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ABSTRACT

This paper proposes a new approach to reducing the
power consumption of instruction ROMs for embedded
systems. The power consumption of instruction ROMs
strongly depends on the switching activity of bit-lines.
If a read bit-value indicates ’0’, the precharged bit-
line is discharged. In this scenario, a bit-line switch-
ing takes place and consumes power. Otherwise, the
precharged bit-line level is maintained until the next
access, thus no bit-line switching occurs. In our ap-
proach, the binary-patterns to be assigned to op-codes
are determined based on the frequency of instructions
for reducing the bit-line switching activity. Application
programs are analyzed in advance, and then binary-
patterns including many ’1’ are assigned to the most
frequently referenced instructions. In our evaluation,
it is observed that the proposed approach can reduce
40% of bit-line switching.

1. INTRODUCTION

Achieving low power consumption is one of the most
important requirements for embedded systems, because
it directly affects not only battery life but also cost, re-
liability, and so on. Here, we consider processor-based
embedded systems which consist of a CPU core, an
instruction ROM (I-ROM), a data RAM, and periph-
eral logics. In this kind of embedded systems, mainly
there are two factors for power consumption: one is the
power consumed in the CPU core and the other is that
in the memory system. The later depends largely on
the memory size and the memory-accesses frequency.
With the recent increase in the requirements of ad-
vanced application programs, the code size which lim-
its the I-ROM size has been increasing. In addition,
since the I-ROM is accessed at every clock cycle, it has
been becoming a major contributor to the overall chip
power. Therefore, we focus on the power dissipated by

the I-ROM.

To achieve high-speed memory accesses, each bit-
line is precharged to a reference voltage. Here, it is
assumed that a single bit-line scheme is employed. The
address decoder activates a word-line when a memory
access takes place, and the stored data corresponding
to the selected memory cells appear on bit-lines. Each
sense-amplifier amplifies the difference between the bit-
line voltage and the reference voltage. Here, we refer
’conforming-bit-value (CBV)’ to as the same bit value
as the precharging bit value. Namely, if we define the
precharged bit-line value is ’1’, ’1’ is the CBV, and
’0’ is called ’unconforming-bit-value (UCBV)’. Through
this paper, we assume that the conforming-bit-value is
’1’ unless stated otherwise. When the UCBV is read
out from a memory cell, the corresponding bit-line is
discharged. Therefore, the power is consumed due to
the bit-line switching. On the other hand, when the
CBV is read, bit-line discharging does not take place.
In this case, the bit-line does not consume the power
because the precharged value is maintained until the
next precharge operation [3].

In a large memory array, bit-lines are major contrib-
utors to the overall memory power consumption. By
reducing the total number of UCBVs to be accessed,
we can reduce the power consumption of the I-ROM.
In [3], the authors proposed horizontal-strip-inversion
(HSI) approach. The total number of memory cells
memorizing the UCBV is counted word by word. A
1-bit flag, called invert-flag, is attached to each word
data. If the total number of memory cells having the
UCBV is greater than half of the word size, the whole
word data is inverted and corresponding invert-flag is
reset to 0. On an I-ROM access, the invert-flag corre-
sponding to the read data is checked. If the flag is 1,
the read data is inverted and provided to the proces-
sor. Figure 1 depicts the concept of the HSI approach.
In the case that the CPU accesses from address-0 to
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Figure 1: HSI Approach

address-3, the total count of bit-line switching (or the
total number of UCBVs accessed) is reduced from 15 in
conventional organization to 10 in the HSI approach.

It is well known that there are hot-spots, where are
parts of the program code to be executed frequently.
If instructions in the hot-spots have CBV-rich binary-
patterns, we can effectively save the bit-line switch-
ing. However, the HSI does not exploit this advan-
tage, because it relays only on the spacial exploration
to determine whether each word should be inverted.
In order to produce more power reduction by exploit-
ing the temporal characteristics of program behavior,
we propose a new op-code assignment approach. The
binary-patterns of op-code are determined for minimiz-
ing the total number of UCBVs to be accessed. The
execution count of each instruction is investigated in
advance. Then, we assign CBV-rich binary-patterns to
the most frequently executed instructions. By combin-
ing our temporal strategy with the spacial strategy as
the HSI, we can achieve a significant power reduction
for I-ROMs.

The rest of this paper is organized as follows: Sec-
tion 2 shows the concept of our approach and pro-
poses the binary-pattern assignment methodology for
low power I-ROMs. Section 3 evaluates the effective-
ness of the proposed method. We also consider the
combination with the HSI approach. Section 4 gives
some concluding remarks.

2. INSTRUCTION CORDING FOR LOW
POWER I-ROMS

2.1. Concept

It is well known that there is a rule for program-
execution behavior called 90/10 Locality Rule: a pro-
gram executes about 90% of its instructions in 10%
of its code [4]. That is, there are some portions of
program-address space executed frequently. We have
analyzed the execution frequency of instructions for
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MPEG-decoder program by using an instruction-level
dlx-simulator [6]. Figure 2 depicts the instruction for-
mat we assumed.

Table 1 shows the ranking list (top five) of the
most frequently executed instructions and referenced
registers when we look at each field in the instruction
format. The corresponding binary-patterns based on
the dlx-sim simulator 1 [7] are also shown in the ta-
ble. From the table, we see that UCBV-rich binary-
patterns are assigned to the most frequently executed
instructions. For example, binary-patterns “000000”
and “001000” are assigned to the SPECIAL instruc-
tion (i.e., R-type instructions) and ADDI instruction,
respectively. These instructions occupy more than 34%
of the total instruction count. Similar situations also
can be seen for register references.

As explained in Section 1, I-ROM power consump-
tion depends largely on the total number of UCBVs
to be accessed. Unfortunately, binary-patterns of op-
codes in conventional CPU design are defined with the
consideration of the instruction decoder’s complexity.
Since programs inherently include the locality of in-
structions, however, properly choosing the binary-patterns
of op-codes is a key to reduce the number of UCBVs
accessed.

In order to reduce the bit-line switching activity, we
re-assign new binary-patterns to the op-codes based on
the instruction frequency. The concept of our approach
is quite simple. We attempt to assign CBV-rich binary-
patterns to the op-codes of frequently executed instruc-
tions. We also consider the register-field. Usually, com-
piler attempts to use effectively the limited register re-
source. As a result, we see the locality of register ref-
erences, as shown in Table 1. For the immediate-field,
we employ the HSI approach as shown in Figure 3. We
implement two invert-flags to each word data: one is
for 16-bit immediate data (I-type instructions) and the
other is for 26-bit immediate data (J-type instructions).
Our approach requires the following steps.

1 The binary-patterns of the dlx-sim op-codes were defined
based on a MIPS machine.



Table 1: Frequency of Instructions (mpeg decode using “mei16v2.m2v” input file)

Op-Field Func-Field Reg-Field
Ranking Inst. Freq. Op-code Inst. Freq. Op-code Reg. Freq. Op-code

(#of UCBVs) (#of UCBVs) (#of UCBVs)
1 Special 17.9% 000000(6) ADD 9.0% 100000(5) R1 26.8% 00001(4)
2 ADDI 16.5% 001000(5) MOVI2FP 1.9% 110101(2) R29 14.8% 11101(1)
3 LW 15.0% 100011(3) SLT 1.9% 101010(3) R2 12.3% 00010(4)
4 SW 12.8% 101011(2) SUB 1.5% 100010(4) R3 10.7% 00011(3)
5 BNEZ 4.2% 000101(4) OR 1.3% 100101(3) R31 6.4% 11111(0)

1. The target application is executed on an instruction-
level processor-simulator by using a sample input
data. Then we obtain a ranking list for the fre-
quency of instructions and that of register refer-
ences, as showed in Table 1.

2. The binary-patterns of op-codes for the op-field,
the func-field, and the register-field are deter-
mined based on the ranking list. For each field,
CBV-rich binary-patterns are assigned in rank-
ing order. For example, “111111” is assigned to
the op-field of the SPECIAL instruction for the
MPEG program. Next, “111110” and “111101”
are assigned to the op-field of the second (ADDI)
and the third (LW) instructions, respectively.

3. For the immediate-field of I-type and J-type in-
structions, the HSI approach is applied.

4. The object code of target program is translated
based on the new binary-patterns determined by
the above steps.

Of course, the instruction decoder has to be modified
based on the new op-codes (the effect of the instruction-
decoder complexity is discussed in Section 3.4. There-
fore, our technique is best suited for dedicated pro-
cessors, since they are commonly used within embed-
ded systems to execute the dedicated application or the
same portion of code over and over. Figure 4 shows a
part of the new binary-patterns for the MPEG-decode
program.

2.2. Comparison with Other Techniques

Chang et al.[3] proposed the horizontal-strip-inversion
technique explained in Section 1. In addition, they
proposed another method called vertical-strip-inversion
(VSI) for I-ROMs. The total number of UCBVs is
counted column by column, and all column data are
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Figure 3: Concept of Proposed Approach

inverted if the result is greater than half of the column
size.

Benini et al. [2] proposed instruction set encoding
techniques for low power consumption. Clever binary-
pattern assignment to op-codes reduces the switching
activity of instruction fetch and decode logic. A va-
riety of coding techniques for reducing buses and I/O
power have been proposed [5][1]. The data to be trans-
ferred between the memory and the CPU core is coded
in order to reduce bus switching activity. On the other
hand, the purpose of our approach is to reduce the
power consumed by the I-ROM. The power consump-
tion of instruction-fetch logic, decoder, and buses de-
pends on the total number of ’0-1-0’ or ’1-0-1’ bit tran-
sitions, so that the relationship between successively
executed instructions has to be considered. However,
as explained in Section 1, the power consumption of
I-ROM employing a single bit-line scheme depends on
the total number of UCBVs accessed. Therefore, we
need to focus not on the instruction sequence but on
the frequency of instructions.
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Figure 4: Op-Code Assignment for MPEG decoder

3. EVALUATION

3.1. Simulation Environment

There are several components which consume the
power on I-ROM accesses, address decoder, memory ar-
ray, sense amplifier, buses between the I-ROM and the
microprocessor, and so on. How much each component
affects the total memory power depends on implemen-
tation. In this paper, we focus on the power consumed
in the memory array, and assume that it depends on
the bit-line switching activity. Power consumption can
be expressed by the following equation.

P = SW × C × F × V 2, (1)

where SW is the switching activity of bit-lines, C is the
total load capacitance of bit-lines, F is the operation
frequency, and V is the voltage swing. Our approach
does not affect the parameters C, F , and V , so that
we assume they are constant values. We have used two
integer programs from the SPEC95 benchmark suite
(099.go and 129.compress with train input data) and
two media programs from the Mediabench (ADPCM
decoder and MPEG2 decoder) as benchmark programs.
In this evaluation, we compare the power consumption
of the following models.

• BASE: This is a base model. The dlx-sim op-
codes are assumed. No low-power technique is
employed except that all data are inverted (not
word by word as the HSI approach). Therefore,
sense amplifiers invert the read data, and out-
put it to the microprocessor. We have found in
our simulation that this inversion brings better
results than non-inverted conventional model for
all benchmark programs.

• HSI (Horizontal Strip Inversion): This is a model
proposed in [3] (explained in Section 1).

• CODEsp: This is a model proposed in Section 2.
The binary-patterns assigned to the op-codes are
optimized for each program.

• CODEall: This is the same model as the CODEsp
except that the binary-patterns are determined
based on total simulation results: the ranking
list of instruction frequency for all benchmark
programs are merged, and the binary-patterns
are assigned. Namely, the binary-patterns of op-
codes are optimized for all programs.

Of course, in our simulation, the bit-line switching
of the invert-flags for the HSI approach is included. In
addition, we have assumed that the unused fields in in-
structions (e.g., the shumt-field of R-type instructions
except for shift instructions) are filled by CBVs (no
power consumption).

3.2. Simulation Results

Figure 5 shows the power consumption of each model
and its breakdown for each field in the instruction for-
mat. All results are normalized to the power consump-
tion of the base model.

We can see from the figure that the HSI approach
can make about 10% power reduction in the best case
129.compress. In this simulation, we assumed that the
invert-flag is set to 0 (i.e., UCBV) when the correspond-
ing data is inverted. If the total count of UCBV invert-
flags is greater than the half of the total I-ROM access
count, we can reduce the power overhead by chang-
ing the active level of the invert-flags (i.e., ’1’ of the
invert-flag means that the corresponding data has been
inverted). If we can completely eliminate the power dis-
sipated by the invert-flags, the HSI approach reduces
the power consumption by from 6% to 18%.

On the other hand, the CODEsp, which has the op-
timized op-codes for each target program, can achieve
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Figure 5: Power consumption of bit-lines

more than 40% of power reduction for all programs.
The new binary-pattern assignment scheme makes a
significant power reduction due to large amount of lo-
cality of executed instructions and referenced registers.
In addition, our approach applies the HSI technique not
to the whole word data but only to the immediate-field.
This fine-grain inversion control effectively reduces the
power consumed in the immediate-field. Although the
proposed approach includes two invert-flags per word,
only one invert-flag is assigned to the UCBV in the
worst case. Because one of the invert-flags is for 16-bit
immediate data (I-type instructions) and the other is
for 26-bit immediate data (J-type instructions). There-
fore, the power overhead caused by the invert-flags is
comparable with that of the HSI approach. For all but
one (adpcm dec), the CODEall, which has the op-codes
optimized for all programs, makes power reduction as
well as the CODEsp. This is because that we used a
dlx compiler (gcc-dlx) and all programs were compiled
with the same optimization policy. Therefore, the sim-
ilar trends in the frequency of instructions is observed
through all programs.

In addition, we have simulated the three benchmark
programs (099.go, 129.compress, and mpeg decode) with
other input data to evaluate the availability of our ap-
proach. Note that the binary-patterns of op-codes are
determined based on the base input data. As a result, it
was observed that our approach can achieve the power
reduction as well as the results reported above (from
42% to 60% of power reduction is achieved). We can
consider that the frequency of instructions may not be
largely affected by the difference of input data.
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3.3. Switching Activity of Buses

In the previous section, we have shown that opti-
mizing the binary-patterns assigned to op-codes can
reduce the power consumption of I-ROMs. However, it
may increase the power consumed by buses between the
I-ROM and the microprocessor, because our approach
does not take account of instruction sequence. In order
to clarify the effect of our approach to the bus power,
we also measured the total switching count of the buses.
As a result, it was observed that our approach brings
from 8 % to 18 % reduction of bus switching activity.
Based on the 90/10 Locality Rule explained in Section
2.1, we can also consider that the most frequently ex-
ecuted instructions may be referenced successively. In
other words, in our approach, the instructions having
CBV-rich binary-patterns are executed consecutively.
Therefore, the possibility of reducing the bus switch-
ing activity is increased.

3.4. Complexity of Instruction Decoder

The main drawback of our approach is the com-
plexity of instruction decoder, resulting in more power
consumption. In order to evaluate the negative ef-
fect, we designed a MIPS-base microprocessor by using
HDL (Hardware Description Language) at RT level,
and measured the power consumption of the instruc-
tion decoder. We used a 0.35 um CMOS technology
and Synopsys Design Compiler tool provided by the
chip fabrication program of VLSI Design and Educa-
tion Center (VDEC), the University of Tokyo.

The dynamic power in CMOS logic is consumed



when a charged wire (including connected gate) is dis-
charged, as expressed by the equation (1). We obtained
the switching activity of the instruction decoder, SW ,
from the simulation results reported in Section 3.3,
which is the switching activity of instructions to be
decoded. In addition, we assumed that all wires have
the same value of load capacitance, Cwireave. Thus,
we can approximate the total load capacitance, C, by
the multiplication of Cwire ave and the total number of
wires in our design. The clock frequency F and sup-
ply voltage V were assumed as 300 MHz and 3.3 V,
respectively.

The bars labeled as ’CODEsp’ and ’CODEall’ in
Figure 6 depict the power consumption of instruction
decoder for each program. All results are normalized to
the power of BASE model. For all programs, the pro-
posed approach increases the power consumption of in-
struction decoder by from 15% to 25%. This overhead
may not be acceptable, because the instruction decoder
is activated at every clock cycle. In our approach, the
binary-patterns for source/destination register field are
also optimized. Therefore, the instruction decoder has
to translate the coded register number to the physical
number.

Although the register-address translation produces
large hardware overhead, we can eliminate it at com-
pile time. The compiler allocate the register resources
having a CBV-rich register-number (e.g., “11111”) to
the most frequently referenced values. In this case,
the register-rename hardware is not required because
the binary-patterns of register numbers are not en-
coded. The bars denoted as ’CODEsp w/o RHW’ and
’CODEall w/o RHW’ in Figure 6 show the power con-
sumption without the renaming hardware. It is ob-
served that the power overhead caused by the instruc-
tion decoder is trivial for all but one (099.go). Even in
the worst case, the overhead is only 6.5%. In addition,
we see that the power consumption can be reduced in
some cases (129.compress, mpeg2dec, adpcmdec), though
the hardware complexity is increased. This is because
that our binary-pattern assignment reduces the switch-
ing activity of instructions as reported in Section 3.3.
Thus, if the switching-activity reduction is larger than
the power overhead caused by the logic complexity, the
total power consumption of instruction decoder is re-
duced.

4. CONCLUSIONS

In this paper, an instruction encoding approach for
reducing I-ROM power consumption has been proposed.
The target program of processor-based embedded sys-
tems is analyzed in advance by using instruction-level

simulator. We generate a ranking list for the frequency
of instructions and that of register references. Based
on the generated list, we assign new binary-patterns to
op-codes in order to reduce bit-line switching activity
in the I-ROM.

In our simulation, it has been observed that we can
achieve more than 40% power reduction of the I-ROM
for all benchmark programs. In our evaluation, the
power consumed in address-decoder logic, sense ampli-
fiers, and word lines were not considered. Our on going
work is to evaluate the effectiveness of our approach by
using a more accurate power model.
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