, 2nd edition. Morgan
Kaufmann Publishers, Inc., 1996.

[4] S. Mahlke, et. al., \Bitwidth Cognizant Architecture
Synthesis of Custom Hardware Accelerators," IEEE
Trans. CAD, vol. 20, no. 11, pp. 1355{1371, Nov. 2001.

[5] B. Shackleford, et. al., \Memory-CPU Size Optimiza-
tion for Embedded system Designs," DAC, 1997.

[6] M. Stephenson, J. Babb, and S. Amarasinghe,
\Bitwidth Analysis with Application to Silicon Com-
pilation," PLDI, 2000.

[7] H. Yamashita, H. Tomiyama, A. Inoue, F. N. Eko, T.
Okuma, and H. Yasuura, \Variable Size Analysis for
Datapath Width Optimization", In Proc. of Asia Pa-
ci�c Conf. on Hardware Description Languages, pp. 69{
74, 1998.

[8] H. Yasuura, H. Tomiyama, A. Inoue and F. N. Eko,
\Embedded System Design Using Soft-core Processor
and Valen-C", IIS J. Info. Sci. Eng., vol. 14, pp.587-
603, Sept. 1998.

[9] V. �Zivojnovi�c, J. M. Velarde, C. Schlager, and H. Meyr,
\DSPstone: A DSP-oriented benchmarking methodol-
ogy," Proc. of Int'l Conf. on Signal Processing and Tech-
nology, 1994.

