
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Implementing a Real-time Free-Viewpoint Video
System on a PC-Cluster

Ueda, Megumu
Department of Intelligent Systems, Kyushu University

Arita, Daisaku
Department of Intelligent Systems, Kyushu University

Taniguchi, Rin-ichiro
Department of Intelligent Systems, Kyushu University

http://hdl.handle.net/2324/5961

出版情報：Proc. of the 7th International Workshop on Computer Architecture for Machine
Perception, pp.167-171, 2005-07
バージョン：
権利関係：

Implementing a Real-time Free-viewpoint Video
System on a PC-cluster
Megumu Ueda, Daisaku Arita, Rin-ichiro Taniguchi

Department of Intelligent Systems
Kyushu University

6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580 Japan
URL: http://limu.is.kyushu-u.ac.jp/

Email: �ueda, arita, rin�@limu.is.kyushu-u.ac.jp

Abstract— In this paper, we present a system generating free-
viewpoint video in real-time using multiple cameras and a PC-
cluster. Our system firstly reconstructs a shape model of objects
by the visual cone intersection method, secondly transforms the
shape model represented in terms of a voxel form into a triangu-
lar patch form, thirdly colors vertexes of triangular patches, and
finally displays the shape-color model from the virtual viewpoint
directed by a user. Here, we describe implementation details of
our system and show some experimental results.

I. INTRODUCTION

Currently, televisions are used for real-time, or live, dis-
tribution of scenes of the world. In television, however, a
video captured by a camera is displayed on a screen and the
viewpoint is chosen only among camera positions specified
by the program director, not among arbitrary positions. On
the other hand, computer graphics techniques can generate
a free-viewpoint video, in which a viewer can changed the
viewpoint to arbitrary positions. However, computer graphics
requires a structure and motion model of objects and it
is time consuming to construct such a model in advance.
Then, we aim to construct a computer graphics model by
computer vision techniques in real-time for generating live
free-viewpoint videos.

Several researches have been done for generating free-
viewpoint videos using multiple cameras since Kanade et al.[1]
had proposed the concept of ”Virtualized Reality”. We can
classify the researches into two approaches. The first approach
reconstructs 3D shapes of objects and the second one does
not reconstruct them. We select the first approach because
it can generate free-viewpoint videos with less cameras and
less memories. As the first approach, Matsuyama et al.[2],
Carranza et al.[3] and Davis et al.[4] have developed systems
which generate a computer graphics model from multiple
camera videos. Although they achieve relatively precise shape
reconstruction and model coloring, it requires a lot of com-
putation time, and, then, real-time processing can not be
achieved. In contrast, our system can generate free-viewpoint
videos in real-time based on a new model coloring method
presented here, sacrificing precision of 3D shape reconstruc-
tion. In other words, our system can be used for live videos
from arbitrary viewpoints.

II. PARALLEL PROCESSING MODEL ON A PC-CLUSTER

It is quite time consuming to generate free-viewpoint videos,
and, therefore, its online, or real-time, processing requires
a high-performance computing system. We have employed
a PC-cluster to implement a real-time free-viewpoint video
system, because it provides quite a high cost performance
based on parallel processing techniques. The key issue is pro-
gramming methodology, especially for real-time algorithms,
on a PC cluster. Here, we have implemented our system
using RPV[5] on a PC-cluster, which is a programming
environment for real-time image processing on a distributed
parallel computer such as a PC-cluster. RPV supports several
schemes of parallel processing, such as data parallel (space
division and time division), function parallel, pipeline parallel,
and their combination. Process execution model employed
by RPV is periodical data processing and communication,
which is synchronous to real-time image sequence (see Fig. 1).
Basically, RPV supports frame-synchronous data execution,
which means that one frame period, 33msec in case of 30fps
camera, is allocated to process one image frame and another
frame period is allocated to transfer one image frame to the
succeeding PC (see Fig. 1 (a)). This causes a large latency
when we have a long pipeline structure.

To make the latency as small as possible keeping high
throughput, we have introduced stream data transfer, or fine
grained data transfer, to RPV. One frame data is divided
into small packets consisting of pixels, lines, voxels, or other
image features, and data processing and transfer are applied
to each packet. When each PC finishes processing a packet, it
immediately starts sending it to the succeeding PC and then
starts processing the next packet (see Fig.1 (b)). Therefore,
when the packet arrives at the succeeding PC, the processing
of the packet can be started immediately. This mechanism can
greatly reduce the latency.

III. FREE-VIEWPOINT VIDEO GENERATION

If it is possible to divide a process into several packet-based
processings, the process is divided and allotted to PCs, and
the process is processed in parallel. Then we must consider
process time and communication. We must make process time
of each PC be almost the same and we must not make too
many PCs since too many PCs make a large latency and the

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

PC1

processing transfer

frame #1

frame #2

frame #3

frame #1

frame #2

frame #3

PC2

FSS(Frame Synchronization Signal)

one frame
period

(a) Frame-based data execution

PC1

processing transfer

packet #1

packet #2

packet #M

PC2
packet #1

packet #2

packet #M

(b) Packet-based data execution

Fig. 1. Pipeline processing model on a PC-cluster

number of PCs is limited. So we have thought that following
processes are best balance.

1) Reconstructing a shape model of objects by the visual
cone intersection method[6].

2) Transforming the shape model represented in terms of a
voxel form into a triangular patch form by the discrete
marching cubes method[7].

3) Coloring vertexes of triangular patches varying with the
position relation between the virtual viewpoint directed
by a user and the viewpoints of cameras.

4) Displaying the shape-color model from the virtual view-
point with painting triangular patches by interpolating
among vertexes.

These processes are distributed to PCs shown in Fig. 2 and
executed in pipeline parallel.

a) Node-A: First, each node-A extracts object silhou-
ettes from video frames captured by a camera by background
subtraction and noise reduction. Secondly, each node-A con-
structs visual cones. A visual cone is defined as a cone whose
apex is the viewpoint and whose cross section coincides with
the silhouette of the object. Visual cones are represented in
terms of a voxel space. Finally, each node-A sends the visual
cones to a node-B and sends the colored silhouette image to

Data flow

Capturing and

constructing visual cone Coloring

Integration of

color infomation

and generating a

free-viewpoint

image

Visual cone

intersection

C

D

A

A

A

A

C

C

C

Camera image
Voxel

Color

B'

A'

B

B

Camera

A'

B

Fig. 2. System configuration

a node-C.1

b) Node-B: Each node-B gathers and intersects visual
cones from multiple viewpoints to construct a shape model
of the objects represented in terms of a voxel space. Since
this process is time consuming, it is distributed to multiple
node-Bs hierarchically. Node-B’, the last node of node-Bs,
transforms the finale shape model represented in terms of a
voxel space into that in terms of triangular patches. However,
node-B’ sends the voxel space and its corresponding patterns
of the discrete marching cubes method instead of triangular
patches since the triangular patch form is not efficient from
the viewpoint of data size.

c) Node-C: First each node-C transforms the shape
model represented in terms of a voxel space into those of
triangular patches by the discrete marching cubes method
using patterns sent from node-B’. Then, each node-C colors
visible vertexes of the shape model based on one camera
image. Finally, each node-C sends color information of all
vertexes of the shape model.

For coloring vertexes in real-time, it is necessary to quickly
judge whether each vertex is visible from the camera or not.
Conservative visibility check method has to check whether
each vertex is occluded by each triangular patch. That com-
putation amount is ��� ��, where� is the number of vertexes.
So we propose a new method based on the Z-buffer method,
whose computation amount is ����. Our method consists of
two steps (See Fig. 3). At the first step, node-C searches for

1To reduce the computation time, some of node-As, indicated as node-A’
in Fig. 2, do not send the colored silhouettes to reduce their redundancy. The
selection is done in advance based on the camera arrangement.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

image plane

object surface

normal vector

viewpoint
p1

p2

p3

p4

p5

dp5

dp4

dp3

dp2

dp1

(a) step 1

Colored patche
image plane

object surface

normal vector

viewpoint

(b) step 2

Fig. 3. Coloring vertexes

(a) Original trian-
gular patch

(b) Divided trian-
gular patch

Fig. 4. Dividing triangular patch

the object surface which faces against the viewpoint and which
is nearest to the viewpoint in each pixel �. This step is realize
by the Z-buffer method altered to taking account of not all
surfaces but only surfaces facing against the viewpoint. Then,
node-C lets �� be the distance between the viewpoint and the
nearest surface. At the second step, node-C colors all vertexes
which faces toward the viewpoint and which is nearer to the
viewpoint than �� in each pixel �. The color of the vertexes is
that of pixel �. At this time, each triangular patch is divided
into six triangular patches as shown in Fig. 4 since increasing
the number of vertexes makes coloring resolution higher
without lengthening processing time for shape reconstruction.

d) Node-D: First node-D receives the position of the
virtual viewpoint directed by a user.

θ

θ 1

θ

Camera 1

Camera 2

Camera N

Virtual viewpoint

2

N

Object

Object surface

Fig. 5. Angle between camera and virtual viewpoint

Secondly node-D transforms the shape model represented
in terms of a voxel space into those of triangular patches by
the discrete marching cube method in the same way as node-
C. There are two reasons why shape model transformation is
made on both node-C and node-D. The first one is because
the data size of triangular patches is very large and the time
to transport triangular patches is too long. The second one is
because processing times of node-B, node-C and node-D are
balanced best.

Thirdly, node-D integrates color information of all cameras.
The integrated color value for each vertex is weighted mean
of color value from node-C. The weight �� of camera � is
calculated by the following expression;

�� �
������ � ���

��

���

������ � ���

(1)

where � is the number of cameras visible the vertex, �� is
the angle between the vector from the virtual viewpoint to the
vertex and that from the camera viewpoint to the vertex (See
Fig. 5). 	 is decided from balance between processing time
of node-D and other nodes. In this experiment, we let 	 be 1.
Color value of a vertex visible from no camera is let be same
as the mean value of neighbor vertexes.

Finally, node-D generates an image from the directed view-
point. Each triangular patch is painted by interpolating among
vertexes.

IV. EXPERIMENTS

Using our proposed system, we generate free-viewpoint
video in real-time to evaluate the precision of generated
images, processing time of each node, latency, and the amount
of data transfer. We have used seven IEEE-based cameras with
������� pixel resolution (see Fig. 6), and 17 PCs (six node-
As, one node-A’, two node-Bs, one node-B’, six node-Cs,
one node-D), each of which has an Intel Pentium4 (3GHz),
1GB memory and NVidia GeForce FX. PCs are connected by
Myrinet. All the cameras are calibrated in advance by Tsai’s
method[8]. Voxel space resolution is ��	� ��	� ��	 and the
size of a voxel is 2cm.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

TABLE I

AMOUNT OF DATA SENDING FROM EACH NODE

Node Average (Kbyte)
A (Image) 93.5 (variable)

A and B (voxel) 256 (constant)
B’ 28.6 (variable)
C 92.0 (variable)

Camera

Fig. 6. Camera arrangement

Fig. 7 shows two pairs of a camera image and a generated
image whose viewpoints are same. Fig. 8 shows four generated
images from virtual viewpoints. Each image is well-generated.
Fig. 9 shows the sum of root mean square errors between a
camera image and a generated image with a same viewpoint.
This may be caused by

� shape reconstruction error,
� camera calibration error,
� re-sampling error from image pixels to triangular patch

vertexes, and
� color integration error.

Fig. 10 shows the mean of processing time of each node
in case that there is one person in the experimental space
and the latency of the system is 200ms. We think balance
of allotting processes is good from Fig.6. Table. I shows the
amount of data sending from each node. Node-D receives the
largest amount of data, 600KB/frame, of all nodes. This data
size requires 4.8ms for receiving via Myrinet. And the actual
throughput of the system is about 20fps and 13fps in case of
one person and two persons respectively. This means that the
actual throughput is lower than the theoretical one calculated
by adding the longest processing time (node-D) and the longest
data-sending time (to node-D) owing to the overhead of OS
such as process switching. However enough performance is
realized by using a PC-cluster and communication dose not
influence the throughput so much, 20fps and less than.

V. CONCLUSION

In this paper, we propose a system generating free-viewpoint
videos using multiple cameras and a PC-cluster in real-time.
And we make some experiments to show the performance and
the precision of our system.

Major future works especially from the view point of
parallel/distributed processing are as follows.

Reduction of latency
The latency of the current system is about 200ms.

(a) viewpoint 1 (b) viewpoint 2

Fig. 7. Camera images(upper) and generated images(lower)

That value is not small. We think that packet-based
processing and data compression is effective for
reduction of latency. Currently, the packet-based pro-
cessing is introduced only from node-A to node-B’
on the current system. Therefore, we will introduce
it to all nodes.

Invariable throughput
The throughput of our system varies depending on
the scenes since the number of voxels and the number
of triangular patches depend on the size and the
shape of objects. By introducing variable resolution
of the voxel space we suppose we can make the
throughput relatively unvaried.

REFERENCES

[1] P. J. Narayanan, T. Kanade, and P. W. Rander, “Concepts and early
results,” in Proc. IEEE Workshop on the Representation of Visual Scenes,
June 1995, pp. 69–76.

[2] T. Matsuyama, T. T. Xiaojun Wu, and S. Nobuhara, “Real-time generation
and high fidelity visualization of 3d video,” in Proc. of MIRAGE2003,
Mar. 2003, pp. 1–10.

[3] J. Carranza, C. Theobalt, M. A. Magnor, and H.-P. Seidel, “Free-
viewpoint video of human actors,” in ACM Trans. on Graphics, vol. 22,
no. 3, July 2003, pp. 569–577.

[4] E.Borovikov and L.Davis, “A distributed system for real-time volume
reconstruction,” in Proc. 5th Int. Workshop on Computer Architecture for
Machine Perception (CAMP2000), 2000, pp. 183–189.

[5] D. Arita and R. Taniguchi, “RPV-II: A stream-based real-time parallel
vision system and its application to real-time volume reconstruction,” in
Proc. of Second International Workshop on Computer Vision System, July
2001, pp. 174–189.

[6] W. N. Martin and J. K. Aggarwal, “Volumetric description of objects
from multiple views,” in IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 5, no. 2, 1983, pp. 150–158.

[7] Y. Kenmochi, K. Kotani, and A. Imiya, “Marching cubes method with
connectivity,” in Proc. on International Conference on Image Processing,
vol. 4, Oct. 1999, pp. 361–365.

[8] R. Y. Tsai, “A versatile camera calibration technique for high-accuracy
3d machine vision metrology using off-the-shelf tv cameras and lenses,”
in IEEE Trans. on Robotics and Automation, vol. 3, no. 4, 1987, pp.
323–344.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

(a) virtual viewpoint A (b) virtual viewpoint B

(c) virtual viewpoint C (d) virtual viewpoint D (e) virtual viewpoint E

Fig. 8. Generated virtual-viewpoint images

0

10

20

30

40

50

60

70

80

1 30 59 88 117 146 175 204 233 262 291 320 349 378

Frame number

Root-mean-square

errors
cam1

cam2

cam3

cam4

cam5

cam6

cam7

cam8

cam9

Fig. 9. Error: Cam 7 is ceiling camera unused for model coloring. Cam 8
and cam 9 are cameras unused for shape reconstruction and model coloring

1

3

5

7

N
o

d
e
 D

N
o

d
e
 C

N
o

d
e
 B

'

N
o

d
e
 B

N
o

d
e
 A

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Process

time(sec)
Node D

Node C

Node B'

Node B

Node A

Fig. 10. Processing time from each node

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

