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A front-end for betterbehaviora synthess

Abstract

By allowing higher-level descriptims,betavioral synthesis
hasbeenan important solutionto copewith the growing
compleity of the chips. However, its efficiency hasnever
metthe oneof RTL synthesis. Our goalis to definea flow
for automdically corverting suchhigh-level specifications
to onesthat canbe efficiently handed by synthesigools.
Thisflow canbe seenasa front-endfor thosetools.

1 Intr oduction

Progressesn integrationallow thedesignof chipsthatcon-
tain millions of transistors.Therebreit becoms possible
to designcompete systemswithin a single chip. These
chips,calledSoC(Systenon Chip),areveryinterestingor
embededsystemsasthelatter have to integratemoreand
morefundionalitiesandhave strongconstraintsn term of
sizeandpower consunption. However, it is impossibleto
designin areasomabletime suchcomplex chipswith clas-
sicalmethoablogies.

To aid in the definition of methodlogiesableto handle
the previous challengs, new kinds of hardvare/softvare
specificationlanguaes have beendefined SpecC[T is
one of the most popular of those new languagesfea-
turing: objed-orientedconceps, hierarclical description
abstractcomnunicationthrough chanrels, C-like syntax
(well known by a majority of designes), andfastexecu
tion. We canalsomentian SystemCJ[] which hasalmost
thesamefeatues.

It is important to notice that theselanguayesare simi-
lar to behaioral VHDL][2]: the main differencebeing the
datahanding (which is performed through signalsin the
caseof VHDL, andthroughsoftwarevariadesfor SpecC).
This differencemakes SpecCeasierto use and fasterto
simulate.However, behaioral VHDL synthesigoolshave
never beena comgete success[ff6]: they areoften quite
efficientin somespecificcasesput fail in geneal. There-
fore, this shortconing shouldbethesamefor a SpecCsyn-
thesistools.

We propose a flow that aims to solve, or ease,these
prodemsat high-level by anappopriatepre-canputingof
the “specification”. This flow usesvarious techniquesfor
determinng the functionalities or the implemeantation do-
main(for instancedataflav oriented, for reusingn-library
compaments,and performing highdevel exploration. The
“specification”we wantto addressis very closeto the pa-
perspecificatiorbut is still writtenin the executableSpecC

language. This flow canbe usedasa front endof existing
synthesidlows.

The restof the paperis organizedasfollows: the sec-
ondsectiondescribedsomeworks relatedto ours,thethird
sectionpresentshe proposedflow andthe fourth section
describs its useon the JBIG encoar examge. Thefinal
sectionis the conclwsion.

2 Relatedwork

SpecCmethalology[8] implementedin the SCEtool[11]],
proposesa several step refinemeit architectue refine-
ment which correspondsto architectue exploration (in-
cluding hardware software partitioning), communication
refinerrent and implementation refinerment (which corre-
spondto behaioral synthesis)Oneof this methoalogy's
strongpointsis its usingof preciseandorthogonal seman-
tics. This methoalogy relieson the userfor the behaior
coding andfor theexplorationdecisions Apartfrom this, it
considesthattheinputcode(called“specification”)canbe
directly synthesizedasif it wasanimplemenation. This
implies that the userhave to write a “synthesis-eficient
specificatiofl which is not trivial. Moreover, several spe-
cific casescanbe efficiently synthesizedy specifictools
but not by geneal tools[4].

Some of the techniqies our flow usesare basedon
previous works. Code recanition is one thesetech-
nigues. A lot of work have already beendone abou
it: in verificatian[5], in software comgling[9], in logic
synthesis[0], etc. However theseworks focusedmainly
on recognizing low level optimized implemenations for
validation whereasour goal is to recogiize high-level
straightforward specification.In-library compnentreuse
(IP-reuse)is alsodeeplystudied the main difficulty there
beingto find the bestcompaent[12].

3 A prehigh-level synthesisflow

3.1 Hardware specifications

In this paper we call paper specification specification
suchasthe standarchorns’ docunentslike the JPEGen-
coding. For ourinput specificationwe choosethe SpecC
specificationlevel as definedin SpecCmethalology[8].

But, cortrary of this methoalogy, we try to be asclose
aspossibleto the paper specification For that pumpose
we simply transcrig it into the SpecCformalism,without

thinking aboutits future implementation.



3.2 Presentationof the flow

The input is a high-level descriptio obtainedby simply
translatinghepaper specificationinto the SpecCdescrip-
tion language. The outpu is anarchitectue level descrip-
tion definedin the SpecCmethalology. Thisflow assumes
that the hardware/software partitioring has alreadybeen
decided It only focuseson staticpartsof the system:dy-
namicparts(mainly software)have to betreatedn anotter
flow. Beforebeingtreatedby the flow, theinput text spec-
ification is corvertedto a hierarchcal setof graphswhose
top graphrepresets the different moddes of the initial
specification(called behavior in SpecC).Eachbehavior
may containsother behaviors or somecode. As for the
actualbehavior (thefunction bodes), they areconvertedto
contrd-dataflow grapts.

Specification

Filtering

Analysis Recognizing

(o]

lassifying

Selecting
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Figurel: Theproposedpresynthesidlow

Figure 1 presentghe propasedflow. This flow canbe
dividedinto 3 differentparts:

e The analysispartthatincludesthe filtering the rec-
ognizing andthe classifying steps. The goal of this
partis to translatehebehaioral descriptioninto aset
of symhplic objects. Thefiltering quicky annotates
eachnodeof the gragh with its local properties,the
recoqizing tries to indetify preciselythe function
alities (sewviceg andthe classifying tries to regroup
specificationpartsby comman kind of implemena-
tions (domains e.g. dataflav orientedor memoy
intensize). Domains can be usedduring the refine-
mentpartto decidewhich behaioral synthesigolicy
shouldbeused.

The refinemen part tries to find the bestcompmpnent
andthe bestarchitectue usingsomeperfamancean-
notatiors. Thisis arecursve stepthatincludesthese-
lecting step(thatfind thecompnentfrom thelibrary)

andtheexploring step(thatchoosethe bestarchitec-
turefor thecompaents).

e Thegeneratio partthatwill producethe output files
(SpecC).This generatio is perfamed throuch the
assemblyand the exparsion of optimizedin-library
macrce correspondig to the recognzed part of the
specification. The non recogized partsare also as-
sembledwith the macrcs, but their iner codeis kept

untauched.

As seerin thefigure,thereare4 ways(from left to right) to

hande a partof the specificationfrom a specificatiorpart
which goesthrough eachstepto onethat goesdirectly to

theselectingstep.This lastcaseoccurswhenthespecifica-
tion partis ablackboxanndatedwith asewvice, or directly

acompment(module) to use. Theideais thattheflow is

still usefulwithout oneor severalof its steps.

Note: therecogizing stepis not interestingfor all the
cases.For now we have defined3 grain levelsthatarein-
terestingto recogrize. The first grain level includesthe
“complex operates”, they represensomecomputationop-
eratiors that are not usually representedby operates, but
thatarecomnonly implemenedin hardware compuation
units. For exarmple the 1/4/22 + y2 + 22 function is such
anopemtor. Thesecondyrainlevel includesthegenerical-
gorithm patterrs, for examge all thedifferentkind of loops
(unsorted sorted dependantontheindexesandsoon). The
lastoneincludescomman behaiorsthatareoftenusedbut
hiddenanddispatchedvithin a more comgex algorithm

This flow works with a library whosecontentsis: for
thefirst part, the symbolic objectandthe way to identify
them;for thesecondart,thecompmentsandperfamance
anndations;andfor thethird partthe coce elements.

3.3 The objectsusedin the flow

The flow usessereral families of objects. Theseobjects
can be storedwithin the library, or can be linked to the
specification(introducedby the useror compued during
theflow).

Thefirst family regroupsall theplug-in functionsfor the
flow storedin thelibrary. Plug-irs canbe usedfor thefil-
tering, therecanizing the classifying andthe exploring
stepsandarerespectiely calledthefilters, the recayniz-
ers, the classifiersandtheexplorers.

The secondamily regroupsall the symbolsusedby the
flow to representsomehightlevel conceps. Theseobjects
arethe sewicesandthedomains A sewice representsa
functionality or a group of functionalities. For exanmple a
DFT (DiscreteFourier Transfom) or a geneic divide and
conguer algotithm canbe representedby a sewice. Ser
vices are the output of the filtering andthe recanizing
steps.A domain representsaninformationfor implemen-
tation. For examge dataflav orientedcanbe represented
by adomain. Domainsarethe outpu of thefiltering and
theclassifying steps.

Thethird family regroupsall theparametersthatcanbe
associatedo the specification.They canbe users anrota-



tions, or they canbe computedduring the filtering or the
classifying steps.A parameter is more preciselya name
associatedo atype andavalue They areusedby the ex-
ploring andthegeneraing steps.

The fourth family regroupsall the modules the ports
andthe channels thatis to saythe compmentsthatim-
plemer the servicesandtheir interadions. For exanple a
DFT canbeimplemenatedby a module. Severalmodules
canimplementa sameservice. They canalsobe hierar
chical contairing other modules ports and channelsor
services(amodule canprovide or requre somesenices.
Finally a module canbe partially definedor geneic: it is
calleda pattern.

The lastfamily regroupsall the materialfor generatio:
it is a setof macra that are expandedand assembledn
order to obtainthe outpu of the flow, thatis to saythe
behaioral coce.

4 The flow applied on the JBIG en-
coder

In orderto validate our metho@logy, andto estimatethe
difficulty for designirg suchtools, we apgied it on areal
specificationthe JBIG imagecompresingmethal[3].

4.1 Presentationof the JBIG

The JBIG[3] is a losslesi-level imaget compessionen-
coding methal. It also has a “progressive” capability

which makesit possibleto displaylow resoldion images
before thecompleteémagebeingavailable(in caseof low-

bandtransferfor exanple). Figure2 shows the global en-
codingflow: it repeatd times aresolutio redwction and
a differentiallayerencaling (i.e. encodng the differences
betweentwo consective resolutiors of the input image),
andfinally it appliesthelowerresolution encocr. Thefig-

ures3 and4 detailthetwo stepsof the flow.
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Figure2: TheJBIG encodng flow

In figure 3, the resolutionrediction producesa lower
resolutionimagetrying to keepthe imagequality®. Typ-
ical predictin looks for most probable pixel confama-
tions knowing the lower resolutionimage, and determin
istic predction looks for the pixels whosevalue canbe de-

1Bi-level images ik e black-and-wlite imageshave only two colors.

2D is thelower resoluton redudion rate.

3A straight forward resoluton redudion, like keeping only onepixel
over two, stronglydegradestheimagequality.
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Figure 3: The resolutionrediction and differential layer
encocr partof the JBIG
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Figure4: Thelower encalerpartof the JBIG

ducedfrom the encodirg mechaism. Adaptive template
and modeltemplateare usedto compue the contexts re-
latedto the pixelsthatwill be usedby the adaptve arith-
meticencoakr to producethe outpu code.

In thelower resolutionencaling, shavn in figure 4, the
typical predictian is similar to de previous one,but it uses
only oneresolutio.

4.11 Translation of JBIG paper-specificatin to a
SpecCspecification

Almostall the encodng proeesshasbeentranslatedo the
SpecCspecification.Only the adaptve templateshasnot
beendescriled becase it was not necessaryand let un-
specifiedby thenom.

The translationhasbeenstraightforward as almostall
the algaithms are givenin a pseuad-codemanrer or are
limited to accesgo somelookup tables. More predsely,
a recurrent opemtion in the specificationis to build for
eachpixe anindex from its neighors. This index is then
usedto accessa lookup table. It is the casefor the res-
olution reductian, the typicd predction, the determiristic
predction, and alsothe adaptie templates. For this, the
paper specificationgivesthe lookup table,anda diagam
shaving theneighborsof apixel anndatedwith theindex’'s
bit they correspad to. Therebrethetranslationcorsisted
onlyin copying thetablesandcoding thememoy accesses.

Regarding the hierarcly, we strictly followed the one
given by the paper specification

In total, the translationprocesgook lessthanoneman
week,with basicverificatiors. Of couise,more time would
be necessaryor a completeverification but asthe trans-
lation was mainly a simple copy (sometims autonatic),
the main errars shouldbe only typingike ones. Whatis



importantto noticeis that, on purpose,no effort hasbeen
spentfor producing an “optimized” specification:neither
for the behavior nor for the architecture.

In the othersectionsonly thework on the resolutionre-
ductionanddifferential layerencodemwill be presetted as
theoneonthelower resolution encodeiis very similar.

4.1.2 Filtering step

Thefiltering stephasbeenappliedindepemlently on each
behaior of the SpecCspecification.It consistsn quicky
analyzirg eachvarialle andeachnodeof the specification
graph andanndatethemwith the correspading sewices
anddomains

Variableanalysisgives similar resultsfor the resolution
redudion, the typical predction, the deterninistic predc-
tion andthe model template.The following kinds of vari-
ableshave beenfound: someintegervariablesusedasloop
andarrayindex andalsousedaslimit checlers, some2 di-
mensiorbit (or bit vector)matrixes usedasinput or output
memores, somel dimersionfixedbit or bit vectorarrays
usedaslook up tables(nat presentin the modé template
andthetypicd predction), andsometemporay integer/bit
vectos (both typesare used)usedas lookup index (not
presentin thetypical predition). Typical predictian hasan-
otheroutputvariable:the LNTP bit.

Variableanalysisfor the arithmeticencode bloc retum
the following kinds of variables: someinteger variables
usedas logical, arithmetic and compaison registers(we
meanby registerthatthey arenot dataflav tempoary vari-
ablesthatcouldbeeasilyremored) someintegervariables
usedasloop indexes,somebit variales usedasstreamed
outpu, somel dimensionfixed integer or bit arraysused
a lookup tables,and somel dimersion bit (or bit vectoy
arraysusedasinputmemay.

After varialle analysishodeanalysishasbeenapplied.

Usingthesenformations severd groupshave beenbuilt
for recognition. Thefirst kind of group contairs all the 2
dimensimm memoy accessesisingthe loop indexes. The
secondone containsall the loops that englole the algo-
rithms. Thethird onecontairs thelimit checls. Thefourth
one containsthe lookup accessesThe fifth one contains
the bit accesses the lookup indexes. The sixth onecon-
tainsthe arithmetic andlogic opemtions(for thearithmetic
encoer). The seventhonecontainsthe maskandshift op-
erations(for the arithmetic encocer). Evenif thesegroups
have beengiven hereindependarly onthebloc they come
from, they arestill linkedto themin the methoalogy. For
instance recaynizing and classifyingwill be first applied
on eachgrow of eachbloc. Anothe importantremak is
thatthesegroupssometime®verlap on eachother it is for
exampe the caseof theseventhandthe sixth group (in fact
theseventhgroupis includedin the sixth one).

For this experiment, eachof thesekinds of groups has
beenassumedo be potertially recogrnzed. Due to this
assumptionthey areall sentto therecogrizing step.

4.13 Recogniion step

Consecutie 2 dimersion memoy accessegthe first fil-
teredgrouwp) within loopsarevery comman in imagepro-
cessingalgorithns. Recogition stepappliedon the first
group are perfamed simply analying the loop andarray
indexes (compaing themto someclassical2 dimersion
memay accessewithin loops). They give differentresults
accordng to the bloc they comefrom. For resolutionre-
ductin, 2 dimersionmemoy accessearelocal, centered
totheindex, anddonotrecover over theloopiteration.The
correspondig serviceis simply a 9-pixel bloc accesgo a
2-dimensionmemay. For the differentialtypical predic-
tion, two kind of 2-dimensionmemoryaccesseareused:
a 9-pixel bloc accessaspreviously, anda 9 pixel bloc ac-
cesswith 6 pixelsrecovered. For deterministicpredction
andfor mocel templae, 9-pixel bloc accesswith 6 pixels
recoveredand and 25-pxel accesswith 20 pixels recor-
ered. Oneshouldnoticethat the numker of pixels within
the blocsarenot part of the sewices but are parameters
addedo the correspadingnodes.

For the secondgroup a specificrecanizer for loops
mustbeused.It looksfor datadepenénciesnsidetheloop
with the loop indexeswith the goal of deternining which
kind of loop it is. For all the specificationparts,the code
within the loop usesthe loop indexes, but their utilization
differs: for instance for the resolutionrediction, in order
indeendant,and samememoryaccessearenot repeated
over iterrationswhereasdeterninistic predction is order
depenlantandsamememay accessesanberepeaedover
iterations.

For thethird, thefifth andthesixth groypsnointeresting
servicehasbeenfound sothey will betransferre directly
to the classifyingstep.

For thefourth group thelookup accesseareconsideed
asrantm (asthey completlydepenl on theinput), there-
fore the correspading serviceis simply lookup access.

For the severth group shift and masksarein factonly
bit accessesTherebrethesewvice registerbit rangeaccess
is used.

4.14 Classifying step

Firstthe input specificationgraph is first reoderedso that
noce within the samegroup becamehe closestpossible.

From theseresults (and the filtering annotatims) the
splitting werejust cutting whenthe domain of the nodes
chang. The splitting resultis shovn figure 5. For other
input specificationsthoud, splitting can be much more
difficult, especiallyif different domainsarerandanly in-
terleaved Elaboratetechnigeshave thento be used,like
fuzzy computations.

Finalanndationsputtheproportion of differentdomairs
of eachsplit partthanksto the classifyingtable.
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4.1.5 Selectingand exploring steps

As the library is not yet built, exploration and selection
stepsfor this examge hasbeenratherlimited. In fact, this
exampe brought the oppatunity to designthe first mod
ulesfor thelibrary.

For the application onemodue for selectionis provid-
ing a 2-dmensionmemoy accesssewice. The figure 6
givesthe proposedimplemertation for this module. It is a
geneic modulewhoseparaméersaretheshapeof thepixel
buffer, the number of pixels that have to be readin each
passandthe fundions appliedon the buffer (in our case,
thesefunctions arethe building of the lookup indexes, the
context computation,and somecompaisons). One could
argue, that sucharchtecture could have beenfound with
a memay accessoptimizatian tool, which may be true.
However, the useof suchatool canalsobe aresultof our
flow throwgh the classifyingstep.Moreover, thesespecific
memoy accessearevery comma soit may be betterto
have analreadymadefinely tunedcompamentfor that. One
shouldalsonoticethatthechoiceof suchamodue strondy
depenlsonthekind of memoy whichis accessed.

: Access memory and shift signal

Memory acceq
controller

s
Buffer controller

Pixels buffer

Direct access crossbar

Pixels buffer (memory side)

Function to apply on pixels

Figure6: Theimplementationfor the2-dmensionrmemoy
access

The restof the specificationcanbe directly handed by
lower level tools. Lookup accessesre quite common
therefae it may be interestingto addin the library some
modulesfor them.

Preliminary exploration resultsare shovn in figure 7:
The first level of hierardy groups all the modue into a

loop modules' The secondevel of hierachy growpsin a
first module the 2 dimensiom memay accessewithin the
loops, in a secondmodule all the lookup accesseandta-
blesandin a third module the rest. The third level of hi-
erarcly within thefirst module separatetheresoldion re-
duction memay accessefrom the others(asthe first one
hasno memay recover contray of the othas). Within
the third module, the next level of hierarcly groups to-
getherthe comparsonsandinitializations, andthe restof
thearithmeticencodeiis left there
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Figure7: Theresultof theexplorationstep
4.16 Conclusionaboutthe results

This final result shawvs that the resulting architecture is
comgetely different from the initial one. Regardirg the
behaior, all the 2-dmensionmemay accessedasbeen
replacedby a single library-basedimplementation. The
restof the behaior hasbeenkept, but its orderhasbeen
changdto puttogethermpartswith similar domairs.

For the arithmetic encoder only the lookup accesses
have beentreated the restremainsuntowched,andshould
betreatedasis by thelowerlevel synthesigools. Themain
reasons thatthe coce of this partdoesnot containtypicd
patterrs. Further work on our flow will be therdore nec-
essaryto hande suchkind of behaior, especiallyin the
filtering andclassifyingsteps.

Finally simple simulation have beenperformed at the
RTL level with differentmemoy accessesmes. Theirre-
sultsareshawvn in thetable4.1.6°

In thetable,thefirst columnis for thespecificatiortrans-
lateddirectly to the RTL level without theinitial flow, and
thesecondnefor the“optimized” one.Thetwo firstlines
give the number of readandwrite accesseto the memo-
ries,thelastlines give the total nunber of cyclesrequred
for encodng the input imagewith differert memoryac-
cesstimes (respectiely 10 cycles,2 cyclesand 1 cycle).
As seenin the table,evenwith fastmemay accesseghe
“optimized” versionobtainsbetterperformarces. The best
performane aremainly dueto:

4Resoltion reducton anddeteministic prediction have a partoutside
thex-loop asacompletline have to becomputel by thembeforetherest
of thealgorithm canbe applied.

5The algorithm compleity is proportonalto theimageés size;in our
simulaton we useda 80x24pixel image



Measure Initial specification| “Optimized” specification
read 54197 11418

write 7786 3406
cycles(10) 704034 163735
cycles(2) 197674 41263
cycles(1) 704034 26079

Tablel: RTL simulationresults

1. the fewer memoy accessesesultingfrom the 2 di-
mensionmemoy accessompament;

2. the grougng inside the sameloops of the different
stepsof the JBIG encoding algorithm.

The*“optimized” versionalsorequireslessmemay?® asthe
exploring stepmalke it possibleto exploit locality of the
imageprocessing.

Performancesimilarto ours canbe obtairedwith classi-
cal flow. However, theintial specificatiorhave thento be
compleely rewrittento adap it to thebehavioral synthesis
tools,whichis time consuning anderrorprore.

5 Conclusion

SpecGs ausefullanguagefor describirg complex SoCsat

ahigh-level of abstractio. However the prodemsencoun

teredwith behaioral synthesis tools have shown thatit is

difficult to generateefficient hardvarefrom highdevel de-
scriptions:eithertheresultis bad,or theinputspecification
is difficult to undestand.

Ourgoalis to corverthigh-evel straightforward SpecC
specificatiornto lower level complex onesthat canbe effi-
ciently synthesizedln this papemwefirst definedour spec-
ification, andthenproposeda flow that canbe consideed
asa front-endto existing synthesidlows. The flow con-
tainsseveral stepsthattreatthe input specificatiorfollow-
ing different axes: recoqnizing, classifyingandexploring.
Theinitial filtering preparesthe specification(by anndat-
ing it) for thesestepsandthe selectingstepallows theuse
of in-library alreadydesigneccompaments.

As preliminary expeiiments,this flow hasbeenapplied
on the JBIG encoctr. The resultsshaws that, evenif the
wholespecificatiorhasnot beensuccessfullyhardled (the
arithmeticencoetr hasbeenmostlyuntowched),theresult-
ing synthesis-opimizedarchitectue andbehaior strondy
differ from theinitial ones. Using existing synthesidlow
without this front-end would force the userto perfom
a comgex translationof the initial specificationto one
that could be efficiently synthesized, therebre, whenau-
tomated this flow will bring animportantgainof produc-
tivity. Moreover, with the growing library, the productivity
will increaseovertime.

The resultsare promising, however thereis still a lot of
work do to obtainthe autonatedflow. Additional works

6Apartfrom the inputimageandthe outputcodes, therearememory
needsor only 2 lines.

arealsoplanredto definealibrary thatcouldusetheresults
of syntresisto enhareits annotatimsfor achieving better
selectingandexploring results.
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