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Abstract: Antibiotics are pharmaceutical emerging contaminants (ECs) that contaminate the environment and jeopardize 

public health. More dangerously, the widespread consumption of antibiotics and their impact on water contamination 

foster the formation and evolution of antibiotic-resistant genes in microbes. Graphene Oxide (GO) is an emerging carbon 

material with a great potential to operate as an adsorbent to remove antibiotics from water due to its unique physical and 

chemical properties. Thus, this study briefly reviews topics related to antibiotic removal from water using GO-based 

materials. This research also summarizes the benefits of GO structural properties, adsorption mechanisms, and the 

affinity of the GO synthesis method to the quality of the GO produced. 
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1. INTRODUCTION  

Water pollution is one of the world's most pressing 

concerns today because this pollution threatens national 

development, public health, and environmental 

sustainability. Water pollution due to Emerging 

contaminants is one of the most severe environmental 

challenges threatening humans worldwide [1]. These 

emerging contaminants significantly pollute water due to 

rising industrialization and the use of chemicals in the 

community to satisfy today's contemporary lifestyle. The 

industrial process does not eliminate all these emerging 

contaminants throughout the treatment phase, and then 

the contaminants enter the environment. Likewise, these 

chemicals used by humans remain in wastewater and end 

up in natural water sources because conventional 

treatment plants are not designed to remove these 

chemicals. These toxins can contaminate drinking water 

and pose an uncertain health risk, particularly to 

youngsters. More severe facts, over 121 uncontrolled 

chemicals, and microbes have been reported in 

wastewater and at least 25 in water treatment plants [2]. 

As more people became aware of the hazards of emerging 

contaminants pollution to humans and even flora and 

fauna, many provincial, federal, international, and 

intergovernmental environmental preservation agencies 

made policies to regulate the use of emerging 

contaminants to prevent worse pollution. 

Emerging contaminants (ECs), sometimes known as 

contaminants of emerging concern (CECs) in particular 

articles or journals, can refer to a wide variety of artificial 

or naturally occurring chemicals or materials that are 

harmful to human health after long-term disclosure. 

These contaminants can be classified into several classes, 

including agricultural contaminants (pesticides and 

fertilizers), medicines and antidote drugs, industrial and 

consumer waste products, and personal care and 

household cleaning products [3]. Antibiotics are one of 

the ECs that have raised concerns in the previous two 

decades because they have been routinely and widely 

used in human and animal health care, resulting in 

widespread antibiotic residues discharged in surface, 

groundwater, and wastewater. The rampant and 

increasingly widespread misuse of antibiotics 

exacerbates the water pollution due to the ECs. These 

contaminants are often detectable in water systems at 

concentrations ranging from ng/L to μg/L and can even 

exist in any drinking water system [4]. According to the 

World Health Organization (WHO), surface and 

groundwater, as well as partially treated water, 

containing antibiotics residue and other pharmaceuticals, 

typically at concentrations of <100 ng/l, whereas treated 

water has concentrations of less than 50 ng/l [5]. 

However, the discovery of these contaminants in 

numerous natural freshwater sources worldwide is 

growing yearly. Several antibiotic residues have been 

reported to have been traced at concentrations greater 

than their ecotoxicity endpoints in the marine 

environment, specifically in Europe and Africa [6]. Thus, 

the European Union's Water Framework Directive 

enumerated certain antibiotics as priority contaminants 

[7]. As previously noted, the drinking and wastewater 

plants are typically not intended to remove these 

contaminants. Therefore, several strategies must be 

arranged to ensure that these contaminants do not enter 

any water sources to avoid adverse effects on human 

health. 

Material engineering and nanomaterials technology are 

the engineering alternatives with the interweaving of 

scientific approaches that can be engineered to solve ECs 

pollution issues in the world's water resources. Numerous 

materials have been reported to have the potential and 

capacity to treat water or wastewater polluted with these 

antibiotics residue by applying the processes of 

adsorption and catalytic oxidation during the last few 

decades. The reported materials include mesoporous 

carbon beads [8], biochar [9]–[11], clay minerals [12], 

activated carbon [13]–[15], cellulose [16], [17], and 

chitosan [18]–[20]. As a result of engineering and science 
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evolution, and in complement to the urgent need to 

increase the adsorption capability of antibiotic 

contaminants, more advanced materials such as carbon 

nanotube (CnT) [21]–[24], nano-zero valent iron (nZVI) 

[25]–[29],  nanoporous carbons [30], porous graphene [4], 

[31] and graphene oxide [3], [32]–[34] to date have been 

analyzed and improved in their ability to remove these 

contaminants from water. 

Graphene oxide (GO), one of the carbon nanomaterials, 

has piqued the widespread attraction of environmental 

specialists worldwide in recent years since it was first 

exfoliated from graphite in 2004 [35]. This material has 

been proven as a prospective material for treating water 

contaminated with ECs [36]. With its superior 

mechanical qualities and unique physicochemical 

features, GO promises a significant adsorption impact 

when employed alone or as a supporting material, 

particularly in water treatment applications [37]. 

Therefore, this paper provides a brief review of subjects 

relevant to eliminating ECs or antibiotics from water 

using GO-based materials. In addition, this paper is 

expected to assist future researchers in understanding the 

basis of GO characteristics and production, as well as 

gaining an early understanding of this material's benefits 

and capabilities in the remediation of antibiotic-

contaminated water. 

 

2. GRAPHENE OXIDE (GO) 

2.1 Structure characteristics of GO  

GO is one of the paramount graphene derivatives 

produced by treating graphene with strong oxidants such 

as sulfuric acid (H2SO4), sodium nitrate (NaNO3), and 

potassium permanganate (KMnO4) [38]–[40]. Graphene, 

which comprises carbon atoms as thick as a single atom 

and arranged in a hexagonal pattern sp2 structure, has 

some constraints in some applications due to the absence 

of a bandgap in graphene and inadequate water-solubility 

properties [41], [42]. Therefore, this oxidation of 

graphene produces GO, which contains abundant 

functional groups on the basal plane and edges of 

graphene layers, including epoxide, hydroxyl, and 

carboxyl functional groups [43]–[45]. The existence of 

oxygenous functional groups (OFGs) overcomes the 

graphene's imperfection, resulting in a highly hydrophilic 

GO with outstanding dispersion properties in most 

solutions [46]. Moreover, the OFGs can provide reactive 

sites for the chemical modification of GO, which can be 

exploited to invent GO-based materials [47], [48]. 

Although this functional group gives many advantages to 

GO in its application, there are inter-functional solid 

bonds between graphene sheets, leading to the formation 

of a chemically inactive surface, lessening surface area, 

and increased agglomeration and poor dispersion in some 

aqueous solutions [35], [41]. These unfavorable elements 

restrict adsorption capacity performance and future 

utilization in wastewater treatment. Previous researchers 

have innovated the GO with chemicals to address this 

issue and created GO/metallic composites and 

GO/organic compound composites to effectively remove 

antibiotics from the environment [49], [50]. 

 

2.2 GO production 

Although the novelty of graphene and graphene oxide has 

drawn widespread interest among material scientists in 

recent years, the GO production process has a lengthy 

evolution history that spans several decades. Bulk 

graphite oxide, seen as an accumulation of GO flakes, 

was synthesized for the first time in 1855 by Brodie at 

Oxford University using potassium chlorate (KClO3) and 

fuming nitric acid (HNO3) as precursors [51]. Graphite 

and the mentioned precursors are mixed in a distiller, and 

the temperature is held at 60°C using a water-bath system. 

Staudenmaier enhanced Brodie's approach in 1898 by 

adding concentrated H2SO4 to boost acidity [52]. This 

approach, however, was time-consuming and dangerous 

due to the creation of hazardous volatile chlorine dioxide 

(ClO2). Later in 1958, Hummers and Offeman introduced 

an alternative method for lessening the harmful level of 

GO production by using H2SO4 and KMnO4 [51]. To date, 

the Hummers method is the best approach that most 

researchers have widely employed. 

In brief, the Hummer method mixes a certain amount of 

graphite, sodium nitrate (NaNO3), and concentrated 

H2SO4 in an ice-bath system with the ambient 

temperature of the mixture maintained at 0–4 °C. A 

quantity of KMnO4 is added slowly to the mixture under 

vigorous stirring. The mixture's temperature is then kept 

at 35–38 °C for some specific periods, and an amount of 

deionized or distilled water is added before being raised 

to 98 °C and sustained for roughly 30–60 minutes. A 30% 

hydrogen peroxide (H2O2) solution is added to the 

mixture to convert the remaining manganese dioxide and 

permanganate to soluble manganese sulfate. The 

resultant GO was then rinsed many times with distilled 

water. 

Each parameter and precursor used during the production 

of GO affects the reaction and gives different GO 

qualities to its application. Therefore, many researchers 

have explored modifying this Hummer method for GO 

production. For instance, Cao et al. [53] and Lebron et al. 

[54] have used phosphoric acid (H3PO4) in the process of 

GO production in their studies. In addition to utilizing 

NaNO3 as an extra oxidizing agent, Han et al. [38] 

eliminated several steps and shortened the GO synthesis 

time. Yuan et al. [55] presented ultrasonic in their study's 

rate-determining step of the oxidation reaction and 

discovered that the oxidation and exfoliation processes 

play an essential role in producing more functional GO. 

Arabpour et al. [56] refined the sonication technique to 

increase oxidation and create high-quality GO in ECs 

(Methylene Blue) removal. Muzyka et al. [44] 

investigated the effect of different oxidative conditions 

on the oxygen content and distribution of OFGs on GO. 

They discovered that the chemical structure of GO could 

be adjusted by changing the reaction conditions even 

when using the same oxidation method. According to F 

et al. [57], the GO sonication period is essential in 

manufacturing high-quality GO nanocomposite films for 

UV light blocking applications. Yoo & Park [58] has 

proven that the addition of the H2O2 process in the 

Hummers method could intensely influence the 

properties of GO. 

Even though many researchers have improved the GO 

synthesis by adjusting various temporal aspects, steps, 

and precursors, the method presented was not 
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significantly different and was still parallel to the primary 

method introduced by Hummer. Despite researchers 

introducing several strategies to enhance GO synthesis, 

research on low-cost GO manufacturing processes, 

creating high-quality GO according to current 

requirements, and environmental friendliness is still 

ongoing. 

Thus, this paper generally defines and describes the 

graphite-to-GO transformation process, which can be 

divided into four main stages before the washing process, 

as illustrated in Fig. 1. The first stage involves 

transforming graphite into H2SO4 intercalated graphite 

compounds. The second stage uses concentrated 

oxidizing agents such as KMnO4 to transform graphite 

intercalated compounds into oxidized graphite. The third 

stage is to transform graphite oxide to GO via water 

reaction, and the fourth stage is to use H2O2 to reduce the 

remaining manganese dioxide and permanganate by 

producing a colorless solution. All the parameters 

described above are critical in creating high-quality GO 

that fulfills the application's needs. 

 

 

 
Fig. 1. Graphite-to-GO transformation process 

 

 

3. ADSORPTION MECHANISM OF 

ANTIBIOTICS  

Adsorption is one of the most appropriate physical 

approaches to removing antibiotics from water because 

of its low cost, flexibility, and exceptional efficiency. 

Graphene and GO having vast surface area 

characteristics make them beneficial for a more practical 

antibiotic reaction and faster adsorption [11], [51]. The 

unique structure of graphene and GO-based material also 

dramatically influences the performance of antibiotic 

removal through the adsorption approach. The single-

layered carbon structure constituted in graphene oxide 

allows all atoms to be exposed to the environment and 

easily interact with antibiotic molecules, mainly by π-π 

interaction between antibiotic molecules and π-electron 

of graphene aromatic ring [59]. Moreover, the presence 

of high-density OFGs such as hydroxyl and carboxyl in 

the GO carbon lattice due to graphene functionalization 

creates more opportunities for hydrogen bonding 

between the antibiotic molecule and the functional group, 

making the antibiotic adsorption mechanism more 

effective and stable [43], [60]. In addition, this adsorption 

mechanism can also occur owing to the hydrophobic 

interaction of antibiotic molecules with the GO 

adsorbent's hydrophobic group and the antibiotic 

molecule's electrostatic interaction with the carboxyl 

group of GO at different pH [61]. 

 

4. ANTIBIOTICS ADSORPTION BY GO-BASED 

MATERIAL 

Graphene has previously been utilized as an adsorbent in 

research to remove various antibiotics from 

environmental aqueous solutions [62]. However, its 

removal performance was still deemed mediocre in 

practical applications due to some drawbacks, such as 

surface hydrophobicity and facile aggregation in aqueous 

solutions [63], [64]. Thus, graphene is functionalized 

through a chemical or thermal approach and becomes an 

alternative material, such as GO and reduced GO (rGO), 

to address the drawbacks. The different chemical 

structures and the variety of functional groups present in 

the GO make it preferable to be employed as an adsorbent 

because it could provide a variety of antibiotic adsorption 

effects. Khalil et al. [4]  performed a comparative study 

on the adsorption of several antibiotics on graphene and 

its derivatives (GO and porous graphene). They found 

that GO performance outperforms graphene in the 

adsorption of atenolol (ATL), ciprofloxacin (CIP), 

diclofenac (DCF), and gemfibrozil (GEM), but porous 

graphene outperforms GO in most of the studied 

antibiotics. 

Covalent modification on the GO structure is usually 

performed due to the presence of hydrophilic functional 

groups such as hydroxyl, single bond -COOH, and 

epoxide. These hydrophilic functional groups allow 

small organic molecules such as nitrilotriacetic acid, 

diethylenetriaminepentaacetic acid, alginate, and 

chitosan to be easily attached to GO and provide more 

adsorption sites to improve the antibiotics' adsorption 

capacity. According to M. fang Li et al. [61], [65], GO 

functionalized with nitrilotriacetic acid and 

diethylenetriaminepentaacetic acid provided a high 

absorption capacity for CIP and tetracyclines (TC), and 

even the adsorption capacity of CIP has been 

significantly enhanced with coexisting Cu(II) in the 

solution. 

The unique properties of graphene oxide have opened up 

a new chapter in developing various GO-based 
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nanocomposites to raise antibiotic removal efficiency. 

Interestingly, nanoparticles can be incorporated directly 

onto GO without needing a specific molecular linker to 

bind the nanoparticle to GO. Tabrizian et al. [66] 

fabricated bimetallic-nanoparticles (nZVI/copper) 

supported by GO and found that the nanocomposite 

outperformed the single material in terms of TC removal. 

In comparison,  Qiao et al. [34] reported that magnetic 

GO/Zink Oxide (ZnO) nanocomposite could adsorb TC 

with a remarkable adsorption rate, with a maximum 

adsorption capacity of 1590.28 mg/g. 

In a nutshell, it is clear that most researchers treated 

graphene chemically or thermally and embedded the GO 

surface with other molecules or particles such as 

magnetic oxide, nanoparticles, and polymers to realize 

the antibiotic removal with a remarkable adsorption 

capacity. Table 1 shows different antibiotic removal 

capacities by graphene and GO-based materials. 

 

5. CONCLUSION 

Graphene and GO are novel carbon nanomaterials with 

unique features that allow them to be widely used in 

developing high-quality adsorbents to adsorb 

contaminants in environmental aqueous solutions. Some 

facets must be considered and well understood to produce 

graphene and its derivatives with remarkable adsorption 

quality. Therefore, this review summarizes the 

advantages of GO structural characteristics that affect 

antibiotic adsorption performance and the prospect of 

improving the material by covalent modification and 

other molecules or nanoparticle decoration on the surface. 

This study also highlights past studies on the affinity 

between the GO synthesis process and the quality of the 

produced material and summarizes the four main steps of 

GO production. Four principal mechanisms may be 

involved in the adsorption of antibiotics to GO-based 

material, including π-π interaction, which is the specific 

dispersion forces from van der Waals forces, 

hydrophobic and electrostatic interaction, and hydrogen 

bonding. In addition to synthesis optimization, GO was 

improved by most researchers through functionalization 

and integration with other compounds or nanoparticles. 

Even so, there are many challenges today in producing 

GO with high performance in antibiotic removal by 

considering cost, time, reusability, and environmentally 

friendly processes.

 

Table 1. Different antibiotic removal capacities by graphene and GO-based materials. 

Graphene and GO-based adsorbents Antibiotic 
Wavelength 

(nm) 

Adsorbent dose 

(g/L) 

Maximum 

sorption 

capacity (mg/g) 

Ref. 

Graphene 
Sulfamethoxazole 

(SMX) 
295 1 103 [67] 

Graphene SMX 285  239 [68] 

graphene–NH2 SMX 285  40.6 [68] 

graphene–COOH SMX 285  20.5 [68] 

graphene–OH SMX 285  11.5 [68] 

GO SMX 295 1 122 [67] 

GO SMX 285 0.02 240 [69] 

GO CIP 278 & 445 0.2 379 [69] 

GO CIP  0.02 409 [70] 

GO Levofloxacin (LEV)  0.02 303 [70] 

GO – biochar Sulfamethazine (SMT)  1 6.5 [71] 

Mesoporous silica – magnetic GO SMX  0.57  15.46  [72] 

MnO2 – graphene TC   198 [73] 

Fe – graphene TC   422 [74] 

GO – nZVI/copper bimetallic-

nanoparticles 
TC 260 & 360 0.25 201.9 [66] 

Cobalt-based ferrite (CoFe2O4) – GO DCF 278 0.74 32.4 [75] 

magnetic GO/ZnO TC 358  1590.28 [34] 
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