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Finite element methods with stabilization techniques for the stationary Navier–Stokes equations are
studied. To solve the stationary Navier–Stokes equations, the Newton method is used. To compute
the problem at each step of the nonlinear iteration, a stabilization technique is introduced. The
mixed interpolation, which satisfies the inf-sup condition, with stabilized terms is also considered
to investigate its computational efficiency. Numerical results show that stabilized terms improve
convergences of the Newton method especially in the case of high Reynolds number as well as
those of the linear solver at each step of the nonlinear iteration.
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1 Introduction

There often encounter requirements to compute what flow pattern is generated in the stationary
state. With progress of computer environment and increasing demand of precise analyses, num-
bers of degrees of freedom of such a computation become larger. However, as far as we know,
computational codes may be rare, which are efficient for large scale, stationary, and nonlinear
flow problems. On the other hand, there often encounter requirements to compute convection
dominated flows. When the finite element method is used, the stabilization technique is often
introduced for such a computation; in case of the nonstationary Navier–Stokes equations, for ex-
ample, see Hansbo and Szepessy (1990), Hughes and Brooks (1982), Tabata and Suzuki (2000),
and Tezduyar et al. (1991); in case of the stationary Navier–Stokes equations, for example, see
Brooks and Hughes (1982), Franca and Frey (1992) and Zhou and Feng (1993). However, as far as
we know, it may be not enough to investigate what stabilization techniques are efficient for large
scale, stationary, and nonlinear flow problems. From those facts, as a preliminary step of analysis
of the nonlinear flow in the stationary state, we study finite element methods with stabilization
techniques for the stationary Navier–Stokes equations. Moreover, it is well-known that, thanks to
the stabilization technique, finite element approximations do not necessarily require the inf-sup
condition. In this paper, however, the mixed interpolation, which satisfies the inf-sup condition,
with stabilized terms is also considered to investigate its computational efficiency.

In this paper, to solve the stationary Navier–Stokes equations, the Newton method is used. To
compute the problem at each step of the nonlinear iteration, a stabilization technique is introduced.



Numerical results show that stabilized terms improve convergences of the Newton method
especially in the case of high Reynolds number as well as those of the linear solver at each step of
the nonlinear iteration.

2 Formulation

Let Ω be a three-dimensional bounded domain with the Lipschitz continuous boundary Γ . We
consider the stationary incompressible Navier–Stokes equations as follows:





−1
ρ
∇· σ(u, p) + (u·∇) u =

1
ρ

f in Ω, (1a)

∇· u = 0 in Ω, (1b)
u = g on Γ, (1c)

where u = (u1, u2, u3)T is the velocity [m/s], p is the pressure [N/m2], ρ is the density [kg/m3],
f = (f1, f2, f3)T is the body force [N/m3], g = (g1, g2, g3)T is the boundary velocity [m/s], and
σ(u, p) is the stress tensor [N/m2] defined by

σij(u, p) ≡ −pδij + 2µDij(u), Dij(u) ≡ 1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3,

with the Kronecker delta δij and the kinematic viscosity µ [kg/(ms)].
Some preliminaries are arranged for the derivation of a variational formulation of (1). Let X

denote H1(Ω)3, and an affine space and function spaces are defined as follows:

V (g) ≡ {
v ∈ X; v = g on Γ

}
, V ≡ V (0), Q ≡ L2(Ω)/R,

where L2(Ω) denotes the space of square summable functions in Ω, H1(Ω) denotes the space of
functions in L2(Ω) with derivatives up to the first order, and “/R” corresponds to determine up
to an additive constant. Let a0 be a continuous bilinear form on X ×X, b a continuous bilinear
form on X ×Q, and a1 a continuous trilinear form on X ×X ×X defined by

a0(u, v) ≡ 2µ

ρ

∫

Ω

D(u) :D(v) dx, b(v, q) ≡ − 1
ρ

∫

Ω

q∇· v dx,

a1(w, u, v) ≡ 1
2

{∫

Ω

[
(w·∇)u

]
v dx−

∫

Ω

[
(w·∇)v

]
u dx

}
,

respectively. Here, the notation “:” denotes the tensor product.
The variational formulation of (1) is described as follows: find (u, p) ∈ V (g)×Q such that





a0(u, v) + a1(u, u, v) + b(v, p) =
1
ρ
(f, v) for v ∈ V, (2a)

b(u, q) = 0 for q ∈ Q, (2b)

where ( · , ·) denotes the L2-inner product over Ω.
By application of the Newton method to (2), the kth step linearized equations become the

following: find (uk, pk) ∈ V (g)×Q such that





a0(uk, v) + a1(uk−1, uk, v) + a1(uk, uk−1, v) + b(v, pk)

=
1
ρ
(f, v) + a1(uk−1, uk−1, v) for v ∈ V, (3a)

b(uk, q) = 0 for q ∈ Q. (3b)



To avoid some intricate notations, we rewrite the linearized Navier–Stokes equations as follows:
find (u, p) ∈ V (g)×Q such that

{
a0(u, v) + a1(w, u, v) + a1(u, w, v) + b(v, p) = (f̃ , v) for v ∈ V, (4a)
b(u, q) = 0 for q ∈ Q, (4b)

where w is a given velocity [m/s]. Obviously, the equations (4) yeild (3) by substituting

uk−1, uk, pk, and
1
ρ
f +

(
uk−1 ·∇)

uk−1

into w, u, p, and f̃ , respectively.

3 Finite element approximation

For simplicity, we confine ourselves to the tetrahedral subdivision of a polyhedral domain Ω, and
to a continuous boundary velocity. Let {Th}h↓0 be a uniformly regular family of decompositions
of Ω into tetrahedra, where h stands for the maximum diameter of tetrahedra and “ ” denotes
the closure.

In this paper, the P1/P1 elements are considered first:

Xh ≡
{

vh ∈ X ∩ C (Ω)3; vh|K ∈ P1(K)3 for K ∈ Th

}
,

Qh ≡
{

qh ∈ Q ∩ C (Ω); qh|K ∈ P1(K) for K ∈ Th

}
,

where C (Ω) denotes the space of continuous functions in Ω, and for each integer k ≥ 1, Pk(K)
denotes the space of polynomials of degree k defined in K ∈ Th. We set

Vh(g) ≡
{

vh ∈ Xh; vh(P ) = g(P ) at P ∈ Γ
}

, Vh ≡ Vh(0),

where P is any nodal point on Γ .
As in Franca and Frey (1992), an approximate problem of (4) with stabilized terms are intro-

duced as follows: find (uh, ph) ∈ Vh(g)×Qh such that, for (vh, qh) ∈ Vh ×Qh,

a0(uh, vh) + a1(wh, uh, vh) + a1(uh, wh, vh) + b(vh, ph) + b(uh, qh)

+
∑

K∈Th

{
τK

((
wh ·∇

)
uh +

(
uh ·∇

)
wh +

1
ρ
∇ph,

(
wh ·∇

)
vh +

(
vh ·∇

)
wh − 1

ρ
∇qh

)
K

+ δK(∇·uh,∇·vh)K

}

= (f̃ , vh) +
∑

K∈Th

τK

(
f̃ ,

(
wh ·∇

)
vh +

(
vh ·∇

)
wh − 1

ρ
∇qh

)
K

(5)

where ( · , · )K denotes the L2-inner product over K. The stabilized parameters τK and δK are
defined by

τK ≡ min
{

hK

2 ‖w‖∞
,

ρ h2
K

24µ

}
, δK ≡ min

{
λρh2

K‖w‖2∞
12µ

, λhK‖w‖∞
}

, (6)

where λ denotes a positive constant, ‖w‖∞ denotes the maximum norm of w in K, hK denotes
the diameter of K.
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Figure 1: A cavity flow problem.
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Figure 2: The x1-components of the velocity
along the line x1 = 0.5 and x2 = 0.5.

Second, the Bercovier–Pironneau (BP) elements are also considered as finite elements; see
Bercovier and Pironneau (1979):

Xh ≡
{

vh ∈ X ∩ C (Ω)3; vh|K ∈ P1(K)3 for K ∈ Th/2

}
,

Qh ≡
{

qh ∈ Q ∩ C (Ω); qh|K ∈ P1(K) for K ∈ Th

}
,

where Th/2 is a union of tetrahedra consisting of sub-tetrahedra obtained by decomposing each
element K ∈ Th into eight sub-tetrahedra, see Kanayama et al. (1989). In case of BP elements,
“stabilized” terms are considered in the following way although they are slightly different from the
method stated above: the summations in stabilized terms of (5) are executed over K belonging to
Th/2 instead of Th.

4 Numerical examples

The cavity flow problem is considered as numerical examples; see Figure 1. For related results,
see Ghia et al. (1982) and Kanayama and Toshigami (1988). The domain is a unit cube. On
the top of the cube, g = (1, 0, 0) [m/s] is given as flows along the x1-axis, and the fixed boundary
conditions are imposed on the other boundaries. The pressure is imposed 1.0 [N/m2] in the center
of the cube. The body force is not loaded. The density ρ is set to be 1.0 [kg/m3]. Throughout
this section, the representative velocity U and the representative length D are set to be 1.0 [m/s]
and 1.0 [m], respectively. Therefore the Reynolds number Re becomes ρUD/µ = 1/µ.

The domain Ω is decomposed into a union of tetrahedra. The flow field is approximated
by BP and P1/P1 elements. It is noted that BP elements are considered over Th, and that
P1/P1 elements over Th/2. In the following computations, Ω is divided into 6 × 10 × 10 × 10
tetrahedra: in BP elements, the number of elements and degrees of freedom are 6,000 and 29,114,
respectively; in P1/P1 elements, the number of elements and degrees of freedom are 48,000 and
37,044, respectively. As in Section 3, the Newton method are used for the nonlinear iteration in
P1/P1 elements with stabilized terms (P1/P1 + Stabilized), BP elements with stabilized terms
(BP + Stabilized), and BP elements without stabilized terms (BP: τK and δK is set to be 0).
Throughout this section, λ is set to be 1.0. The initial value of the nonlinear iteraion is the
finite element solution of the corresponding Stokes problem. The nonlinear iteration is stopped
when the relative residual norm

∥∥F(un+1)−K(un+1)un+1
∥∥

2
/

∥∥F(u0)
∥∥

2
becomes smaller than

1.0 × 10−7. Here un denotes the solution vector at the nth step, K the resultant coefficient
matrix, F the resultant given vector, and ‖ . ‖2 the Euclidean norm. In the Stokes equation for
the initial condition, the resultant linear equations are solved by the Conjugate Gradient method



(CG), where the shifted incomplete LDLT factorization is used as the preconditioner. Here the
shifted value is set to be 1.05. The CG iteration is stopped when the relative residual norm∥∥F−Ku0

∥∥
2
/ ‖F‖2 becomes smaller than 1.0× 10−12. In each step of the nonlinear iteration, the

resultant linear equations are solved by BiCGSTAB(L); see Gerard and Diederik (1993). Here the
shifted incomplete LDU factorization is used as the preconditioner, where the degree L and the
shifted value are set to be 10 and 1.05, respectively. The BiCGSTAB(L) iteration is stopped when
the relative residual norm

∥∥F(un)−K(un)un+1
∥∥

2
/ ‖F(un)‖2 becomes smaller than 1.0× 10−12.

Computation of the model was performed on Compaq Alpha 700MHz with 1 CPU.
Figure 2 shows distributions of the x1-component of the velocity along the line x1 = 0.5 and

x2 = 0.5 in “P1/P1 + Stabilized”, “BP + Stabilized”, and “BP”. µ is set to be 1.0×10−2 [kg/(ms)],
that is Re = 100. The computed results relatively agree with results in Ghia et al. (1982).

Figures 3 and 4 show residual norms versus the number of iterations in “P1/P1 + Stabilized”,
“BP + Stabilized”, and “BP”. Figure 3 illustrates the case of CG for the initial condition. Figure 4
illustrates the case of BiCGSTAB(10) at the first step of the nonlinear iteration. µ is set to be
1.0× 10−2 [kg/(ms)], that is Re = 100. Results show that the number of iterations are reduced in
“BP + Stabilized”. Tables 1 and 2 show the number of iterations and CPU time for the Stokes
problem and at the first step of the nonlinear iteration, respectively. From Tables 1 and 2, “BP +
Stabilized” produces the lowest computational cost than the others; its CPU time is reduced by
14 ∼ 40 %.

Figures 5 and 6 compare residual norms of BiCGSTAB(10) at the first step of the nonlinear
iteration in “BP” and “BP + Stabilized”, respectively. µ is set to be 1.0× 10−2, 2.5× 10−3, and
1.0 × 10−3 [kg/(ms)], that is Re = 100, 400, and 1000. From Figure 5, high Reynolds number
causes that convergence becomes difficult. On the other hand, Figure 6 shows that such difficulty
was overcome thanks to stabilized terms. In Re = 1000, stabilized terms reduce the number of
iterations to half.

Figures 7 and 8 show residual norms of the nonlinear iteration in “BP” and “BP + Stabilized”,
respectively. µ is set to be 2.5 × 10−3, 1.25 × 10−3, and 1.0 × 10−3 [kg/(ms)], that is Re = 400,
800, and 1000. From Figure 7, high Reynolds number causes that convergence becomes difficult
without stabilized terms. Especially, the residual diverges in Re = 1000. On the other hand, from
Figure 8, the nonlinear iteration using stabilized terms converges even in Re = 1000.

Table 1: Number of iterations and CPU time for the Stokes problem.

P1/P1 + Stabilized BP + Stabilized BP

Num. of iterations 128 97 120

CPU time [s] 32 19 22

Table 2: Number of iterations and CPU time at the first step of the nonlinear iteration.

P1/P1 + Stabilized BP + Stabilized BP

Num. of iterations 69 65 88

CPU time [s] 42 32 37
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Figure 3: The profile of residual norms of CG for
the Stokes problem.
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Figure 4: The profile of residual norms of
BiCGSTAB(10) at the first step of the nonlinear
iteration.
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Figure 5: The profile of residual norms of
BiCGSTAB(10) in “BP” at the first step of the
nonlinear iteration.
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Figure 6: The profile of residual norms of
BiCGSTAB(10) in “BP + Stabilized” at the first
step of the nonlinear iteration .

-8

-6

-4

-2

0

0 1 2 3 4 5 6 7

R
es

id
ua

l n
or

m
s 

(lo
g1

0)

 Number of iterations

Re=1000

Re=800

Re=400

Figure 7: The profile of residual norms of the
nonlinear iteration in “BP”.
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5 Concluding Remarks

We have considered the stationary incompressible Navier–Stokes equations, and have introduced
the Newton method and a finite element method with a stabilization technique at each step of



the nonlinear iteration. P1/P1 elements with stabilized terms, BP elements with stabilized terms,
and BP elements without stabilized terms have been adopted. Numerical results have shown that
BiCGSTAB(L) in BP elements with stabilized terms converged faster than the others at each step
of the nonlinear iteration. In addition, stabilized terms have improved the convergence of the
Newton method as well as that of BiCGSTAB(L).

We are planning to compute larger scale problems using iterative domain decomposition
method.
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