
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A front - end for better behavioral synthesis

Gauthier, Lovic
Institute of Systems & Information Technologies/Kyushu

Devroye, Natasha
Institute of Systems & Information Technologies/Kyushu

Tomiyama, Hiroyuki
Institute of Systems & Information Technologies/Kyushu

Murakami, Kazuaki
Institute of Systems & Information Technologies/Kyushu

https://hdl.handle.net/2324/6010

出版情報：IPSJ Technical Report 2002-SLDM-107-6, pp.31-36, 2002-10. 情報処理学会SLDM研究会
バージョン：
権利関係：ここに掲載した著作物の利用に関する注意 本著作物の著作権は（社）情報処理学会に帰属し
ます。本著作物は著作権者である情報処理学会の許可のもとに掲載するものです。ご利用に当たっては
「著作権法」ならびに「情報処理学会倫理綱領」に従うことをお願いいたします。

A front-end for betterbehavioral synthesis

Abstract

By allowing higher-leveldescriptions,behavioral synthesis
hasbeenan important solution to copewith the growing
complexity of thechips.However, its efficiency hasnever
mettheoneof RTL synthesis. Our goal is to definea flow
for automatically convertingsuchhigh-level specifications
to onesthat canbe efficiently handled by synthesistools.
Thisflow canbeseenasa front-endfor thosetools.

1 Intr oduction

Progressesin integrationallow thedesignof chipsthatcon-
tain millions of transistors.Therefore it becomes possible
to designcomplete systemswithin a single chip. These
chips,calledSoC(SystemonChip),areveryinterestingfor
embeddedsystemsasthelatterhave to integratemoreand
morefunctionalitiesandhave strongconstraintsin termof
sizeandpower consumption. However, it is impossibleto
designin a reasonabletime suchcomplex chipswith clas-
sicalmethodologies.

To aid in thedefinitionof methodologiesableto handle
the previous challenges, new kinds of hardware/software
specificationlanguages have beendefined. SpecC[7] is
one of the most popular of those new languages fea-
turing: object-orientedconcepts, hierarchical description,
abstractcommunication through channels, C-like syntax
(well known by a majority of designers), and fastexecu-
tion. We canalsomention SystemC[1] which hasalmost
thesamefeatures.

It is important to notice that theselanguagesaresimi-
lar to behavioral VHDL[2]: themaindifferencebeing the
datahandling (which is performedthrough signalsin the
caseof VHDL, andthroughsoftwarevariablesfor SpecC).
This differencemakes SpecCeasierto useand fasterto
simulate.However, behavioral VHDL synthesistoolshave
never beena complete success[4][6]: they areoften quite
efficient in somespecificcases,but fail in general. There-
fore,thisshortcoming shouldbethesamefor aSpecCsyn-
thesistools.

We propose a flow that aims to solve, or ease,these
problemsat high-level by anappropriatepre-computingof
the “specification”. This flow usesvarious techniquesfor
determining the functionalitiesor the implementationdo-
main(for instancedataflow oriented), for reusingin-library
components,andperforming high-level exploration. The
“specification”we want to addressis very closeto thepa-
perspecificationbut is still writtenin theexecutableSpecC

language.This flow canbeusedasa front endof existing
synthesisflows.

The restof the paperis organizedas follows: the sec-
ondsectiondescribedsomeworks relatedto ours,thethird
sectionpresentsthe proposedflow andthe fourth section
describes its useon the JBIG encoder example. The final
sectionis theconclusion.

2 Relatedwork

SpecCmethodology[8] implementedin the SCEtool[11],
proposesa several step refinement: architecture refine-
ment which correspondsto architecture exploration (in-
cluding hardware software partitioning), communication
refinement and implementation refinement (which corre-
spondto behavioral synthesis).Oneof this methodology’s
strongpointsis its usingof preciseandorthogonalseman-
tics. This methodology relieson theuserfor thebehavior
coding andfor theexplorationdecisions.Apartfrom this,it
considersthattheinputcode(called“specification”)canbe
directly synthesized, asif it wasan implementation. This
implies that the userhave to write a “synthesis-efficient
specification” which is not trivial. Moreover, severalspe-
cific casescanbe efficiently synthesizedby specifictools
but not by general tools[4].

Some of the techniques our flow usesare basedon
previous works. Code recognition is one these tech-
niques. A lot of work have already been done about
it: in verification[5], in software compiling[9], in logic
synthesis[10], etc. However theseworks focusedmainly
on recognizing low level optimized implementations for
validation whereasour goal is to recognize high-level
straightforwardspecification.In-library componentreuse
(IP-reuse)is alsodeeplystudied, the maindifficulty there
beingto find thebestcomponent[12].

3 A pre high-level synthesisflow

3.1 Hardwarespecifications

In this paper, we call paper specification specification
suchasthestandardnorms’ documentslike the JPEGen-
coding. For our input specificationwe choosethe SpecC
specificationlevel as definedin SpecCmethodology[8].
But, contrary of this methodology, we try to be as close
aspossibleto the paper specification. For that purpose
we simply transcript it into theSpecCformalism,without
thinking aboutits future implementation.

1

3.2 Presentationof the flow

The input is a high-level description obtainedby simply
translatingthepaper specificationinto theSpecCdescrip-
tion language.Theoutput is anarchitecture level descrip-
tion definedin theSpecCmethodology. Thisflow assumes
that the hardware/software partitioning hasalreadybeen
decided. It only focuseson staticpartsof thesystem:dy-
namicparts(mainlysoftware)haveto betreatedin another
flow. Beforebeingtreatedby theflow, theinput text spec-
ification is convertedto a hierarchical setof graphswhose
top graph represents the different modules of the initial
specification(calledbehavior in SpecC).Eachbehavior
may containsother behaviors or somecode. As for the
actualbehavior (thefunction bodies),they areconvertedto
control-dataflow graphs.

Filtering
�

Specification

Recognizing
�

Classifying

Analysis
�

Refinement
�

Generation

Selecting

Exploring

Generating

Figure1: Theproposedpre-synthesisflow

Figure1 presentsthe proposedflow. This flow canbe
dividedinto 3 differentparts:

� The analysispart that includes the filtering the rec-
ognizing andthe classifying steps.The goal of this
partis to translatethebehavioral descriptioninto aset
of symbolic objects. The filtering quickly annotates
eachnodeof the graph with its local properties,the
recognizing tries to indetify preciselythe function-
alities (services) andthe classifying tries to regroup
specificationpartsby common kind of implementa-
tions (domains, e.g. dataflow orientedor memory
intensive). Domains can be usedduring the refine-
mentpartto decidewhichbehavioral synthesispolicy
shouldbeused.

� The refinement part tries to find the bestcomponent
andthebestarchitecture usingsomeperformancean-
notations. This is arecursivestepthatincludesthese-
lecting step(thatfind thecomponentfrom thelibrary)

andtheexploring step(thatchoosethebestarchitec-
turefor thecomponents).

� Thegeneration part thatwill producetheoutput files
(SpecC).This generation is performed through the
assemblyand the expansion of optimized in-library
macros corresponding to the recognized part of the
specification.The non recognizedpartsarealsoas-
sembledwith the macros, but their iner codeis kept
untouched.

As seenin thefigure,thereare4 ways(from left to right) to
handle a partof thespecification:from a specificationpart
which goesthrough eachstepto onethat goesdirectly to
theselectingstep.This lastcaseoccurswhenthespecifica-
tion partis ablackboxannotatedwith aservice, or directly
a component(module) to use.The ideais that theflow is
still usefulwithout oneor severalof its steps.

Note: the recognizing stepis not interestingfor all the
cases.For now we have defined3 grain levels thatarein-
terestingto recognize. The first grain level includesthe
“complex operators”, they representsomecomputationop-
erations thatarenot usuallyrepresentedby operators, but
thatarecommonly implemented in hardware computation
units. For example the

��� �	��

����
����
function is such

anoperator. Thesecondgrainlevel includesthegenerical-
gorithm patterns,for example all thedifferentkind of loops
(unsorted,sorted,dependantontheindexesandsoon). The
lastoneincludescommon behaviors thatareoftenusedbut
hiddenanddispatchedwithin a more complex algorithm.

This flow works with a library whosecontentsis: for
the first part, the symbolicobjectandthe way to identify
them;for thesecondpart,thecomponentsandperformance
annotations;andfor thethird partthecode elements.

3.3 The objectsusedin the flow

The flow usesseveral families of objects. Theseobjects
can be storedwithin the library, or can be linked to the
specification(introducedby the useror computed during
theflow).

Thefirst family regroupsall theplug-in functionsfor the
flow storedin the library. Plug-ins canbeusedfor thefil-
tering, the recognizing theclassifyingandtheexploring
stepsandarerespectively calledthe filters, the recogniz-
ers, theclassifiersandtheexplorers.

Thesecondfamily regroupsall thesymbolsusedby the
flow to representsomehigh-level concepts. Theseobjects
arethe servicesandthe domains. A service representsa
functionality or a group of functionalities. For example a
DFT (DiscreteFourier Transform) or a generic divide and
conquer algorithm canbe representedby a service. Ser-
vices are the output of the filtering and the recognizing
steps.A domain representsaninformationfor implemen-
tation. For example dataflow orientedcanbe represented
by a domain. Domainsaretheoutput of thefiltering and
theclassifyingsteps.

Thethird family regroupsall theparametersthatcanbe
associatedto thespecification.They canbeuser’s annota-

2

tions,or they canbe computedduring the filtering or the
classifyingsteps.A parameter is morepreciselya name
associatedto a typeanda value. They areusedby theex-
ploring andthegenerating steps.

The fourth family regroupsall the modules, the ports
and the channels, that is to say the componentsthat im-
plement theservicesandtheir interactions. For example a
DFT canbeimplementatedby amodule. Severalmodules
can implementa sameservice. They canalsobe hierar-
chical containing other modules, ports and channelsor
services(a module canprovide or require someservices).
Finally a module canbepartially definedor generic: it is
calleda pattern.

Thelast family regroupsall thematerialfor generation:
it is a set of macros that are expandedandassembledin
order to obtain the output of the flow, that is to say the
behavioral code.

4 The flow applied on the JBIG en-
coder

In order to validateour methodology, andto estimatethe
difficulty for designing suchtools,we applied it on a real
specification:theJBIG imagecompressingmethod[3].

4.1 Presentationof the JBIG

TheJBIG[3] is a losslessbi-level image1 compressionen-
coding method. It also has a “progressive” capability,
which makesit possibleto displaylow resolution images
before thecompleteimagebeingavailable(in caseof low-
bandtransferfor example). Figure2 shows theglobal en-
codingflow: it repeatsD times2 a resolution reduction and
a differentiallayerencoding (i.e. encoding thedifferences
betweentwo consecutive resolutions of the input image),
andfinally it appliesthelower resolution encoder. Thefig-
ures3 and4 detail thetwo stepsof theflow.

Resolution Resolution
Reduction Reduction

Differential
�

Differential

Resolution

Layer Layer

Layer

Encoder
�

Encoder

Encoder

and and

Lowest
I I I I

C

C

C

C

C

C

C

C

C

D D−1 D−2
�

0

0,0

0,D−1

0,D

S−1,0

S−1,D−1

S−1,D

1,0

1,D−1

1,D

I: input images (I : initial image)
C: output codes

Figure2: TheJBIGencoding flow

In figure 3, the resolutionreduction producesa lower
resolutionimagetrying to keepthe imagequality3. Typ-
ical prediction looks for most probable pixel conforma-
tions knowing the lower resolutionimage,anddetermin-
istic prediction looks for thepixels whosevalue canbede-

1Bi-level images,like black-and-white images,have only two colors.
2D is thelower resolution reduction rate.
3A straight forward resolution reduction, like keeping only onepixel

over two, stronglydegradestheimagequality.

Resolution

ATMOVE

LNTP

TPVALUE

DPVALUE

Reduction

(Differential)

Typical
Prediction

Prediction

Deterministic
�

Templates

Adaptive

Adaptive
�
Arithmetic
�
Encoder
�

Model
�

Templates
�

I I

C CC

d d−1

0,d S−1,d1,d

I: input images
C: output codes

Figure 3: The resolutionreduction and differential layer
encoderpartof theJBIG

ATMOVE
�

SLNTP

TPVALUE

(Bottom)

Typical
Prediction

Templates

Adaptive

Adaptive
Arithmetic
Encoder
�

Model

Templates

I C
�

CC
0 0,0 S−1,01,0

I: input images
C: output codes

Figure4: Thelowerencoderpartof theJBIG

ducedfrom the encoding mechanism. Adaptive template
andmodel templateareusedto compute the contexts re-
latedto the pixels that will be usedby the adaptive arith-
meticencoder to producetheoutput code.

In thelower resolutionencoding, shown in figure 4, the
typical prediction is similar to depreviousone,but it uses
only oneresolution.

4.1.1 Translation of JBIG paper-specification to a
SpecCspecification

Almost all theencoding processhasbeentranslatedto the
SpecCspecification.Only the adaptive templateshasnot
beendescribed because it wasnot necessary, and let un-
specifiedby thenorm.

The translationhasbeenstraightforward asalmostall
the algorithms aregiven in a pseudo-codemanner or are
limited to accessto somelookup tables. More precisely,
a recurrent operation in the specificationis to build for
eachpixel an index from its neighbors. This index is then
usedto accessa lookup table. It is the casefor the res-
olution reduction, the typical prediction, the deterministic
prediction, andalso the adaptive templates.For this, the
paper specificationgivesthelookup table,anda diagram
showing theneighborsof apixelannotatedwith theindex’s
bit they correspond to. Therefore thetranslationconsisted
only in copying thetablesandcoding thememory accesses.

Regarding the hierarchy, we strictly followed the one
given by thepaper specification.

In total, the translationprocesstook lessthanoneman
week,with basicverifications. Of course,moretimewould
be necessaryfor a completeverification, but asthe trans-
lation was mainly a simple copy (sometimes automatic),
the main errors shouldbe only typing-like ones. What is

3

important to noticeis that,on purpose,no effort hasbeen
spentfor producing an “optimized” specification:neither
for thebehavior nor for thearchitecture.

In theothersectionsonly thework on theresolutionre-
ductionanddifferential layerencoderwill bepresentedas
theoneon thelower resolution encoderis verysimilar.

4.1.2 Filtering step

Thefiltering stephasbeenappliedindependentlyon each
behavior of theSpecCspecification.It consistsin quickly
analyzing eachvariable andeachnodeof thespecification
graph, andannotatethemwith thecorrespondingservices
anddomains.

Variableanalysisgives similar resultsfor theresolution
reduction, the typical prediction, the deterministic predic-
tion andthemodel template.Thefollowing kinds of vari-
ableshavebeenfound: someintegervariablesusedasloop
andarrayindex andalsousedaslimit checkers,some2 di-
mensionbit (or bit vector)matrixesusedasinputor output
memories,some1 dimensionfixedbit or bit vectorarrays
usedaslook up tables(not presentin the model template
andthetypical prediction), andsometemporary integer/bit
vectors (both typesare used)usedas lookup index (not
presentin thetypicalpredition). Typicalprediction hasan-
otheroutputvariable:theLNTP bit.

Variableanalysisfor thearithmeticencoder bloc return
the following kinds of variables: someinteger variables
usedas logical, arithmetic and comparison registers(we
meanby registerthatthey arenotdataflow temporaryvari-
ablesthatcouldbeeasilyremoved), someintegervariables
usedasloop indexes,somebit variablesusedasstreamed
output, some1 dimensionfixed integer or bit arraysused
a lookup tables,andsome1 dimension bit (or bit vector)
arraysusedasinput memory.

After variable analysis,nodeanalysishasbeenapplied.

Usingtheseinformations,several groupshavebeenbuilt
for recognition. The first kind of groupcontains all the 2
dimension memory accessesusingthe loop indexes. The
secondone containsall the loops that englobe the algo-
rithms.Thethird onecontains thelimit checks. Thefourth
onecontainsthe lookup accesses.The fifth onecontains
thebit accessesin the lookup indexes. Thesixth onecon-
tainsthearithmeticandlogic operations(for thearithmetic
encoder). Theseventhonecontainsthemaskandshift op-
erations(for thearithmetic encoder). Evenif thesegroups
havebeengiven hereindependantly on thebloc they come
from, they arestill linkedto themin themethodology. For
instance,recognizing andclassifyingwill be first applied
on eachgroup of eachbloc. Another important remark is
thatthesegroupssometimesoverlaponeachother: it is for
example thecaseof theseventhandthesixthgroup (in fact
theseventhgroupis includedin thesixthone).

For this experiment, eachof thesekinds of groups has
beenassumedto be potentially recognized. Due to this
assumption, they areall sentto therecognizing step.

4.1.3 Recognition step

Consecutive 2 dimension memory accesses(the first fil-
teredgroup) within loopsarevery common in imagepro-
cessingalgorithms. Recognition stepappliedon the first
group areperformedsimply analyzing the loop andarray
indexes (comparing them to someclassical2 dimension
memory accesseswithin loops). They givedifferentresults
according to the bloc they comefrom. For resolutionre-
duction, 2 dimensionmemory accessesarelocal, centered
to theindex, anddonotrecover over theloopiteration.The
corresponding serviceis simply a 9-pixel bloc accessto a
2-dimensionmemory. For the differentialtypical predic-
tion, two kind of 2-dimensionmemoryaccessesareused:
a 9-pixel bloc accessaspreviously, anda 9 pixel bloc ac-
cesswith 6 pixels recovered. For deterministicprediction
andfor model template, 9-pixel bloc accesswith 6 pixels
recoveredand and 25-pixel accesswith 20 pixels recov-
ered. Oneshouldnoticethat the number of pixels within
theblocsarenot partof the services, but areparameters
addedto thecorrespondingnodes.

For the secondgroup, a specific recognizer for loops
mustbeused.It looksfor datadependenciesinsidetheloop
with the loop indexeswith the goalof determining which
kind of loop it is. For all the specificationparts,the code
within the loop usesthe loop indexes,but their utilization
differs: for instance,for the resolutionreduction, in order
independant,andsamememoryaccessesarenot repeated
over iterrationswhereasdeterministic prediction is order
dependantandsamememory accessescanberepeatedover
iterations.

For thethird, thefifth andthesixthgroupsnointeresting
servicehasbeenfound, sothey will betransferred directly
to theclassifyingstep.

For thefourthgroup, thelookupaccessesareconsidered
asrandom (asthey completlydepend on the input), there-
fore thecorrespondingserviceis simply lookup access.

For the seventh group, shift andmasksarein fact only
bit accesses.Thereforetheservice registerbit rangeaccess
is used.

4.1.4 Classifying step

First the input specificationgraph is first reorderedsothat
node within thesamegroup becametheclosestpossible.

From theseresults (and the filtering annotations) the
splitting werejust cutting whenthe domain of the nodes
change. The splitting result is shown figure 5. For other
input specificationsthough, splitting can be much more
difficult, especiallyif different domains arerandomly in-
terleaved. Elaboratetechniqueshave thento beused,like
fuzzycomputations.

Finalannotationsputtheproportionof differentdomains
of eachsplit partthanksto theclassifyingtable.

4

Resolution reduction Deterministic prediction Typical prediction

Model template Arithmetic encoder
�

Unsplit
�

limit checking limit and parity

limit and parity

checking

checking

limit checking

comparing

lookup access

lookup access

2 dimension unordered loop 2 dimension ordered loop 2 dimension ordered loop

2 dimension ordered loop

2 dimension 2 dimension 2 dimension

2 dimension

memory access memory access memory access

memory access

recovered recovered

recovered

Figure5: Thesplitting result

4.1.5 Selectingand exploring steps

As the library is not yet built, exploration and selection
stepsfor this example hasbeenratherlimited. In fact,this
example brought the opportunity to designthe first mod-
ulesfor thelibrary.

For theapplication, onemodule for selectionis provid-
ing a 2-dimensionmemory accessservice. The figure 6
givestheproposedimplementationfor this module. It is a
generic modulewhoseparametersaretheshapeof thepixel
buffer, the number of pixels that have to be readin each
passandthe functions appliedon the buffer (in our case,
thesefunctionsarethebuilding of the lookup indexes, the
context computation,andsomecomparisons). Onecould
argue, that sucharchitecturecould have beenfound with
a memory accessoptimization tool, which may be true.
However, theuseof sucha tool canalsobea resultof our
flow through theclassifyingstep.Moreover, thesespecific
memory accessesarevery common so it maybe betterto
haveanalreadymadefinely tunedcomponentfor that.One
shouldalsonoticethatthechoiceof suchamodule strongly
dependson thekind of memory which is accessed.

Memory access
controller! Buffer controller

Access memory and shift signal
"

Direct access crossbar
#

P
ix

el
s

bu
ffe

r
(m

em
or

y
si

de
)

$

P
ix

el
s

bu
ffe

r

$

Function to apply on pixels
%

Figure6: Theimplementationfor the2-dimensionmemory
access

Therestof the specificationcanbe directly handled by
lower level tools. Lookup accessesare quite common,
therefore it may be interestingto addin the library some
modulesfor them.

Preliminaryexploration resultsare shown in figure 7:
The first level of hierarchy groups all the module into a

loop modules4 The secondlevel of hierarchy groups in a
first module the2 dimension memory accesseswithin the
loops, in a secondmodule all the lookup accessesandta-
blesandin a third module the rest. The third level of hi-
erarchy within thefirst moduleseparatestheresolution re-
duction memory accessesfrom theothers(asthefirst one
hasno memory recover contrary of the others). Within
the third module, the next level of hierarchy groups to-
getherthe comparisonsandinitializations,andthe restof
thearithmeticencoderis left there.

2−dimension accesses
loop

loop

loop

look up

Resolution reduction

Resolution reduction

Resolution reduction

Resolution reduction

Arithmetic encoder
&

Arithmetic encoder

Resolution reduction

Det. prediction
' Det. prediction

Deterministic prediction

Deterministic prediction

Typical prediction

Typical prediction

Model template

Model template

comparisons / initializations

Figure7: Theresultof theexplorationstep

4.1.6 Conclusionabout the results

This final result shows that the resulting architecture is
completely different from the initial one. Regarding the
behavior, all the 2-dimensionmemory accesseshasbeen
replacedby a single library-basedimplementation. The
restof the behavior hasbeenkept, but its orderhasbeen
changedto put togetherpartswith similardomains.

For the arithmetic encoder, only the lookup accesses
have beentreated,therestremainsuntouched,andshould
betreatedasis by thelowerlevel synthesistools.Themain
reasonis thatthecode of this partdoesnot containtypical
patterns. Further work on our flow will be therefore nec-
essaryto handle suchkind of behavior, especiallyin the
filtering andclassifyingsteps.

Finally simple simulationhave beenperformed at the
RTL level with differentmemory accessestimes.Their re-
sultsareshown in thetable4.1.65

In thetable,thefirst columnis for thespecificationtrans-
lateddirectly to theRTL level without theinitial flow, and
thesecondonefor the“optimized” one.Thetwo first lines
give the number of readandwrite accessesto the memo-
ries,the last linesgive thetotal numberof cyclesrequired
for encoding the input imagewith different memoryac-
cesstimes(respectively 10 cycles,2 cyclesand1 cycle).
As seenin the table,evenwith fastmemory accesses,the
“optimized” versionobtainsbetterperformances.Thebest
performance aremainly dueto:

4Resolutionreduction anddeterministicpredictionhaveapartoutside
thex-loop asacomplete linehave to becomputed by thembeforetherest
of thealgorithmcanbeapplied.

5Thealgorithm complexity is proportional to the image’s size;in our
simulationweuseda80x24pixel image.

5

Measure Initial specification “Optimized” specification
read 54197 11418
write 7786 3406
cycles(10) 704034 163735
cycles(2) 197674 41263
cycles(1) 704034 26079

Table1: RTL simulationresults

1. the fewer memory accessesresultingfrom the 2 di-
mensionmemory accesscomponent;

2. the grouping inside the sameloops of the different
stepsof theJBIGencoding algorithm.

The“optimized” versionalsorequireslessmemory6 asthe
exploring stepmake it possibleto exploit locality of the
imageprocessing.

Performancesimilar to ourscanbeobtainedwith classi-
cal flow. However, the intial specificationhave thento be
completely rewritten to adapt it to thebehavioral synthesis
tools,which is timeconsuming anderror-prone.

5 Conclusion
SpecCis ausefullanguagefor describing complex SoCsat
ahigh-level of abstraction. However theproblemsencoun-
teredwith behavioral synthesis toolshave shown that it is
difficult to generateefficient hardwarefrom high-level de-
scriptions:eithertheresultis bad,or theinputspecification
is difficult to understand.

Ourgoalis to converthigh-level straightforward SpecC
specificationto lower level complex onesthat canbeeffi-
cientlysynthesized.In thispaperwefirst definedourspec-
ification, andthenproposeda flow thatcanbeconsidered
asa front-endto existing synthesisflows. The flow con-
tainsseveral stepsthat treatthe input specificationfollow-
ing different axes: recognizing, classifyingandexploring.
The initial filtering preparesthespecification(by annotat-
ing it) for thesesteps,andtheselectingstepallows theuse
of in-library alreadydesignedcomponents.

As preliminary experiments,this flow hasbeenapplied
on the JBIG encoder. The resultsshows that, even if the
wholespecificationhasnot beensuccessfullyhandled(the
arithmeticencoderhasbeenmostlyuntouched),theresult-
ing synthesis-optimizedarchitectureandbehavior strongly
differ from the initial ones.Using existing synthesisflow
without this front-end would force the user to perform
a complex translationof the initial specificationto one
that could be efficiently synthesized,therefore, whenau-
tomated,this flow will bring an importantgainof produc-
tivity. Moreover, with thegrowing library, theproductivity
will increaseover time.

Theresultsarepromising,however thereis still a lot of
work do to obtain the automatedflow. Additional works

6Apart from the input imageandtheoutputcodes, therearememory
needsfor only 2 lines.

arealsoplannedto definealibrary thatcouldusetheresults
of synthesisto enhanceits annotationsfor achieving better
selectingandexploring results.

References

[1] Technical report, SystemClanguage,availableat:
http://www.systemc.org.

[2] Behavioral compiler. Technicalreport, availableat:
http://www.synopsys.com/products/behsyn/behsyn.html.

[3] IUT-T RecommendationT.82.

[4] Raul Camposano. Behavioral synthesis. In DAC,
1996.

[5] P. Camurati and P. Prinetto. Formal verification of
hardwarecorrectness:Introductionandsurvey of cur-
rentresearch. Computer, 1988.

[6] Wander Oliveira Ceśario, Zoltan Sugar, Imed
Moussa,andAhmedAmine Jerraya. Efficient inte-
gration of behavioral synthesiswithin existingdesign
flows. In ISSS, 2000.

[7] SpecCConsortium. Technical report, SpecClan-
guage andmethodology, availableat:
http://www.specc.gr.jp/eng/index.htm.

[8] Daniel D. Gajski, JianwenZhu, RainerDömer, An-
dreasGerstlauer, andShuqingZhao. SpecC:Spec-
ification Language and Methodology. Kluwer Aca-
demicPublishers,2000.

[9] RobertMetzgerandZhaofangWen. AutomaticAl-
gorithm Recognition: A New Approach to Program
Optimization. MIT Press,2000.

[10] GiovanniDe Micheli. SynthesisandOptimizationof
Digital Circuits. 1994.

[11] Centerof EmbeddedComputerSystems.Socdesign
environment. Technical report, availableat:
http://www.ics.uci.edu/s̃pecc/research/index.html.

[12] Ting Zhang, LucaBenini, andGiovanni De Micheli.
Componentselectionandmatching for ip-basedde-
sign. In DATE01, 2001.

6

